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Several authors have recently had apparent success in applying 

continuous-time point process models to daily rainfall observation 

sequences. In this work it is shown that major problems arise when the 

observation sequence represents cumulative rainfall amounts over a 

period (e.g., one day) which is on the order of the process 

interarrival time. In particular, the use of continuous-time point 

process models for daily rainfall occurrences may result in incorrect 

inferences about the underlying rainfall generating mechanisms. This 

was confirmed by the statistical analysis of six daily rainfall 

records from diverse climatologic regimes throughout the U.S. 

(Snoqualmie Falls, Washington; Roosevelt, Arizona; Austin, Texas; 

Miami, Florida; Philadelphia, Pennsylvania; and Den;er, Colorado). In 

addition, the use of continuous-time point process models for 

generation of daily rainfall sequences leads to serious upward biases 



in the event-interarrival times and in dependence structures that may 

be much different than those of the apparent rainfall generating 

process, 

In this work, a discrete-time point process model has been 

deve loped and its structural propert i es derived. I n the proposed 

. process the sequence of times between events is formed through 

sampling from two geometric distributions, according to transition 

probabilities specified by a Markov chain. This process belongs to 

the cl ass of semi-Markov (or Markov renewal) processes and is a 

non-renewal, clustered (relative to the Bernoulli) process which 

reduces to a renewal process with a mixture distribution for the 

i nterarri v~ 1 t im~ a~ a speci a 1 case,_ Severa 1 methods for fltt i ng the _ 

proposed model have been studied and an approximate maximum likelihood 

estimation method has been found to perform adequately, especially for 

daily rainfall structures with not very significant autocorrelation 

structures. 

The semi-Markov model was fitted to the daily rainfall 

occurrences of the Snoqualmie Falls and Roosevelt stations, both on a 

monthly and seasonal basis. The fit of the model was assessed by the 

preservation of selected statistical properties of the series which 

were not used directly in the estimation. It was shown that the 

fitted model gave a theoretical spectrum of counts surprisingly close 

to the empirical one. Also, the model was quite successful in 

preserving the distributional properties of the cumulative rainfall 

amounts over longer periods of time, particularly for the Snoqualmie 

Falls station. 
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CHAPTER 1 
INTRODUCTION 

It was six men of Indostan 
To learning much inclined, 

Who went to see the Elephant 
(Though all of them were blind), 

That each by observation 
Might satisfy his mind. 

Rainfall is the result of a complex atmospheric process evolving 

continuously over space and time. At any time, rainfall fields are 

characterfzed by their areal extent and their spatiarTy variable 

intensity. Austin and Houze (1972) and Hobbs and Locatelli (1978) have 

classified rainfall fields according to their areal extent and lifetimes 

as synoptic, large mesoscale, small mesoscale and rain cells. Synoptic 

rainfall fields cover areas on the order of 104 km2 and have a lifetime 

of one to several days; large mesoscale fields cover areas of 103 - 104 

km2 and have a lifetime of several hours; small mesoscale fields have 

areal extent of 10 - 102 km2 and a lifetime of approximately one hour; 

rain cells have areal extent of 1 - 10 km2 and lifetimes of a few minutes 

to 1/2 hour. The system of rainfall fields is hierarchical in the sense 

that larger rainfall fields usually contain one or more of the smaller 

ones. The continuous movement, build-up, and dissipation of rainfall 

fields determines the rainfall intensity variations in space and time. 

Space-time modeling of an observed rainfall sequence at a point 

based on a mathematical description of the underlying atmospheric 
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processes would be an extremely complicated, if not impossible, task. 

The need for mathematically tractable descriptions of rainfall for 

operational purposes, i.e., forecasting for day-to-day operation of 

hydrologic systems, has motivated treatment of rainfall as a stochastic 

process. Approaches to the space-time stochastic modeling of rainfall 

have recently been suggested by Waymire et ale (1984) and Kavvas and Herd 

(1984). In the present work, only the time variability of rainfall, 

i.e., the characterization of a precipitation observation sequence at a 

single station, is considered. 

Point rainfall is the precipitation intercepting a small area such 

as the opening of a rain guage; it may be treated as a continuous-time 

intermittent process, say with intensity ~(t). Precipitation 
--

measurements are-recorded-for cumul at 1 ve amounts over di screte nme -

intervals such as minutes, hours, or days. Let {Yi}T' i = 1,2,3, ... 

denote the discrete sequence of rainfall observations over an arbitrary 

time interval T. The continuous process ~(t) is related to the discrete 

Y i (T) = 

t; 

f ~(T) d (1.1 ) 

t. 1 1-

where t. - t. 1 = T is the time of measurement. Figure 1.1 illustrates 
1 1-

the relationship between ~(t) and Yi(T): the con.tinuous process t:(t) is 

integrated over, say, daily time intervals to give the sequence of daily 

data {Yi}T' where T = 1 day. 



Rainfall 
i ntens ity 

(mm/sec 

Rainfall 
depth 

(mm) 

Rainfall 
depth 

(mm) 

1 

6 

1 2 

3 

180 

"'-/ 
r- ~ 

12 

3 4 5 

~(t) 

360 540 720 t(sec) 

{Y.} 

i 1 T=l hour 

48 
t(hours) 

{Y. } 
1 T=l day 

6 7 8 9 10 11 12 
t(days) 

Figure 1.1 Continuous rainfall process ~(t) and discrete hourly and daily 
rainfall sequences {Yi}T . 
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Rodriguez-Iturbe et al. (1984) view t;(t) as lIa generalized stochastic 

process ll representing the instantaneous rate of rainfall •. By postulating 

several continuous-time models for ~(t), they have derived distributional 

properties of the discrete accumulated amounts {Yi}T for an arbitrary time 

scale 1. This approach raises some fundamental questions, as Diggle 

(1984) has recently pOinted out, specifically what is a suitable class of 

models for t;(t), and how can inferences about ~(t) be made, given data in 

the form of daily or hourly accumulated amounts? Rodriguez-Iturbe et al. 

(1984) assessed the validity of possible models for t;(t) by comparing 

parameters estimated from hourly and daily data with the theoretical 

parameters of {Yi}T' T = 1 hour and 1 day, derived for several candidate 

models for ~(t). This approach, however, is primarily of theoretical 

interest because rtaoes not suggest a model-for the observedolscrete------

rainfall sequences ~i ~ but rather for the unobserved contin~ous process 

t;(t) , and the derived distributional properties of {Yi}T do not lead to a 

parsimonious representation of the discrete process. 

In this work a somewhat different approach is suggested. The 

appropriateness of several model structures for the discrete process {Yi}T 

has been examined, with emphasis on a one day interval. The ultimate goal 

is to derive a realistic parameter-parsimonious model suitable for the 

analysis and synthesis of daily rainfall sequences. 

Although daily rainfall observation sequences are only one possible 

discrete aggregation of the time-continuous rainfall process, the daily 

sca 1 e is of speci ali nterest for several reasons. Many water resource 

systems are operated on a daily time step. For example, operational 

decisions for small reservoirs for water supply and irrigation scheduling 

(e.g., Ramirez-Rodriguez and Bras, 1982) are often made on a daily time 
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scale, and therefore an adequate mathematical description of the daily 

rai nfa 11 input is necessary. More genera 11y, though, one day may be 

considered as the upper limit of event scale for precipitation; larger 

sca 1 e prec i pitat i on sequences no longer refl ect i nd i vi dua 1 preci pi tat ion 

events, and take on a fundamentally different statistical structure. 

Another reason for model ing daily rainfall is .that most U.S. rainfall 

stat ions are cooperative, that is, the data are not co 11 ected by the 

Nat i onal Weather Servi ceo Most cooperative stations report dai ly 

precipitation totals. Manned or remote National Weather Service stations 

are much fewer in number; generally, it is these stations that collect 

hourly or shorter increment data. It should be emphasized that the model 

developed herein is not restricted to the daily time scale; it is expected 

that much of the work wi,TiafSo be appTTCaDle to smaller tlme scales such 

as hourly. Nonetheless, the emphasis in this work is on the daily time 

scale. 

The stochastic structure of daily rai nfall occurrences has been 

extensively studied over the past two decades. A classification of the 

modeling approaches and a literature review of the models proposed are 

given in Chapter 2. This work concentrates on only one approach, namely, 

the point process approach. A point process is defined as a sequence of 

events completely characterized by the location (in time or space) of the 

events. The daily rainfall occurrence process may be viewed as a point 

process in which an event takes place any time the cumulative rainfall 

amount over a one-day period exceeds a specified threshold value, as for 

example 0.01 inches. Under the above definition of event, and given that 

a day can be either dry (no rain) or wet (rain exceeding a threshold 

value), a point process model for daily rainfall occurrences will identify 
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only the "state" of each day i.e., dry or wet. In that sense, the point 

process modeling approach for daily rainfall is conceptually equivalent to 

the discrete binary series approach in which a sequence of zeroes and ones 

(for no rain and rain) is formed and subsequently modeled. The important 

difference, however, between the two approaches is that the theory of 

point processes permits construction of models with much more flexible 

dependence structures, as compared with the structures that can be 

formulated under the theory of binary time series. 

An example of a discrete binary series model is a Marl«ov chain, which 

has been used by a number of authors to model daily rainfall occurrences 
, 

(e.g., Chin, 1977). Newer developments in discrete binary models include 

the work of Chang et ale (1984) who introduced the discrete autoregressive 
- ~ 

moving average (DARMA) models for daily rainfall and applied them to the 

daily rainfall sequences of nine stations in Indiana. Wh il e newer, 

approaches in discrete binary models, such as the DARMA models, may meet 

some of the inadequacies of Markov chains for daily rainfall occurrences, 

these models lead to complicated recursive formulas for the distributional 

properties of the interarrival times (e.g., Chang et al., 1982). It is 

the author's feeling that the point process modeling methodology provides 

much more elegant mathematical formulations of a stochastic process, and 

for this reason discrete binary models are not considered further. 

Point process models for the areal distribution of rainfall were 

first introduced by LeCam (1961). Later Kavvas and Delleur (1975) applied 

the point process methodology to daily rainfall occurrences. The powerful 

theory of poi nt processes was illustrated in the hydrol ogi ca 1 1 iterature 

by Waymire and Gupta (1981a, b, and c) in a series of three papers. The 

suitabil ity of the flexible point process model structures for 
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small-time-increment rainfall sequences encouraged further study and Smith 

(1981) proposed a different model for daily rainfall occurrences. Details 

of these models will be given in Chapter 2. The important point to be 

made here is that previous studies have applied time-continuous point 

process models to the daily rainfall occurrences. However,. the point 

process of daily rainfall occurrences is discrete in time. The 

discreteness stems from the definitio~ of the event as a day with rainfall 

above a threshold value. It should be noted here that throughout the 

di scussi on that foll ows we have used the short term continuous (or 

discrete) point process instead of the accurate term continuous-time (or 

discrete-time) point process, primarily for convenience. 

In this work it will be demonstrated that continuous point process 

models are not operationally useful for daily rainfall ana [nat discrete 

point process models are needed instead. In addition, it will be shown 

that the theory of continuous point processes is not appropriate for 

modeling daily rainfall occurrences and that inferences made about the 

underlying rainfall generating mechanisms by comparing sample properties 

of daily rainfall occurrences to the independent Poisson process may be 

misleading. In view of the above, a discrete point process methodology 

will be suggested and a discrete point process model with demonstrated 

flexibility introduced and applied to representative daily rainfall 

occurrence structures. Methods for fitting this model will also be 

studied. Finally, the model will be coupled with a model for the non-zero 

daily rainfall amounts to give an operational, parsimonious model for 

analysis and synthesis of daily rainfall sequences. Further, it will be 

shown that such a model may be able to preserve the distributional 

properties of the cumulative rainfall amounts over periods of specified 
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length, e.g., a week or month. This is an important property of a daily 

rainfall model especially when it is used for rainfall-runoff studies, 

where mass balance over long periods of time is desired. 

In summary, this dissertation is structured as follows. In Chapter 

2, a classification and brief review of available daily rainfall models 

are given. The inappropriateness of the continuous point process models 

for the discrete daily rainfall occurrences is demonstrated in Chapter 3. 

In Chapter 4, the statistical analysis of six daily rainfall records with 

respect to the rainfall occurrences and amounts is presented. In Chapter 

5, a discrete point process model is developed and its statistical 

properties are derived. Methods for fitting the developed model are 

suggested and compared in Chapter 6. In Chapter 7, the discrete point 

process is fitted to the daily rainfall occurrences of two stations and 

coupl ed with a model for the non-zero daily rai nfall amounts. The 

satisfactory performance of the model is assessed by checking the extent 

to which several rainfall statistics are preserved. The summary, 

conclusions, and recommendations for further research are given in Chapter 

8. 
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CHAPTER 2 
LITERATURE REVIEW 

The First approached the Elephant, 
And happening to fall 

Against his broad and sturdy side, 
At once began to bawl: 

"God bless! but the Elephant 
Is very like a wall!" 

Due to the intermittency of small-time-increment (i.e., hourly or 

daily) rainfall processes, standard time-series analysis methods are not 

applicable. !nstead, the most commonly used approach to modeling daily 

rain"(all is to model the rainfall occurrences separately from the 

non-zero rainfall amounts, ind then superimpose the two models. This 

chapter classifies the existing daily rainfall occurrence and amounts 

mode 1 sand, under each category, a revi ew of selected work is gi ven. 

For supplementary review papers, the reader is referred to Roldan and 

Woolhiser (1982), Woolhiser and Roldan (1982), Court (1979), and Waymire 

and Gupta (1981a). 

2.1 Models for the Daily Rainfall Occurrences 

2.1.1 The "Wet-D ry Spe 11" Approach 

In this approach any uninterrupted sequence of wet days (i.e., days 

with total rainfall above a specified threshold value) defines an event 

(see Fig. 2.1a). Such an occurrence model is completely specified by 

9 
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(A) "Wet - dry spell" approach 

cevent 

~~ ) 
t(days) 

(B) Binary discrete series approach 

o 0 1 1 1 1 1 1 0 0 1 1 0 0 0 0 1 '1 1 1 1 1 0 0 0 
~~ ~ ~~-------~-~ -------~~--~~-------~~ ~-------~-~--~~-----~~-----~---+---~-~--

(C) Point process approach 

(event 

t1'11t1' 1t 1't11t1 > 
t(days) 

Figure 2.1 Different approaches to modeling daily rainfall occurrences. 
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the probability laws of the length of the wet periods (storm duration) 

and the length of the dry periods (time between storms). 

This model structure, with exponential distributions for the 

lengths of the dry and wet periods, was used by Thorn (1958) and Green 

(1964), among others. Grace and Eagleson (1966) used a Weibu·ll 

distribution for the wet-period lengths and applied the model to short 

time increment (on the order of minutes and hours) rainfall occurrences. 

Todorovi c and Yevj evi ch (1969) and Eagl eson (1978) conducted 1 ater 

studies using this modeling approach. 

In probabil istic terminology the above model is an alternating 

renewa 1 model. The term renewal stems from the imp 1 i ed independence 

between the dry and wet period lengths, and the term alternating is used 

to indicate that a wet (dry) period is always followed by a dry (wet) 

period, i.e., no transition to the same state is possible. In many 

early studies, such a model with exponential distributions for the dry 

period lengths was referred to as a Poisson model. This. is an 

inaccurate termi no logy result i ng from the assumption that an event, 

which in this case corresponds to a wet period, occurs instantaneously 

at the middle or end of the wet period. 

A recent study of an alternating renewal model for daily rainfall 

was reported by Galloy et al. (1981). They used discrete negative 

binomial distributions for the wet and dry period lengths and 

implemented the theory of point processes to derive the statistical 

properties of intervals (times between events) and counts (number of 

events in a time interval). 

The main problem with the wet-dry spell approach to modeling daily 

or other small-time-increment rainfall lies in the modeling of the 
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rainfall amounts. Due to the definition of an event as an uninterrupted 

sequence of wet days, the cumulative rainfall amounts corresponding to 

each event are condit i ona 1 on the wet-peri od 1 ength. Therefore, 

conditional probability distributions have to be fitted to the amounts. 

This can pose problems, especially for events of extreme duration, where 

not many points are available for identification and fitting of a 

probability density function. 

2.1.2 The Binary Discrete Time-Series Approach 

The daily rainfall series consists of either rainy or dry days, and 

therefore can be viewed as a binary series of zeroes and ones, with zero 

corresponding to a dry day, and one to a wet day (see Fig. 2.1b.). A 

probabilistic model is then sought which can adequately describe this 

sequence of zeroes and ones. Alternatively, this binary process can be 

thought of as being formed by a sequence of Bernoull i trials i.e., 

repetitive trials without replacement (see, for example, Feller, 1968), 

with two possible outcomes, zero and one. The outcomes can be either 

independent (giving rise to a Bernoulli process), or dependent (giving 

rise, for example, to a Markov chain). The independent Bernoulli 

process is not adequate to describe the dependence present in the daily 

rainfall occurrences (see, for example, Smith and Schreiber, 1973). 

Markov chain models are the simplest models with a dependence structure 

and have been extensively used for modeling daily rainfall. 

Markov chains. A Markov chain is a sequence of discrete random 

variables, X , and is said to be of order k if k is the smallest 
n 

positive integer such that the following equation of conditional 

probabilities is satisfied for all n: 
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A complete treatment of the theory of Markov chains can be found 1n Cox 

and Miller (1965), Parzen (1962), and ~inlar (1975), among others. A 

two-state Markov chain (appropriate for the zero-one rainfall occurrence 

process) is completely specified by the transition probability matrix: 

P = 

where PO is the probability of a dry day following a dry day, and PI is 

the probabilit}"of a wet~ following a wet day~. __ _ 

Markov chains have been extensively used for modeling daily 

ra i nfa 11 occurrences. Gabriel and Neumann (1957,1.962) used a 

first-order homogeneous (i.e., constant parameters) Markov chain for the 

winter daily rainfall occurrences at Tel-Aviv, while Caskey (1963) and' 

Weiss (1964) used a non-homogeneous (i.e., time varying parameters) 

Markov chain for several stations in the northern U.S. Hopkins and 

Robillard (1964) used a first order Markov chain for the daily rainfall 

occurrences in Canada and found that it was not adequate to describe the 

months with few rainy days. Feyerherm and Bark (1967) showed the 

inadequacy of a first-order Markov chain in describing the higher-order 

dependence structure present in daily rainfall, and they proposed a 

second-order Markov chain for the daily rainfall occurrences at Indiana, 

Iowa, and Kansas. Wiser (1965) and Green (1965) also concluded that the 

geometric memory of the first-order Markov chain is not adequate to 

describe long droughts or long wet spells. Smith and Schreiber (1973) 
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found a non-homogeneous fi rst-order Markov chai n superi or to an 

independent Bernoulli model for the seasonal thunderstorm rainfall in 

the southwest u.s. Woolhiser and Pegram (1979) studied Markov chain 

models with seasonally varying parameters using Fourier series. 

In deciding the order of a Markov chain, Tong (1975) used the 

Akaike Information Criterion (AIC), while Hoel (1954) presented a 

likelihood ratio goodness of fit test. Chin (1977) identified the 

Markov chain orders of 25-year daily rainfall records in the United 

States, using the AIC, and illustrated their dependence on the season 

and geographical location. 

For the simultaneous modeling of daily rainfall occurrences and 

amounts, multiple-state Markov chains have also been considered. Khanal 

and Hamrick (1974) used a 14-state Markov chain model for each- month of-----

the year, for daily rainfall sequences from Florida. Haan et al. (1976) 

separated the year into fOur seasons and used a seven-state first-order 

Markov chai n for the daily rai·nfa 11 in Kentucky. They assumed uniform 

distributions for the rainfall amounts in all but the last state, in 

which a shifted exponential was found more appropriate due to the larger 

variability in the amounts. Carey and Haan (1978) used a three-state 

first-order Markov chain with two different Gamma distributions for the 

amounts in the two wet states, which were further combined to the same 

pooled distribution due to the large number of parameters in their 

twelve-season model. 

In conclusion, Markov chain models provide a simple mathematical 

representation of the daily rainfall occurrence process which may be 

adequate for some specific sites and seasons. However, their Markovian 

structure cannot describe the long term persistencies (i.e., long wet or 
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dry spells) and the effect of clustering (i.e., higher likelihood of 

having an event due to an event at a previous time) present in the 

short-time-increment rainfall occurrences. Long term persistence in the 

daily rainfall may be caused, for example, by cyclonic activity 

persisting during certain seasons (Petterssen, 1969), and clustering may· 

be the result of frontal thunderstorms with a relatively long life cycle 

(Kavvas and Delleur, 1975). 

Discrete Autoregressive Moving Average (DARMA) models. A 

DARMA(p,q) model, where p is the order of the autoregressive and q the 

order of the moving average component, is a sequence {X n} formed by a 

probabi 1 i st i c combi nat i on of elements of a sequence {Y n} whi ch is 

independent and identically distributed (i.i.d.). For the binary DARMA 
.... --.----... -----.----y, .. - .. r--~~·-·-----·-----· 

models lY n is assumed to be i.i.d. with a Bernoulli distribution, i.e., 

P(Yn = 0) = ~o~ P(Yn = 1) = ~1 ' and ~o + ~1 = 1. For illustration 

·purposes, the DARMA(1,O) and DARMA (0,1) models are defined by a 

sequence {X n} such that 

{ 
Y with probability 8 

DARMA(1 ,0): X = . n 
n Yn-1 with probability 1-8 

DARMA(O,l): Xn 
= {Xn_1 with probability ¢ 

Yn with probability 1-¢ . 

(2.3) 

(2.4) 

For further details on these models and derivation of their statistical 

properties, see Jacobs and Lewis (1978a,b) and Chang et al. (1982). 

DARMA models for daily rainfall were first used by Buishand (1978) 

to analyze wet-dry spells in the Netherlands. Subsequently, Chang et 

al. (1982, 1984) applied DARMA models to daily rainfall sequences in 
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Indiana. They derived the probability density functions of the wet and· 

dry period lengths as functions of the DARMA model parameters ¢, 8, and 

the marginal distribution function n = (nO' n1). 

Although DARMA models may be an improvement over Markov chains, in 

the sense that they can accol11T1odate longer term persi stence in the 

series in a more parsimonious way than a high-order Markov chain, their 

linear structure is still not able to describe the clustered short-term 

dependence known to be present in the daily rainfall occurrences (Kavvas 

and Delleur, 1975). Also, their mathematical framework seems to permi.t 

derivation only of interval properties· (i.e., probability distr~butions 

of run lengths) and not of counting properties (i.e., distributions of 

number of events in a time interval). Given that analysis of the second 

order properties of intervals and counts are not, in general, equivalent 

(see, for example, Cox and Lewis, 1978), it is advantageous to be able 

to use both for model identification and fitting, and this can be 

effectively done in the point process mathematical framework. 

2.1.3 The Point-Process Approach 

By defining an event as the occurrence of a day with a total 

rainfall amount exceeding a specified threshold (i.e., the occurrence of 

a wet day), the sequence of daily rainfall forms a point process. With 

the above definition of events, a wet period of several days is treated 

as a group of instantaneous rainfall events occurring at one-day 

intervals and, therefore, the interarrival times are positive integer 

values (1,2,3, •.. days). Such a point process is discrete. A major 

issue, whi ch is deferred to Chapter 3, is how to accommodate thi s 

feature within the framework of continuous point processes. The present 

discussion is limited to continuous point processes. 
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The theory of continuous point processes has been studied by Cox 

and Lewis (1978), Cox and Isham (19BO), ~inlar (1975), Parzen (1962), 

Lewis (1972), Vere-Jones (1970), and others. Waymire and Gupta (1981b, 

c) give an excellent review of the theory of point processes and relate 

it to the stochastic modeling of hydrologic series. 

The simplest continuous point process is the Poisson process, whose 

formal definition and properties can be found in many probability theory 

texts (see for example vinlar, 1975, Ch.4). In a Poisson process, the 

times between events are independent and identically distributed 

(i.i.d.) random variables having an exponential distribution, and the 

number of events in a time interval t is an i.i.d. random variable 

having a Poisson distribution. The non-homogeneous (time-varying 

parameters) Poi sson process -has been appl i ed bY-Todorovi c and Yevj e-vlcn

(1969) and Gupta and Duckstein (1975) to the model ing of rainfall 

occurrences. 

Kavvas and Delleur (1975) observed that the daily rainfall 

occurrences in Indiana exhibit a clustering which might be 

satisfactorily modeled by the class of Poisson cluster models (e.g., Cox 

and Isham, 1980, Ch.3) and in particular by the Neyman-Scott (N-S) 

models. A N-S process is a two-level process. At the primary level, 

the rainfall generating mechanisms (RGM) occur according to a Poisson 

model with rate of occurrence hO (i.e., mean interarrival time l/hO). 

Each RGM gi ves ri se to a group of rai nfall events, and each of these 

groups is called a cluster. Within each cluster, the occurrence of 

events is completely specified by a distribution for the number of 

events and a distribution for their positions relative to the cluster 

centers. Kavvas and Delleur (1975) assumed a geometric distribution 
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with parameter p for the number of rainfall events in a cluster and an 

exponential distribution with parameter 8 for the distances of events 

from their cluster centers. For these distributions, the final observed 

process has a rate of occurrence m = hO/p. Appl i cat ions of the N-S 

model include modeling of the areal clustering of rainfall (LeCam, 1961) 

and modeling of earthquake occurrences (Vere-Jones, 1970). 

Smith (1981) introduced another point process model, namely a 

doubly stochastic Poisson model, to describe the clustering observed in 

the daily rainfa~l occurrences of the summer season (July to October) 

rainfall in the Potomac river basin. In a doubly stochastic Poisson 

model (also known as a Cox model) the rate of occurrence of the process 

alternates between two states, one zero and the other positive. During 

periods when the intensity is zero, no events can occur. Smith and Karr 

(1983) assumed that during periods with positive intensity, events occur 

according to a Poisson process with rate of occurrence A, and that the 

sequence of states visited forms a Markov chain. This model is a 

renewal model (i.e., interarrival times are independent) and was termed 

the RCM model (Renewal Cox model with Markovian intenSity). 

In summary, two main classes of continuous point process models 

(namely the N-S model and the RCM model) have been studied for the daily 

rai nfa 11 occurrence process. Both of these models are overdi spersed 

relative to Poisson, that is the variance of the number of events in an 

arbitrary time interval is greater than the mean number of events in 

that interval, as compared to the Poisson model in which the variance is 

equal to the mean. Our analysis has pointed out that structures of 

daily rainfall occurrences that are underdispersed relative to Poisson 

are possible (more regular occurrence of events than that of a Poisson 
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proc~ss), a feature that cannot be reproduced by either the N-S or the 

RCM models •.. More,.significant, however, is the question of whether 
. -, 

continuous models are appropriate for modeling discrete daily rainfall 

occurrences~ This is an especially significant issue when the time 

scale is daily, since the observation sequence represents cumulative 

rainfall ~mounts over a periud (i.e., one day) which is on the order of 

the process i nterarri val time. I n Chapter 3, it wi 11 be shown that the 

more natural way to proceed is to model the daily rainfall occurrence 

process as a discrete point process.~;f First, however, a review of recent 

work on modeling rainfall amounts is given. 

2.2 Models for the Non-Zero Daily Rainfall Amounts 

_________________ . __________ ..lfib!LnOI'l:1~l"Q...9ai1j' rainfall amounts process is independent, then 

it is completely characterized by its marginal probability density 

function (pdf). The marginal probability distributions most commonly 

used are the following: 

(1) The exponential distribution (Todorovic and Woolhiser, 1971; 

Richardson, 1981) which is a one-parameter distribution. Skees and 

Shenton (1974) and Mielke and Johnson (1974) suggested that the 

exponential distribution has a thinner tail than that observed in daily 

rainfall amounts. 

(2) The mixed exponential distribution (Smith and Schreiber, 1973; 

Woolhiser and Pegram, 1979; Woolhiser and Roldan, 1982) whose 

coefficient of variation is always greater than unity, as is usually the 

case in the daily rainfall am?unts. This distribution has the appealing 

interpretation of being the superposition of two or more exponential 

distributions produced by, say, different mechanisms. The mixed 

exponential distribution was found to be the best of four candidates for 
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daily rainfall amounts in a comparison study by Woolhiser and Roldan 

(1982). Everitt and Hand (1981, Ch.3) discuss methods of identjfying 

and fitting mixed distributions. 

(3) The gamma distribution which has been used extensively (see, for 

example, Ison et al., 1971; Buishand, 1978; Carey and Haan, 1978). 

(4) The Kappa or general ized beta distribution introduced by Mielke 

(1973) and Mielke and Johnson (1974). 

(5) Empi ri ca 1 di st ri but ions as, for example, that used by Cole and 

Sheriff (1972) or other special distributions. For example, Katz (1977) 

used a chain-dependent distribution assuming that the rainfall amounts 

are independent but that the distribution function depends on whether 

the previous day was wet or dry. Buishand (1978) distinguished between 

three different types of wet days (DWD, DWW, WWD, and WWW where 0 stands 

for dry and W for wet) and fitted different Gamma distributions to each 

of the three rainfall amounts. All these distributions, however, have 

the disadvantage of too many parameters. 

Woolhiser and Roldan (1982) present a comparison of several 

distributions (chain-dependent and independent exponential, gamma, and 

mixed exponential distributions) for five U.S. stations in Kansas, 

Missouri, Florida, Wyoming, and Indiana. Using the Akaike Information 

Criterion these distributions ranked from best to worst as mixed 

exponential, independent gamma, chain-dependent gamma, and exponential. 

It should be noted that in the above study the degree of dependence of 

rainfall amounts in consecutive days was not tested and independence was 

assumed. 

If a dependence structure is present, then more complicated models 

"have to be used. Commonly used time-series models, such as those 
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described by Box and Jenkins (1976), are not appropriate because 

rainfall amounts are bounded from below by zero, and are therefore 

positively skewed. The class of Exponential-ARMA (EARMA), Gamma-AR 

(GAR), or standard ARMA models together with normalization 

transformations might be considered, however. ARMA models with skewed 

marginal pdf's (especially exponential and Gamma) have been extensively 

studied by Lawrance and Lewis (1980), Lawrance (1980), Gaver and Lewis 

(1980), Jacobs and Lewis (1977), Lawrance and Lewis (1977), and Lewis 

(1978) and have been applied to hydrology by Obeysekera and Salas (1983) 

for streamflow modeling. Raudkivi and Lawgun (1972) have proposed a 

scheme for modeling serially correlated data with skewness described by 

a Pearson type 3 distribution. Although they have applied their 

technique to rainfall durations (defined as the length of non-zero 

10-minute interval rainfall depths), the potential use in modeling daily 

rainfall amounts seems straightforward. 
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CHAPTER 3 
CONTINUOUS VERSUS DISCRETE POINT PROCESS MODELS 

FOR DAILY RAINFALL OCCURRENCES 

The Second, feeling of the tusk, 
Cri ed, "Ho! what have we here 

So very round and smooth and sharp? 
To me 'tis mighty clear 

This wonder of an Elephant 
Is very like a spear!" 

When daily rainfall occurrences are modeled as a continuous point 

process, it is impl ied thatevents can-occur anywnere ontne time-

axis, i.e., that multiple occurrences during a day are possible. The 

only information, however, that is contained in the daily rainfall 

occurrence data is whether a day is dry or wet, i.e., whether or not 

at least one event has occurred during a day, and not the number of 

events. With the continuous-point-process interpretation of the daily 

rainfall occurrences, one faces the problem of inferring the 

properties of the (unobservable) continuous counting process from the 

di screte sampl ed data. Bri 11 i nger (1978) and Guttorp and Thompson 

(1983) have studied this problem and have proposed methods of 

estimating the parameters of a continuous point process, as well as 

approximately reconstructing the locations of events, from the 

discrete sampled data. Such methods, however, are applicable only 

when the sampled counting process provides at least the information of 

the number of events during the sampling intervals, as for example in 

22 
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the process of daily traffic fatalities where the number of fatalities 

during a day are recorded but not the exact times of occurrence. 

Daily rainfall occurrence data, on the other hand, do not contain 

information about the number of lIevents ll in a day, and therefore their 

interpretation as a continuous point process is complicated. For 

example, if a continuous pOint process model is used for generation of 

(synthetic) daily rainfall occurrences, the most natural approach to 

discretizing the continuous sequence is to lump all the occurrences 

during a one day interval to only one point, say, at the end of that 

day. The result of such an operation is a discret·ized point process 

with a lower rate of occurrence and altered statistical properties. 

The greater the rate of occurrence, i. e., the more freq~ent the 

events, the more serious the discretization effect will be. For rates 

corresponding to daily rainfall occurrences (A = 0.5 to 0.2 days-I, 

for mean interarrival times of 2 to 5 days), these effects are fairly 

si gni fi cant, in contrast with rates correspondi ng to, say, hourly 

rai nfa 11 events or occurrence of wet peri ods, i. e., interrupted 

sequences of rainy hours or days. In general, the use of continuous 

poi nt process models for di screte observat i on sequences wi 11 present 

major problems when the observation sequences represent cumulative 

rainfall amounts over a period which is on the order of the process 

interarrival time. 

How much such a discretization scheme affects a Poisson process 

with rate of occurrence A can easily be shown analytically. For 

example, it can be shown that in order to obtain a discrete point 

process with rate of occurrence A, a continuous Poisson process with 

rate of occurrence equal to -1 n(1 - A) > A ; s requi red. 5imil ar 
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results for non-Poisson processes such as Poisson cluster processes 

are not easily obtained in closed form and are better studied via 

simulation. 

Modeling daily rainfall occurrences by using continuous models 

with adjusted parameters to compensate "for the effects of 

discretization are awkward at best and generally impractical. The 

natural approach to modeling the daily rainfall occurrences is to use 

only the information provided by the data, i.e., to view the rainy 

days as constituting all of the events of the process, and to generate 

rainy or dry days rather than continuous events. Some of the 

implications of this viewpoint are considered in this chapter. First, 

however, some definitions and general properties of a continuous point 

-··-------------·-·--~-process~ecessar,yrort11eaeve I opment of the rest oTthl s work, are 

given. 

3.1 Statistical Background on Stationary Point Processes 

Let an event i occur at times t 1, t 2, t 3, •.. , and 1 et 

Xr = t - t 1 (r = 1,2,3, ••• ) be continuous random variables r r-

identically distributed with COrmlon pdf f(x). The variable X is 

called the interarrival time, or time between events, or simply 

interval. A point process is stationary if the joint distribution of 

the number of events in a set of k fixed intervals, for all k = 

1,2,3, •.• , is invariant under translation (Cox and Lewis, 1978). Two 

irmledi ate consequences of stat i onarity a re that (1) the d i st i but i on of 

the number of events in an interval depends only on the length of the 

interval, and (2) there is no trend in the mean rate of occurrence of 

events, i.e., the expected number of events in an interval is 

proportional to the length of that interval. 
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Dependi ng on whether or not an event occurs at time to' the 

process starts with an arbitrary event or at an arbitrary time 

(synchronous and asynchronous sampling, respectively, in the 

terminology of Lawrance (1972)). For the rainfall occurrences, we 

have considered the process as starting at an arbitrary event but not 

including it. This implies that the pdf of the time to the first 

event is the same as the pdf of all the other subsequent interarrival 

times. 

Continuous point processes have been extensively studied in the 

statistical literature (see for example, Cox and Lewis, 1978; Cox and 

Isham, 1980; ~inlar, 1975; Lewis, 1972; Srinivasan, 1974). They have 

found extensive applications: in queueing theory (Khintchine, 1960); 

modeling times to computer fai1~Lewis, 1964); earthquake 

occurrences (Vere-Jones, 1970); traffic data (Bartlett, 19~3); spatial 

distibution of galaxies (Neyman and Scott, 1958); and rainfall 

occurrences (LeCam, 1961; Kavvas and Delleur, 1975; Waymire and Gupta, 

1981; and Smith and Karr, 1983). Additional applications can be found 

in a series of papers edited by Lewis (1972). 

In studying a series of events (point process), two properties 

are of interest: the interval properties dealing with the times 

between events, and the counting properties dealing with the number of 

events in time periods of specified length. The second order 

properties of intervals and counts which will be used in this work are 

introduced below. 

Interval properties. Let {Xi} be the series of interarrival 

times. We denote the mean, variance, and coefficient of variation of 

X by E(X), Var(X), and cv' respectively. Standard time series 
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analysis, using the autocorrelation function and the power spectrum of 

the series, can be applied to test the presence of autocorrelation. 

Independent interarrival times (inferred by an autocorrelation 

function not significantly different from zero, or a constant power 

spectrum) i ndi cate that the process is a renewal poi nt process. 

Special care with the properties of the autocorrelation coefficients 

is needed, however, due to the non-normality (hi gh skewness) of 

interarrival times (Lewis, 1972). For example, Moran (1970) and Cox 

(1966) have shown that the variance of the first autocorrelation 

coefficient tends to be smaller for random variables with long tails 

than for variables with a normal distribution. 

The departure of the coefficient of variation, cv' from the value 

----------------oT-one-~for -~ ex ponent;ar-dlStriouffon -;--'5-u sed-a 5 a - roug h meas ure OT --------------------

the departure of the process from the Poisson process (Cox and Lewis, 

1978). A value of Cv > 1 indicates overdispersion relative to the 

Poisson process C'random" clustering), and a value of c < 1 indicates . v 

underdispersion ("regular" clustering). 

Let F(x) = P(X i x) be the cumulative probability distribution of 

the interarrival times. Then, the probability of exceedence 

R(x) = P(X > x) = 1 - F(x) (3.1) 

is called the survivor function, and its logarithm is the log-survivor 

function. It can be easily checked from (3.1) and the pdf of an 

exponential distribution that the log-survivor function of a Poisson 

process with rate of occurrence A is a straight line with slope equal 

to - A. In analyzing a series of events, deviations of the empirical 
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log-survivor function from a straight line indicate deviation of the 

process from the Poisson. In particular, for a renewal process, a 

convex log-survivor function implies a coefficient of variation less 

than one, while the opposite holds for a concave log-survivor function 

(Watson and Wells, 1961). Such relationships are helpful in 

determining the marginal distribution of the interarrival times and in 

identifying possible models for the process. 

Counts properties. Let {Nt} denote the counting process of an 

asynchronous poi nt process (i. e., a process whi ch starts at an 

arbitrary time), and {Nt I} denote the count i n9 process of a 

synchronous pOint process (i.e., a process which starts with an 

arbitrary event). Notice that {Nt ' }, the number of events in (O,t], 

--------------- ------------ ---- ------------~rs-tn e cou nt 1 n 9 p roc e S S or- a se r 1 es of ev entsth----ar s tart SWft han 

event but does not include it. The obvious relationship between the 

sequence of intervals {Xi} and the counting process {Nt'}is 

P(Nt ' < r) = P(x1 + x2 + ••• + xr > t), r = 1,2,... (3.2) 

(Cox and Lewis, 1978). 

The following counting properties are of interest: 

(1) The mean value function, M(t), defined as 

(3.3) 

For any stationary process, M(t) = t/E(X) = mt, where m = l/E(X) is 

the intensity or rate of occurrence of the process. 
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(2) The renewal function, H(t), defined as 

H(t) = E(Nt ' ). (3.4) 

For large t, H(t)- M(t). For a Poisson process H(t) = mt. 

(3) The renewal density, or conditional intensity function, h(t), 

defi ned as 

. E(Nt ' t+lIt) dH(t) 
h(t) = 11m • =--

lIt+O lit dt 

(Cox and Lewis. 1978). Notice that h(t) is not a pdf. but instead 

h(t)lIt is the probability of having an event in a small interval lit 

near t. Since multiple events are not permitted (this is the 

so-called orderliness requirement; see Daley and Vere-Jones, 1972). 

the probability of more than one event in an interval of length lit is 

O(lIt2). and therefore: 

. P(event in (to+t, to+t+lIt) / event at to) 
h(t) = 11m (3.6) 

lIt+O lit 

where the event at to ;s an arbitrary event in the stationary process. 

The renewal density of a Poisson process is constant and equal to the 

intensity of the process. m. 

(4) The variance time curve. V(t), defined as 

(3.7) 
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For a Poisson process, {Nt} has a Poisson distribution for which the 

variance is equal to the mean, and therefore V(t)= mt. Procedures for 

estimating the empirical variance time curve are given in Cox and 

Lewis (1978). 

(5) The index of dispersion function, I(t), defined as 

V(t) V(t) E(X) 
I(t) =-=---

M( t) t 
(3.8 ) 

which has the constant value of one for, the Poisson process. An 

empirical I(t) < 1 for all t implies underdispersion relative to 

Poisson, and an I(t) > 1 for all t implies overdispersion (analogously 

. ~.i 

to the--coefftctent--of-va-rtat-i 011 of the i nterarr i val t illies-re4I"ao+t+j "'ve..-+t7"<o----

one, the value for the exponential distribution). 

(6) The covariance density, Y+(T), defined as 

. cov(Nt+T+~t t+T' Nt, t+~t) = 11m ' -
~t~ (~t)2 

. cov(~Nt+T' ~Nt) 
= 11 m -----"-:::-----"-
~t~ (~t)2 

which can be interpreted as the autocovariance function of the 

differential process ~Nt = lim Nt t+~t = lim(Nt+~t - Nt)' The 
~t~' ~t~O 

(3.9) 

differential process, {~Nt}, can be thought of as an instantaneous 

process having zeroes at all points except for spikes (delta 

functions) at the points of occurrence of events. The covariance 

density, Y+(T), is a measure of the likelihood of two events 
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occurring T units apart (Cox and Lewis, 1978, ch.4). For a Poisson 

process with intensity m, 

m for T = 0 
(3.10) 

otherwise. 

(7) The spectrum of counts, g+(w), which is the Fourier transform of 

the covariance density 

g+ (w) = J y + ( T) e - iWT dT • 

a 

(3.11) 

The spectrum of counts is a useful tool in the statistical analysis of 

seri es of events and is preferable to other functions due to its 

superior sampling properties (Bartlett, 1963). For a Poisson process 

the spectrum of counts has a constant value equal to m/w. 

3.2. Poisson Versus Bernoulli Processes 

In this section, the properties of the Bernoulli process, which 

is the discrete analogue of the Poisson process, are studied and 

compared with those of the Poisson process. This comparison reveals 

that if indeed the discrete daily rainfall occurrences were an 

independent process, i.e., a Bernoulli process, if modeled as a 

continuous point process they would be interpreted as underdispersed 

relative to the (continuous) Poisson process. On the other hand, 

selected daily rainfall structures underdispersed relative to the 
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Poisson process are, in fact, all shown to be overdispersed relative 

to Bernoulli. 

3.2.1. Statistical Properties of the Bernoulli Process 

Cons ider a sequence of independent repeated tri a 1 s with two 

possible outcomes, success and failure. Let p denote the probability 

of success at each trial and Nr denote the number of successes in r 

trials. Then, Nr has a binomial probability distribution 

, k = 0,1,2, •.• , (3.12) 

and the number of trials between the n'th and (n+1)st success, Xn, has 

a geometric distribution 

P(X n = k) = p(l_p)k-1 , k = 1,2, ••• , (3.13) 

for all n. In the discrete-time point process terminology, a success 

corresponds to the occurrence of an event (i.e., a rainy day); Nr to 

the counting process, that is the number of events in (O,r]; and Xn to 

the time between events. 

The Bernoulli process is the discrete analogue of the Poisson 

process in the sense that it is characterized by independent intervals 

and independent counting increments and is discrete in time. This 

lack of memory property is the result of the geometric distribution 

for the times between events, analogously to the exponential for the 

Poisson (see Feller, 1968, p.329 for a proof). 

The statistical properties (i.e., mean, variance, and higher 

moments) of the geometric and binomial distributions are well known 
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(see for example, Parzen, 1962). For this work, some additional 

properties of the Bernoulli counting process are of interest, such as 

the spectrum of counts, and this derivation is given below. Since it 

is more natural to discuss the daily rainfall occurrences with respect 

to time instead of trials, the familiar terminology of continuous 

point processes has been retained, with the understanding that time t 

in a Bernoull i process, or ina general di screte poi nt process, 

corresponds to t discrete time units (i.e., t days)~ 

Let f(x).~e a probability density function (pdf) defined as the 

continuous representation of the geometric probability mass function 

(pmf) of (3.13). Then, 

GO 

f(x) = L p(1_p)k-1 8(x-k), 
k=1 

(3.14) 

where 8(·) is the Dirac delta function. -Let *f(s) denote t~e Laplace 

transform of f(x) defined as 

'" 
*f(s) = I e-sxf(x)dx. 

a 

The symbol *f(s) is used to indicate the Laplace transform of a 

generalized function of the form (3.14) from the Laplace transform 

f*(s) of a standard continuous function f(x). Notice that *f(s) is an 

exponential function of s, since the Laplace transform of 8(x-k) is 

i( 8(x-k)) = -sk e • It is easily shown that the Laplace transform of 

f ( x) of (3 .14) is 



pe- s 
*f(s) - ,..... ---

I - (l_p)e- s 
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(3.15) 

Making use of a standard result of .the renewal theory (see for 

example, Cox and. Lewis, 1978, Ch.4), the spectrum of counts of a 

stationary renewal point process is given as 

P 
9 (w) = - [1 + + 

*f (i w) 

l-*f(iw) 

*f(-iw) 
+ J. 

l-*f( -iw) 

Substitution of (3.15) into (3.16) yields 

p(1-p) 
-------------------9+ (w) = 

1T 

(3.16) 

(3.11) 

The statistical properties of interest for a Bernoulli process, 

with a probability of success p, are given in Table 3.1. In the same 

table, the corresponding properties of a Poisson process with rate of 

occurrence A are also given. 

It is convenient to notice here that *f(s) = ~(-s), where ~(.) 

is the moment generating function of the probability law of x (eq. 

3.14), and is defined as ~(z) = E[ezxJ, i.e., as the expectation of 

the exponential function eZx (see, for example, Parzen, 1960, p.215). 

The equivalence of these terms will be used'in Chapter 5. 

3.2.2 Comparison of a Poisson and a Bernoulli Process 

Consider a sequence of daily rainfall occurrences with mean 

interarrival time x. If a Bernoulli process were fit to the series, 

the estimate of its probability of success, p, would be p = l/x. 
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Table 3.1 Comparlson of Poisson and Bernoulli Processes 

Interar,rival times: (Xi} 

Number of events: {Nt} 

Conditional intenslty 
function 

LOQ survivor function 

Varlance tlme curve 

Index of dispersion 
function 

spectrum of counts 

Normalized spectrum 
of counts 

Poisson 

\ = rate of occurrence 

f(x) = \e-\X , A > 0 

E(X) = 1/\ 

Var(X) = 1/,,2 

E(Ntl At 

Var(Nt ) = At 

h(t) = A 

tn[R(x)] -AX 

V (t) At 

I(t) = 1, \It 

k! 

g+(w) \/Tf , oj > 0 

g~( w) 1 , -.J > 0 

a 
b ~v 

~s 

coefflcient of varlation 
skewness coefficient 

Bernoulli 

p = prob. of success 

p(x) = p(l_P)X-l , 0.i p i. 1 

E(X) = lip 

Var(X) = (1_P)/p2 

c y = v'l-P < 1 

2-p 
--> 2 

Yl-P 

t = discrete time 

E(Nt -) p't 

Var(N t ) = p(l-p)t 

h( t) = p 

tn[R(x)] = tn(l-p) x 

V(t) p(l-p)t 

I(t) = l-p < 1, \It 
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Similarly, if a Poisson process were fit, the estimate of the rate of 

occurrence, )., woul d be ~ = l/x. Thus p =~. Noti ce, however, from 

Table 3.1 how different the other properties of the two processes are. 

In particular, the Bernoulli process has a coefficient of variation of 

intervals and an index of dispersion function of the counts always 

less than one, which imply underdispersion relative to Poisson. This 

means that inferences about over- and under-dispersion of the daily 

rainfall occurrences would be different depending on whether the 

empirical functions of the process were compared to those of a Poisson 

or to those of a Bernoulli process. It seems only natural that a 

discrete point process model, such as daily rainfall occurrences, 

should be compared with the discrete independent Bernoulli process and 

not with the continuous Poisson process. This is an important 

observation and has immediate consequences in the interpretation of 

the statistical functions of the daily rainfall occurrence process. 

In the next section, the effects of using a continuous point process 

mode 1 for the gene rat i on of a di sc rete sequence wi 11 be stud i ed, 

analytically for a Poisson model and via simulation for a Neyman-Scott 

model. 

3.3 Effects of Discretization on a Continuous Point Process 

When a cont i nuous poi nt process is used for gene rat i on of 

(synthetic) daily rainfall occurrences, the most natural approach to 

discretizing a continuous synthetic sequence is to lump all the 

occurrences during a day at one point, such as, the end of that day. 

The resulting discrete point process has different statistical 

properties than the continuous one. How much these two structures 
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differ will be illustrated below, first for a Poisson process and then 

for a Neyman-Scott process. 

Let F(x) denote the cumulative distribution function of the 

exponential pdf of the intervals of a Poisson process. The 

discretization scheme suggested above is equivalent to replacing the 

continuous exponential distribution of the intervals with a 

discretized one, so that 

-A e , 

(3.18) 

where Pd and Pc denote probabilities of a discrete variable and a 

continuous variable, respectively. Notice that the resulting discrete 

distribution, Pd(x), is geometric with parameter: 

y = 1 - -A e , (3.19) 

implying that the discretized process is a Bernoulli process with a 

probability of occurrence (or rate of occurrence) equal to y, a value 

always less than A. All the other properties of the discretized 

process can be obtained by substituting the value of y for p in the 

right-hand column of Table 3.1. 
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For data generated from a Poisson process, figures 3.1 and 3.2 

show the effects of discretization on some conmonly used counting 

properties, i.e., the spectrum of counts, log-survivor function, 

variance time curve and index of dispersion. A period of observation 

of 1000 time units '(for example, days) was used, since this is 

approximately the length of series available in a month by month 

analysis of thirty years of daily data. Notice the agreement of the 

analytical and simulation results; the empirical functions of the 

di scret i zed process di ffer from those of the Poi sson and the 

differences are 1 arger for the hi gher rates of occurrence. A 1 so, 

notice that the discretized process is always underdispersed relative 

to Poi sson. 

Another important issue raised from Figures 3.1 and 3.2 is the 

data requirements to obtain relfable estimates of the empirical 

functions. It can be seen from Figure 3.1 that, although the length 

of observation is the same for all cases, the empirical functions of 

the continuous Poisson are closer to the theoretical ones the larger 

the number of events is. This implies that fewer years of daily 

ra i nfa 11 data duri ng ra i ny seasons conta i n the same i nformat i on as 

more years during dry seasons, and therefore caution must be applied 

when interpreting the statistical properties of the rainfall 

occurrences during seasons with few rainy days. 

Figure 3.3 illustrates the effect of discretization on a 

clustered Neyman-Scott process. (This process and the meaning of its 

parameters have been discussed in Chapter 2.) Although the effects of 

discretization cannot be directly associated with the parameter values 
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as for a discretized Poisson process, it is still apparent that the 

effects are similar and are greater the more clustered the process is. 

3.4 Implications on Modeling Daily Rainfall 

Recently, several autho.rs have had apparent success with the 

application of time-continuous point process models to daily rainfall 

observation sequences. In this chapter we have shown that the 

practice of using continuous point process models for discrete 

observation sequences can give misleading results regarding inferences 

about over- and under-dispersion of 'the process and, therefore, 

incorrect conclusions about the underlying -rainfall generating 

mechanism. Moreover, continuous point process models cannot be used 

for generation of daily rainfall sequences, which in many cases may be 

the purpose of modeling rainfall in the first place. 

A di screte poi nt process model i ng approach whi ch uses the 

Bernoulli process (the discrete analogue of the Poisson process) as 

its bas is for compari son has been suggested. I nferences about 

clustering (over- and under-dispersion) in daily rainfall should, 

therefore, be made by comparing the empirical properties of the 

process to those of the Bernoulli and not to those of the Poisson, as 

has usually been the practice. 

In the next chapter, six daily rainfall time series from stations 

throughout the u.s. are analyzed to give further insight into the 

structure of daily rainfall occurrence processes. On the basis of the 

preliminary theoretical analysis given in this chapter and the results 

of the data analysis, the inappropriateness of the continuous point 

process models for daily rainfall is conclusively demonstrated. 



CHAPTER 4 
AN EXPLORATION OF DAILY RAINFALL STRUCTURES 

, The Thi rd approached the animal, 
And happening to take 

The squinning trunk within his hands, 
Thus boldly up and spake: 

"I see," quoth he, lithe Elephant 
Is very like a Snake!':', . ',-. 

Previous studies on point-process modeling of daily rainfall 

occurrences have been confined to the analysis of a single season 

-------w-'i~h-i-~e process has been assume€l---h~e--.~, -------

stationary), and/or to the analysis of stations with similar 

probabilistic structures, i.e., stations from particular geographic 

regions. For example, Kavvas and Delleur (1975) analyzed seventeen 

daily rainfall records, all from Indiana, and applied a homogenization 

scheme to cope with trends and seasonality over the seven-year period 

studied. A time varying function, A(t), was fit to the mean rate of 

occurrence: 

A(t) = exp (4.1 ) 

Under the Poisson hypothesis, the original time increments, 6t, were 

rescaled to 6T = A(t)6t, where 6T is referred to as the intrinsic time 

scale. In eq. (4.1), aI' a2, and a3 are parameters to model the long 

term trends; Ri , w. , 
1 

and 8i are respectively the amplitude, frequency 

42 
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and phase angle of the i'th significant periodicity (Kavvas and 

Delleur, 1975). It should be noted, however, that this homogenization 

scheme removes the nonstationarity only from the first moment for a 

non-Poisson process, such as daily rainfall, and not from higher 

. moments. In addition, .long term trends and periodicities identified 

from seven years of data cannot reasonably be extrapol ated, and 

therefore the model is limited to analysis, rather than generation of 

synthetic sequences. Smith and Karr (1983) analyzed the summer season 

(July to October) rainfall occurrences for seven stations in the 

Potomac river basin. Twenty-seven years of daily rainfall occurrences 

for Denver, Colorado, were analyzed by Rami rez-Rodri guez ahd Bras 

(1982) for the period May 15 to September 11, and by Rodriguez-Iturbe 

et. ale (1984) for the perlod May 15 to June 16. 

All of these studies found that the daily rainfall occurrence 

process is overdispersed relative to the Poisson process (i.e., the 

clustering of events is more random than in a Poisson process) and 

these results have formed the basis for applications of continuous 

cluster models, such as the Neyman-Scott model, discussed in Chapter 

2. In this chapter, it will be shown, using six records of daily 

precipitation from sites throughout the continental U.S., that: (1) 

the daily rainfall occurrence process during many seasons of several 

sites is actually underdispersed relative to the Poisson, and (2) more 

importantly, as shown in Chapter 3, the proper basis for comparison is 

the (discrete) Bernoulli process, with respect to which the rainfall 

occurrence process is overdispersed. Moreover, the analysis presented 

in this chapter shows that the structure of the daily precipitation 

has strong seasonal 'vari at ions; in many cases the season-to- season 
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variation in model structure (as opposed to model parameters) is as 

significant as site-to-site climatic effects. 

4.1 Selection. Description. and History of the Stations Analyzed 

Six U.S. stations were selected for the analysis. These stations 

are located in regions of different climatologic regimes and exhibit 

widely different rainfall structures. Figure 4 • .1 shows the 

distributions of the regional monthly depths and the location of the 

stations. The station locations are sufficiently diverse to represent 

the major climatic types within the continental U.S. 

Additional infonnation on the stations is given in Table 4.1. 

The effect of the time of observation on the daily rainfall structures 

is not thought to be a-, seri ous problem. A di fferent time of 

observation might have resulted in a different daily rainfall 

sequence, but the rainfall' statistics (i.e., sequence of wet and dry 

days) are not likely to be much different as long as there is no 

significant diurnal periodicity in rainfall. Of course, the division 

of a storm into two when the observation time falls within its 

duration is a problem, but this is inherent to any discretized 

sequence of a continuous process. 

Major changes in the location of the recording gages, measurement 

equipment, time of observation etc. could introduce artificial trends 

in the recorded sequences. Therefore, an inspection of the history of 

the analyzed stations was perfonned. All the changes reported in the 

National Oceanic and Atmospheric Administration (NOAA) Climatological 

Data Publications for the six stations of interest are shown in Table 

4.2. Apart from a major change of 225 ft. in elevation for the 

stati on at Rooseve 1t, Ari zona, the other changes do not seem 
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Figure 4.1 The six stations selected fQr the statistical analysis of their 
daily rainfall structures. 

1. Snoqualmie Falls, Washington 
2. Roosevelt, Arizona 
3. Austin, Texas 
4. Miami, Florida 
5. Philadelphia, Pennsylvania 
6. Denver, Colorado 

~ 
U1 



Table 4.1 Information on the Six Daily Rainfall Stations Analyzed 

Station Station Years Elevation Observation 
Name 10 Analyzed Lat tude Longitude (ft ) Time 

Snoqualmie Falls 45-7773 1948-1977 47 33 121 51 4-40 5 pm 

Roosevelt 02-7281 1948-1977 3340 III 09 2005 7 am 

Austin, Ap 41-0428 1948-1977 3018 97 42 597 midnight 

tv!i ami, Ap 08-5663 1949-1978 2548 80 16 12 midnight 

Philadelphia, Ap 36-6889 1948-1977 39 53 75 15 10 midnight 
-f::> 

Denver, Ap 05-2220 1949-1978 39 '46 "" 104 52 5286 midnight 
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Table 4.2 History of the Six Rainfall Stations Analyzed 

1. Snoqualmie Falls, Washington (10: 45-7773) 

February 1953: Latitude from 47 0 31 1 to 47 0 33 1 
February 1958: Elevation from 430 ft. to 440 ft. 
April 1967: Observation time from 5pm to midnight 

2. Roosevelt, Arizona (10: 02-7281) 

July 1954: Observation time from 7am to 8am 
October 1961: Elevation from 2230 ft. to 2005 ft. 
November 1979: Observation time from 8am to 7am 

3. Austin WSO Ap., Texas (10: 41-0428) 

July 1961: 
January 1970: 

Elevation from 615 ft. to 597 ft. 
Equipment from weighing to recording 

4. Miami WSO Ap., Florida (10: 08-5663) 

Latitude from 25 0 49 1 to 25 0 48 1 
Longitude from 80 0 171 to 80 0 16 1 

------------------Et=-ll-e'e~m 8 ft. to 7 ft. 

June 1958: 

May 1977 : Longitude from 80 0 16 1 to 80 0 18 1 
Elevation from 7 ft. to 12 ft. 

5. Philadelphia WSO Ap., Pennsylvania (10: 36-6889) 

October 1953: 
January 1958: 

May 1965: . 
April 1976: 

Elevation from 20 ft. to 13 ft. 
Longitude from 7514 to 75 15 
Elevation from 13 ft. to 7 ft. 
Elevation from 7 ft. to 5 ft. 
Elevation from 5 ft. to 10 ft. 

6. Denver WSO Ap., Colorado (10: 05-2220) 

March 
June 
January 

1981: 
1963: 
1970: 

Elevation from 5298 ft. to 5292 ft. 
Elevation from 5692 ft. to 8283 ft. 
Latitude from 39 %5 1 to 39 48 1 
Longitude from 104 53 1 to 104 52 1 
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significant enough to have had major effects in the measured rainfall. 

It should be noted that none of the six stations is located in a major 

downtown metropol itan area so the direct effects of urbanization 

should not have been significant. 

To verify the stationarity of the records, a graphical trend 

analysis on both the occurrence and amounts processes was conducted. 

Figures A.7-A.12 of Appendix A show plots of the total number of rainy 

days over a year and the total annual rainfall amounts as functions of 

the year for all the six stations. No significant trends in either 

the occurrence or the amounts process are apparent from this graphical 

analysis. Formal statistical tests, such as Cramer's statistic 

(Cramer, 1946) for a trend in the rate of occurrence of events, were 

not applied since these-tl:sts require a Poisson hypothesis and their 

performance is unknown when the true process is clustered. 

4.2 Statistical Analysis of Daily Rainfall Sequences 

Thirty years of daily rainfall during the period 1948 to 1977 

(1949-1978 for Miami) were analyzed for the six stations shown in 

Table 4.1. The statistical properties of the occurrence processes 

(i.e., dependence structure and first- and second-order properties of 

the non-zero precipitation sequences) were estimated from the daily 

rainfall data. In addition, the cross-correlation functions of the 

amounts with the preceding and following interarrival times were 

estimated. 

4.2.1 Seasonality of Daily Rainfall Sequences 

The daily rainfall process is a non-stationary (periodic) process 

for both the rate of occurrence of events and the da il y amounts. 

Therefore, a time-varying model is needed to accommodate this 
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non-stationarity. Apart from the case of a simple Poisson model with 

time-varying rate of occurrence, the generalization of other models, 

such as Poisson cluster models and doubly stochastic Poisson models, 

is in most cases mathematically intractable (Cox and Lewis, 1978; 

Srinivasan, 1974; and others). Use of a homogenization scheme, such 

as that of Kavvas and Delleur (1975), to transform the data prior to 

the data analysis is rejected for two reasons: (1) homogenization 

schemes are based on the Poisson hypothesis and therefore remove the 

non-stationarity only from the first moment, and (2) the inverse 

transformation is not valid for a non-Poisson process and therefore 

the model cannot be used for generation purposes. Hence, it seems 

that the bes~ approach is to model the daily rainfall process by 

seasons w1th1n Wh1Ch the process 1S assumed homogeneous. uTI1Ts-_uu- ... u_ 

approach has been followed herein. 

The transient effects caused by crossing from one season to the 

next are neglected in this formulation. For the formation of the 

daily rainfall occurrence series, a dry period (i.e., an uninterrupted 

sequence of dry days) was assigned to the month or season in which it 

started, regardless of the ending month or season. In other words, if 

the last rainy day in July was on July 25, and the next rainy day was 

on August 10, a dry period of 16 days was assigned to the month of 

July. This is believed to be the most natural approach to handle the 

transient effects from season to season. Other workers (e.g., Chang 

et al., 1984) have used an abrupt transition between seasons; for the 

above example, their approach would have assigned a dry sequence of 6 

days to July and a dry sequence of 10 days to August. 
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An important issue in modeling the non-homogeneous daily rainfall 

structure is the selection of seasons. One approach would be to 

consider each month as a separate season. However, grouping the data 

into seasons of more than one month each is desirable for several 

reasons: (1) the sample size of data for the estimation of the model 

parameters is increased; (2) the represent~tion of the process is more 

parsimonious; (3) transient effects from season to season are reduced; 

and (4) computational effort is reduced. An alternate approach is to 

separate the year into seasons of equal length based on preliminary 

statistical analysis of the average number of events per month, 

average storm depths, and other summary stat i st i cs. However, the 

proper selection of seasons depends not only on the number of events 
---- ----------- ---- - -- ------- -------- - --- --- ------ --- -- ---- ---- --- - - ------------ - - -- -- - ----- ---- ----- ----------------------------------- -------------------------- ------------------ --- --------- -------------------- ---- ------- ------------ -----------------

in a given period, but also on the distribution of events within that 

period. Second-order properties of counts, which provide information 

about the distribution of events, should therefore be used in season 

identification procedures. A season discrimination methodology, based 

on all the stat i st i ca 1 properties of i nterva 1 s and counts, wi 11 be 

discussed and implemented in Chapter 7. The first step, however, is 

the selection of a small time period (i.e., a few days or one month) 

over which the process can be safely assumed homogeneous. The 

statistical properties of the process within each of these small 

periods are then analyzed and compared so that those periods with 

simil ar stat i sti ca 1 structures can be grouped together. Unl ess 

predictable climatic changes are known to occur within a month, a 

monthly period can usually be ·assumed homogeneous. In this work, a 

month by month statistical analysis has been carried out as a first 
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step for all six stations. Based on the results of this analysis, 

longer homogeneous periods (seasons) are identified in Chapter 7. 

4.2.2 Second-Order Properties ·of Intervals and Counts 

The sequence of interarrival times (times between events) is a 

discrete positiv~ valued sequence, whose dependence structure and 

marginal pdf are to be identified. Table A.l gives the first five 

autocorrelation coefficients of the interarrival time sequences for 

the six stations. An approximate test for their significance results 

from assuming that the autocorrelation coefficient, Pj' has a 

N(ll,ci) = N(O, 1/(n-j)) distribution. Lewis et al. (1969) comment 

that this test is applicable "provided that the marginal distribution 

of intervals is not too highly skewed and that the number of events is 

--great e r Than rQ(r~T'Us-rngffirs-lest,-ffie-s-fgnTfTCanceTat-The--5 

percent and 1. percent levels) of the autocorrelation coefficients has 

been tested and the results are shown in Table A.I. Only a few 

autocorrelation coefficients were significant. However, this test is 

weak for skewed data and not directly appropriate for discrete time 

series. Non-parametric tests, such as exponential-score product 

moment statistics (Cox and Lewis, 1978), are particularly useful for 

short and highly skewed series, but due to the problem of ties in the 

series of interarrival times, they are difficult to apply. 

Another way of testing independence of discrete data could be to 

use tests for independence in Markov chains (Billingsley, 1961). For 

example, Cox and Lewis (1978, p.l77) present a case of a discrete 

point process, where the standard test on the autocorrelation function 

failed to indicate significant dependence in the series of intervals, 

whereas s i gni fi cant dependenci es were i dent ifi ed from a cont i ngency 
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table of conditional transition probabilities. For the daily rainfall 

occurrences, informal tests have indicated significant autocorrelation 

structures. These tests consist of comparing conditional 

probabilities of transition to intervals of lengths t i , i=1,2, ••• , 

from intervals of a particular length t, p(t;!t), i.e., p(1Il), 

p(2/1), p(31l), etc. These conditional probabil ities should not. be 

significantly different for an independent process; however, this was 

not the case for the daily rainfall sequences. Therefore, in general 

it was concluded that the daily rainfall occurrences at the stations 

analyzed are not generated from an independent Bernoulli pro~ess. 

Table A.2 shows the mean, variance, coefficient of variation, and 

skewness coefficient of the interarrival times for all six stations. 

The coefficient of varfaiion fsnot a Twajs greaier tnan one TrecaTT 

that values less than one imply a process underdispersed relative to 

the Poisson). In particular, the winter months (October - February) 

for Snoqualmie Falls, the summer months (May, June) for Roosevelt, the 

summer months (June - September) for Mi ami, and most of the months 

(January - April, June, July, November, and December) for Philadelphia 

have a coefficient of variation less than unity. Therefore, for all 

these months, the Poisson cluster models and the renewal Cox models 

are precluded since both have a coefficient of variation of intervals 

greater than one. 

Figures A.7-A.12 of Appendix A, show the empirical normal ized 

spectrum of counts, log-survivor, variance time curve and index of 

dispersion functions on a monthly basis for the six stations studied. 

On the same plots, the corresponding functions for a Poisson process 
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have been plotted. Recall from Table 3.1 of Chapter 3 that the 

corresponding functions for a Bernoulli process are as follows: 

Normalized spectrum of 
counts: 

Log survivor function: 

Variance time curve: 

Index of dispersion: 

Constant line of 1 for Poisson 
(l-m) for Bernoulli 

Straight line with slope -m for Poisson 
In(l-m) for Bernoulli 

Straight line with slope m for POisson 
m(l-m) for Bernoulli 

Constant line of 1 for Poisson 
(l-m) for Bernoulli 

where m is the estimated rate of occurrences of the process. In view 

functions, i.e., clustering (over- or under-dispersion) relative to 

the Poisson and Bernoulli processes is possible. Consider, for 

examp 1 e, the month of January for Snoqua 1 mi e Fa 11 s. The theory of 

continuous point processes would infer that this process is 

underdispersed relative to the Poisson, implying that events occur 

more regularly than in a Poisson process. However, these functions 

show that the process is overdispersed relative to the Bernoulli 

process, that is, rainfall events occur more randomly than in an 

independent discrete pOint process. The above example illustrates the 

inappropriateness of the continuous point process theory for modeling 

the discrete daily rainfall occurrences. 

4.2.3 Second-Order Properties of the Rainfall Amounts 

The sequence of non-zero rainfall amounts is a continuous 

positive time series whose autocorrelation structure and marginal pdf 

are to be identified. Table A.3 gives the first five autocorrelation 
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coefficients of these sequences for all twelve months for the six 

stations analyzed. Only a few were significantly different from zero, 

for example, the fi rst autocorre 1 at ion coeffi c i ent of the wi nter 

months (December through April) for Snoqualmie Falls. It should be 

noted-that due to the non-normality of these sequences, the standard 

ARMA-type models cannot be used. Depending on the marginal pdf's, 

either a normalization transformation may be applied on the data and 

standard ARMA models be used or the exponential ARMA (EARMA) or Gamma 

AR (GAR) models of Lawrance and Lewis (1977) may be used directly. 

More references on the EARMA and GAR models have been given in Chapter 

2. 

Table A.4 gives the statistics of the storm depth sequences. The 

coeffTcientofvarfa1:1()n-ls always-greater than one, and varies from-
1.07 to 1.30 for Snoqualmie Falls, 1.12 to 1.58 for Roosevelt, 1.36 to 

1.78 for Austin, 1.30 to 2.23 for Miami, and 1.12 to 1.55 for 

Philadelphia, and 1.07 to 1.88 for Denver. 

4.2.4 Cross-Correlational Properties of Intervals and Amounts 

The cross-correlation coefficients of the event rainfall amounts 

with the interarrival times preceding and following that event are 

given in Table A.4 for all six stations. Only Snoqualmie Falls has a 

significant cross correlation between the daily rainfall amounts and 

the inmediately following interarrival time for the months of July 

through January. Except for occasional exceptions, the other stations 

do not show significant cross dependence structure. 

4.3 Discussion on the Second-Order Properties of Intervals and Counts 

In this section a more detailed discussion is given of the 

statistical properties shown in Figures A.7-A.12 (i.e., spectrum of 
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counts, log-survivor function, variance time curve and index of 

dispersion) •.. Th~ last two functions are straightforward. The only 
• "'"';p 

point to be made is that their values at high lags (i.e., long 

interval lengths) are of interest, since these values will better 

depict the deviations of the process from an independent (Poisson or 

Bernoulli) process. For small time intervals (i.e., a few days) many 

processes appear to be independent (local independence). However, the 

estimation of these functions should not extend to more than about 

20-25 percent of the 1 ength , TO ,.~.~f the observed seri es to avoi d 

excessive sampling variability. Cox and Lewis (1978, p. 116) discuss 

several estimators for the variance time ~urve, as well as sampling 

properties of these estimators. 

. ... .. .. ... ..... ............... . ........... The····Tog su·rvfvoyo····funcl'·On-nas oeerl···pT 6lt-ea-in···dTsc-yoeterfme to 

illustrate the discreteness of the interarrival times. For example, 

for an interarrival time, x = xo' multiple points (triangles) are 

shown on the plot to illustrate the number of ties, i.e., number of 

intervals of length xO. To interpret the log-survivor function, i.e., 

concavity or convexity and slope, only the lowermost points 

(triangles) at each entry are needed. Also, the full length of 

interarrival times has been retained to illustrate extreme situations. 

These extreme points, however, are less reliable and should be given 

less weight when the log-survivor function is used for model fitting. 

The spectrum of counts needs special attention because of the 

discreteness of the data. For a continuous point process where, 

theoretically at least, events can occur arbitrarily close to each 

other, the spectrum of counts extends to infinite frequencies w > O. 

For the dai 1y rai nfa 11 occurrences, however, events cannot occur 
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closer than one day apart and th i s introduces a cutoff frequency 

(Nyquist frequency), wN = 1T, or equivalently fN = 1/2 days-I. The 

value plotted in the abscissa of the spectrum of counts plots is 

called the frequency factor and is defined as j = wT/21T where T is the 

tota 1 1 ength of observat i on. Therefore, the frequency factor 

corresponding to the Nyquist frequency is jN = T/2. This is the 

maximum value 'over which the spectrum of counts should be cbmputed. 

Guttorp and Thompson (1983) discuss aliasing of the spectrum of counts 

estimated from discrete sampled counting processes. They show that 

this can be severe, especially when the spectrum of counts does not 

decrease rapidly with respect to the sampling interval. For the daily 

rainfall occurrences, the estimated spectrum of counts began rising at 

aliasing introduced into lower frequencies cannot be easily assessed. 

Lewis (1970) gives a useful discussion of the theory, computation 

and application of the spectrum of counts. Por a discrete point 

process he proposes a different estimator for the spectrum of counts. 

This estimator is based on the Fourier transform of the 

autocorrelation function of the binary series of zeros and ones. The 

reader is also referred to Bartlett (1963) for a lengthy discussion of 

the spectral analysis of pOint processes. Sampling properties of the 

spectral estimates are also given in the above papers and in Cox and 

Lewis (1978, p.126). 

Notice that the normalized spectra of counts for most of the 

months decrease with increasing frequency to a value less than one and 

approximately equal to I-A, where A is the estimated rate of 

occurrence. For the months that have coefficients of variation less 
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than one, the spectrum of counts is either approximately constant 

(indicating an independent Bernoulli process) or increases slightly 

for low frequencies and then decreases. Such spectra of counts are 

usually consistent with variance time curves below that of the Poisson 

process. This indicates underdispersion relative to Poisson. 

However, most of these structures are overdispersed relative to the 

Bernoulli, since the variance time curve of the Bernoulli process has 

a slope equal to A(l-A) < A. 

It should be noted that inferences about clustering require only 

the shape of the spectrum (decreasing or constant, etc.) and not the 

absolute values. In that sense, the clustering found in daily 

rainfall occurrences is still valid, the only change is that 

clustering should be assessed- relative to adTscrefeTndependenf 

B~rryqulJi point process rather than the continuous Poisson. , , 

4.4 Need for a Discrete Clustered Point Process Model for Daily 
. Rainfall 

This chapter, together with Chapter 3, has demonstrated that 

continuous point process models are not appropriate for modeling daily 

rainfall sequences. In addition, using the proposed discrete-time 

pOint process methodology, it has been shown that, indeed, the daily 

rainfall process is a clustered overdispersed process i.e., the 

ra i nfa 11 events tend to occur more randomly than in an independent 

arrival process. Therefore, the need for discrete clustered point 

process models for daily rainfall sequences has become apparent. The 

development of such a model is the subject of the next chapter. 



CHAPTER 5 
DEVELOPMENT OF DISCRETE POINT PROCESS MODELS FOR THE DAILY 

RAINFALL OCCURRENCES 

The Fourth reached out an eager hand, 
And felt about the knee. 

"What most this wondrous beast is like 
Is mighty plain," quoth he: 

IIITis clear enough the Elephant 
Is very like a tree! II 

In this chapter, a discrete clustered point process model is 

... - .... --- .- ..... --. ··-def-i-R-e4--aoo4!vel.Qpe-<:1-.----"I"I"I-e-mQQ.e-l---b-e-l--Q-R-g-5-tQ--t-1l-e---geRe+a-l--c+-a-5-5-;---Q-f----------------

Markov renewal models which were introduced by Smith (1955), and later 
,. . 

studied by Pyke (1961 a,b) and Cox (1963). An extensive bibliography 

of theoretical developments and applications of the Markov renewal 

models is given by Teugels (1976). In the words of ~inlar (1975), a 

Markov renewal process can be pictured as follows: "Think of a 

particle which moves from one state to another with random sojourn 

times in between; the successive states visited form a Markov chain, 

and a sojourn time has a distribution which depends on the state being 

visited as well as the next state to be entered" (~inlar, 1975, p. 

313). In the most general Markov renewal process with k states, it is 

assum~d that there are k2 different type of intervals (sojourn times), 

independently distributed with probability distributions fij(x) 

(i,j = 1, ••• , k), which are sampled in accordance with a Markov chain 

with transition probability matrix P. Thus, if the Markov chain has 

58 



59 

made a transition to state i and the next transition is to state j, an 

event of probability Pij' then the time between these transitions has 

probability distribution fij(x). 

Markov renewal theory combines elements of Markov chain theory 

and renewal theory to give more general non-Markovian, non-renewal 

processes. It will be seen 1 ater that Markov cha i ns, Markov 

processes, renewal processes and alternating renewal processes are all 

special cases of a general Markov renewal process. It should be made 

clear that the times between events are not independent as the term 

renewal implies, but instead are conditionally ,independent. This 

conditi ona 1 independence gi ves a 1 imited Markov property to the 

process, in the sense that the future of the process is independent of 

occurrence of an event. The above statement is an informal definition 

of the Markov renewal process. A formal definition follows: 

DEFINITION: For each nEN, let a random variable Sn take values in a 

countable set of states E = {1,2, ••• } , and a random variable Tn take 

values in R+ = [0,+ ... ) such that 0 = TO ~ T1 ~ T2 ~ ••• The 

stochastic process (S,T) = {Sn' Tn n N} is said to be a Markov 

renewal process with state space E provided that 

P {S n+ 1 = j , T n+ 1 Tn < t I SO' "', S n ; TO' ... , Tn} 

= P{Sn+l = j , Tn+1 - Tn < t I Sn} 

for all nE N , jEE ~ and tE R+ (~inlar, 1975, p. 313). 

Many authors (for example, Cox and Lewis, 1978; Cox and Isham, 

1980) refer to the Markov renewal processes as semi-Markov processes, 
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while others make a distinction between the two terms and reserve the 

term semi-Markov for the state of the process as a function of time 

(see for example ~inlar, 1975, p. 316). In this work, the terms 

Markov renewal and semi-Markov refer to the same process (defined 

above) and are used interchangeably, w'ith preference on the term 

semi-Markov. 

We will consider here only the case where there are two types of 

intervals i.e., a two-state semi-Markov process. In the next section 

the definition and statistical properties of a general two-state 

semi-Markov process are presented. In section 5.2, a specific 

discrete semi-Markov model for the daily rainfall occurrences is 

defined and its statistical properties derived. 

5.1 Statistical Properties of a General Two-State Semi-Markov Model 

In a two-state semi-Markov model it is assumed that there are two 

types of intervals sampled from two· different probability 

distributions, f1(x) and f2(x), according to a probability transition 

matrix: 

a 
P =( 1 
- 1-a2 

In equation (5.1), 

a1 = prob( type 1 i nterva 1 - type 1 i nterva 1) , 

a2 = prob(type 2 interval -type 2 interval), 

(5.1) 

or alternatively, given that the interval xi _1 has the pdf f1(x), the 

probability that xi has the pdf f2(x) is l-al' etc. Notice that if 
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all the intervals take the same constant value with probability one, 

then a one-state semi-Markov model reduces to a Markov chain. In 

other words, the semi-Markov process can be viewed as a generalization 

of a Markov chain process in which the time spent in a particular 

state between transitions is no longer geometrically distributed. 

Let the row vector R(n) = (PI (n) ,P2(n)) denote the probability 

that the n'th interval will be of type 1 or type 2 when the initial 

probability of the first interval being of type 1 or type 2 is given 

by.8.(O) = (PI (0) ,P2 (0)). It can be easily shown (Cox and Miller, 

1965) that 

(5.2-) 

Thus, given the initial probabilities R(O) and the transition 

probability matrix f, the probability that the n'th interval will be 

of type 1 or type 2 can be found. The matrix fn is called the n-step 

transition probability matrix, and the probabilities PI (i), P2(i) are 

called interval-type probabil ities (in contrast to the state 

occupation probabilities of a Markov chain process). 

After a sufficiently long period of time, the system settles down 

to a condition of statistical equilibrium in which the interval-type 

probabilities are independent of the initial conditions. Then, there 

is an equil ibrium probabil ity distribution ~ = (e1 ,e2), which, 

letting n + ~ in (5.2), satisfies 

e = e P. (5.3) 
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The solution of (5.3) with respect to the row vector ~, subject to the 

constraint e1+e2 = 1, e1, e2 ~ 0, gives the equilibrium interval-type 

probabilities associated with the transition probability matrix P of 

(5.1) as 

(5.4) 

(e.g., Cox and Miller, 1965). For instance, the probability e1 is the 

unconditional probabil ity that an arbitrary interval will be of type 

1. Note that 

( 5-:-0) 

From the theory of Markov chains we know that 

and therefore from (5.2) 

so that the system tends to a statistical equilibrium with a rate 

depending on the value of (a1 + a2 - l)n which tends to zero as n 
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increases (Cox and Miller, 1965). The value of (a1 + a2 - 1) is less 

than unity in modulus, except in the trivial cases (i) a1 + a2 = 0, 

i.e., a1 = 0, a2 = ° in which the system alternates deterministically 

between the two states and (if the initial state is given the behavior 

of the system is non-random), and (ii) a1 + a2 = 2, i.e., a1 = 1, a2 = 

1 in which the system remains forever in its initial state. For a1 + 

a2 = 1 the process is a renewal process, and the transition 

probabilities of the Markov chain are equal to the equilibrium 

probabilities, i.e., a1 = e1 and a2 = e2• 

5.1.1 Interval Properties 

The pdf of the intervals of the process is given as 

~6 
--------

\.J.V/ 

where e1 and e2 are the equilibrium probabilities given in (5.4). It 

is easy to show that the mean, variance, and survivor function of the 

interarrival times x are given as 

E(X) = e1].11 + e2~2' (5.7a) 

var(X) = 222 e10 1 + e20 2 + e1e2(].11-~2) , (5.7b) 

R(x) = e1R1(x) + e2R2(x), (5.7c) 

2 where ].Ii' 0 i ' i = 1,2, are the means and variances, respectively, and 

the subscripts indicate the types of the intervals. The 

autocovariance function of a two-state semi-Markov process can be 

shown to be 
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Cov(X i , Xi+k) (5.8 ) 

where 

(5.8a) 

and therefore the autocorrelation function can be written as 

(5.9) 

in which 

(5.9a) 

Consequently, the spectral density function of the intervals, given in 

terms of Pk is 

1 CD 

=- {l + 2 1: P k cos ( kw)} , a i w i 'IT, 

k=l 'IT 

which takes the form 

1 8COSw - 8 2 

f+(w) = - {l + 2c }, 
'IT 1 + 82 - 28cosw 

(5.10) 

(5.11) 
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where c is defined in (5.9a) and e in (5.8a) •. 

Notice that the autocovariance function of the intervals of a - -~ 

two-state semi-Markov model and therefore the power spectrum depend on 

the pdf' s f1 (x) and f2(x) only through their means and variances. 

This can provide a helpful first check for the appropriateness of a 

semi-Markov structure for a series of events, sin~e no assumption 

about the pdf's of the intervals is required. 

5.1.2 Counts Properties 

Cox (1963) fi rst showed that the Lapl ace transform of the 

conditional intensity function of a two-state semi-Markov model is 

given as 

* * where f1 (s) and f2 (s) are the Laplace transforms of the pdf's f1(x) 

and f2(x), respectively. Explicit formulae for h(t) exist whenever 

the inversion of (5.12) is possible. Given h(t), all the other 

propert i es of counts can be obta i ned from the fo 11 owi ng general 

relationships: 

Y+(T) = m[h(T) - m], 

t 
H(t) = /~h) dT, 

* 
* 

m 2h (s)m 
V (s) = -- + 

s2 s2 

(5.13) 

(5.14) 

(5.15) 
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m * * g+(w) =-[1 + h (iw) + h (-iw)J, (5.16) 
1T 

(see Cox and Lewis, 1978, for proofs). In the above equations, the 

rate of occurrence, m, is given in terms of the transition 

probabil ities as 

1 2 - a1 - a2 
m= =------"----=--- (5.17) 

e1~1 + e2~2 (1 - a2)~1 + (1 - a1)~2 

5.2 A Discrete Semi-Markov Model for the Daily Rainfall Occurrences 

Daily rainfall occurrences are the result of the interaction of 

- - severa-l --ra+nfall ~enerating mee-hanisms. For example, the-fir-st rainy-

day in a wet period may be the result of a frontal storm passing over 

a region, whereas subsequent rainy days in the same wet period may be 

just aftereffects (secondary events). In that sense, times between 

events may come from different probability distributions, for 

instance, one with a smaller coefficient of variation for the 

secondary events, and one with a large coefficient of variation for 

the primary events. The sequence of event types is governed by 

transition probabilities, with higher probabilities of having 

secondary events after a primary event or after a small number of 

secondary events. 

In view of this, a two-state semi-Markov model is proposed for 

the daily rainfall occurrences, in which the times between events are 

sampled from two different geometric distributions with parameters PI 

and P2' according to a Markov chain with. the transition probability 

matrix P of (5.1). The notation SMGG will be used to denote a 
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two-state semi-Markov model (SM) with both type 1 and type 2 

interarrival times having geometric distributions (GG). The 

statistical properties of intervals and counts for· a SMGG process are 

deri ved below. 

Let f1(x) and f2(x), defined as 

fi(x) 
CD k 1 = E p.(l - p.) - 8(x - k) , for 

k=l 1 1 
= 1,2 (5.18) 

be the continuous representations of the geometric probabil ity mass 

functions (pmf) of the interarrival times. Notice that f1 (x) and 

f2(x) are probability density functions (pdf). The statistical 

properties of intervals and counts of a SMGG process are given in the 

following propositions. 

PROPOS! nON 1: The moment gene rat i ng funct i on of the i nterarriva 1 

times of a SMGG process is given as 

(5.19) 

Moments of the interarrival times are obtained from 

k dk \);(s) 
= (-1) k 

ds 
(5.20) 

s=o 
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Proof: The proof follows immediately from (5.6) by noting that the 

.. moment generating function of a geometric distribution with parameter 

p, is given as 

pes 
1jJ(s) = ------, 

1-(1-p)es 

Corollaries: The mean interarrival time of a SMGG process is 

1 l-a2 l-a1 
E(X) = --- [- + -J. 

(2-a1-a2) PI P2 

The variance of the interarrival times of a SMGG process is 

(5.21) 

1 1- PI 1- P2 ( 1-a1 )( 1- a2 ) 1 1 2 
va r ( X ) - [ (1- a2 )---=+ (1- a 1 ) 2 I (- - -) J. 

(2-a1-a2) P12 P2 (2-a1-a2) PI P2 

(5.22) 

The survivor function of the interarrival times of a SMGG process is 

1 
R(x) = --- [(1-a2)(1-Pl)x + (l-a1)(1-P2)xJ, x=I,2, .•. 

(2-a1-a2 ) 
(5.23) 

Equation (5.23) follows immediately from (5.7c)by noting that the 

survivor function of a geometric distribution is given as (l_p)x. 
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PROPOSITION 2: The autocorrelation function, Pk,of the interarrival 

times of a SMGG process is given as 

(5.24) 

where 

2 (1-a1)(1-a2) (PI-P2) 
c = --------~~2~------~~~2----------------=2. 

2-a1-a2 (1-a2)(1-Pl)P2 +(1-a1)(1-P2)Pl +(1-a1)(1-a2)(PI-P2) 

(5.25) 

Proof: Eq. (5.25) follows from (5.9) after substituting the means and 

variances of the two geometric distributions as functions of the 

parameters PI and P2· 

Note on terminology: For a discrete point process, we introduce the 

term conditional probabilities of occurrence for the discrete sequence 

of conditional probabilities {hk}, k = 1,2, •.. , analogously to the 

conditional intensity function h(t) of a continuous point process. 

The relationship between h(t) and hk is simply 

h(t) = E hk o(t-k), 
k=l 

(5.25) 

where 0(·) is the Dirac delta function. The interpretation of {hk} 

remains the same as in the continuous case; values of hk greater than 

the constant (unconditional) probabil ity of occurrence m imply a 

greater likelihood of having an event at time (t+k) due to an event at 
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time t. The conditional probability of occurrence sequence {hk}, from 

which all the other statistical properties of the counting process can 

be derived, is given in the following proposition. 

PROPOSITION 3: The conditional probability of occurrence sequence {hk} 

of a SMGG process is given as 

, k = 1,2, ••• , (5.26) 

where 

(5.27) 

and 

(5.28 ) 

The equilibrium probabilities appearing in (5.27) are given in (5.4) 

and the mean intensity of the process, m, (i.e., the unconditional 

probability of occurrence of an event), can be given in terms of the 

transition probabilities and the parameters of the geometric 

distributions as 

PIP2(2-al -a2) 
m = ---=--=----=--=-- (5.29) 

PI (l-al )+P2(I-a2) 
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* Proof: The Laplace transform, h(s), of the intensity function, h(t), 

* is obtained by substituting in (5.i2) the expressions for fi(s), 

i = 1,2 , which are the Laplace transforms of fi(x), i = 1,2, defined 

in (5.18), i.e., 

P·e- s 
* 1 fi (s) = ----:..--

l-(l-p.)e- s 
1 

(5.30) 

* After lengthly algebraic manipulations, h(s) is inverted to give h(t) 

whose discrete analogue is hk of (5.26). More details on this 

derivation are given in Appendix B. 

REMARK 1: The conditional intensity function h(t) of a SMGG process 

tends monotonically to the mean rate of occurrence m, as t becomes 

large. SpeCifically, h(t) decreases geometrically to the constant 

intensity m, since A can be shown to be positive and 0 < W < 1. This 

impl i es that the semi-Markov process exhi bits cl usteri ng. Although 

the shape of the conditional intensity function is only indicative of 

the presence, but not the type, of cl usteri ng, the fact that the 

coefficient of variation of the interarrival times can take values 

greater or less than one (see equations 5.21 and 5.22) suggests that 

the semi-Markov process can accommodate rainfall occurrence structures 

which the Neyman-Scott process and doubly stochastic Poisson processes 

cannot. 

COROLLARY 1: The expected number of events in an interval of length 

t, given that the interval starts with an event, is given as 



t 
H(t) = mt + A E Wk 

k=l 

Wt_1 
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= mt + AW -- ,t = 1,2, •.. , 
W-1 

(5.32) 

where the parameters m, A and W have been defined in (5.29), (5.27), 

and (5.28), respectively, and t is referring to discrete time units. 

Proof of Corollary 1: The mean function H(t) of a continuous point 

process is defined as the· integral of the conditional intensity 

function h(t) in (5.14). For discrete point process we can write by 

analogy, 

t 
H (t) = E hk 

k=l 

t 
= E (m + AWk), 

k=l 

from which (5.32) follows imnediately. 

(5.33) 

COROLLARY 2: The variance of the number of events in an interval of 

length t, V(t), where the interval starts with an event, is given as 

t-1 
V(t) = mt - m2t 2 + 2m E (t-k)hk, 

k=l 

where hk is given by (5.26). 

(5.34) 
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* Proof of Corollary 2: The Laplace transform V (s) of the variance 

time curve is given in terms of the Laplace transform of the 

conditional intensity function by (5.15). By taking inverse Laplace 

transforms: 

1 
V(t) = ml-1(-2 ) 

s 

and therefore 

to" 

~~----------------V-(-ti---~t~L~hfT+G-EtI1dCJ:I-------'------------
.0 0 

which in the discrete domain can be written as 

t i 
V(t) = mt - m2t 2 + 2m L L hk 

i=l k=l 

t-1 
= mt - m2t 2 + 2m L (t-k)hk. 

k=l 

This completes the proof of Corollary 2. 

PROPOSITION 4: The spectrum of counts, g+(w), of a SMGG process is 

given as 
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m W - cosw 
9+ ( w) = - [1 - m - 2A 2 ] , 

~ 1 - 2Wcosw + W 
(5.35) 

where m, A, and W have been defined previously. 

Proof: Eq. (5.35) is derived by substituting into (5.16) the 

* expression of h (s) from (5.12) and performing lengthy algebraic 

* * manipulations. Expression of f1 (s) and f2 (s) needed in (5.12) are 

obtained from (5.30). 

5.3 Discussion 

In this chapter a discrete semi-Markov model was introduced and 

--i-t--5---S-t-at-'i-s-t'i-ca-l-lll"'Q~rties deri-¥-e4. It was seel"l-that the model has 

considerable flexibility (see Remark 1) in the sense that it can model 

structures with dif.ferent types of clustering. It remains to explore 

parameter estimation methods, and to apply the model to observed daily 

precipitation series. In the next chapter, methods for fitting the 

model are studied. 
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. CHAPTER 6 
FITTING THE DISCRETE SEMI-MARKOV MODEL 

The Fifth who chanced to touch the ear, 
Said: IIElen the blindest man 

Can tell what this resembles most; 
Deny the fact who can, 

This marvel of an Elephant 
I s very 1 i ke a fan!1I 

The discrete semi-Markov model developed in Chapter 5 has four 

parameters: aI' a2, PI' and P2. These parameters are: aI' the 

tran~~~probability from type 1 to type---l-interval ;------42 ' the 

transition probability from type 2 to type 2 interval; PI' the 

parameter of the geometric distribution of the type 1 interval s; and 

P2 the parameter of the geometric distribution of the type 2 

intervals. Note that the type 1 and type 2 intervals are in general 

indistinguishable from each other by direct observation of the series 

of daily rainfall events. Thus, the transition probabilities a1 and 

a2 cannot be estimated directly from the data, but instead have to be 

est imated together with the parameters of the two geometri c 

distributions, PI and P2. The estimation methods studied are the 

method of moments (MOM) and two approximate maximum likelihood (ML) 

estimation methods. 

6.1 Method of Moments 

The fi rst three moments and the 1 ag-one covari ance of the 

interarrival times of the semi-Markov model SMGG are given as 

75 
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functions of the parameters aI' a2 , PI and P2 as follows: 

1 l-a2 l-a1 
E(X) = --- [- + -J, 

PI P2 

2 1 (l-a2)(2- Pl) 
E(X ) = --- [ 2 

2-a1-a2 PI 

1 
... c1 = ------,:-2 

(2-a1-a2) 

(6.1) 

(6.2) 

(6.3) 

(6.At __ _ 

The above four equations can be numerically solved for aI' a2, PI' and 

P2 using, for instance, the Newton-Raphson method. Since all four 

parameters are probabilities, they must lie inside the interval [O,IJ. 

Therefore, a trans format i on was app 1 i ed to these parameters to 

unconstrain them, and the search carried out in the unconstrained 

space. Denoting by y the real parameter, YE(t,U), and by y. the 

unconstrained parameter, y·E(-~,+~), the following transformation was 

used: 

where t and u are the lower and upper bounds on the parameters. The 
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values of t = 0.01 and u = 0.99 were used to avoid numerical problems 

at the bounds. 

Due to the long tail of the probabil ity distribution of the 

interarrival times, the use of the third mbment in the estimation is 

not desirable. A modified method of moments estimation which involves 

the median instead of the third moment, was tested. The median xm of 

the pdf of the interarrival times of the semi-Markov model SMGG, is 

given by the following equation: 

0.5. (6.6) 

Modified method of moments estimates were then obtained by simply 

substituting (6.6) for (6.3). 

6.2 Approximate Maximum Likelihood Estimates (MLE) 

Let Ii' ; = 1,2, ••• n, denote the type of the ith interval in one 

realization of length n of the point process. Then, IiE{I,II}, where 

I stands for type 1 interval and II for type 2 interval. Let I also 

denote the vector (II' 12, ••• , In)T, that is, the vector of the types 

of intervals of all n interarrival times of the given realization. 

The general form of the likelihood function of a two-state semi-Markov 

model can be expressed as: 

(6.7) 
n 

= 1: IT p(x.\I.) 
I i=l " 
- '--(A)/ 
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where the surrvnat i on is over a llposs i b 1 e vectors 1, i.e., over all 

possible vectors of length n formed by the two elements I and II. 
0-', ~ " ,~ 

Observe in the above expression that the term (A) depends only on the 

vector of interarrival times ~ = (xl' x2' •.• , Xn)T and the parameters 

of the two geometric distributions PI' and P2' while the second term 

(B) depends only on the transition probabilities, aI' and a2, of the 

Markov chain of intervals, i.e., 

(6.8 ) 

where f(·) denotes funct i on of (.). I t becomes appa rent from (6.7) 

that the likelihood function of the semi-Markov model cannot be 

expressed in a tractable closed form as function of the parameters aI' 

a2, , PI' Pi and the vector of observat i ons~. Although numeri ca 1 

evaluation of the likelihood function is possible, it is infeasible 

for typical sample sizes of several hundred values, since it requires 

double summations over all possible vectors I. 

In view of the above, an approximate maximum likelihood 

estimation procedure has been developed. This procedure consists of 

two steps. The first step involves the maximum likelihood estimation 

of el , PI' and P2' where el is the equilibrium probability of the 

Markov chain of intervals. Given the equilibrium probability el , the 

transition probabilities, al and a2, of the Markov chain of intervals 

are subsequently obtained. It is understood that although the 

parameters Pl and P2 are exact maximum likelihood estimates, the 

parameters al and a2 are not and thus the method is termed approximate 

maximum likelihood. Details of this method follow. 



79 

The probability mass function (pmf) of the interarrival times of 

the semi-Markov model is given as: 

(6.9) 

where e1 is the equilibrium probability of the Markov chain of 

intervals, i.e., the unconditional' probability of any interval being 

of type 1. The log-likelihood function L'(x) is 

n n 
L'(x) = In[L(x)] = In[.IT (p(x i ))] =.E In[p(x i )] 

1=1 1=1 . 
(6.10) 

n x.-1 x.-1 
- E In[e1P1(1-Pl) 1 I (1-e1)P2(1-P2) 1 J. 

i=l 

Parameter estimates for e1, PI and P2 can be obtained by maximizing 

L I (x), for instance, us i ng the simplex method of Ne 1 der and Mead 

(1965). The optimization is carried out in the unconstrained space 

using again the transformation (6.5). Estimates of the parameters a1 

and a2 can subsequently be obta i ned by one of the two methods 

described below. 

6.2.1 Estimation of the Transition Probabilities Using the First 
Autocorrelation Coefficient 

The first autocorrelation coefficient of the semi-Markov model is 

given as 

r 1 = c (at + a2 - 1), (6.11) 
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where 

(6.12) 

and e1 is the equilibrium probability of the Markov chain, given in 

terms of the transition probabilities as 

(6.13) 

Equations (6.11) and (6.13) can be solved for a1 and a2, giving 

and (6.14) 

From the above two equations it can be shown that for acceptable 

parameter estimates, that is, a < aI' a2 < 1, the following inequality 

must hold: 

(6.15) 



81 

Note that the value min(e1/(I-e1) , (l-e1)/e1) = min (e1/e2, e2/e1) 

corresponds to the ratio of the smallest to the largest equilibrium 

probability, a value always less than 1. The inequality (6.15), 

therefore,is consistent with the requirement that the autocorrelation 

function of the process, given as 

is less than one in absolute value. Note also that the equal signs in 

(6.15) are not permitted since from (6.11) they can be shown to 

correspond to the foll owi ng trivial cases. The right hand side equal 

sign implies a1 + a2 = 2, and therefore a1 = 1 and a2 = 1, in which 

ease tl'1esystem Y'ema4ns forev€r in th€·;-ni t i a 1 -stllte. The left hand 

side equal sign implies a1 = 0 and a2 = 0, in which case the system 

alternates deterministically between the two states and given the 

initial state, the behavior of the system is non-random. 

Therefore, est imates for a1 and a2 cannot be obtained by the 

above method, unless the ratio of the estimated first autocorrelation 

coefficient r1 to the value c, satisfies (6.15). The value of c is 

obtained from (6.12) using the values of e1 , PI' P2 estimated from the 

approximate maximum likelihood function. It was found that (6.15) was 

not satisfied in general, and therefore the transition probabilities 

cannot always be estimated using this method. 

6.2.2. Bayesian Approach to Estimation of the Transition 
Probabil ities 

Let E:l i ' E:2 i denote the conditional probabil ities of an , , 
interval having length xi given that it is of type 1 (I) or type 2 
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(II), respectively. In view of the geometric distributions for the 

two types of intervals, these probabilities can be written as 

x.-l 
i; 1 . = p(x=x i I 1) = PI (l-Pl) 1 

,1 

and (6.17) 

x.-l 
i;2 .. = p(x=xi I II) = P2(I- P2) 1 

,1 

The conditional probabilities of an interval being of type 1 or type 2 

given that it has length x=xi ' i.e., p(Ilx=xi ) , p(IIlx=xi ) can now 

be determined. Using Bayes theorem 

and analogously, 

p(I, x=x;) pO) p( x=x; I I) 
= ----!.- = 

p(x=xi ) 

e2i;2 i 
= 2 = 

p(x=x i ) 

(l-e1)E;2,i 

p(x=x i ) 

(6.18) 

(6.19) 

where i;1,i and i;2,i are given in (6.17) as functions of the parameters 

PI and P2' and p(x=x i ) is given from (6.9) for x=x;' 

The transition probabilities a1 and a2 can be estimated as 

n-l n 
= 1: p(Ilx i AIlx i+1) / 1: p(Ilx i ) 

i=1 i=1 
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n-l n 
= I: p(Ilx i ) p(Ilx i+1) I.I: p(Ilx i ) 

i=l 1=1 
(6.20) 

where p(I Ix i ), p(Ilx i+l ) are given in (6.18), and p(x=x i ), p(x=xi+l ) 

in (6.9). 

6.3 Monte Carlo Tests of Estimators 

The fitting methods considered are basically variations of method 

of moments (MOM) and Maximum Likelihood (ML) estimation methods. In 

particular, the following five methods were'tested for efficiency and 

consistency in estimation: 

Ml . 

M2: 

M3: 

M4: 

M5: 

MOM on E(X), E(X2), E(X3) and cov(1) + at ~~J-4P"Tt~J-4P'92--------
MOM on E(X), E(X2), median and Cov(l) + aI' a2, PI' P2 

3 . . 
MOM on E(X), E(X 2), E(X ) + el , PI' P2; coupled wlth rl + aI' a2 

ML + el , PI' P2; coupled with r l + aI' a2 

ML + el , PI' P2; Bayesian approach + aI' a2 • 

Recall from Chapter 5 that depending on whether a1 + a2 > 1 (or 

< 1), the first and all the odd-lagged autocorrelation coefficients of 

the interarrival times become positive (or negative). Most of the 

daily' rainfall structures analyzed exhibited a positive 

autocorrelation structure of intervals, although few significant 

lag-one autocorrelation coeffi·cients were present as, for example, for 

the station of Denver. In view of the above, Monte Carlo tests of 

est imators were performed for sets of parameter val ues for al and a2 
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such as both of the above model structures are covered. 

The first set of parameters tested was { a1 = 0.4, a2 = 0.3, 

PI = 0.8, P2 = 0.2 }. These parameter values correspond to an 

occurrence process with a mean interarrival time of 2.98 days, a 

standard deviation of 3.59 days (coefficient of variation Cv = 1.2), a 

skewness coefficient equal to 3.01, and a first autocorrelation 

coefficient r1 = -0.08. The conditional intensity function for these 

parameters takes the form hk = 0.335 + 0.186(0.38)k, which indicates a 

clustering of counts. Such statistics are representative of daily 

rainfall occurrence processes, as can be seen from Table A.2 of 

Appendix A. Five hundred synthetic sequences of 50, 100, 200, 500 and 

800 events were generated from a semi-Markov model with the above 

---------rp''a-...ra~lmnte:01t"-t:e>1'''r~s-. ---'IT-he-impl ; ed rate of occurrence of the proces sis 

m = 1/2.98 = 0.34 days-I, and therefore these sequences correspond to 

approximately 150,300,600,1500, and 2400 days of observation, 

respectively. 

The five methods (Ml, M2, M3, M4, and M5) discussed previously 

were fitted to all synthetic sequences. The bias and standard 

deviation of the estimated parameters are given in Table 6.1. As was 

expected, the consistency (bias) and efficiency (variability) of the 

est imators improve wi th the number of events avai 1 ab 1 e for the 

estimation. The best estimators in terms of root mean square error 

(RMSE = ((bias)2 + variance)1/2) were methods M4 and M5 which are the 

two approximate maximum likelihood estimation methods using the first 

autocorrelation coefficient and a Bayesian approach, respectively. 

Method M4 has a low bias but a large variance as compared to method M5 

which has a larger bias but a much smaller variance for the parameters 
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a1 and a2• It is also observed from Table 6.1 that in terms of RMSE 

method M4 is the best for large sample sizes (larger than 500 events) 

whereas method M5 is the best for small sample sizes. This was 

expected gi yen that method M4 i nvol yes an estimate of the fi rst 

autocorrelation coefficient of the intervals. In addition, method M5 

always gives a fit, whereas method M4 failed in a number of cases. 

The second set of parameters tested was {a1 = 0.9, a2 = 0.6, 

PI = 0.8, P2 = 0.4}. These parameters correspond to an occurrence 

process with mean interarrival time 1.5 days (mean rate of occurrence, 

m = 0.667 days-I), a standard deviation of 1.11 days (coefficient of 

variation Cv = 0.74), and skewness coefficient Cs = 4.02. The 

autocorrelation function of the process is rk = r1(a l + a2 - 1)k-1, 

where r1 = 0.1, and (a l + a2 -1) - 0.5, and the conditiollal intensity 
k function is hk = 0.667 + 0.05(0.76). These functions indicate a 

strong dependence stucture in the intervals but a relatively small 

clustering in the counts. The results of the estimation methods are 

shown in Table 6.2. Method M5 performed poorly, whereas method M4 

gave satisfactory parameter estimates •. These results suggest that 

method M4 may perform better when a strong autocorrelation in the 

interarrival times is present, and method M5 when the clustering of 

counts is the more significant element of dependence. 

The effect of the first autocorrelation coefficient of the 

process on the consistency and efficiency of the estimators aI' a2, PI 

and P2 was also tested. For the discussion that follows, the 

convention is made that e1 corresponds to the geometric distribution 



Table 6 . 1 Monte Carlo Results on Estimators for a Semi-Markov Model with Paramet ers 
a l = 0.4, a2 = 0.3, PI = 0.8, and P2 0.2. 

~iils Standard Deviation 
,~ , 

N m m' Method a l a2 PI Pi a il ll P1 PI' 1 

50 500 68 Ml 0.0674 -0.0332 0.0172 O.C 018 0.2162 0.1926 0.1007 0.0450 
129 1-12 0.0790 0.0204 -0.0674 O.C 066 0.2492 0.2287 0.1060 0.0485 
159, m 0.1134 0.0176 -0.0044 -O.C 144 0.2729 0.2433 0.2062 0.0677 
318 M4 0.0261 0.0255 0.0207 o .C 031 0.2346 0.1237 0.1237 0.0518 
500 M5 0.1029 0.1258 0.0122 O.C 080 0.1546 0.1517 0.1330 0.0582 

100 500 122 Ml 0.0091 -0.0292 0.0252 -O.C 020 0.1009 0.1813 0.1177 0.0317 
215 M2 0.0424 -0.0214 -0.0673 0.( 017 0.2061 0.1766 0.0878 0.0360 
238 M3 0.0433 0.0385 0.0182 -O.C 049 0.2506 0.2369 0.1838 0.0509 
412 M4 0.0004 -0.0047 0.0124 0.( 016 0.1988 0.1745 0.1012 0.0355 
500 M5 0.1023 0.1315 0.0138 O.C 055 0.1204 0.1154 0.1072 0.0412 

200 500 188 M1 0.0128 -0.0092 0.0173 -O.C Oll 0.1634 0.1227 O.l1Hl 0.0259 
375 ~12 0.0658 -0.0614 -0.0813 -O.C 059 0.1684 0.1510 0.0706 0.0273 
291 M3 0.0317 0.0053 -0.0091 -O.C 090 0.2152 0.1776 0.1845 0.0402 
482 M4 -0.0029 -0.0152 0.0016 0.( 004 0.1523 0.1405 0.0770 0.0255 
500 M5 0.1109 0.1255 0.0039 0.( 014 0.0838 0.0824 0.0793 . 0.0267 

500 400 229 M1 0.0061 -0.0040 0.0213 O.C 07 0.1200 0.1125 0.1103 0.0208 
347 ",2 0.0506 -0.0602 -0.0766 -O.f 052 0.1320 o .1l32 0.0574 0.0210 
322 M3 0.0197 -0.0085 0.0012 -O.C 057 0.1743 0.1311 0.1544 0.0309 
397 M4 -0.0043 -0.0005 0.0030 O.C 017 0.1082 0.0966 0.0510 0.0179 
400 M5 0.1069 0.1293 0.0039 O.C 021 0.0576 0.0560 0.051? 0.0185 

800 250 163 Ml 0.0105 -0.0029 0.0169 -O.C 004 0.1223 0.1040 0.1144 0.0196 
233 M2 0.0504 -0.0524 -0.0743 -O.C ~55 0.1098 0.0926 0.0511 0.0182 
212 M3 0.0090 -0.0075 0.0028 -O.C 056 0.1609 0.1305 0.1500 0.0286 
250 ~14 -0.0035 0.0001 0.0009 O.C ~16 0.0854 0.0732 0.0399 0.0147 
250 M5 '0.1080 0.1285 0.0011 0.0 p17 0.0451 0.0443 0.0401 0.0148 

----

N = number of events in each sequence -
m = number of sequences 
m'= number of sequences a method succeeded 



Table 6.2 Monte Carlo Results on Estimators for a Sem'-Markov Model with Parameters a1 = 0.9, 
a2 = 0.6, PI = 0.8, and P2 = 0.4. 

Bias Standard Deviation 

N m m' t,lethod a1 a2 PI 2 a1 a2 PI P2 

50 500 61 M1 -0.1587 -0.1560 0.0737 o 0129 0.2078 0.2712 0.0826 0.1027 
0 N2 

180 ~13 -0.115? -0.1837 0.0448 
-Ot1292 0.2303 0.2623 0.1400 0.1995 

191 t-'14 -0.1623 -0.1412 0.0775 o 0085 0.2279 0.2736 0.0984 0.1388 
500 ~15 -0.2396 -0.?484 0.0259 0.1003 0.2439 0.2435 0.1105 0.1756 

100 500 149 M1 -0.1298 -0.1452 0.0589 01.0189 0.1820 0.2573 0.0744 0.0953 
0 ~12 

258 ~n -0.0974 -0.1357 0.0437 -0 .0650 0.2059 0.2682 0.1271 0.1759 
287 ~14 -0.1030 -0.1105 0.0489 -0 .0030 0.2003 0.2813 0.0928 0.1249 
500 t15 -0.1897 -0.2939 0.0297 0.0510 0.2015 0.2000 0.0981 0.1501 

200 500 254 m -0.0994 -0.0896 0.0506 0.0185 0.1514 0.2293 0.0706 0.0839 
0 M2 

321 M3 -0.0785 -0.0913 0.0453 -0 .0247 0.1570 0.2533 0.0956 0.1438 
353 ~14 -0.0623 -0.0891 0.0263 -0 .0031 0.1522 0.2530 0.0783 0.1052 
500 ~15 -0.1635 -0.3170 0.0234 0.0197 0.1820 0.1819 0.0826 0.1170 

co 
........ 
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with the higher parameter i.e., the distribution with the shortet 

tail. A value of el > 0.5, therefore, implies that shorter 

interarrival times have greater probability of occurrence. The 

parameter set considered is {el = 0.6, PI = 0.9, P2 = O.l}. Depending 

on selected values for the first autocorrelation coefficient r l , 

several sets of transition probabilities (aI' a2) were obtained and 

the corresponding processes tested. Table 6.3 and Figure 6.1 show the 

results of this experiment. It is observed that the bias in the 

parameters al and a2 increases as a function of r l , and that the bias 

in a2 (where a2 corresponds to the transition probabil ity, of the 

longer tail geometric distribution) is always greater than the bias in 

al . In tenns of RMSE it can be concl uded that method M4 performs 

better when a strong dependellce s rtuctu r-e is present alld method M5 

when a strong clustering of counts ;s present. Method M5 seems to 

give parameter estimates which are more variable but less biased than 

those of method M4. 

From the above preliminary analysis, our conclusions regarding 

the estimators tested can be summarized as follows. MOM estimates 

have a very high likelihood of failure and should be avoided given the 

long tail distribution of the interarrival times. Methods M4 and M5 

seem to perform the best and it is suggested that method M4 should be 

used whenever feasible, especially for large sample sizes (on the 

order of 500 events). For smaller sample sizes it is suggested that 

method M4 is used when the dependence of intervals is stronger than 

the cl usteri ng of counts, and method M5 when the cl usteri ng is 

stronger than the dependence in intervals. In view of the above 



Table 6.3 t'lontp. Carlo ~p.sults ~n Estima~ors tor Semi-t'la~ko~ ~lodels \,/!th Various Se!s of Parameters 
(aI' a2) Cons1stent \11th the F1xect Parameters 11 - 0.6, PI - 0.9, and P2 - 0.1. 

Bias Standard Deviation 
N m m' ~1ethod a1 a2 PI P2 a1 a2 PI P2 

IOU 500 37 t·n 0.06C8 0.0269 -0.062 0.0017 0.1266 0.1324 0.1028 0.0109 
a1+a 2=0.5 223 r·12 -0.0174 0.0415 -0.117t 0.0053 0.1800 0.1220 0.0702 0.0200 
a1=0.4 126 ~13 0.0006 0.0762 -0 .053~ 0.0004 0.2117 0.1593 0.1686 0.0278 
a2=0.1 363 ~14 0.0023 0.027[, o .008~ 0.0036 0.1303 0.1143 0.0521 0.0186 
r1=-0.17 500 M5 0.088::\ 0.1402 0.002 0.0030 0.0747 0.0633 0.053fi 0.0180 

100 SO-O 65 t11 0.0604 .,0.0565 0.087 L -0.0027 0.1187 0.1251 0.1399 0.0]97 
a1+a 2=O.8 391 ~12 -0.0246 -0.0219 -0.127t 0.0061 0.1663 0.1553 0.0847 0.0198 
a1=0.52 202 M3 0.0263 0.0419 -0.110L -.0053 0.2488 0.2174 0.2490 ' 0.0464 
a2=0.28 483 ~14 -0.0152 -0.0212 0.004f -0.0022 0.1293 0.1484 0.0543 0.0182 

500 M5 0.0334 0.0519 0.004f 0.0031 0.0706 0.0729 0.0544 0.0182 r1=-0.068 

100 500 59 ~n 0.0665 -0.0905 -0.42H -0.0054 0.1160 0.1906 0.1319 0.0191 
a1+a2=1 411 ~12 -0.0053 -0.0276 -0.137: 0.0053 0.1525 0.1852 0.0863 0.0201 
a1=0.6 238 m 0.0665 0.0015 -0.129~ 0.0065 0.2236 0.2467 0.2774 0.0649 
a2=0.4 497 ~14 -0.0153 -0.0284 o .002( 0.0026 0.1342 0.1709 0.0541 0.0169 
r =0 500 ~'15 -0.0041 -0.0071 o .002( 0.0026 0.0701 0.0793 0.0539 0.0169 1 

100 500 58 m 0.0019 -0.1123 -0 .124~ -0.0055 0.1014 0.2055 0.1502 0.0225 
a1 +a2=1.5 310 ~12 0.0039 -0.0523 -0.162< -0.0032 0.1018 0.1819 0.0859 0.0197 
a1=0.8 243 ~13 0.0291 -0.1113 -0.123, 0.0005 0.1465 0.2257 0.2784 0.0592 
a2=0.7 464 M4 -0.0107 -0.0455 o .002~ 0.0029 0.1180 0.1763 0.0605 0.0189 
r1=+0.17 500 t15 -0.0944 -0.1526 0.003< 0.0033 0.0748 0.0896 0.0596 0.0187 

Note: N, m and m' have been defined in Table 6.1. 

co 
\.0 
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Figure 6.1 Bias and variability of the approximate 
maximum likelihood estimators as functions 
of the first autocorrelation coefficient. 
Model is that of Table 6.3. 
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results, only methods M4 and M5 were used for fitting the semi-Markov 

model to the daily rainfall occurrences. These results are given in 

the next chapter. 



CHAPTER 7 
APPLICATION OF THE SEMI-MARKOV MODEL TO DAILY RAINFALL OCCURRENCES 

The Sixth no sooner had begun 
About the beast to grope, 

Than, seizing on the swinging tail 
That fell within his scope, 

"I see," quoth he, lithe Elephant 
Is very 1 ike a rope! II 

The analysis of the six daily rainfall records in Chapter 4 has 

revealed that the Snoqualmie Falls and Roosevelt stations may be of 

special interest. This is due to the tremendous variability they 

exhibit withi n a year, as well as to the non-Poi ssoni an cl ustered 

rainfall occurrence structures within each of the seasons. In 

addition, Snoqualmie Falls lies in a significantly different 

climatologic regime than Roosevelt, and therefore these two stations 

have different underlying rainfall generating mechanisms. For 

example, the mean interarrival time for Snoqualmie Falls ranges from 

1.34 days for December to 4.26 days for July, while for Roosevelt the 

corresponding figures are 4.67 for July to 22.52 for May. For these 

reasons, the Snoqualmie Falls and Roosevelt daily rainfall sequences 

were selected to demonstrate the fitting of the semi-Markov model. 

7.1 Selection of Seasons and Seasonal Statistical Analysis 

The objective of the season discrimination methodology is to 

identify periods (seasons) within the year in which the statistical 

structure of the process remains constant, i.e., does not vary over 

92 
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time. The statistical structure of the daily rainfall process is 

completely characterized by the probability laws of two properties: 

the number of events (rainy days) within a season, and the daily 

rainfall amounts. For the number of events within a season, the 

relevant properties to be examined ~e the probability distribution 

function of the interarrival times and the second order properties of 

counts, specifically the spectrum of counts, variance time curve and 

index of dispersion. For the non-zero daily rainfall amounts, the 

property of interest is the probability distribution function. All 

these properties must be examined in parallel for a successful 

selection of seasons. It is also understood that physical 

considerations (including an understanding of the climatic conditions 

of the region) and subjective judgment play an important role in this 

process. 

For the Snoqualmie Falls and Roosevelt stations, the following 

homogeneous seasons were identified after careful examination: 

Snogualmie Falls Roosevelt 

Season 1: Jan, Feb, Mar Jan, Feb, Mar, Apr 

Season 2: Apr, May, Jun May, Jun 

Season 3 : J ul , Aug Jul 

Season 4: Sept, Oct Aug 

Season 5 : Nov, Dec Sept, Oct 

Season 6: Nov, Dec 

A statistical analysis, similar to that of Chapter 4, was 

performed on a seasonal basis and the results are given in Tables 
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7.1 - 7.5. For the Roosevelt station, 30 years of data (1948-1977) 

were analyzed, whereas for Snoqualmie Falls the analysis was performed 

only on the last 15 years of the record (1963-1977). The reason for 

the different record lengths is that Snoqualmie Falls has a fairly 

high rate of occurrence, i.e., large number of events in each season, 

which permits a reliable analysis for a shorter recording length, at a 

considerable savings in computer resources. 

Figures 7.1 and 7.2 show the properties of intervals 

(log-survivor function) and counts (spectrum of counts, variance time 

curve and index of dispersion) for the two stations. Comparison of 

the seasonal empirical curves with the corresponding curves for the 

month's constituting each season (Figures A.7-A.12 of Appendix A) 

revealed no significant differences confirming the selection of 

seasons. 

7.2 ' Fitting the Semi-Markov Model to the Daily Rainfall Occurrences 

From the Monte Carlo analysis in Chapter 6, it was concluded that 

the two most consistent and efficient estimation methods are the 

approximate maximum likelihood (ML) methods M4 and M5 (see Chapter 6 

for details). These methods will be referred to in this chapter as 

MLl and ML2, respectively. It is also recalled that although the 

Bayesian estimation method (ML2) always gives parameter estimates, 

method ML1, based on the first autocorrelation coefficient, gives 

parameter estimates if and only if the constraint of (6.15) is 

satisfied. 

The results of fitting the semi-Markov model to the seasons for 

Snoqualmie Falls and Roosevelt are shown in Table 7.6. The 

interpretation of the estimated parameters for Snoqualmie Falls 
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suggest that the interarrival times of the process are sampled from 

two geometric distributions, one with mean at the order of 1 day 

(P1 ~ 0.9) and the other at the order of 2.5 to 7 days (P1 ~ 0.4 to 

0.15). For this station, it is also observed that the transition 

probability a1 is always greater than 0.5 which suggests that small 

interarrival times are most likely to- be followed by small 

interarrival times, an indication of clustering. For the Roosevelt 

station, method ML1 did not give feasible parameter estimates for one 

season (month of July), and both methods gave a value of P1 at the 

bound (P1 = 0.99) for three out of six seasons. Problems with fitting 

the model to this st~tion were expected given the small number of 

events available for estimation. 

The assessment of the goodness of fit of the semi-Markov model 

was performed by comparing empirical functions of the data which were 

not used in the estimation with their theoretical counterparts. 

Figures 7.3 and 7.4 show these comparisons for some selected seasons 

and stations. It is observed that the theoretical spectra of counts 

are surprisingly close to the empirical ones, especially for 

Snoqualmie Falls. This is a sign of a good fit, given that this 

function was not explicitly used in the estimation. The agreements 

for the variance time curves generally is not as good. This is not 

surpri si ng si nce the est imated vari ance time curve is much more 

variable than the estimated spectrum of counts. It should be noted 

that the model does a good job in preserving the probabil ity 

distribution of the interarrival times as expected, since this 

information is used explicitly in the estimation. 
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Table 7.1 Autocorrelation Coefficients of Interarrival Times--
Seasonal Analysis (Si corresponds to the ith season) 

Sl S2 S3 S4 S5 S6 

(a) Snoqualmie Falls 

r1 0.047 -0.054 -0.010 0.025 0.036 
r2 -0.026 0.074 0.057 -0.026 0.034 
r3 0.032 0.016 -0.022 0.032 -0.040 
r4 -0.022 -0.009 0.051 -0.053 -0.040 
r5 0.003 0.042 -0.050 -0.042 -0.031 

(b) Roosevelt 

r1 0.009 -0.058 -0.112 -0.013 -0.051 -0.020 
r2 0.067 -0.249* 0.073 -0.056 0.072 -0.050 
r3 0.088 0.048 -0.008 0.056 0.081 -0.074 
r4 -0.036 -0.044 0.006 0.073 0.008 0.019 
r5 -0.006 -0.050 -0.098 -0.073 0.032 -0.035 

- - ---

Table 7.2 Statistics of the Interarrival Times--Seasonal Analysis 

Number 
Season x Sx Cv Cs of Events 

( a) Snoqualmie Falls (15 years) 

1 1.496 1.377 0.920 4.217 896 
2 2.101 2.603 1.239 4.085 672 
3 3.715 5.235 1.409 2.924 246 
4 2.271 2.776 1.222 3.781 391 
5 1.393 1.125 0.808 4.212 657 

(b) Roosevelt (30 years) 

1 7.821 13.601 1. 739 3.437 502 
2 18.973 19.088 1.006 0.837 75 
3 4.671 4.759 1.019 1.739 152 
4 6.052 10.880 1.798 4.345 191 
5 8.153 11.631 1.427 2.278 222 
6 8.165 14.565 1. 784 5.579 231 
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Table 7.3 Autocorrelation Coefficients of Non-Zero Daily Rainfall 
Amounts--Seasonal Analysis (S. corresponds to the 
ith season) 1 

Sl S2 S3 S4 S5 S6 

(a) Snoqualmie Falls 

r1 0.238** 0.058 0.094 0.054 0.130** 
r2 0.008 0.016 0.011 0.016 0.023 
r3 -0.014 -0.07 -0.046 0.057 0.014 
r4 0.011 -0.026 -0.023 0.025 -0.003 
r5 0.051 -0.010 0.012 0.014 -0.009 

(b) Roosevelt 

r1 0.069 0.117 -0.072 0.049 0.109 0.082 
r2 0.008 -0.115 -0.092 -0.030 -0.035 0.080 
r3 0.029 0.185 0.042 -0.030 0.012 0.212** 
r4 -0.043 -0.114 0.023 0.015 0.057 0.011 
r -0.034 -0.087 -0.177* 0.074 -0.025 0.059 5-

Table 7.4 Statistics of the Non-Zero Daily Rainfall Amounts--Seasonal 
Ana lysi s 

Season x Sx Cv Cs 

(a) Snoqualmie Falls (15 years) 

1 0.373 0.456 1.222 3.019 
2 0.240 0.281 1.170 2.559 
3 0.216 0.274 1.270 2.116 
4 0.311 0.342 1.099 1.963 
5 0.407 0.474 1.164 2.165 

(b) Roosevelt (30 years) 

1 0.268 0.312 1.166 2.263 
2 0.217 0.269 1.241 2.099 
3 0.262 0.352 1.343 2.757 
4 0.278 0.367 1.322 2.801 
5 0.345 0.518 1.501 3.240 
6 0.350 0.437 1.248 2.224 
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Table 7.5 Cross Correlation Coefficients of the Non-Zero Daily 
Rainfall Amounts with Preceding and Following Interarrival 
Times (Xi = interarrival time following the event P.) 

1 

Season (X. 2' P.) 1- 1 (X. l' P.) 1- 1 (Xi' Pi) (X i+1 , Pi) 

(a) Snoqualmie Fall s 

1 -0.030 -0.093** -0.147** -0.089** 
2 -0.069 -0.087* 0.068 0.041 
3 0.086 0.079 -0.206** -0.197** 
4 0.036 -0.123* -0.162** -0.062 
5 0.011 -0.111 * -0.091 -0.065 

( b) Roosevelt 

1 0.003 -0.043 -0.093* -0.045 
2 0.013 0.050 -0.154 0.014 
3 -0.835 0.019 -0.014 -0.051 
4 -0.035 -0.019 -0.007 0.008 
5 -0.103 -0.13 -0.001 -0.018 
6 0.018 -0.036 -0.096 -0.105 

- ---- -----
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Figure 7.1 Statistical properties of intervals and counts for 
Snoqualmie Falls--seasonal analysis 
I: Normalized spectrum of counts vs. frequency factor 
II: Log-survivor function vs. interarrival time (days) 
III: Variance of counts vs. interval length (days) 
IV: Index of dispersion vs. interval length (days) 



SEASON 1 

SEASON 2 

SEASON 3 

SEASON 4 

SEASON 5 

SEASON 6 

I 

"'b •• 0 . 

:::\~ ; 

,.,-\~"'- .; ,/: , . 
o 100 200 110 tOO SOO 60Q '00 ea:I 

"'b:] '., 
,., 

::~.J , . 
o I co 200 XlI 400 SOD 600 700 IDl 

.. ,.------~ 

:::bJ ,., 
,., 
1':--- --

o I co 20D :DI 600 500 I5QO 700 em 

100 

'E] -1.0 ".' 
-1.0 . :. 

-3.0 -

-4.0 .' • ... \ 
-S.O • 

~.O • 

-7.00 za 40 60 III 100 

'[SJ -\.0 

-2.0 

-1.0. • . . 
~.O • 
-5.0 , ... , 
.7.00 10 20 3D '0 "SO aD 10 aD 

-1.0 

-2.0 

-1.0 .... , 

III 

""Ed l5O": . 

3DO , ...• - "."",~ . .i 
250 - '-'i'"' i 
ZOO : 
ISO i 
100 i 
SO . 
, I 

a eo 160 240 32D olOO 

iLl ; I , 
00 eo 160 Z4Q 32D Gl 

3DO,--------, 
Z50 

'" 
'SO 

'III 

•• L...:;;;;==.,::::::::,="=-"_,_",,--.J,,,, 

:~::~ . .11 !~: .. LI II .,.' ",,-", 
,'., "-. ". 

~:: "', I "I .... J 

.7",LI -IO--ZO,---,.-.. -SO"'-.. --.J,. " .. "" ,.. "" "" 

~l~:: 
o 100 zoo XIO 4(1) 5CIJ 100 700 IDl _'?DI,L -"-"-'''-'''-'111-'''-'''---!'611 

::1 ) 
". / I 

'~I~I 
o III HiD 240 lZ'O 4tIl 

IV 

;::l~i 
:::r/ ~ 
~:~ . i 
,., I 
~ I 
, I 
o III 160 240 320 '00 

•. 0,,---------, 

'., .. , 
,., 
z.o 

:1/1: 2.5 ! 
2.0 I 

:·l ....... ,···i 
o 110 160 2<40 320 .00 

"'E] :::r~ 
2.0 I 
\.5 J 

I.' ... ,...... j 
.5 i , . 

a IIlI&ilH032DQ) 

Figure 7.2 Statistical properties of intervals and counts for 
Roosevelt--seasonal analysis 
I: Normalized spectrum of counts vs. frequency factor 
II: Log-survivor function vs. interarrival time (days) 
III: Variance of counts vs. interval length (days) 
IV: Index of dispersion vs. interval length (days) 
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Table 7.6. Results of Fitting the Semi-Markov Model to the Daily 
Rainfall Occurrences 

Season Method a1 a2 PI P2 e1 

( a) Snoqualmie Falls 

1 MLl 0.776 0.380 0.958 0.364 0.735 
ML2 0.740 0.279 

2 MLl 0.599 0.227 0.905 0.248 0.659 
ML2 0.651 0.326 

3 MLl 0.534 0.434 0.929 0.144 0.549 
ML2 0.539 0.430 

4 MLl 0.631 0.454 0.916 0.248 0.597 
ML2 0.601 0.407 

5 MLl 0.759 0.369 0.971 0.425 0.723 
ML2 0.407 0.273 

(b) Roosevelt 

1 MLl 0.463 0.568 0.917 0.075 0.446 
ML2 0.411 0.523 

2 MLl 0.049 0.661 0.990 0.039 0.263 
ML2 0.123 0.680 

3 MLl 0.624 0.165 0.688 
ML2 0.271 0.668 

4 MLl 0.782 0.183 0.376 0.053 0.789 
ML2 0.790 0.210 

5 MLl 0.245 0.556 0.990 0.080 0.370 
ML2 0.386 0.635 

6 MLl 0.376 0.551 0.990 0.075 0.419 
ML2 0.374 0.548 

MLI = Approximate maximum likelihood estimates (MLE) coupled with 
the first autocorrelation coefficient 

ML2 = Approximate MLE with a Bayesian approach 

- -------
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Figure 7.3 Comparison of empirical and theoretical spectra 
of counts for Snoqualmie Falls--seasonal analysis. 
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Figure 7.4 Comparison of empirical and theoretical spectra of 
counts for Roosevelt--seasonal analysis. 
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7.3 Modeling the Non-Zero Daily Rainfall Amounts 

Based on previous research (see Chapter 2) and some exploratory 

analyses, the following three marginal distributions were selected as 

candidates to fit the daily rai nfall amounts: Wei bull , Gamna, and 

mixed exponential. The properties and fitting procedures for these 

distributions are discussed below. 

Weibull distribution. The probability density function (pdf) of 

the Weibull distribution is: 

a x_ y a-1 x_ya 
f(x) = - (-) exp[-(-)], (7.1) 

a-y a-y a-y 

where a, a, and Yare parameters to be estimated. The mean, standard 

deviation and skewness coefficient are given in terms of the 

parameters a, a, and Yas: 

II = Y + (a-y) r(1+1/a), (7 ~2) 

a = (a-y) [r(1+2/a) - r2(1+1/a)]1/2, (7.3) 

r(1+3/a) - 3r(1+2/a) r(l+l/a) + 2r3 (1+1/a) 

Cs = [r(1+2/a) _ r2(1+1/a)]1/2 
(7.4) 

(see Kite, 1978), where r(·) is the usual gamma function. A method of 

moments parameter estimation procedure was followed. This consists of 

solving (7.4) iteratively for a, and then solving (7.2) and (7.3) for 

the other two parameters, a and y. 
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Gamna distribution. The pdf of the three parameter gamma 

distribution is: 

1 x- y a-I x- y 
f(x) = -- (-) exp[-(-)], (7.5) . 

ar( S) a a 

where a, a, and Yare parameters to be defined. The mean, standard 

deviation and skewness coefficient are given as 

J.l = as + Y, 

0" = are , (7.6 ) 

and 

Cs = 2/1e , 

from which method of moments estimates can be easily obtained. 

Mixed exponential distribution. The pdf of a mixed exponential 

distribution is 

(7.7) 

where Al and .A2 are the parameters of the two exponential 

distributions and a is their mixing ratio. The mean and variance of 

this distribution are 

a I-a 
J.l=-+--

Al A2 
(7.8 ) 
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Everitt and Hand (1981) suggest several methods of estimating the 

parameters a, A1' and A2' Here, the method of maximum likelihood was 

used. 

The log-likelihood function of a mixed exponential distribution 

is 

, n 
L (x) = In[ IT f(xi)J 

i=l 

n 
---------------==---J... I:~1----,-,1 n-u{.uaA'!l t&PGA1 xi] + (I-a)12 exp[ -A2X iJ } . 

1= 

(7.9 ) 

Estimates of the parameters were obtained using the Nelder and Mead 

(1965) simplex algorithm for the maximization of L' (x). Notice that 

the parameter a is a probability, and therefore should lie in [O,lJ. 

The transformation (6.5) was used to constrain this parameter. 

All three distributions were fitted to the non-zero daily 

rainfall amounts. A visual comparison indicated that the mixed 

exponential gave the best fit, and this distribution was subsequently 

used for all seasons. Figures 7.5 and 7.6 show the empirical and 

fitted mixed exponential cumulative probability plots for the fitted 

distributions. The parameters of the fitted distributions are given 

in Table 7.7. 
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Fi gure 7.6 Empirical and theoretical cumulative probability 
functions of the non-zero daily rainfall amounts 
for Roosevelt--seasonal analysis. 



109 

Table 7.7 Parameters of the Mixed Exponential Distribution Fitted to 
the Non-Zero Daily Rainfall Amounts 

Season a: Al A2 

(a) Snoqualmie Falls 

1 0.182 17.627 2.257 

2 0.201 17 .033 3.504 

3 0.412 17.500 3.065 
4 0.120 26.743 2.855 
5 0.152 19.654 2.123 

(b) Roosevelt 

1 0.251 16.347 2.963 
2 0.558 9.631 2.797 

3 0.514 9.527 2.317 
4 0.387 11.626 2.514 

5 0.561 8.406 1.577 
6 0.276 17.303 2.163 
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7.4 Coupling the Models for Occurrences and Amounts and Overall Model 
Performance 

The cross correlation analysis of interarrival times and non-zero 

rainfall amounts (Table 7.5) indicated that no significant 

correlations were present for the Roosevelt station but that small, 

although significant, correlations were present for Snoqualmie Falls. 

The significance of the Snoqualmie Falls correlations may be due in 

part to the greater number of events at that station. If the small 

correlations are taken to justify an assumption of independence, this 

implies that given the occurrence of an event, the corresponding daily 

rainfall amount does not depend on whether or not the event was the 

first or last rainy day in a sequence of rainy days. If independence 

is assumed, the coupling of the rainfall occurrence model with the 

rainfall amounts model becomes easy, since the two processes are 

simply superimposed. For example, a generation scheme for daily 

rainfall sequences, would consist of generating the position of daily 

rainfall occurrences from a semi-Markov model, and then assigning to 

each rainy day a rainfall amount from the desired marginal 

distribution. 

For the purposes of streamflow prediction, or other applications 

where a mass_ balance is desired, one is interested in the distribution 

of the total rainfall over the next t days. For example, for 

rainfall/runoff studies, an important property of a daily rainfall 

generation scheme is its abil ity to preserve the total rainfall 

amounts over periods of given length, i.e., one week or one month. 

The statistical properties of the accumulated rainfall process are 

given below. 
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Let R(t) denote the accumulated rainfall process over a period of 

length t. Then, 

R(t) 
Nt = 1: y., 

. 1 1 1= 
(7.10) 

where {Vi} is the process of the non-zero daily rainfall amounts and 

{Nt} is the daily rainfall occurrence process. Making the assumption 

that the non-zero daily rainfall amounts {Vi}, are independent and 

identically distributed, and that the daily rainfall occurrence 

process {Nt} is independent of the rainfall amounts process {Vi} , the 

mean and variance of R(t) are given as 

E[R(t)] = llymt (7.11 ) 

and 

(7.12 ) 

where lly = E[Y i], 0 y2 = Var(Y i ), V(t) is the variance time curve of 

the counting process { Nt}, and m is its rate of occurrence. For a 

semi-Markov model, m and V(t) are given in terms of the parameters aI' 

a2 , PI' and P2' from equations (5.29) and (5.34) of Chapter 5. For a 

mixed exponential distribution, lly and 0y2 are given in terms of the 

parameters a, AI' A2 by (7.8). 

Table 7.8 shows the empirical seasonal means and standard 

deviations together with their theoretical counterparts for the fitted' 
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Table 7.8 Comparison of the Empirical and Theoretical Seasonal Means 
and Standard Deviations 

Season 

1 
2 
3 
4 
5 

1 
2 
3 
4 
5 
6 

Mean Standard Deviation 

Empirical Theoretical Empirical Theoretical 

(a) Snoqualmie Falls 

22.145 22.426 5.821 5.288 
10.621 10.255 2.643 2.513 
3.352 3.468 1.587 1.484 
8.689 8.238 2.749 2.699 

17.789 17.506 4.445 4.729 

(b) Roosevelt 

4.481 4.086 2.326 1.688 
0.542 . 0.676 0.649 0.629 
1.341 1.767 0.841 1.156 
1.768 1.369 1.654 0.964 
2.570 2.511 2.188 1.644 
2.698 2~573 2.620 1.519 
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model. The" preservation of these seasonal statistics are very 

satisfactory for .Snoqy-a:lmie Falls, whereas for the station of 

Roosevelt the results are not as good. This is not surprising given 

the small number of events available for the estimation of the model 

parameters. 

. ,.,~. 

,;,r,'" 



CHAPTER 8 
SUMMARY AND CONCLUSIONS 

And so these men of Indostan 
Disputed loud and long, 

Each in his own opinion 
Exceeding still and strong. 

Though each was partly in the right 
And all were in the wrong! 

John Godfrey Saxe (1816-1887) 
Reprinted in Engineering Concepts 
Curriculum Project (1971) 

Several authors have recently had apparen-t success fnapp1ying---

continuous-time point process models to daily rainfall observation 

sequences. In this work we have shown that major problems arise when 

the observation sequence represents cumulative rainfall amounts over a 

period (e.g., one day) which is on the order of the process 

interarriva1 time. In particular, the use of continuous-time point 

process models for daily rainfall occurrences may result in incorrect 

inferences about the underlying rainfall generating mechanisms. Since 

daily rai nfall occurrences form a di screte poi nt process, it seems 

only natural that daily rainfall sequences should be compared with the 

discrete independent Bernoulli, and not with the continuous Poisson 

process. Daily rainfall structures that are underdispersed (more 

regular occurrences) relative to the independent Poisson process may 

in fact be overdispersed (more random occurrences) relative to the 

Bernoulli process. 

114 
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The statistical analysis of six daily rainfall records from 

diverse climatologic regimes throughout the U.S. (Snoqualmie Falls, 

Washington; Roosevelt, Arizona; Austin, Texas; Miami, Florida; 

Philadelphia, Pennsylvania; and Denver, Colorado) has confirmed the 

inappropriateness of the continuous point process modeling approach 

for the daily rainfall occurrence process. The daily rainfall 

occurrences for some months and some stati ons are underdi spersed 

relative to Poisson, a condition that is inconsistent with the 

cont i nuous poi nt process models used by other authors. However, 

comparison of the statistics of the rainfall occurrence processes at 

these stations with· the Bernoulli indicated that all were clustered, 

that is, overdispersed, which is consistent with the underlying 

physical processes. A further disadvantage of continuous point 

process models is' that they cannot be used for the generation of 

synthetic rainfall sequences. It has been shown that, using these 

models, generation of synthetic rainfall sequences leads to serious 

upward biases in the event interarrival times and in dependence 

structures which may be much different than those of the apparent 

generating process. 

To meet these shortcomings of continuous pOint process models, a 

discrete point process model has been developed and its structural 

properties derived. The model belongs to the class of semi-Markov 

(or Markov renewal) processes and has a flexible structure. In the 

semi-Markov model the sequence of times between events is formed 

through sampling from two geometric distributions, according to 

transition probabilities specified by a Markov chain. In that sense, 

higher probabilities of transition from the geometric distribution 
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with the smaller mean to the same geometric distribution, rather than 

to the one with the larger mean, incorporates a clustering structure 

in the process. 

Several methods for fitting the proposed model have been studied. 

Due to the heavy-tailed distributions of the interarrival times, 

method of mooent estimates do not perform well. An approximate 

likelihood method which estimates the equilibrium probabilities of the 

Markov chain of intervals, and subsequently the transition 

probabilities, has been proposed. This approximate maximum likelihood 

approach was found to perform adequately, especially for daily 

rainfall structures with small autocorrelations in the sequence of 

interarrival times. 

Thesemi-Marl<:ov· model· was fitted-to the--daily ratnfall 

occurrences of the Snoqualmie Falls and Roosevelt stations, both on a 

monthly and seasonal basis. Seasons were selected after a careful 

examination of all the statistical properties of intervals and counts. 

The fit of the model was assessed by the preservation of selected 

statistical properties of the series which were not used directly in 

the estimation. It was shown that the fitted model gave a theoretical 

spectrum of counts surprisingly close to the empirical one. The 

semi-Markov model of daily rainfall occurrences coupled with a mixed 

exponential distribution for the non-zero daily rainfall amounts 

preserved the seasonal means and standard deviations for the 

Snoqualmie Falls station, but not for the Roosevelt station. The 

preservation of cumulative rainfall amounts over longer periods (e.g., 

weeks or months) is an important property of a daily rainfall 
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generation model, especially when the model is used for 

rainfall/runoff studies. 

The proposed use of discrete-time point process models (including 

the semi-Markov approach) for dai ly raj nfall occurrences opens a 

number of areas for future research. Among these are the following: 

(1) The poss i b 1 e use of alternate d; screte poi nt process model 

stoructures for daily rainfall. For example, it seems feasible to 

derive discrete point process models with structures similar to the 

two-level hierarchical structures of the continuous Poisson cluster 

models, i.e., a discrete analogue of the Neyman-Scott model. 

(2) Improved fitting techniques for discrete point process models. 

Although continuous point 'process models have been extenSively studied 

-stat; stTc-a-lly, not--much worK -has been---done -on-ui screte -pui nt 

processes. Specifically, for daily rainfall, alternate fitting 

methods that expl ;citly preserve the monthly or seasonal rainfall 

statistics might be investigated. This would probably require an 

iterative estimation scheme to accommodate the trade-off between exact 

preservation of short and long term statistics. 

(3) Application of the semi-Markov model to shorter time increment 

rainfall sequences, such as hourly. In particular, the compatibility 

of the semi-Markov model with continuous point process models applied 

to the unobserved continuous generalized stochastic process, ~(t) (see 

figure 1.1), could be investigated. One interesting question, related 

to ongoing work on process scale effects, is to determine whether the 

statistics for daily rainfall derived using a continuous Neyman-Scott 

model for ~(t) are in agreement with the statistics obtained by 
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modeling the daily rainfall sequences directly with a semi-Markov 

model. 

(4) Improved methods for coupl i ng rai nfall occurrence model s with 

rainfall amounts models. An area deserving further attention is the 

development of a model structure that accounts "for cross-correlation 

between the occurrence and amounts processes. 

(5) Extension of discrete point process models to multiple 

dimensions. This is essential generalization for rainfall-runoff 

studies and for the estimation of missing data in rainfall sequences. 



APPENDIX A 

STATISTICAL PROPERTIES OF THE SIX DAILY RAINFALL 
RECORDS ANALYZED 
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rainfall amounts for Philadelphia, Pennsylvania. 
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Table A.1 Autocorrelation Coefficients of Interarrival Times--Monthly Analysis 

. 
/i 

JAN FEB MAR APR MAY JUN UL AUG SEP OCT NOV DEC 

(a) Snoqualmie Fall s 

r1 0.026 0.016 0.063 0.074 0.005 -0.077 o 038 0.096 0.072 0.001 -0.002 0.017 
r2 0.004 -0.062 0.046 0.012 0.017 -0.015 0.012 0.111 0.089 0.020 0.043 -0.047 
r3 -0.009 -0.074 -0.014 0.084 -0.012 0.016 -0 .064 0.021 ;(J~ 022 0.005 -0.016 -0.053 
r4 0.077* -0.021 0.040 -0.056 0.029 0.014 -0 059 0.066 -0.020 0.011 -0.045 0.024 
r5 0.017 -0.010 0.017 -0.072 -0.017 -0.022 -0 127 -0.007 -0.026 0.001 0.019 -0.013 

(b) Rooseve~t ~i. • 

r1 -0.006 0.008 -0.056 0.039 -0.046 -0.Oi2 -0 .112 -0.013 -0.143 0.010 0.025 -0.006 
r2 0.159 0.099 0.079 0.139 -0.206 -0.055 0.073 -0.056 0.052 0.003 0.063 -0.070 ' 
r3 -0.015 -0.100 -0.043 0.135 -0.102 -0.200 -0 .008 0.056 0.099 -0.042 0.183 -0.010 N 

r4 -0.091 -0.007 -0.046 0.045 0.111 -0.172 0.006 0.073 ;...0.092 0.140 -0.022 -0.018 0) 

r5 -0.063 0.058 -0.031 0.028 -0.161 0.079 -0 .098 -0.073 0.011 0.043 -0.065 0.043 

(c) Austi 

r1 0.034 0.064 0.027 0.097 0.048 0.002 0.011 0.134 -0.055 0.042 0.159* 0.007 
r2 0.061 0.010 0.003 0.007 0.089 -0.006 0.187* -0.003 -0.027 -0.039 0.070 0.023 
r3 0.084 -0.084 0.116 0.007 0.074 -0.043 -0 .106 -0.097 -0.039 -0.062 0.076 -0.005 
r4 0.000 0.167* 0.002 0.158* 0.036 0.058 -0 .056 0.001 -0.064 0.011 -0.009 0.154* 
r5 0.183* 0.081 0.000 -0.035 0.016 0.039 -0 .047 -0.109 0.046 0.057 -0.006 0.090 



Tab 1 e A.1 (Continued) 

JAN FEB MAR APR MAY JUN 'JUL AUG SEP OCT NOV DEC 

(d) Miami 

r 1 0.100 -0.051 -0.007 0.031 -0.073 0.014 Q.009 0.035 -0.019 0.039 0.026 0.069 
r2 -0.024 0.021 0.094 0.058 0.063 0.019 --0.063 -0.061 -0.006 -0.063 ~0.024 0.121 
r3 -0.062 -0.098 0.029 0.064 -0.040 0.066 -0.015 -0.022 -0.011 -0.036 0.014 0.182 
r4 0.012 -0.074 0.027 0.022 -0.034 0.033 -0.013 0.019 -0.011 -0.057 -0.028 0.038 
r5 0.128 -0.051 0.030 -0.106 0.047 0.064 -0.006 0.049 0.001 -0.054 -0.054 0.006 

I 

( e) Phil ade l!phi a 
I - - ----- ------

r1 -0.036 -0.045 0.006 0.000 0.022 -0.039 -0.032 -0.050 -0.052 -0.006 -0.087 0.045 
r2 0.052 0.058 -0.060 0.024 0.068 0.018 0.093 0.002 0.080 0.015 -0.015 -0.011 

0.037 -0.052 -0.060 0.008 0.015 -0.043 0.053 -0.080 0.014 -0.015 -0.055 -0.046 N 
r3 '-I 

r4 -0.048 0.079 -0.036 0.041 -0.051 -0.028 -0.059 0.114 -0.165* -0.061 0.062 -0.042 
rr; 0.028 -0.060 0.024 -0.032 0.087 0.111 0.040 -0.037 -0.031 0.064 0.024 0.031 

:J 

( f) Denver 

r1 -0.097 -0.110 -0.018 -0.146* 0.027 0.004 d.052 -0.014 0.136 0.094 0.044 -0.069 
r2 0.118 0.044 -0.055 0.1213* -0.005 0.014 -d.056 -0.011 -0.013 0.079 0.050 -0.057 
r3 0.063 -0.006 0.003 -0.012 -0.053 -0.032 0.037 0.041 -0.006 0.179* -0.090 0.081 
r4 0.147 0.072 0.007 0.040 -0.057 0.000 -0.013 -0.014 0.014 0.057 -0.020 0.079 
r5 -0.037 0.012 0.029 0.079 -0.001 -0.095 0.033 -0.007 -0.007 0.179* -0.024 -0.019 

N = sample size 
* = significance at the 5% level 
** = significance at the 1% level 
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Table A.2 Statistics of Interarrival Times--Monthly Analysis 

Number 
Month - of events x Sx Cv Cs 

(a) Snoqualmie Falls 

Jan 1.393 1.171 0.841 3.825 667 
Feb 1.499 1.328 0.886 3.933 557 
Mar 1.542 1.548 1.004 5.542 607 
Apr. 1. 717 1.588 0.925 3.060 530 
May 2.214 2.501 1.129 3.190 429 
Jun 2.693 4.354 1.617 4.941 375 
Jul 4.259 6.080 1.428 2.912 205 
Aug 3.323 4.226 1.272 2.259 260 
Sep 2.708 3.764 1.390 4.266 332 
Oct 1. 752 1.668 0.952 3.084 499 
Nov 1.442 1.231 0.854 4.217 613 
Dec 1.343 0.978 0.728 4.167 694 

(b) Roosevelt 

Jan 6.241 9.059 1.452 2.500 145 
Feb 6.224 10.174 1.635 2.978 125 
Mar 7.604 13.184 1. 734 3.366 139 
Apr 12.693 21.596 1.701 2.399 88 
May 22.524 21.968 0.975 0.601 42 
Jun 14.455 13.661 0.945 0.480 33 
Jul 4.671 4.759 1.019 1.739 152 
Aug 6.052 10.880 1,798 4.345 191 
Sep 7.319 9.675 1.322 . 2.533 116 
Oct 9.066 13.439 1.482 1.961 106 
Nov 8.216 11.108 1.352 2.138 97 
Dec 7.761 16.275 2.097 6.345 134 

(c) Austin 

Jan 3.513 3.973 1.313 2.017 240 
Feb 3.881 5.315 1.369 4.277 227 
Mar 4.480 4.484 1.001 1.585 200 
Apr 3.808 4.048 . 1.063 2.329 224 
May 4.232 5.258 1.242 2.656 241 
Jun 5.197 6.972 1.342 2.038 178 
Jul 6.553 8.724 1.331 2.466 141 
Aug 5.278 6.531 1.237 2.251 162 
Sep 4.613 6.471 1.403 3.195 212 
Oct 4.654 5.988 1.287 3.254 188 
Nov 4.615 6.059 1.313 3.613 192 
Dec 4.359 5.924 1.359 3.069 209 
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Table A.2 (Continued) 

Number -Month x Sx Cv Cs of events 

(d) Miami 

Jan 4.640 4.891 1.054 2.243 197 
Feb 6.160 6.372 1.034 1.631 131 
Mar 5.802 6.199 1.068 1.866 162 
Apr 4.989 5.751 1.153 1.958 174 
May 2.261 2.615 1.157 3.333 375 
Jun 1.989 1.974 0.993 3.248 444 
Jul 2.157 1.919 0.889 2.476 439 
Aug 1.829 1.472 0.805 2.396 502 
Sep 1.840 1.625 0.884 2.642 486 
Oct 2.650 3.068 1.158 3.244 366 
Nov 4.741 5.135 1.083 1.994 197 
Dec 4.913 5.521 1.124 2.158 195 

(e) Philadelphia 

Jan 2.711 2.517 0.928 2.107 332 
Feb 2.978 2.555 0.858 1.865 278 
Mar 2.854 2.521 0.883 2.118 323 
Apr 2.888 2.782 0.963 2.275 322 
May 2.879 2.930 1.018 2.726 323 
Jun 2.993 2.680 0.895 2.076 297 
Jul 3.395 2.843 0.837 1.391 266 
Aug 3.502 3.845 1.098 2.638 273 
Sep 3.737 3.867 1.035 2.210 243 
Oct 4.221 4 • .486 1.063 2.130 213 
Nov 3.251 3.245 0.998 2.239 287 
Dec 2.807 2.503 0.892 1. 706 316 

(f) Denver 

Jan 5.458 6.015 1.102 1.777 168 
Feb 4.421 4.794 1.084 2.502 164 
Mar 3.668 4.513 1.230 2.950 244 
Apr 3.552 4.078 1.148 2.130 259 
May 2.965 3.071 1.036 2.006 283 
Jun 3.483 4.047 1.162 2.752 261 
Jul 3.114 3.132 1.006 2.002 280 
Aug 3.836 4.035 1.052 2.447 244 
Sep 4.872 6.304 1.294 2.977 187 
Oct 5.993 7.049 1.176 1.861 141 
Nov 5.813 6.121 1.053 1.633 155 
Dec 5.560 7.067 1.271 2.439 150 



Table A.3 Autocorrelation Coefficients of Non-Zero Daily Rainfall Amounts--Monthy Analysis 

I 

JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

(a) Snoqualmie Falls 

0.296** 0.216** 0.126** 0.090* 0.077 
I 

r1 0.013 -01.067 0.024 0.057 0.053 0.065 0.136** 
r2 0.054 0.030 -0.014 -0.066 0.044 0.016 -0!.074 0.109 -0.058 0.009 -0.017 0.007 
r3 0.039 -0.075 -0.017 0.096* -0.044 -0.038 -0.051 0.086 -0.092 0.010 0.005 0.026 
r4 0.028 -0.018 -0.022 -0.020 -0.067 0.083 -0.ll4 0.070 -0.030 -0.067 0.ll2 -0.010 
r5 -0.006 0.045 0.017 -0.046 -0.089 -0.066 0.017 0.017 0.013 -0.076 0.030 -0.026 

I 

(b) 
I 

Roosev!elt 

r1 0.ll3 0.002 0.062 0.020 0.032 0.410* -0.072 0.049 -0.087 0.213* 0.065 0.l36 
r2 -0.066 -0.075 0.022 -0.100 0.074 -0.146 -0.092 -0.030 -0.025 0.020 0.107 -0.010 

-0.008 0.141 -0.071 0.034 0.120 -0.186 0.042 -0.030 0.009 0.095 -0.018 0.033 w 
r3 0 

r4 -0.074 -0.044 0.056 0.085 0.036 -0.070 0.023 0.015 -0.053 0.043 0.015 -0.001 
r5 0.016 -0.025 0.158 0.2ll 0.403* 0.045 -0.177* 0.074 0.040 -0.109 -0.114 0.027 

(c) Austin 

r1 0.244** 0.086 0.018 0.038 0.017 0.153* 0.132 -0.040 0.017 0.106 0.ll2 0.123 
r2 0.123* -0.029 0.031 0.014 -0.035 0.100 -0.083 0.017 -0.108 -0.064 -0.007 0.002 
r3 0.098 -0.069 -0.016 0.123* 0.073 0.015 0.000 -0.103 -0.075 -0.039 -0.044 0.017 
r4 0.200**-0.022 -0.090 -0.015 0.028 0.085 0.191* 0.078 -0.007 0.072 -0.020 -0.115 
r5 -0.016 -0.035 -0.081 -0.085 0.039 0.062 -0.028 -0.004 0.092 -0.093 -0.067 -0.099 



Table A.3 (Continued) 

(d) Mi amii 

r1 0.118 0.092 0.022 -0.076 0.149** 0.158 -0.011 0.026 0.143 0.108 0.076 0.102 
r2 0.129 0.066 -0.038 0.023 -0.052 0.019 0.038 -0.036 0.041 -0.081 0.010 -0.048 
r3 0.007 -0.019 -0.088 -0.041 -0.015 -0.093 -0.021 -0.010 0.015 0.030 -0.010 -0.029 
r4 -0.63 -0.047 -0.069 -0.005 -0.050 -0.113 0.081 -0.006 0.102 -0.011 0.007 0.127 
rS -0.108 0.066 -0.061 -0.071 -0.009 0.005 -0'.021 0.028 0.044 0.014 -0.055 -0.057 

(e) Philadelphia 

r1 0.009 -0.12S* 0.02S 0.003 0.007 0.094 -0:.033 0.125* 0.011 -0.017 0.019 -0.056 
r2 0.023 -0.018 0.013 0.121* 0.012 -0.040 -0:.041 0.007 0.001 -0.067 -0.051 0.045 
r3 -O.OSO 0.094 -0.041 -0.060 0.120* -0.014 -0.013 -0.046 0.033 -0.OS7 0.072 -0.016 
r4 0.016 -0.037 0.015 -0.073 -0.004 -0.060 0.012 -0.042 -0.035 0.101 0.003 0.041 ....... i 
rS -0.003 0.072 -0.lS0** 0.013 0.013 0.060 Oi.041 -0.028 0.004 0.052 0.088 -0.119* w 

....... 

( f) Denver 

r1 0.005 -0.143 0.057 -0.043 0.083 0.119* -0.008 0.116 0.025 0.054 -0.055 0.345** 
r2 -0.047 -0.015 0.008 -0.042 -0.025 -0.022 0.037 -0.096 -0.080 -0.079 0.020 0.184** 
r3 -0.071 -0.054 0.028 -0.040 0.003 -0.061 d.126* 0.048 0.064 0.016 -0.003 0.029 
r4 -0.013 -0.030 -0.035 0.065 0.001 -0.070 -0.041 0.118 0.016 0.049 -0.027 -0.057 
rs -0.043 0.077 -0.066 -0.043 0.008 -0.061 0.050 -0.091 -0.119 0.057 0.110 0.OS2 

N = sample size 
* = significance at the 5% level 
** = significance at the 1% level 
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Table A.4 Statistics of Non-Zero Daily Rainfall Amounts-
Monthly Analysis 

-Month x Sx Cv cs 

(a) Snoqualmie Falls 

Jan 0.415 0.462 1.112 2.060 
Feb 0.360 0.449 1.247 3.196 
Mar 0.306 0.371 1.212 3.914 
Apr 0.253 0.264 1.041 1.695 
May 0.228 0.267 1.174 2.640 
Jun 0.231 0.300 1.301 2.641 
Ju1 0.217 0.281 1.296 2.099 
Aug 0.213 0.273 1.282 2.417 
Sep 0.227 0.335 1.208 1.922 
Oct 0.337 0.362 1.073 1.789 
Nov 0.408 0.459 1.125 1.940 
Dec 0.408 0.480 1.177 2.575 

(b) Roosevelt 

Jan 0.308 0.347 1.125 1.622 
Feb 0.239 0.270 1.130 1.941 
Mar 0.305 0.353 1.156 2.632 
Apr 0.185 0!215 1.162 1.930 
May 0.169 0.205 1.217 2.157 
Jun 0.278 0.327 1.174 1.658 
Ju1 0.262 0.352 1.343 2.757 
Aug 0.278 0.367 1.322 2.801 
Sep 0.319 0.451 1.412 2.565 
Oct 0.366 0.577 1.578 3.521 
Nov 0.289 0.379 1.314 2.627 
Dec 0.395 0.471 1.192 1.973 

(c) Austin 

Jan 0.204 0.349 1. 715 4.647 
Feb 0.333 0.535 1~606 2.604 
Mar 0.230 0.326 1.415 2.658 
Apr 0.457 0.623 1.365 2.084 
May 0.485 0.683 1.409 2.539 
Jun 0.530 0.738 1.392 2.261 
Ju1 0.352 0.607 1.727 3.742 
Aug 0.414 0.621 1.502 3.003 
Sep 0.502 0.725 1.445 2.612 
Oct 0.558 0.821 1.471 2.721 
Nov 0.301 0.537 1. 781 4.241 
Dec 0.287 0.486 1.694 3.449 
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Table A.4 (Continued) 

-Month x Sx Cv Cs 

( d) Miami 

Jan 0.316 0.411 1.302 1.994 
Feb 0.373 0.588 1.578 3.527 
Mar 0.359 0.686 1.910 6.316 
Apr 0.585 1.161 1.986 6.151 
May 0.584 0.884 1.512 3.195 
Jun 0.562 0.778 1.385 2.745 
Jul 0.367 0.478 1.300 2.592 
Aug 0.424 0.637 1.502 3.501 
Sep 0.469 0.667 1.443 3.041 
Oct 0.482 0.828 1.719 3.917 
Nov 0.372 0.831 2.235 4.400 
Dec 0.280 0.411 1.471 2.263 

(e) Philadelphia 

Jan 0.265 0.334 1.260 2.416 
Feb 0.300 0.338 1.128 1.758 
Mar 0.349 0.393 1.125 1.861 
Apr 0.317 0.388 1.227 2.169 
May 0.307 0.387 1.259 ·2.095 
Jun 0.387 0.600 1.551 2.985 
Jul 0.423 0.587 1.388 2.293 
Aug 0.449 0.618 1.337 2.707 
Sep 0.421 0.650 1.545 3.410 
Oct 0.381 0.512 . 1.345 2.488 
Nov 0.355 0.525 1.479 3.309 
Dec 0.335 0.394 1.176 1.604 

(f) Denver 

Jan 0.093 0.137 1.480 3.117 
Feb 0.120 0.151 1.257 2.471 
Mar 0.145 0.182 1.253 2.904 
Apr 0.205 0.369 1.805 4.948 
Mar 0.249 0.435 1.748 3.526 
Jun 0.194 0.365 1.878 4.499 
Jul 0.198 0.304 1.534 2.679 
Aug 0.161 0.288 1.788 3.502 
Sep 0.202 0.283 1.402 2.358 
Oct 0.198 0.258 1.301 2.518 
Nov 0.146 0.157 1.075 1.455 
Dec 0.102 0.141 1.386 4.267 
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Table A.5 Cross Correlation Coefficients of the Non-Zero Daily 
Rainfall Amounts with Preceding and Following Interarrival 
Times (Xi = interarrival time following the event Pi) 

(X. 2'P,) 1- 1 
(X· 1,P.) 

1- 1 (Xi' Pi) (Xi+l'P i ) 

(a) Snoqualmie Falls 

Jan -0.036 -0.080* -0.089* -0.041 
Fe!? 0.033 -0.120** -0.129** -0.047 
Mar -0.063 -0.022 -0.011 -0.065 
Apr .. 0.068 -0.035 0.006 0.032 
May -0.019 -0.024 -0.117 -0.124* 
Jun -0.055 -0.037 -0.007 -0.051 
Jul -0.029 -0.037 -0.198** -0.118 
Aug -0.001 -0.099 -0.132* -0.168** 
Sep 0.005 -0.086 -0.117* -0.095 
Oct 0.035 -0.064 -0.092* -0.149** 
Nov 0.033 0.030 -0.111** -0.097** 
Dec -0.028 -0.134** -0.132** 0.013 

(b) Roosevelt 

Jan -0.046 -0.084 -0.112 -0.103 
Feb -0.056 -0.010 0.059 0.102 
Mar 0.247** 0.026 -0.058 -0.188* 
Apr 0.049 0.194 -0.166 0.044 
May 0.164 -0.067 -0.201 -0.065 
Jun -0.102 -0.036 -0.011 0.248 
J ul -0.085 0.019 -0.014 -0.052 
Aug -0.035 -0.019 -0.007 -:-0.021 
Sep -0.025 -0.075 0.064 -0.006 
Oct -0.029 0.004 -0.157 -0.167 
Nov .-0.066 0.013 0.039 0.048 
Dec -0.091 -0.007 -0.121 -0.130 

(c) Austin 

Jan -0.021 0.070 -0.023 0.013 
Feb 0.044 0.037 0.128 -0.016 
Mar 0.165* -0.001 -0.104 0.007 
Apr -0.016 -0.084 -0.070 -0.008 
May 0.025 -0.039 0.054 0.017 
Jun -0.048 0.125 0.057 0.168* 
Jul -0.055 -0.031 -0.063 0.060 
Aug 0.016 0.044 -0.085 -0.109 
Sep 0.033 -0.006 0.041 0.105 
Oct -0.005 0.029 0.007 0.061 
Nov 0.009 -0.027 -0.021 -0.089 
Dec 0.068 0.276** -0.046 -0.009 
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Table A.5 (Continued) 

(X. 2'P.) 1- 1 
(X· 1 ,P.) 

1- 1 
(X., P.) 

1 1 (X i+1,P;) 

(d) Mi am; 

Jan 0.017 0.159 0.061 -0.115 
Feb -0.048 -0.088 -0.033 -0.054 
Mar 0.078 -0.008 -0.078 0.035 
Apr -0.041 -0.137 0.035 -0.143 
May -0.050 -0.081 -0.080 -0.033 
Jun -0.014 0.008 -0.019 -0.01l 
Jul -0.029 -0.038 -0.029 -0.014 
Aug 0.018 -0.071 -0.016 -0.004 
Sep 0.037 -0.016 -0.080 -0.001 
Oct -0.052 0.033 0.043 0.033 
Nov 0.020 -0.061 -0.126 -0.114 
Dec 0.077 -0.094 -0.029 -0.047 

(e) Phil adel phi a 

Jan 0.073 0.019 0.057 0.139* 
Feb 0.039 -0.087 0.008 0.045 
Mar 0.076 0.062 0.079 0.008 
Apr 0.044 0.047 -0.061 -0.034 
May -0.094 -0.061 -0.015 0.001 
Jun -0.029 0.130* 0.049 -0.048 
Jul -0.013 -0.008 -0.010 -0.028 
Aug 0.095 0.142* -0.075 -0.087 
Sep 0.000 0.059 0.120 -0.035 
Oct 0.101 0.050 0.064 0.143* 
Nov -0.026 -0.051 0.055 -0.003 
Dec 0.112* -0.045 -0.051 -0.030 

( f) Denver 

Jan -0.048 -0.020 -0.112 0.000 
Feb -0.003 -0.056 0.050 -0.054 
Mar -0.010 0.009 0.045 0.015 
Apr -0.049 0.204** -0.056 0.004 
May -0.052 0.019 0.071 -0.104 
Jun 0.093 -0.010 -0.076 -0.060 
Jul -0.045 -0.035 -0.040 -0.002 
Aug -0.050 0.077 -0.007 -0.050 
Sep 0.046 -0.031 -0.004 -0.049 
Oct 0.035 0.092 -0.068 -0.103 
Nov 0.127 -0.017 0.145 0.065 
Dec 0.163* 0.017 0.051 -0.052 
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Figure A.7 Statistical properties of intervals and counts for 
Snoqualmie Falls--monthly analysis. 
I: Normalized spectrum of counts vs. frequency factor 
II: Log-survivor function vs. interarrival time (days) 
III: Variance of counts vs. interval length (days) 
IV: Index of dispersion vs. interval length (days) 
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Figure A.7 (continued) 
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Figure A.8 Statistical properties of intervals and counts for 
Roosevelt--monthly analysis 
I: Normalized spectrum of counts vs, frequency factor 
II: Log-survivor function vs. interarrival time (days) 
III: Variance of counts vs. interval length (days) 
IV: Index of dispersion vs. interval length (days) 
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Figure A.12 Statistical properties of intervals and counts for 
Denver--monthly analysis 
I: Normalized spectrum of counts vs. frequency factor 
II: Log-survivor function vs. interarrival time (days) 
III: Variance of counts vs. interval length (days) 
IV: Index of dispersion vs. interval length (days) 
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APPENDIX B 

DETAILS ON THE DERIVATION OF THE CONDITIONAL INTENSITY FUNCTION 
OF THE SEMI-MARKOV PROCESS 

The Laplace transform of the conditional intensity function of a 

general two-state semi-Markov process is given as 

h*(s) 
(1-a2)f1*(S) + (1-a1)f2*(s) + (1-a1-a2)(2-a1-a2)f1*(S)f2*(s) 

= --~~=---------=-~--------~-=----=-~-=----=---
(2-a1-a2) 1-a1f1*(s) - a2f2*(s) - (1-a1-a2)f1*(s)f2*(s) 

(B.1) 

where fi*(s), i=1,2, are the Laplace transforms of the two probability 

density functions of the interarrival times (see Cox and Lewis, 1978). 

A geometric distribution with parameter p, can be written in the 

continuous-function form 

f(t) = ~ p(1_p)k-1 0(t_k) 
k=l 

(B.2) 

where 0(') is the Dirac function. The Laplace transform of f(t) can 

be easily shown to be 

pe- s 
f* ( s) = ---------

1 - (l_p)e- s 
(B.3) 
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. ..P -ks . where we have made use of the fact that o{.(o(t-k)) = e • Expresslons 

for f1*(s) andf2*(~}i analogous to (B.3), then substituted in (B.1) 

to give 

= 

where 

and 

o + [P1 P2(2-a1-a2)2 - o]e- s 

1 + (e-2)e- s + (1_e)e-2s 

. ~.1 

(B.4) 

(B~5) 

To obtain h(t) the inverse Laplace transform of (B.4) is needed. The 

polynomial in the denominator of (B.4) has two real roots, one equal 

to 1 and the other equal to (I-e), and therefore (B.4) can be written 

as 

h*(s)es = G + _---'A-'--__ 
1_e-s 1 - .(l-e)e-s 

where G and A are 

(B.6) 
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PlP2(2-al -a2) 
G = ---=--=---=--=-

e 

By taking the inverse Laplace transform of (B.6) 

h(t) takes the form 

h(t) = ~ [G + A(1-e)k]8{t-k) 
k=l 

(B.7) 

(B.8) 

(B.9) 

(B.lO) 

Comparing (B.lO) with the discrete-analogue expression of the 

conditional intensity function, that" is 

CD 

h(t) = L hk8(t-k) 
k=l 

we can write 

(B.ll) 
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Note that G of (B.7) reduces to the constant intensity, m, of the 

semi-Markov model. Therefore, (B.l1) takes the form 

(B.12) 

where, 

(B.13) 

and 

(B.14) 

This completes the proof of PROPOSITION 3 of Chapter 5 which gives the 

conditional intensity function of a semi-Markov process. 
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