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Abstract of Thesis Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

DISCRETE-TIME POINT PROCESS MODELS FOR
DAILY RAINFALL

By
Efi Foufoula-Georgiou

May, 1985

Chairman: Wayne C. Huber
Cochairman: James P. Heaney
Major Department: Environmental Engineering Sciences

Several authors have recently had apparent success in applying
continuous-time point process models to daily rainfall observation
sequences. In this work it is shown that major problems arise when the
observation sequence represents cumulative rainfall amounts over a
period (e.g., one day) which is on the order of the process
interarrival time. In particular, the use of continuous-time point
process models for daily rainfall occurrences may result in incorrect
inferences about the underlying rainfall generating mechanisms. This
was confirmed by the statistical analysis of six daily rainfall
records from diverse climatologic regimes throughout the U.S.
(Snoqualmie Falls, Washington; Roosevelt, Arizona; Austin, Texas;
Miami, Florida; Philadelphia, Pennsylvania; and DenVer, Colorado). In
addition, the use of continuous-time point process models for |

generation of daily rainfall sequences leads to serious upward biases



in the event-interarrival times and in dependence structures that may
bé much different than those of the apparent rainfall generating
process.

In this work, a discrete-time point process model has been
developed and its structural properties derived. In the proposed
. process the sequence of times between events is formed through
sampling from two geometric distributions, according to transition
probabilities specified by a Markov chain. This process belongs to
the class of semi-Markov (or Markov renewal) processes and is a
non-renewal, clustered (relative to the Bernoulli) brocess which
reduces to a renewal process with a mixture distribution for the
interarrival times as a special case. Several methods for fitting the
proposed model have been studied and an approximate maximum likelihood
estimation method has been found to perform adequately, especially for
daily rainfall structures with not very significant autocorrelation
structures. 7

The semi-Markov model was fitted to the daily rainfall
occurrences of the Snoqualmie Falls and Roosevelt stations, both on a
monthly and seasonal basis. The fit of the model was assessed by the
preservation of selected statistical properties of the series which
were not used directly in the estimation. It was shown that the
fitted model gave a theoretical spectrum of counts surprisingly close
to the empirical one. Also, the model was quite successful in
preserving the distributional properties of the cumulative rainfall
amounts over longer periods of time, particularly for the Snoqualmie

Falls station.
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CHAPTER 1
INTRODUCTION

It was six men of Indostan
To learning much inclined,
Who went to see the Elephant
(Though all of them were blind),
That each by observation
Might satisfy his mind.

Rainfall is the result of a complex atmospheric process evolving
continuously over space and time. At any time, rainfall fields are
characterized by their areal extent and their spatially variable
intensity. Austin and Houze (1972) and Hobbs and Locatelli (1978) have
classified rainfall fields according to their areal extent and lifetimes
as synoptic, large mesoscale, small mesoscale and rain cells. Synoptic

4 2 and have a lifetime

of one to several days; large mesoscale fields cover areas of 103 - 104

rafnfal] fields cover areas on the order of 10" km

km2 and have a lifetime of several hours; small mesoscale fields have

2 km2 and a lifetime of approximately one hour;

2

areal extent of 10 - 10
rain cells have areal extent of 1 - 10 km" and lifetimes of a few minutes
to 1/2 hour. The system of rainfall fields is hierarchical in the sense
that larger rainfall fields usually contain one or more of the smaller
ones. The continuous movement, build-up, and dissipation of rainfall
fields determines the rainfall intensity variations in -space and time.

Space-time modeling of an observed rainfall sequence at a point

based on a mathematical description of the underlying atmospheric



processes would be an extremely complicated, if not impossible, task.
The need for mathematically tractable descriptions of rainfall for
operational purposes, i.e., forécasting for day-to-day operation of
hydrologic systems, has motivated treatment of rainfall as a stochastic
process. Approaches to the space-time stochastic modeling of rainfall
have recently been suggested by Waymire et al. (1984) and Kavvas and Herd
(1984). 1In the present work, only the time variability of rainfall,
i.e., the characterization of a precipitation observation sequence at a
single station, is considered.

Point rainfall is the precipitation intercepting a small area such
as the opening of a rain guage; it may be treated as a continuous-time
intermittent process, say with intensity £(t)- Precipitation
measurements are recorded for cumulative amounts over discrete time
intervals such as minutes, hours, or Qays. Let {Yi}T’ i=1,2,3,...
denote the discrete sequence of rainfall observations over an arbitrary
time interval T. The continuous process £(t) is related to the discrete

process {Y].}T by

where ti - ti-l T is the time of measurement. Figure 1.1 illustrates
the relationship between £(t) and Yi(T): the continuous process &(t) is
integrated over, say, daily time intervals to give the sequence of daily

data {Yi}T’ where T = 1 day.
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Figure 1.1 Continuous rainfall process £(t) and discrete hourly and daily
rainfall sequences {Yi}T .



Rodriguez-Iturbe et al. (1984) view £(t) as "a generalized stochastic
process" representing the instantaneous rate of rainfall. By postulating
several continuous-time models for &(t), they have derived distributional
properties of the discrete accumulated amounts {Yi}T for an arbitrary time
scale T. This approach raises some fundamental questions, as Diggle
(1984) has recently pointed out, specifically what is a suitable class of
models for &(t), and how can inferences about £(t) be made, given data in
the form of daily or hourly accumulated amounts? Rodriguez-Iturbe et al.
(1984) assessed the validity of possible models for £(t) by comparing
parameters estimated from hourly and daily data with the theoretical
parameters of {Yi}T’ T =1 hour and 1 day, derived for several candidate
models for £(t). This approach, however, is primarily of theoretical
interest because it does not suggest a model for the observed discrete
rainfall sequences {Yi}T but rather for the unobserved continuous process
E(t), and the derived distributional properties of {Yi}T do not lead to a
parsimonious representation of the discrete process.

In this work a somewhat different approach is suggested. The
appropriateness of several model structures for the discrete process {Yi}T
has been examined, with emphasis on a one day interval. The ultimate goal
is to derive a realistic parameter-parsimonious model suitable for the
analysis and synthesis of daily rainfall sequences.

Although daily rainfall observation sequences are only one possible
discrete aggregation of the time-continuous rainfall process, the daily
scale is of special interest for several reasons. Many water resource
systems are operated on a daily time step. For example, operational
decisions for small reservoirs for water supply and irrigation scheduling

(e.g., Ramirez-Rodriguez and Bras, 1982) are often made on a daily time



scale, and therefore an adequate mathematical Hescription of the daily
rainfall input is necessary. More generally, though, one day may be
considered as the upper 1imit of event scale for precipitation; larger
scale precipitation sequences no longer reflect individual precipitation
events, and take on a fundamentally different statistical structure.
Another reason for modeling daily rainfall is that most U.S. rainfall
stations are cooperative, that is, the data aré not collected by the
National Weather Service. Most cooperative'stations report daily
precipitation totals. Manned or remotevNatibné1 Weather Service stations
are much fewer in number; generally, if is these stations that collect
hourly or shorter increment data. [t should be.emphasized that the model
developed herein is not restrictéd to the daily time scale; it is expected
that much of the work will also be applicable to smé]ler time scales such
as hourly. Nonetheless, the emphasis in this work is on the daily time
scale.

The stochastic structure of daily rainfall occurrences has been
extensively studied over the past two decades. A classification of the
modeling approaches and a literature review of the models proposed are
given in Chapter 2. This work concentrates on only one approach, namely,
the point process approach. A point process is defined as a sequence of
events completely characterized by the location (in time or space) of the
events. The daily rainfall occurrence process may be viewed as a point
process in which an event takes place any time the cumulative rainfall
amount over a one-day period exceeds a specified threshold value, as for
example 0.01 inches. Under the above definition of event, and given that
a day can be either dry (no rain) or wet (rain exceeding a threshold

value), a point process model for daily rainfall occurrences will identify



only the "state" of each day i.e., dry or wet. In that sense, the point
process modeling approach for daily rainfall is conceptually equivalent to
the discrete binary series approach in which a sequence of zeroes and ones
(for no rain and rain) is formed and subsequently modeled. The important
difference, however, between the two approaches is that the theory of
point processes permits construction of models with much more flexible
dependence structures, as compared with the structures that can be
formulated under the theory of binary time series.

An example of a discrete binary series model is a Markov chain, which
has been used by a number of authors to model daily rainfall occurrences
(e.g., Chin, 1977). Newer developments in discrete binary models include
the work of Chang et al. (1984) who introduced the discrete autoregressive
moving average (DARMA) models for daily rainfall and applied them to the
daily rainfall sequences of nine stations in Indiana. While newer,
approaches in discrete binary models, such as the DARMA models, may meet
some of the ihadequacies of Markov chains for daily rainfall occurrences,
these models lead to complicated recursive formulas for the distributional
properties of the interarrival times (e.g., Chang et al., 1982). It is
the author's feeling that the point process modeling methodology provides
much more elegant mathematical formulations of a stochastic process, and
for this reason discrete binary models are not considered further.

Point process models for the areal distribution of rainfall were
first introduced by LeCam (1961). Later Kavvas and Delleur (1975) applied
the point process methodology to daily rainfall occurrences. The powerful
theory of point processes was illustrated in the hydrological literature
by Waymire and Gupta (198la, b, and c) in a series of three papers. The

suitability of the flexible point process model structures for



small-time-increment rainfall sequences encouraged further study and Smith
(1981) proposed a different model for daily rainfall occurrentes. Details
of these models wiil be given in Chapter 2. The important point to be
made here is that previous studies have applied time-continuous point
process models to the daily rainfall occurrences. However, the point
process of daily rainfall occurrences 1is discrete in time. The
discreteness stems from the definition of the event as a day with rainfall
above a threshold value. It should be noted here that throughout the
discussion that follows we have used the short term continuous (or
discrete) point process instead of the accurate term continuous-time (or
discrete-time) point process, primarily for convenience.

In this work it will be demonstrated that continuous point process
models are not operationally useful for daily rainfall and that discrete
point process models are needed instead. In addition, 1t‘w111 be shown
that the theory of continuous point processes is not appropriate for
modeling daily rainfall occurrences and that inferences made about the
underlying rainfall generating mechanisms by comparing sample properties
of daily rainfall occurrences to the independent Poisson process may be
misleading. In view of the above, a discrete point process methodology
will be suggested and a discrete point process model with demonstrated
flexibility introduced and applied to representative daily rainfall
occurrence structures. Methods for fitting this model will also be
studied. Finally, the model will be coupled with a model for the non-zero
daily rainfall amounts to give an operational, parsimonious model for
analysis and synthesis of daily rainfall sequences. Further, it will be
shown that such a model may be able to preserve the distributional

properties of the cumulative rainfall amounts over periods of specified



length, e.g., a week or month. This is an important property of a daily
rainfall model especially when it is used for rainfall-runoff studies,
where mass balance over long periods of time is desired.

In summary, this dissertation is structured as follows. In Chapter
2, a classification and brief review of available daily rainfall models
are given. The inappropriateness of the continuous point process models
for the discrete daily rainfall occurrences is demonstrated in Chapter 3.
In Chapter 4, the statistical analysis of six daily rainfall records with
respect to the rainfall occurrences and amounts is presented. In Chapter
5, a discrete point process model is developed and its statistical
properties are derived. Methods for fitting the developed model are
suggested and compared in Chapter 6. In Chapter 7, the discrete point
process is fitted to the daily rainfall occurrences of two stations and
coupled with a model for the non-zero daily rainfall amounts. The
satisfactory performance of the model is assessed by checking the extent
to which several rainfall statistics are preserved. The summary,
conclusions, and recommendations for further research are given in Chapter

8.



CHAPTER 2
LITERATURE REVIEW

The First approached the Elephant,
And happening to fall
Against his broad and sturdy side,
' At once began to bawl:
"God bless! but the Elephant
Is very like a wall!"

Due to the intermittency of small-time-increment (i.e., hourly or
daily) rainfall processes, standard time-series analysis methods are not
applicable. Instead, the most commonly used approach to modeling daily
rainfall is to model the rainfall occurrences separately from the
non-zero rainfall amounts, and then superimpose the two models. This
chapter classifies the existing daily rainfall occurrence and amounts
models and, under each category, a review of selected work is given.
For supplementary review papers, the reader is referred to Roldan and
Woolhiser (1982), Woolhiser and Roldan (1982), Court (1979), and Waymire
and Gupta (1981la).

2.1 Models for the Dajly Rainfall Occurrences

2.1.1 The "Wet-Dry Spell" Approach

In this approach any uninterrupted sequence of wet days (i.e., days
with total rainfall above a specified threshold value) defines an event

(see Fig. 2.1a). Such an occurrence model is completely specified by
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(A) "Wet-dry spell” approach

,mﬂﬂmmqu N\ Mmm\ >

t(days)

(B) Binary discrete series approach

0011111100110000111111000

(C) Point process. approach

.»’/-ve »
DT S S Y Y/ ¥/ Y S

| t(days)

Figure 2.1 Different approaches to modeling daily rainfall occurrences.
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the probability laws of the length of the wet periods (storm duration)
and the length of the dry periods (time between storms).

This model structure, with exponential distributions for the
lTengths of the dry and wet periods, was used by Thom (1958) and Green
(1964), among others. Grace and Eagleson (1966) used a Weibull
distribution for the wet-period lengths and applied the model to short
time increment (on the order of minutes and hours) rainfall occurrences.
Todorovic and Yevjevich (1969) and Eagleson (1978) conducted Tlater
studies using this modeling approach.

In probabilistic terminology the above moﬁe] is an alternating
renewal model. The term renewal stems from the implied independence
between the dry and wet period lengths, and the term alternating is used
to indicate that a wet (dry) period is always followed by a dry (wet)
period, i.e., no transition to the same state is possible. In many
early studies, sucﬁ a ﬁodel with exponential distributions for the dry
period lengths was referred to as a Poisson model. This 1is an
inaccurate terminology resulting from the assUmption that an event,
which in this case corresponds to a wet period, occurs instantaneously
at the middle or end of the wet period.

A recent study of an alternating renewal model for daily rainfall
was reported by Galloy et al. (1981). They used discrete negative
binomial distributions for the wet and dry period Tlengths and
implemented the theory of point processes to derive the statistical
properties of intervals (times bétween events) and counts (number of
events in a time interval).

The main problem with the wet-dry spell approach to modeling daily

or other small-time-increment rainfall lies in the modeling of the
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rainfall amounts. Due to the definition of an event as an uninterrupted
sequence of wet days, the cumulative rainfall amounts corresponding to
each event are conditional on the wet-period length. Therefore,
conditional probability distributions have to be fitted to the amounts.
This can pose problems, especially for events of extreme duration, where
not many points are available for identification and fitting of a

probability density function.

2.1,2 The Binary Discrete Time-Series Approach

The daily rainfall series consists of either rainy or dry days, and
therefore can be viewed as a binary series of zeroes and ones, with zero
corresponding to a dry day, and one to a wet day (see Fig. 2.1b.). A
probabilistic model is then sought which can adequately describe this
sequence of zeroes and ones. Alternatively, this binary process can be
thought of as being-formed by a sequence of Bernoulli trials i.e.,
repetitive trials witﬁout replacement (sée, fbr exahble, Feller, 1968),
with two possible outcomes, zero and one. The outcomes can be either
independent (givfng rise to a Bernoulli process), or dependent (giving
rise, for example, to a Markov chain). The independent Bernoulli
process is not adequate to describe the dependence present in the daily
rainfall occurrences (see, for example, Smith and Schreiber, 1973).
Markov chain models are the simplest models with a dependence structure
and have been extensively used for modeling daily rainfall.

Markov chains. A Markov chain is a sequence of discrete random

variables, Xn’ and is said to be of order k if k is the smallest
positive integer such that the following equation of conditional

probabilities is satisfied for all n:



Xn-z’ .Ol’ Xn_k} (2.1)
A complete treatment of the theory of Markov chains can be found in Cox
and Miller (1965), Parzen (1962), and Ginlar (1975), among others. A

two-state Markov chain (appropriate for the zero-one rainfall occurrence
process) is completely specified by the transition probability matrix:
Py 1-pg
- m

where Po is the probability of a dry day following a dry day, and P is
the probability of a wet day following a wet day.

Markov chains have been extensively used for modeling daily
rainfall occurrences. Gabriel and Neumann (1957,1962) wused a
first-order homogeneous (i.e., constant parameters) Markov chain for the
winter daily rainfall occurrences at Tel-Aviv, while Caskey (1963) and’
Weiss (1964) used a non-homogeneous (i.e., time varying parameters)
Markov chain for several stations in the northern U.S. Hopkins and
Robillard (1964) used a first order Markov chain for the daily rainfall
occurrences in Canada and found that it was not adequate to describe the
months with few rainy days. Feyerherm and Bark (1967) showed the
inadequacy of a first-order Markov chain in describing the higher-order
dependence structure present in daily rainfall, and they proposed a
second-order Markov chain for the daily rainfall occurrences at Indiana,
Iowa, and Kansas. Wiser (1965) and Green (1965) also concluded that the
geometric memory of the first-order Markov chain is not adequate to

describe long droughts or long wet spells. Smith and Schreiber (1973)
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found a non-homogeneous first-order Markov chain superior to an
independent Bernoulli model for the seasonal thunderstorm rainfall in
the southwest U.S. Woolhiser and Pegram (1979) studied Markov chain
models with seasonally varying parameters using Fourier series.

In deciding the order of a Markov chain, Tong (1975) used the
Akaike Information Criterion (AIC), while Hoel (1954) presented a
likelihood ratio goodness of fit test. Chin (1977) identified the
Markov chain orders of 25-year daily rainfall records in the United
States, using the AIC, and illustrated their dependence on the season
and geographical location.

For the simultaneous modeling of daily rainfall occurrences and
amounts, multiple-state Markov chains have also been considered. Khanal
and Hamrick (1974) used a l4-state Markov chain model for each month of
the year, for daily rainfall sequences from Florida. Haan et al. (1976)
‘separated the year into four seasons and used a seven-state first-order
Markov chain for the daily rainfall in Kentucky. They assumed uniform
distributions for the rainfall amounts in all but the last state, in
which a shifted exponential was found more appropriate due to the larger
variability in the amounts. Carey and Haan (1978) used a three-state
first-order Markov chain with two different Gamma distributions for the
amounts in the two wet states, which were further combined to the same
pooled distribution due to the large number of parameters in their
twelve-season model.

In conclusion, Markov chain models provide a simple mathematical
representation of the daily rainfall occurrence process which may be
adequate for some specific sites and seasons. However, their Markovian

structure cannot describe the long term persistencies (i.e., long wet or
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dry spells) and the effect of clustering (i.e., higher likelihood of
having an event due to an event at a previous time) present in the
short-time-increment rainfall occurrences. Long term persistence in the
daily rainfall may be caused, for example, by cyclonic activity
persisting during certain seasons (Petterssen, 1969), and clustering may
be the result of frontal thunderstorms with a relatively long Tife cycle
(Kavvas and Delleur, 1975).

Discrete Autoregressive Moving Average (DARMA) models. A

DARMA(p,q) model, where p is the order of the autoregressive and q the
order of the moving average component, is a sequence {Xn} formed by a
probabilistic combination of elements of a sequence {Yn} which is
independent and identically distributed (i.i.d.). For the binary DARMA
models {Yn} is assumed to be i.i.d. with a Bernoulli distribution, i.e.,

P(Y, = 0) = m_, P(Y

n =1)=7‘r

n 1 > and LR + ™ o= 1. For illustration

purposes, the DARMA(1,0) and DARMA (0,1) models are defined by a

sequence {Xn} such that

{ Y with probability 8

DARMA(1,0): Xy = (2.3)
Yn-l with probability 1-9
X,.1 With probability ¢

DARMA(0,1): Xy = (2.4)
Yn with probability 1-9¢

For further details on these models and derivation of their statistical
properties, see Jacobs and'Lewis (1978a,b) and Chang et al. (1982).
DARMA models for daily rainfall were first used by Buishand (1978)
to analyze wet-dry spells in the Netherlands. Subsequently, Chang et
al. (1982, 1984) applied DARMA models to daily rainfall sequences in
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Indiana. They derived the probability density functions of the wet and-
dry period lengths as functions of the DARMA model parameters ¢, 6, and
the marginal distribution function = = (no, "1)'

A]tthgh DARMA models may be an improvement over Markov chains, in
the sense that they can accommodate longer term persistence in the
series in a more parsimonious way than a high-order Markov chain, their
linear structure is still not able to describe the clustered short-term
dependence known to be present in the daily rainfall occurrences (Kavvas
and Delleur, 1975). Also, their mathematical framework seems to permit_
derivation only of interval properties (i.e., probability distributions
of run lengths) and not of counting properties (i.e., distributiohs of
number of events in a time interval). Given that analysis of the second
order properties of intervals and counts are not, in general, equivalent
(see, for example, Cox and Lewis, 1978), it is advantageous to be able
to use both for model identification and fitting, and this can be
effec@ive]y done in the point process mathematical framéwork.

2.1.3 The Point-Process Approach

By defining an event as the occurrence of a day with a total
rainfall amount exceeding a specified threshold (i.e., the occurrence of
a wet day), the sequence of daily rainfall forms a point process. With
the above definition of events, a wet period of several days is treated
as a group of instantaneous rainfall events occurring at one-day
intervals and, therefore, the interarrival times are positive integer
values (1, 2, 3, ... days). Such a point process is discrete. A major
issue, which is deferred to Chapter 3, is how to accommodate this
feature within the framework of continuous point processes. The present

discussion is limited to continuous point processes.
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The theory of continuous point processes has been studied by Cox
and Lewis (1978), Cox and Isham (1980), Ginlar (1975), Parzen (1962),
Lewis (1972), Vere-Jones (1970), and others. Waymire and Gupta (1981b,
c) give an excellent review of the theory of point processes and relate
it to the stochastic modeling of hydrologic series.

The simplest continuous point process is the Poisson process, whose
formal definition and properties can be found in many probability theory
texts (see for example ¢inlar, 1975, Ch.4). In a Poisson process, the
times between events are independent and identically distributed
(i.i.d.) random variables having an exponential distribution, and the
number of events in a time interval t is an i.i.d. random variable
having a Poisson distribution. The non-homogeneous (time-varying
parameters) Poisson process has been applied by Todorovic and Yevjevich
(1969) and Gupta and Duckstein (1975) to the modeling of rainfall
occurrences.

Kavvas and Delleur (1975) observed that the daily rainfall
occurrences in Indiana exhibit a clustering which might be
satisfactorily modeled by the class of Poisson cluster models (e.g., Cox
and Isham, 1980, Ch.3) and in particular by the Neyman-Scott (N-S)
models. A N-S process is a two-level process. At the primary level,
the rainfall generating mechanisms (RGM) occur according to a Poisson
model with rate of occurrence hO (i.e., mean interarrival time l/ho).
Each RGM gives rise to a group of rainfall events, and each of these
groups is called a cluster. Within each cluster, the occurrence of
events is completely specified by a distribution for the number of
events and a distribution for their positions relative to the cluster

centers. Kavvas and Delleur (1975) assumed a geometric distribution
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with parameter p for thevnumber of rainfall events in a cluster and an
exponential distribution with parameter 6 for the distances of events
from their cluster centers. For these distributions, the final observed
process has a rate of occurrence m = ho/p. Applications of the N-S
model include modeling of the areal clustering of rainfall (LeCam, 1961)
and modeling of earthquake occurrences (Vere-Jones, 1970).

Smith (1981) 1ntrodu§ed another point process model, namely a
doubly stochastic Poissdn_model, to describe the clustering observed in
the daily rainfa}] occurrences of the summer season (July to October)
rainfall ih the Potomac river basiﬁ. In a doubly stochastic Poisson
model (also known as a Cax model) the rate of occurrence of the process
a]ternateslbetween two states, one zero and the other positive. During
periods when the intensity is‘zero, no events can occur. Smith and Karr
(1983) assumed that during periods with positive intensity, events occur
according to a Poisson process with rate of occurrence A, and that the
seqUence of states visited forms a Markov chain. This model is a
renewal model (i.e., interarrival times are independent) and was termed
the RCM model (Renewal Cox model with Markovian intensity).

In summary, two main classes of continuous point process models
(namely the N-S model and the RCM model) have been studied for the daily
rainfall occurrence process. Both of these models are overdispersed
relative to Poisson, that is the variance of the number of events in an
arbitrary time interval is greater than the mean number of events in
that interval, as compared to the Poisson model in which the variance is
equal to the mean. Our analysis has pointed out that structures of
daily rainfall occurrences that are underdispersed relative to Poisson

are possible (more regular occurrence of events than that of a Poisson
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process), a feature that cannot be reproduced by either the N-S or the
RCM mode]s,; Morgusignificant, however, is the question of whether
continuous models are appropriate for modeling discrete daily rainfall
occurrences. This is an especially significant issue when the time
scale is daily, since the observation sequence repreéents cumulative
rainfall amounts over a period (i.e., one day) which is on the order of
the process interarrival time. In Chapter 3, it will be shown that the
more natural way to proceed is to model the daily rainfall occurrence
process as a discrete point processéi Fifst, however, a review of recent

work on modeling rainfall amounts is given.

2.2 Models for the Non-Zero Daily Rainfall Amounts

I[f the non-zero daily rainfall amounts process is independent, then
it is completely characterized by its marginal probability density
function (pdf). The marginal probability distributions most commonly
used are the following:

(1) The exponential distribution (Todorovic and Woolhiser, 1971;
Richardson, 1981) which is a one-parameter distribution. Skees and
Shenton (1974) and Mielke and Johnson (1974) suggested that the
exponential distribution has a thinner tail than that observed in daily
rainfall amounts.

(2) The mixed exponential distribution (Smith and Schreiber, 1973;
Woolhiser and Pegram, 1979; Woolhiser and Roldan, 1982) whose
coefficient of variation is always greater than unity, as is usually the
case in the daily rainfall amounts. This distribution has the appea11ng-
interpretation of being the superposition of two or more exponential
distributions produced by, say, different mechanisms. The mixed

exponential distribution was found to be the best of four candidates for
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daily rainfall amounts in a comparison study by Woolhiser and‘Roldan
(1982). Everitt and Hand (1981, Ch.3)bdiscuss methods of identifying
and fitting mixed distributions. |

(3) The gamma distribution which has been used extensively (see, for
example, Ison et al., 1971; Buishand, 1978; Carey and Haan, 1978).

(4) The Kappa or generalized beta diétribution introduced by Mielke
(1973) and Mielke and Johnson (1974).

(5) Empirical distributions as, for example, that used by Cole and
Sheriff (1972) or other special distributions. For example, Katz (1977)
used a chain-dependent distribution assuming that the rainfall amounts
are independent but that the distribution function depends on whether
the previous day was wet or dry. Buishand (1978) distinguished between
three different types of wet days (DWD, DWW, WWD, and WWW where D stands
for dry and W for wet) and fitted di%ferent Gamma distributions to each
of the three rainfall amounts. All these distributions, however, have
the disadvantage of too many parameters.

Woolhiser and Roldan (1982) present a comparison of several
distributions (chain-dependent and independent exponential, gamma, and
mixed exponential distributions) for five U.S. stations in Kansas,
Missouri, Florida, Wyoming, and Indiana. Using the Akaike Information
Criterion these distributions ranked from best to worst as mixed
exponential, independent gamma, chain-dependent gamma, and exponential.
It should be noted that in the above study the degree of dependence of
rainfall amounts in consecutive days was not tested and independence was
assumed.

[f a dependence structure is present, then more complicated models

‘have to be used. Commonly used time-series models, such as those
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described by Box and Jenkins (1976), are not appropriate because
rainfall amounts are bounded from below by zero, and are therefore
positively skewed. The class of Exponential-ARMA (EARMA), Gamma-AR
(GAR), or standard ARMA models together with normalization
transformations might be considered, however. ARMA models with skewed
marginal pdf's (especially exponential and Gamma) have been extensively
studied by Lawrance and Lewis (1980), Lawrance (1980), Gaver and Lewis
(1980), Jacobs and Lewis (1977), Lawrance and Lewis (1977), and Lewis
(1978) and have been applied to hydrology by Obeysekera and Salas (1983)
for streamflow modeling. Raudkivi and Lawgun (1972) have proposed a
scheme for modeling serially correlated data with skewness described by
a Pearson type 3 distribution. Although they have applied their
technique to rainfall durations (defined as the length of non-zero
10-minute interval rainfall depths), the potential use in modeling daily

rainfall amounts seems straightforward.



CHAPTER 3
CONTINUOUS VERSUS DISCRETE POINT PROCESS MODELS
FOR DAILY RAINFALL OCCURRENCES

The Second, feeling of the tusk,
Cried, "Ho! what have we here

So very round and smooth and sharp?
To me 'tis mighty clear

This wonder of an Elephant
Is very like a spear!"

When daily rainfall occurrences are modeled as a continuous point
process, it is implied that events can occur anywhere on the time
axis, i.e., that multiple occurrences during a day are possib]e; The
only information, however, that is contained in the daily rainfail
occurrence data is whether a day is dry or wet, i.e., whether or not
at lTeast one event has occurred during a day,. and not the number of
events. With the continuous-point-process interpretation of the daily
rainfall occurrences, one faces the problem of inferring the
properties of the (unobservable) continuous counting process from the
discrete sampled data. Brillinger (1978) and Guttorp and Thompson
(1983) have studied this problem and have proposed methods of
estimating the parameters of a continuous point process, as well as
approximately reconstructing the locations of events, from the
discrete sampled data. Such methods, however, are applicable only
when the sampled counting process provides at least the information of

the number of events during the sampling intervals, as for example in

22
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the process of daily traffic fatalities where the number of fatalities
. during a day are recorded but not the exact times of occurrence.

Daily rainfall occurrence data, on the other hand, do not contain
information about the number of "events" in a day, and therefore their
interpretation as a continuous point process is complicated. For
example, if a continuous point process model is used for generation of
(synthetic) daily rainfall occurrences, the most natural approach to
discretizing the continuous sequence is to Tump all the occurrences
during a one day interval to only one point, say, at the end of that
day. The result of such an operation is a discretized point process
with a Tower rate of occurrence and altered statistical properties.
The greater the rate of occurrence, i.e., the more frequent the
events, the more serious the discretization effect will be. For rates
corresponding to daily rainfall occurrences (A = 0.5 to 0.2 days'l,
for mean 1nterarriva] times of 2 to 5 days), these effects are fairly
significant, in contrast with rates corresponding to, say, hourly
rainfall events or occurrence of wet periods, i.e., interrupted
sequences of rainy hours or days. In general, the use of continuous
point process mbde]s for discrete observation sequences will present
major problems when the observation sequences represent cumulative
rainfall amounts over a period which is on the order of the process
interarrival time.

How much such a discretization scheme affects a Poisson process
with rate of occurrence X can easily be shown analytically. For
example, it can be shown that in order to obtain a discrete point
process with rate of occurrence A, a continuous Poisson process with

rate of occurrence equal to -In(l - i) > x is required. Similar
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results for non-Poisson processes such as Poisson cluster processes
are not easily obtained in closed form and are better studied via
simulation.

Modeling daily rainfall occurrences by using continuous models
with adjusted parameters to compensate for the effects of
discretization are awkward at best and generally impractical. The
natural approach to modeling the daily rainfall occurrences is to use
only the information provided by the data, i.e., to view the rainy
days as constituting all of the events of the process, and to generate
rainy or dry days ratheé than continuous events. Some of the
implications of this viewpoint are considered in this chapter. First,
however, some definitions and general properties of a continuous point
process, necessary for the development of the rest of this work, are

given.

3.1 Statistical Background on Stationary Point Processes

Let an event & occur at times tl,' tys tgse.e, and let

X. =t -t

(r = 1,2,3,...) be continuous random variables
r r r-1

jdentically distributed with common pdf f(x). The variable X is
called the interarrival time, or time between events, or simply
interval. A point process is stationary if the joint distribution of
the number of events in a set of k fixed intervals, for all k =
1,2,3,..., is invariant under translation (Cox and Lewis, 1978). Two
immediate consequences of stationarity are that (1) the distibution of
the number of events in an interval depends only on the length of the
interval, and (2) there is no trend in the mean rate of occurrence of
events, i.e., the expected number of events in an interval is

proportional to the length of that interval.
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Depending on whether or not an event occurs at time to, the
process starts with an arbitrary event or at an arbitrahy time
(synchronous and asynchronous sampling, respectively, in the
terminology of Lawrance (1972)). For the rainfall occurrences, we
nave considered the process as starting at an arbitrary event but not
including it. This implies that the pdf of the time to the first
event is the same as the pdf of all the other subsequent interarrival
times.

Continuous point processes have been extensively studied in the
statistical literature (see for example, Cox and Lewis, 1978; Cox and
Isham, 1980; Qin]ar, 1975; Lewis, 1972; Srinivasan, 1974). They have
found extensive applications: in queueing theory (Khintchine, 1960); -
modeling times to computer failure (Lewis, 1964); earthquake
occurrences (Vere-Jones, 1970); traffic data (Bartlett, 1963); spatial
distibution of galaxies (Neyman and Scott, 1958); and rainfall
occurrences (LeCam, 1961; Kavvas and Delleur, 1975; Waymire and Gupta,
1981; and Smith and Karr, 1983). Additional applications can be found
in a series of papers edited by Lewis (1972).

In studying a series of events (point process), two properties
are of interest: the interval properties dealing with the times
between events, and the counting properties dealing with the number of
events in time periods of specified length. The second order
properties of intervals and counts which will be used in this work are
introduced below.

Interval properties. Let {Xi} be the series of interarrival

times. We denote the mean, variance, and coefficient of variation of

X by E(X), Var(X), and Cy> respectively. Standard time series
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analysis, using the autocorrelation function and the power spectrum of
the series, can be applied to test the presence of autocorrelation.
Independent interarrival times (inferred by an autocorrelation
function not significantly different from zero, or a‘constant power
spectrum) indicate that the process is a renewal point process.
Special care with the properties of the autocorrelation coefficients
is needed, however, due to the non-normality (high skewness) of
interarrival times (Lewis, 1972). For example, Moran (1970) and Cox
(1966) have shown that the variance of the first autocorrelation
coefficient tends to be smaller for random variables with long tails
than for variables with a normal distribution.

The departure of the coefficient of variation, Cy» from the value
of one for the exponential distribution, is used as a fough measure of
the departure of the process from the Poisson process (Cox and Lewis,
1978). A value of cv.> 1 indicates overdispersion relative to the
Poisson process ("random" clustering), and a valqe of c, ¢ 1 indicates
underdispersion ("regular" clustering).

Let F(x) = P(X < x) be the cumulative probability distribution of

the interarrival times. Then, the probability of exceedence
R(x) = P(X> x)=1-F(x) (3.1)

is called the survivor function, and its logarithm is the log-survivor
function. It can be easily checked from (3.1) and the pdf of an
exponential distribution that the log-survivor function of a Poisson
process with rate of occurrence A is a straight line with slope equal

to - A. In analyzing a series of events, deviations of the empirical
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log-survivor function from a straight line indicate deviation of the
process from the Poisson. In particular, for a renewal process, a
convex log-survivor function implies a coefficient of variation Tless
than one, while the opposite holds for a concave log-survivor function
(Watson and Wells, 1961). Such relationships are helpful in
determining the margina] distribution of the interarrival times and in

identifying possible models for the process.

Counts properties. Let {Nt} denote the counting process of an
asynchronous point process (i.e., a process which starts at an
arbitrary time), and {Nt'} denote the counting process of a
synchronous point process (i.e., a process which starts with an
arbitrary event). Notice that {Nt'}, the number of events in (0,t],
is the counting process of a series of events that starts with an
event but does not ing]ude it. The obvious relationship between the
sequence of intervals {Xi} and the counting process {Nt'}is

P(Nt' <r) = P(xqy + Xy tees ¥ X, >t), r=1,2,... (3.2)

1

(Cox and Lewis, 1978).
The following counting properties are of interest:

(1) The mean value function, M(t), defined as

(3.3)

For any stationary process, M(t) = t/E(X) = mt, where m = 1/E(X) is

the intensity or rate of occurrence of the process.
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(2) The renewal function, H(t), defined as

(3.4)

For large t, H(t)—e M(t). For a Poisson process H(t) = mt.
(3) The renewal density, or conditional intensity function, h(t),

defined as

t o, t+at’ _ ‘ »(3’5)

h(t) = 1im
At-0 At dt

(Cox and Lewis, 1978). Notice that h(t) is not a pdf, but instead
h(t)At is the probability of having an event in a small interval At
near t. Since multiple events are not permitted (this is the
so-called orderliness requirement; see Daley and Vere-Jones, 1972),
the probability of more than one event in an interval of length At is
%)

0(at®), and therefore:

P(event 1in (t0+t, t0+t+At) / event at tO)
h(t) = 1im , (3.6)
At>0 At

where the event at tO is an arbitrary event in the stationary process.
The renewal density of a Poisson process is constant and equal to the
intensity of the process, m.

(4) The variance time curve, V(t), defined as

V(t) = Var(Nt).
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For a Poisson process, {Nt} has a Poisson distribution for which the
variance is equal to the mean, and therefore V(t)= mt. Procedures for
estimating the empirical variance time curve are given in Cox and
Lewis (1978).

(5) The index of dispersion function, I(t), defined as

which has the constant value of one for the Poisson process. An
empirical I(t) < 1 for all t implies underdispersion relative to
Poisson, and an I(t) > 1 for all t implies overdispersion (analogously
to the coefficient of variation of the interarrival times relative to
one, the value for the exponentialldistribution).

(6) The covariance density, Y+(T), defined as

cov(N N

t+T+AL, t+T° 't t+At)

)2

1im
At->0 (at

v, (1) (3.9)

COV(ANt+T, ANt)

2 b

1im
At~>0 (at)

which can be interpreted as the autocovariance function of the

= Tim N The

At=-0

differential process AN Tim(N N

)C
At>0 t

t t,t+at t+at =

differential process, {ANt}, can be thought of as an instantaneous
process having zeroes at all points except for spikes (delta
functions) at the points of occurrence of events. The covariance

density, y+(r), is a measure of the likelihood of two events
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occurring T units apart (Cox and Lewis, 1978, ch.4). For a Poisson

process with intensity m,

m , fort=20

v, (1) = , (3.10)
0 , otherwise. A

(7) The spectrum of counts, g _(w), which is the Fourier transform of

the covariance density

g,(w) = '/Y+(T)e-indT. (3.11)
0

The spectrum of counts is a useful tool in the statistical analysis of
series of events and is preferable to other functions due to its
superior sampling properties (Bartlett, 1963). For a Poisson process

the spectrum of counts has a constant value equal to m/w.

3.2. Poisson Versus Bernoulli Processes

In this section, the properties of the Bernoulli process, which
is the discrete analogue of the Poisson process, are studied and
compared with those of the Poisson process. This comparison reveals
that if indeed the discrete daily rainfall occurrences were an
independent process, i.e., a Bernoulli process, if modeled as a
continuous point process they would be interpreted as underdispersed
relative to the (continuous) Poisson process. On the other hand,

selected daily rainfall structures underdispersed relative to the
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Poisson process are, in fact, all shown to be overdispersed relative
to Bernoulli.

3.2.1. Statistical Properties of the Bernoulli Process

Consider a sequence of independent repeated trials with two
possible outcomes, success and failure. Let p denote the probability
of success at each trial and Nr denote the number of successes in r
trials. Then, Nr has a binomial probability distribution
k

(

PN = k) = (1) p(1-p)™F k=012, (3.12)

and the number of trials between the n'th and (n+l)st suécess, X

n’ has
a geometric distribution
- - k-1 _ ‘
P(X = k) - p(l'p) Y k - 1,2,.-., (3.13)

n

for all n. In the discrete-time point process terminology, a success

corresponds to the occurrence of an event (i.e., a rainy day); Nr to

the counting process, that is the number of events in (0,r]; and X, to
the time between events.

The Bernoulli process is the discrete analogue of the Poisson
process in the sense that it is characterized by independent intervals
and independent counting increments and is discrete in time. This
lack of memory property is the result of the geometric distribution
for the times between events, analogously to the exponential for the
Poisson (see Feller, 1968, p.329 for a proof).

The statistical properties (i.e., mean, variance, and higher

moments) of the geometric and binomial distributions are well known
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(see for example, Parzen, 1962). For this work, some additional
properties of the Bernoulli cbunting process are of interest, such as
the spectrum of counts, and this derivation is given below. Since it
is more natural to discuss the daily rainfall occurrences with respect
to time instead of trials, the familiar terminology of continuous
point processes has been retained, with the understanding that time t
in a Bernoulli process, or in a general discrete point process,
corresponds to t discrete time units (i.e., t days).

Let f(x). be a probability density function (pdf) defined as the
continuous representation of the geometric probability mass function

(pmf) of (3.13). Then,
f(x) = 1 p(1-pk T s(x-k), (3.14)

where §(-) is the Dirac delta function. -Let *f(s) denote the Laplace

transform of f(x) defined as

-]

*f(s) = )/ e SXF(x)dx.
0

The symbol *f(s) is used to indicate the Laplace transform of a
generalized function of the form (3.14) from the Laplace transform
f*(s) of a standard continuous function f(x). Notiée that *f(s) is an
exponential function of s, since the Laplace transform of S(x-k) is
Jﬁé(x-k)) = e'Sk. It is easily shown that the Laplace transform of

f(x) of (3.14) is
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pe”>
*f(s) =- —< - (3.15)
1 - (1-p)e .

Making use of a standard result of .the renewal theory (see for
example, Cox and Lewis, 1978, Ch.4), the spectrum of counts of a

stationary renewal point process is given as

p *f(iw) *f(-iw)
g (w) = — [1 + + 1. (3.16)
™ 1-*f(iw) 1-*f(-iw)

Substitution of (3.15) into (3.16) yields

(3.17)

The statistical properties,of interest for a Bernoulli process,
with a probability of success p, are given in Table 3.1. 1In the same
table, the corresponding properties of a Poisson process with rate of
occurrence A are also given.

[t is convenient to notice here that *f(s) = y(-s), where ()
is the moment generating function of the probability law of x (eq.
3.14), and is defined as ¥(z) = E[e?*], i.e., as the expectation of

the exponential function e?X

(see, for example, Parzen, 1960, p.215).
The equivalence of these terms will be used'in Chapter 5.

3.2.2 Comparison of a Poisson and a Bernoulli Process

Consider a sequence of daily rainfall occurrences with mean
interarrival time X. If a Bernoulli process were fit to the series,

the estimate of its probability of success, p, would be 5 = 1/X.
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Table 3.1 Comparison of Poisson and Bernoulli Processes

Poisson Bernoulli
A = rate of occurrence p = prob. of success
Interarrival times: X5} f(x) = ae~ X ,A>0 p(x) = p(l-p)x'l ,0<pgl
E(X) = 1/x E(X) = 1/p
Var(x) = 1/22 Var(X) = (1-p)/p?
c =148 c =v¢Yl-p <1
v v
2-p
cg = Zb cg = > 2
vi-p
(re)%e™" Ky Koy o tek
Number of events: {N_} p(N _=k) = — p(N,=k)=(.)p (1-p)
t t ki t t

t = discrete time

E(Nt) =t E(N.) = pt
Var(N,) = at Var(Ny) = p(l-p)t
Conditional intensity
function h(t) = & h(t) = p
Log survivor function en(R(x)] = -xx enfR(x)J = 2n(l-p) x
Variance time curve Vit) = At . Vit) = p(l-p)t
Index of dispersion
function I(t) =1, vt [(t) = 1-p < 1, ¥t
Spectrum of counts 9 (w) = A/m , 420 9,(w) = p(l-p)/m , w2 0
Normalized spectrum
of counts gi(w) =1, 2>0 gilw) =1-p<1l, .20

coefficient of variation
skewness coefficient

O
<
"non
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Similarly, if a Poisson process were fit, the estimate of the rate of
occurrence, A, would be A = 1/X. Thus p = X. Notice, however, from
Table 3.1 how different the other properties of the two processes are.
In particular, the Bernoulli process has a coefficient of variation of
intervals and an index of dispersion function of the counts always
less than one, which imply underdispersion relative to Poisson. This
means that inferences about over- and under-dispersion of the daily
rainfall occurrences would be different depending on whether the
empirical functions of the process were compared to those of a Poisson
or to those of a Bernoulli process. It seems only natural that a
discrete point process model, such as daily rainfall occurrences,
should be compared with the discrete independent Bernoulli process and
not with the continuous Poisson process. - This is an important
observation and has immediate consequencés in the interpretation of
the statistical functions of the daily rainfall occurrence process.
In the next section, the effects of using a continuous point process
model for the generation of a discrete sequence will be studied,
analytically for a Poisson model and via simulation for a Neyman-Scott

model.

3.3 Effects of Discretization on a Continuous Point Process

When a continuous point process is used for generation of
(synthetic) daily rainfall occurrences, the most natural approach to
discretizing a continuous synthetic sequence is to lump all the
occurrences during a day at one point, such as, the end of that day.
The resulting discrete point process has different statistical

properties than the continuous one. How much these two structures



differ will be illustrated below, first for a Poisson process and then
for a Neyman-Scott process.

Let F(x) denote the cumulative distribution function of the
exponential pdf of the intervals of a Poisson process. The
discretization scheme suggested above is equivalent to replacing the
continuous exponential distribution of the intervals with a

discretized one, so that

C
Pylx = 2) = P(1 ¢x<2) =F(2) - F(1) = e}(1 - &™),
(3.18)
Py(x = k) = P (k-1 < x < k) = F(k) - Flk-1) = e”K T = ey,

where Pd and Pc denote probabilities of a discrete variable and a
continuous variable, respectively. Notice that the resulting discrete

distribution, Pd(x), is geometric with parameter:
Y = 1 - e ’ (3;19)

implying that the discretized process is a Bernoulli process with a
probability of occurrence (or rate of occurrence) equal to v, a value
always less than x. All the other properties of the discretized

/process can be obtained by substituting the value of v for p in the

right-hand column of Table 3.1.
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For data generated from a Poisson process, figures 3.1 and 3.2
show the effects of discretization on some commonly used counting
properties, i.e., the spectrum of counts, Tlog-survivor function,
variance time curve and index of dispersion. A period of observation
of 1000 time units'(for example, days) was used, since this is
approximately the length of series available in a month by month
analysis of thirty years of daily data. Notice the agreement of the
analytical and simulation results; the empirical functions of the
discretized process differ from those of the Poisson and the
differences are larger for the higher rates of occurrence. Also,
notice that the discretized process is always underdispersed relative
to Poisson.

Another important issue raised from Figures 3.1 and 3.2 is the
data requirements to obtain relfable estimates of the empirical
functions. It can be seen from Figure 3.1 that, although the length
of observation is the same for all cases, the empirical functions of
the continuous Poisson are closer to the theoretical ones the larger
the number of events is. This implies that fewer years of daily
rainfall data during rainy seasons contain the same information as
more years during dry seasons, and therefore caution must be applied
when interpreting the statistical properties of the rainfall
occurrences during seasons with few rainy days.

Figure 3.3 illustrates the effect of discretization on a
clustered Neyman-Scott process. (This process and the meaning of its
parameters have been discussed in Chapter 2.) Although the effects of

discretization cannot be directly associated with the parameter values
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as for a discretized Poisson process, it is still apparent that the

effects are similar and are greater the more clustered the process is.

3.4 Implications on Modeling Daily Rainfall

Recently, several authors have had apparent success with the
application of time-continuous point process models to daily rainfall
observation sequences. In this chapter we‘have shown that the
practice of using continuous point process  models for discrete
observation sequences can give misleading resu]ts regardihg inferences
about over- and under-dispersion of the procéss and, therefore,
incorrect conclusions about the underlyingv-rainfa11 generating
mechanism. Moreover, continuous point procéss models cannot be used
for generation of daily rainfall sequences, which in many cases may be
the purpose of modeling rainfall in the first place.

A discrete point process modeling approach which uses the
Bernoulli process (the discrete analogue of the Poisson process) as
its basis for comparison has been suggested. Inferences about
clustering (over- and under-dispersion) in daily rainfall should,
therefore, be made by comparing the empirical properties of the
process to those of the Bernoulli and not to those of the Poisson, as
has usually been the practice.

In the next chapter, six daily rainfall time series from stations
throughout the U.S. are analyzed to give further insight into the
structure of daily rainfall occurrence processes. 0On the basis of the
preliminary theoretical analysis given in this chapter and the results
of the data analysis, the inappropriateness of the continuous point

process models for daily rainfall is conclusively demonstrated.



CHAPTER 4
AN EXPLORATION OF DAILY RAINFALL STRUCTURES

- The Third approached the animal,
And happening to take
The squirming trunk within his hands,
Thus boldly up and spake:
“I see," quoth he, "the Elephant
Is very like a Snake!! l

Previous studies on point-process modeling of daily rainfall
occurrences have been confined to the analysis of a single season
within which the process has been assumed 'homogeneods (i.e.,
stationary), and/or to the analysis of stations with similar
probabi]istié structures, i.e., stations from particular geographic.
regions. For example, Kavvas and Delleur (1975) analyzed seventeen
daily rainfall records, all from Indiana, and applied a homogenization
scheme to cope with trends and seasonality over the seven-year period
studied. A time varying function, A(t), was fit to the mean rate of
occurrence:

r

A(t) = exp lag + ayt + a3t2 +1‘£1 R; sin(wit + 0. (4.1)

Under the Poisson hypothesis, the original time increments, At, were
rescaled to AT = A(t)at, where AT is referred to as the intrinsic time
scale. In eq. (4.1), A G, and ay are parameters to model the long

term trends; Ri’ Wi and 91 are respectively the amplitude, frequency

42
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and phase angle of the i'th significant periodicity (Kavvas and
Delleur, 1975). It should be noted, however, that this hombgenization
scheme removes tﬁe nonstationarity only from the first moment for a
non-Poisson process, such as daily rainfall, and not from higher
-moments. In addition, long term trends and periodicities identified
from seven years of data cannot reasonably be extrapolated, and
therefore the model is limited to analysis, rather than generation of
synthetic sequences. Smith and Karr (1983) analyzed the summer season
(July to October) rainfall occurrences for seven stations in the
Potomac river basin. Twenty-seven years of daily rainfall occurrences
for Denver, Colorado, were analyzed by Ramirez-Rodriguez and Bras
(1982) for the period May 15 to September 11, and by Rodriguez-Iturbe
et. al. (1984) for the period May 15 to June 16.

A1l of these studies found that the daily rainfalf occurrence
process is overdispersed relative to the Poisson process (i.e., the
clustering of events is more random than in a Poisson process) and
these results have formed the basis for applications of continuous
cluster models, such as the Neyman-Scott model, discussed in Chapter
2. In this chapter, it will be shown, using six records of daily
precipitation from sites throughout the continental U.S., that: (1)
the daily rainfall occurrence process during many seasons of several
sites is actually underdispersed relative to the Poisson, and (2) more
importantly, as shown in Chapter 3, the proper basis for comparison is
the (discrete) Bernoulli process, with respect to which the rainfall
occurrence process is overdispersed. Moreover, the analysis presented
in this chapter shows that the structure of the daily precipitation

has strong seasonal ‘variations; in many cases the season-to-season
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variation in model structure (as opposed to model parameters) is as

significant as site-to-site climatic effects.

4.1 Selection, Description, and History of the Stations Analyzed

Six U.S. stations were selected for the analysis. These stations
are located in regions of different climatologic regimes and exhibit
widely different rainfall structures. Figure 4.1 shows the
distributions of the regional monthly depths and the location of the
stations. The station locations are sufficiently diverse to represent
the major climatic types within the continental U.S.

Additional information on the stations is given in Table 4.1.
The effect of the time of observation on the daily rainfall structures
is not thought to be a..serious problem. A different time of
observation might have resulted in a different daily rainfall
sequence, but the rainfa]llstat{stics (i.e., sequence of wet and dry
days) are not likely to be much different as 1qng as there is no
significant diurnal periodicity in rainfall. Of course, the division
of a storm into two when the observation time falls within its
duration is a problem, but this is 1nhéreﬁt to any discretized
sequence of a continuous process.

Major changes in the location of the recording gages, measurement
equipment, time of observation etc. could introduce artificial trends
in the recorded sequences. Therefore, an inspection of the history of
the analyzed stations was performed. All the changes reported in the
National Oceanic and Atmospheric Administration (NOAA) Climatological
Data Publications for the six stations of interest are shown in Table
4.2. Apart from a major change of 225 ft. in elevation for the

station at Roosevelt, Arizona, the other changes do not seem
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Table 4.1 Information on the Six Daily Rainfall Stations Analyzed

Station Station Years Elevation Observation
Name ID Analyzed Latitude Longitude (ft) Time
Snoqualmie Falls 45-7773 1948-1977 47 33 121 51 440 5 pm
Roosevelt 02-7281 1948-1977 . 33 40 111 09 2005 7 am
Austin, Ap 41-0428 1948-1977 30 18 97 42 597 midnight
Miami, Ap 08-5663 1949-1978 25 48 80 16 12 midnight
Philadelphia, Ap 36-6889 1948-1977 39 53 75 15 10 midnight
Denver, Ap 05-2220 1949-1978 39 46 104 52 5286 midnight

oY
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Table 4.2 History of the Six Rainfall Stations Analyzed

1. Snoqualmie Falls, Washington (ID: 45-7773)

February 1953: Latitude from 47° 31' to 47° 33!
February 1958: Elevation from 430 ft. to 440 ft.
April 1967: Observation time from 5pm to midnight

2. Roosevelt, Arizona (ID: 02-7281)

July 1954: Observation time from 7am to 8am
October 1961: Elevation from 2230 ft. to 2005 ft.
November 1979: Observation time from 8am to 7am

3. Austin WSO Ap., Texas (ID: 41-0428)

July 1961: Elevation from 615 ft. to 597 ft.
January 1970: Equipment from weighing to recording

4. Miami WSO Ap., Florida (ID: 08-5663)
June 1958: Latitude from 25° 49' to 25° 48"

Longitude from 80° 17' to 80° 16"
Elevation from 8 ft. to 7 ft.

May 1977: Longitude from 80° 16' to 80° 18"
Elevation from 7 ft. to 12 ft.

5. Philadelphia WSO Ap., Pennsylvania (ID: 36-6889)

October 1953: Elevation from 20 ft. to 13 ft. -
January 1958: Longitude from 75 14 to 75 15
Elevation from 13 ft. to 7 ft.
May 1965:  Elevation from 7 ft. to 5 ft.
April 1976: Elevation from 5 ft. to 10 ft.

6. Denver WSO Ap., Colorado (ID: 05-2220)

March 1981: Elevation from 5298 ft. to 5292 ft.
June 1963: Elevation from 5892 ft. to 8283 ft.
January 1970: Latitude from 39 65' to 39 g'

Longitude from 104~ 53' to 104~ 52'
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significant enough to have had major effects in the measured rainfall.
It should be noted that none of the six stations is located in a major
downtown metropolitan area so the direct effects of urbanization
should not have been significant.

To verify the stationarity of the records, a graphical trend
analysis on both the occurrence and amounts processes was conducted.
Figures A.7-A.12 of Appendix A show plots of the total number of rainy
days over a year and the total annual rainfall amounts as functions of
the year for all the six stations. No significant trends in either
the occurrence or the amounts process are apparent from this graphical
analysis. Formal statistical tests, such as Cramer's statistic
(Cramer, 1946) for a trend in the rate of occurrence of events, were
not applied since these tests require a Poisson hypothesis and their

performance is unknown when the true process is clustered.

4.2 Statistical Ana]ysis of Daily Rainfall Sequences

Thirty years of daily rainfall during the period 1948 tb 1977
(1949-1978 for Miami) were analyzed for the six stations shown in
Table 4.1. The statistical properties of the occurrence processes
(i.e., dependence structure and first- and second-order properties of
the non-zero precipitation sequences) were estimated from the daily
rainfall data. In addition, the cross-correlation functions of the
amounts with the preceding and following interarrival times were
estimated.

4.2.1 Seasonality of Daily Rainfall Sequences

The daily rainfall process is a non-stationary (periodic) process
for both the rate of occurrence of events and the daily amounts.

Therefore, a time-varying model 1is needed to accommodate this
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non-stationarity. Apart from the case of a simple Poisson model with
time-varying rate of occurrence, the generalization of other models,
such as Poisson cluster models and doubly stochastic Poisson models,
is in most cases mathematically intractable (Cox and Lewis, 1978;

Srinivasan, 1974; and others). Use of a homogenization scheme, such
as that of Kavvas and Delleur (1975), to transform the data prior to
the data analysis is rejected for two reasons: (1) homogenization
schemes are based on the Poisson hypothesis and therefore remove the
non-stationarity only from the first moment, and (2) the inverse

transformation is not valid for a non-Poisson process and therefore
the model cannot be used for generation purposes. Hence, it seems

that the best approach is to model the daily rainfall process by

seasons within which the process is assumed homogeneous. This
approach has been followed herein.

The transient effects caused by crossing from one season to the
next are neglected in this formulation. For the formation of the
daily rainfall occurrence series, a dry period (i.e., an uninterrupted
sequence of dry days) was assigned to the month or season in which it
started, regardless of the ending month or season. In other words, if
the last rainy day in July was on July 25, and the next rainy day was
on August 10, a dry period of 16 days was assigned to the month of
July. This is believed to be the most natural approach to handle the
transient effects from season to season. Other workers (e.g., Chang
et al., 1984) have used an abrupt transition between seasons; for the
above example, their approach would have assigned a dry sequence of 6

days to July and a dry sequence of 10 days to August.
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An important issue in modeling the non-homogeneous daily rainfall
structure is the selection of seasons. One approach would be to
consider each month as a separate season. However, grouping the data
into seasons of more than one month each is desirable for several
reasons: (1) the sample size of data for the estimation of the model
parameters is increased; (2) the representation of the process is more
parsimonious; (3) transient effects from season to season are reduced;
and (4) computational effort is reduced. An alternate approach is to
separate the year into seasons of equal length based on preliminary
statistical analysis of the average number of events per month,
average storm depths, and other summary statistics. However, the
proper selection of seasons depends not only on the number of events
in a given period, but also on the distribution of events within that
period. Sécond-order properties of ;ounts, which provide information
about the distribution of events, should therefore be used in season
identification procedures. A season discrimination methodology, based
on all the statistical properties of intervals and counts, will be
discussed and imp]emented in Chapter 7. The first step, however, is
the selection of a small time period (i.e., a few days or one month)
over which the process can be safely assumed homogeneous. The
statistical properties of the process within each of these small
periods are then analyzed and compared so that those periods with
similar statistical structures can be grouped together. Unless
predictable climatic changes are known to occur within a month, a
monthly period can usually be ‘assumed homogeneous. In this work, a

month by month statistical analysis has been carried out as a first
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step for all six stations. Based on the results of this analysis,
longer homogeneous periods (seasons) are identified in Chapter 7.

4.2.2 Second-Order Properties of Intervals and Counts

The sequence of interarrival times (times between events) is a
discrete positive valued sequence, whose dependence structure and
marginal pdf are to be identified. Table A.l gives the first five
autocorrelation coefficients of the interarrival time sequences for
the six stations. An approximate test for their significance results
from assuming that the autocorrelation coefficient, Pjs has a
N(u,OZ) = N(0, 1/(n-j)) distribution. Lewis et al. (1969) comment
that this test is applicable "provided that the marginal distribution
of intervals is not too highly skewed and that the number of events is
greater than 100." Using this test, the significance (at the 5
percent and 1 percent levels) of the autocorrelation coefficients has
been tested and the results are shown in Table A.1. Only a few
autocorrelation coefficients were significant. However, this test is
weak for skewed data and not directly appropriate for discrete time
series. Non-parametric tests, such as exponential-score product
moment statistics (Cox and Lewis, 1978), are particularly useful for
short and highly skewed series, but due to the problem of ties in the
series of interarrival times, they are difficult to apply.

Another way of testing independence of discrete data could be to
use tests for independence in Markov chains (Billingsley, 1961). For
example, Cox and Lewis (1978, p.177) present a case of a discrete
point process, where the standard test on the autocorrelation function

failed to indicate significant dependence in the series of intervals,

whereas significant dependencies were identified from a contingency
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table of conditional transition probabilities. For the daily rainfall
occurrences, informal tests have indicated significant autocorrelation
structures. These tests consist of comparing conditional
probabi]fties of transition to intervals of lengths %is i=1,2,...,
from intervals of a particular length 2, p(zi/z), i.e., p(1/1),
p(2/1), p(3/1), etc. These conditional probabilities should not. be
significantly different for an independent process; however, this was
not the case for the daily rainfall sequences. Therefore, in general
it was concluded that the daily rainfall occurrences at the stations
analyzed are not generated from an independent Bernoulli process.

Table A.2 shows the mean, variance, coefficient of variatioh, and
skewness coefficient of the interarrival times for all six stations.
The coefficient of variation is not always greater than one (recall
that values less than one imply a process underdispersed relative to
the Poisson). In particular, the winter months (October - February)
for‘Snoqua]mie Falls, the summer months (May, June) for Roosevelt, the
summer months (June - September) for Miami, and most of the months
(January - April, June, July, November, and December) for Philadelphia
have a coefficient of variation less than unity. Therefore, for all
these months, the Poisson cluster models and the renewal Cox models
are precluded since both have a coefficient of variation of intervals
greater than one.

Figures A.7-A.12 of Appendix A, show the empirical normalized
spectrum of counts, log-survivor, variance time curve and index of
dispersion functions on a monthly basis for the six stations studied.

On the same plots, the corresponding functions for a Poisson process
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have been plotted. Recall from Table 3.1 of Chapter 3 that the

corresponding functions for a Bernoulli process are as follows:

Normalized spectrum of
counts: Constant line of 1 for Poisson
(1-m) for Bernoulli

Log survivor function: Straight line with slope -m for Poisson
In(1-m) for Bernoulli

Variance time curve: Straight line with slope m for Poisson
m(1-m) for Bernoulli

Index of dispersion: Constant 1line of 1 for Poisson
(1-m) for Bernoulli

where m is the estimated rate of occurrences of the process. In view
of the above and the discussion in Chapter 3, interpretations of these
functions, i.e., clustering (over- or under-dispersion) relative to
the Poisson and Bernoulli processes is possible. Consider, for
example, the month of January for Snoqualmie Falls. The theory of
continuous point processes would infer that this process is
underdispersed relative to the Poisson, implying that events occur
more regqularly than in a Poisson process. However, these functions
show that the process is overdispersed relative to the Bernoulli
process, that is, rainfall events occur more randomly than in an
independent discrete point process. The above example illustrates the
inappropriateness of the continuous point process theory for modeling
the discrete daily rainfall occurrences.

4.2.3 Second-Order Properties of the Rainfall Amounts

The sequence of non-zero rainfall amounts is a continuous
positive time series whose autocorrelation structure and marginal pdf

are to be identified. Table A.3 gives the first five autocorrelation
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coefficients of these 5equences for all twelve months for the six
stations analyzed. Only a few were significantly different from zero,
for example, the first autocorrelation coefficient of the winter
months (December through April) for Snoqualmie Falls. It should be
noted that due to the non-normality of these sequences, the standard
ARMA-type models éannot be used. Depending on the marginal pdf's,
either a norma]izationvtransformation may be applied on the data and
standard ARMA models be used or the exponential ARMA (EARMA) or Gamma
AR (GAR) models of Lawrance and Lewis (1977) may be used directly.
More references:on the EARMA and GAR models have been given in Chapter
2. .

Table A.4 gives the statistics of the storm depth sequences. The
coefficient of variation is always greater than one, and varies from
1.07 to 1.30 for Snoqualmie Falls, 1.12 to 1.58 for Roosevelt, 1.36 to
1.78 for Austin, 1.30 to 2.23 for Miami, and 1.12 to 1.55 for
Philadelphia, and 1.07 to 1.88 for Denver.

4.2.4 Cross-Correlational Properties of Intervals and Amounts

The cross-correlation coefficients of the event rainfall amounts
with the interarrival times preceding and following that event are
given in Table A.4 for all six stations. Only Snoqualmie Falls has a
significant cross correlation between the daily rainfall amounts and
the immediately following interarrival time for the months of July
through January. Except for occasional exceptions, the other stations

do not show significant cross dependence structure.

4.3 Discussion on the Second-Order Properties of Intervals and Counts

In this section a more detailed discussion is given of the

statistical properties shown in Figures A.7-A.12 (i.e., spectrum of
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coUnts, log-survivor function, variance time curve and index of
dispersion).;.yge last two functions are straightforward. The only
point to be made is that their values at high lags (i.e., long
interval lengths) are of interest, since these values will better
depict the deviations of the process from an indepeﬁdent (Poisson or
BernoulIi) process. For small time intervals (i.e., a few days) many
processes appear to be independent (local independence). However, the
estimation of these functions should not extend to more than about
20-25 percent of the length, TO,}gf the observed series to avoid
excessive sampling variability. Cox and Lewis (1978, p. 116) discuss
several estimators for the variance time curve, as well as sampling
properties of these estimators.

The log survivor function hés been plotted in discrete time to
illustrate the discreteness of the interarrival times. For example,
for an interarrival time, x = Xgs multiple points (triangles) are
shown on the plot to illustrate the number of ties, i.e., number of
intervals of length Xg To interpret the log-survivor function, i.e.,
concavity or convexity and slope, only the lowermost points
(triangles) at each entry are needed. Also, the full length of
interarrival times has been retained to illustrate extreme situations.
These extreme points, however, are less reliable and should be given
less weight when the log-survivor function is used for model fitting.

The spectrum of counts needs special attention because of the
discreteness of the data. For a continuous point process where,
theoretically at least, events can occur arbitrarily close to each
other, the spectrum of counts extends to infinite frequencies w > 0.

For the daily rainfall occurrences, however, events cannot occur
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closer than one day apart and this introduces a cutoff freﬁuency
(Nyquist frequency), wy =, or equiVa]ent]y fN =1/2 days'l, The
value plotted in the abscissa of the spectrum of counts plots is
called the frequency factor and is defined as j = wl/2m where T is the
total length of observation. Therefore, the frequency factor
corresponding to the Nyquist frequency is jN = T/2. This is the
maximum value over which the spectrum of counts should be computed.
Guttorp and Thompson (1983) discuss aliasing of the spectrum of counts
estimated from discrete sampled counting processes. They show that
this can be severe, especially when the spectrum of counts does not
decrease rapidly with respect to the sampling interval. For the daily
rainfall occurrences, the estiméted spectrum of counts began rising at
high frequencies, apparently due to aliasing, but the effects of
aliasing introduced into lower freéuencies cannot be easily assessed.

Lewis (1970) gives a useful discussion of the theory, computation
and application of thé spectrum of counts. For a discrete point
process he proposes a different estimator for the spectrum of counts.
This estimator is based on the Fourier transform of the
autocorrelation function of the binary series of zeros and ones. The
reader is also referred to Bartlett (1963) for a lengthy discussion of
the spectral analysis of point processes. Sampling properties of the
spectral estimates are also given in the above papers and in Cox and
Lewis (1978, p.126).

Notice that the normalized spectra of counts for most of the
months decrease with increasing frequency to a value less than one and
approximately equal to 1-x, where X is the estimated rate of

occurrence. For the months that have coefficients of variation less
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than one, the spectrum of counts is either approximately constant
(indicating an independent Bernoulli process) or increases slightly
for low frequencies and then decreases. Such spectra of counts are
usually consistent with variance time curves below that of the Poisson
process. This indicates underdispersion relative to Poisson.
However, most of these structures are overdispersed relative to the
Bernoulli, since the variance time curve of the Bernoulli process has
a slope equal to A(1-1) < A

It should be noted that inferences about clustering require only
the shape of the spectrum (decreasing or constant, etc.) and not the
absolute values. In that sense, the clustering found in daily
rainfall occurrences is still valid, the only change is that
clustering should be assessed relative to a discrete independent
Bgrnqql]i‘point process rather than the continuous Poisson.

4.4 Need for a Discrete Clustered Point Process Model for Daily
) Rainfall

This chaptef, together with Chapter 3, has demonstrated that
continuous point process models are not appropriate for modeling daily
rainfall sequences. In addition, using the proposed discrete-time
point process methodology, it has been shown that, indeed, the daily
rainfall process is a clustered overdispersed process i.e., the
rainfall events tend to occur more randomly than.in an independent
arrival process. Therefore, the need for discrete clustered point
process models for daily rainfall sequences has become apparent. The

development of such a model is the subject of the next chapter.



CHAPTER 5
DEVELOPMENT OF DISCRETE POINT PROCESS MODELS FOR THE DAILY
RAINFALL OCCURRENCES

The Fourth reached out an eager hand,
And felt about the knee.

“"What most this wondrous beast is like
Is mighty plain," quoth he:

"'Tis clear enough the Elephant
Is very like a tree!"

In this chapter, a discrete clustered point process model is
defined and developed. The model belongs to the general class of
Markov renewal models which were introduced by Smith (1955), and later
stuJiédvb;"Pyke k1961 a,b) and Cox (1963). An extensive bibliography
of theoretical developments and applications of the Markov renewal
models is given by Teugels (1976). 1In the wprds of Cinlar (1975), a
Markov renewal process can be pictured as follows: "Think of a
particle which moves from one state to another with random sojourn
times in between; the successive states visited form a Markov chain,
and a sojourn time has a distribution which depends on the state being
visited as well as the next state to be entered" (¢inlar, 1975, p.
313). In the most general Markov renewal process with k states, it is
assumed that there are k2 different type of intervals (sojourn times),
independently distributed with probability distributions fij(x)

(i,d =1, ..., k), which are sampled in accordance with a Markov chain

with transition probability matrix P. Thus, if the Markov chain has
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made a transition to state i and the next transition is to state j, an
event of probability pij’ then the time between these transitions has

J.(x).

Markov renewal theory combines elements of Markov chain theory

probability distribution fi

and renewal theory to give more general non-Markovian, non-renewal
processes. It will be seen later that Markov chains, Markov
processes, renewal processes and alternating renewal processes are all
special cases of a general Markov renewal process. It should be made
clear that the times between events are not independent as the term
renewal implies, but instead are conditionally independent. This
conditional independence gives a limited Markov property to the
process, in the sense that the future of the process is independent of
the past given the present state, provided that the pr;sent is an
occurrence of an eventf The above statement is an informal definition
of éﬁe Mé}kév rénewéi préééss. A formal definition follows:
DEFINITION: For éach neN, let a random variable Sn take values in a
countable set of states £ = {1,2, ...} , and a random variable Tn take
values in R, = [0,+=) such that 0 = TO <T, T, < vee o The

1= 2=

stochastic process (S,T) = {Sn, T n N} is said to be a Markov

n
renewal process with state space £ provided that

P{S 3 T

n b
- T <t \ sn}

el =3 Tep = Tp €t Sgs vees S , T

P{Sn+1 =j,T

0>

n+l

for all ne N , jeb , and teR, (Cinlar, 1975, p. 313).
Many authors (for example, Cox and Lewis, 1978; Cox and Isham,

1980) refer to the Markov renewal processes as semi-Markov processes,
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while others make a distinction between the two terms and reserve the
term semi-Markov for the state of the process as a function of time
(see for example Cinlar, 1975, p. 316). In this work, the terms
Markov renewal and semi-Markov refer to the same process (defined
above) and are used interchangeably, with preference on the term
semi-Markov.

We will consider here only the case where there are two types of
intervals i.e., a two-state semi-Markov process. In the next section
the definition and statistical properties of a general two-state
semi-Markov process aFe presented. In section 5.2, a specific
discrete semi-Markov model for the daily rainfall occurrences is

defined and its statistical properties derived.

5.1 Statistical Properties of a General Two-State Semi-Markov Model
In a two-state semi-Markov model it is assumed that there are two
types of intervals sampled from two different .brobabi1ity
distributions, fl(x) and fz(x), according to a probability transition

matrix:

In equation (5.1),
a; = prob(type 1 interval —type 1 interval),

a, = prob(type 2 interval — type 2 interval),

or alternatively, given that the interval Xi_1 has the pdf fl(x), the
probability that X; has the pdf fz(x) is 1-a1, etc. Notice that if
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all the intervals take the same constant value with probability one,
then a one-state semi-Markov model reduces to a Markov chain. In
other words, the semi-Markov process can be viewed és a generalization
of a Markov chain process in which the time spent in a particular
state between transitions is no longer geometrically distributed.

Let the row vector B(") = (pl(n),pz(n)) denote the probability
that the n'th interval will be of type 1 or type 2 when the initial
probability of the first interval being of type 1 or type 2 1is given

by 2(0) = (p, () (0

2Po It can be easily shown (Cox and Miller,

1965) that
(5.2)

Thus, given the initial probabilities B‘o) and the transition
probability matrix P, the probability that the n'th interval will be
of type 1 or type 2 can be found. The matrix Bn is called the n-step
transition probability matrix, and the probabilities pl(i), pz(i) are
called interval-type probabilities (in contrast to the state
occupation probabilities of a Markov chain process).

After a sufficiently long period of time, the system settles down
to a condition of statistical equilibrium in which the interval-type
probabilities are independent of the initial conditions. Then, there
is an equilibrium probability distribution e = (el,ez), which,

letting n - = in (5.2), satisfies
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The solution of (5.3) with respect to the row vector e, subject to the
constraint e1+e2 =1, e e242 0, gives the equilibrium interval-type
probabilities associated with the transition probability matrix P of

(5.1) as

(e.g., Cox and Miller, 1965). For instance, the probability e, is the

1
unconditional probability that an arbitrary interval will be of type

1. Note that
e t e, = 1. (5.5)

From the theory of Markov chains we know that
e, e e, -e e, e
p(m [ : 2] + (afaz-l)"[ : 2]—»[1 2] ,
e e, -e; & e &
and therefore from (5.2)

_R.(n) ___'_B(O)[e]_ 32] - (el:ez) = e,
€1 &

so that the system tends to a statistical equilibrium with a rate

n

depending on the value of (a1 ta, - 1) which tends to zero as n
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increases (Cox and Miller, 1965). The value of (a1 ta, - 1) is less
than unity in modulus, except in the trivial cases (i) a; +a, = 0,
i.e., a = 0, a, = 0 in which the system alternates deterministically
between the two states and (if the initial state is given the behavior
of the system is non-random), and (ii) a * A, = 2, i.e., a, = 1, a, =
1 in which the systgm remains forever in its initial state. For 3 +
a, = 1 the process is a renewal process, and the transition
probabilities of the Markov chain are equal to the equilibrium
probabilities, i.e., a = g and a, = &,.

5.1.1 Interval Properties

The pdf of the intervals of the process is given as
f(x) = elfl(x) + e2f2(x), (5.6)
where e and e, are the equilibrium probabilities given in (5.4). It

is easy to show that the mean, variance, and survivor function of the

interarrival times x are given as

E(X) = euy t+ ey, (5.7a)
var(X) = elol2 + e2022 + e1ez(”1'“2)2’ (5.7b)
R(x) = elRl(X) + eZRz(x), (5.7¢)
2

where His 057 i =1,2, are the means and variances, respectively, and

i
the subscripts indicate the types of the intervals. The
autocovariance function of a two-state semi-Markov process can be

shown to be
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1,2,000, (5.8)

-
=~
n

_ 2
Cov(X X1+k) = (ul-uz) e 8,8

1"
where

g = 3, + a, - 1 | (5.8a)
and therefore the autocorrelation function can be written as

i (uup)° ey & o
Py = 7 7 78 | (5.9)
@101 + €0y + ejey(uy-uy)

= CBk,

in which

2
(1-up)" epe,

Cc = 2

5 5 (5.9a)
e 0" + ey0," + e1e2(“1'“2)

Consequently, the spectral density function of the intervals, given in

terms of Py is

1 ®
f+(w) =—1{1+2c¢ kaOS(kw)} , 0w, (5.10)
™ k=1

which takes the form

1 BCoOSw - B
flw) = — {1+ 2c > b, (5.11)
T 1 + B~ - 2Bcosw
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where ¢ is defined in (5.9a) and 8 in (5.8a).!

Notice that the autocovariance function of thé jntegva1s of a
two-state semi-Markov model and therefore the power spectrum depend on
the pdf's fl(x) and fz(x) only through their means and variances.
This can provide a helpful first check for the appropriateness of a
semi-Markov structure for a series of events, since no assumption
about the pdf's of the intervals is required.

5.1.2 Counts Properties

Cox (1963) first showed that the Laplace transform of the
conditional intensity function of a two-state semi-Markov model is

given as

1-a,f *(s) - a,f *(s) - (1 -a

2f> 1" 3p)

where fl*(s) and fz*(s) are thelLap1ace transforms of the pdf's fl(x)
and fz(x), respectively. Explicit formulae for h(t) exist whenever
the inversion of (5.12) is possible. Given h(t), all the other
properties of counts can be obtained from the following general

relationships:

7,.(T) = mCh(t) - m], (5.13)
t

H(t) = [h(<) dt, (5.14)
0

* m 2h*(s)m 2m2

V (s) = 5+ 5 - (5.15)
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m * . * .
S g (w) =—[1 + h (Hw) +h (-iw)], (5.16)
m
(see Cox and Lewis, 1978, for proofs). In the above equations, the

rate of occurrence, m, is given in terms of the transition

probabilities as

5.2 A Discrete Semi-Markov Model for the Daily Rainfall QOccurrences

Daily rainfall occurrences are the result of the interaction of
several rainfall generating mechanisms. For example, the first rainy
day in a wet period may be the result of a frontal storm passing over
a region, whereas subsequent rainy days in the same wet period may be
just aftereffects (secondary events). In that sense, times between
events may come from different probability distributions, for
instance, one with a smaller coefficient of variation for the
sécondary events, and one with a large coefficient of variation for
the primary events. The sequence of event types is governed by
transition probabilities, with higher probabilities of having
secondary events after a primary event or after a small number of
secondary events.

In view of this, a two-state semi-Markov model is proposed for
the daily rainfall occurrences, in which the times between events are
sampled from two different geometric distributions with parameters P
and Py according to a Markov chain with, the transition probability

matrix P of (5.1). The notation SMGG will be used to denote a
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two-state semi-Markov model (SM) with both type 1 and type 2
interarrival times having geometric distributions (GG). The
statistical properties of intervals and counts for a SMGG process are
derived below.

Let fl(x) and fz(x), defined as

Al Sk - k), fori=1,2 , (5.18)

f.(x) = 2 pi(l - Py

k=1

Qe the continuous representations of the geometric probability mass
functions (pmf) of the interarrival times. Notice that fl(x) and
f2(x) are probability density functions (pdf). The statistical
properties of intervals and counts of a SMGG process are given in the

following propositions.

PROPOSITION 1: The moment generating function of the interarrival

times of a SMGG process is given as

1 pleS p2eS
u(s) = ————L(1-a)) ———— + (1-a) . (5.19)
(2-a1-a2) 1-(1-p1)e 1-(1-p2)e
Moments of the interarrival times are obtained from
) A uls)
E(X?) = (-1) < (5.20)
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Proof: The proof follows immediately from (5.6) by noting that the
moment generating function of a geometric distribution with parameter
p, is given as
pe®
u(s) = W . s
1-(1-p)e

Corollaries: The mean interarrival time of a SMGG process is

E(X) = — [ + 1. (5.21)

1 1-p 1-p, (1-a1)(1-a2) 1 1,
var(X) = (1-a,)—+(1-a, )+ (— - —)7]
(2-2,-a,) Py Ppm (2-2y-a;) P P

R(x) = ———— [(1-a,) (1-p))" + (1-2))(1-p,) "], x=1,2,. ..
(5.23)

Equation (5.23) follows immediately from (5.7c) by noting that the

survivor function of a geometric distribution is given as (1-p)x.
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PROPOSITION 2: The autocorrelation function, pk,'of the interarrival

times of a SMGG process is given as
= c(a,+a,-1)" (5.24)
Pk 17974 y
where

(1-a,)(1-3,) (py-p,)°

c:
2 2 2°
2-a;-a, (1-a,) (1-py)py~+(1-2. ) (1-py) py "+(1-a7) (1-a5) (p;-py)
(5.25)
Proof: Egq. (5.25) follows from (5.9) after substituting the means and
variances of the two geometric distributions as functions of the

parameters p, and Pp-

Note on terminology: For a discrete point process, we introduce the

term conditional probabilities of occurrence for the discrete sequence
of conditional probabilities {hk}, k = 1,2,..., analogously to the
conditional intensity function h(t) of a continuous point process.

The relationship between h(t) and hk is simply
h(t) = ¢ hy s(t-k), (5.25)

where &(+) is the Dirac delta function. The interpretation of {hk}
remains the same as in the continuous case; values of hk greater than
the constant (unconditional) probability of occurrence m imply a

greater likelihood of having an event at time (t+k) due to an event at
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time t. The conditional probability of occurrence sequence {hk}, from
which all the other statistical properties of the counting process can

be derived, is given in the following proposition.

PROPOSITION 3: The conditional probability of occurrence sequence {hk}

of a SMGG process is given as

hk =m+ AW , K =1,2,..., (5.26)
where

A=ep +e,p, -m (5.27)
and

W = l—pl(l-al)-pz(l-az). , (5f28)

The equilibrium probabilities appearing in (5.27) are given in (5.4)
and the mean intensity of the process, m, (i.e., the unconditional
probability of occurrence of an event), can be given in terms of the
transition probabilities and the parameters of the geometric

distributions as

P, p,(2-a;-a,)
m = 172 1 72 ) (5.29)
pl(l-a1)+p2(1-a2)
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’ *
Proof: The Laplace transform, h(s), of the intensity function, h(t),

. *
is obtained by substituting in (5.12) the expressions for fi(s),
i =1,2 , which are the Laplace transforms of fi(x), i=1,2, defined

in (5.18), i.e.,

* p.e-S
fi(s) = ———. (5.30)
1-(1-pi)e

*
After lengthly algebraic manipulations, h(s) is inverted to give h(t)
whose discrete analogue is hk of (5.26). More details on this

derivation are given in Appendix B.

REMARK 1: The conditional intensity funcfion h(t) of a SMGG process
tends monotonically to the mean rate of occurrence m, as t becomes
large. Specifically, h(t) decreases geometrically to the constant
intensity m, since A can be shown to be positive and 0 < W < 1. This
implies that the semi-Markov process exhibits clustering. Although
the shape of the conditional intensity function is only indicative of
the presence, but not the type, of clustering, the fact that the
coefficient of variation of the interarrival times can take values
greater or less than one (see equations 5.21 and 5.22) suggests that
the semi-Markov process can accommodate rainfall occurrence structures
which the Neyman-Scott process and doubly stochastic Poisson processes

cannot.

COROLLARY 1: The expected number of events in an interval of length

t, given that the interval starts with an event, is given as
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H(t) =mt + A I wk
k=1
Wwt-1
=mt + AW — , t=1,2,..., (5.32)
W-1

where the parameters m, A and W have been defined in (5.29), (5.27),

and (5.28), respectively, and t is referring to discrete time units.

Proof of Corollary 1: The mean function H(t) of a continuous point
process is defined as the integral of the conditional intensity

function h(t) in (5.14). For discrete point process we can write by

analogy,

(5.33)

from which (5.32) follows immediately.

COROLLARY 2: The variance of the number of events in an interval of

length t, V(t), where the interval starts with an event, is given as

2 9 t-1
V(t) =mt - m“t° + 2m £ (t-k)h

) (5.34)
k=1 k

where hk is given by (5.26).
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*
Proof of Corollary 2: The Laplace transform V (s) of the variance

time curve is given in terms of the Laplace transform of the
conditional intensity function by (5.15). By taking inverse Laplace

transforms:

1 1 h*
v(t) = n o) - L) zmi*[;%,
S S S

and therefore

to
- 2,2
V(t) = mt - m“t% + 2m ff h{t)dtdo s
.00

which in the discrete domain can be written as

2,2 Lo
V(t) =mt -=m"t"+2m ¢ hk
i=1 k=1
t-1
=mt - m2t2 +2m I (t-k)hk.
k=1

This completes the proof of Corollary 2.

PROPOSITION 4: The spectrum of counts, g, (w), of a SMGG process is

given as
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m W - cosw
gy (w) = — [1 -m- 2A 51 (5.35)
m A 1 - 2Wcosw + W

where m, A, and W have been defined previously.

Proof: Eq. (5.35) is derived by substituting into (5.16) the

expression of h*(s) from (5.12) and performing lengthy algebraic

*

*
manipulations. Expression of f, (s) and f, (s) needed in (5.12) are

obtained from (5.30).

5.3 Discussion

In this chapter a discrete semi-Markov model was introduced and
its statistical properties derived. [t was seen that the model has
considerable flexibility (see Remark 1) in the sense that it can model
structures with different types of}c1ustering. It remains to explore
parameter estimation methods, and to apply the model to observed daily
precipitétion series. In the next chapter, methods for fitting the

model are studied.



'CHAPTER 6
FITTING THE DISCRETE SEMI-MARKQOV MODEL

The Fifth who chanced to touch the ear,
Said: "E'en the blindest man

Can tell what this resembles most;
Deny the fact who can,

This marvel of an Elephant
Is very like a fan!"

The discrete semi-Markov model developed in Chapter 5 has four
parameters: 315 3, Py and Py- These parameters are: 3, the
transition probability from type 1 to type 1 interval; 355 the
transition probability from type 2 to type 2 interval; P1s the
parameter'Of the geométric distribution of the type 1 intervals; and
Py the parameter of the geometric distribution of the type 2
intervals. Note that the type 1 and type 2 intervals are in general
indistinguishable from each other by direct observation of the series
of daily rainfall events. Thus, the transition probabilities 3, and
3, cannot be estimated directly from the data, but instead have to be
estimated together with the parameters of the two geometric
distributions, P and Py- The estimation methods studied are the
method of moments (MOM) and two approximate maximum 1ikelihood (ML)

estimation methods.

6.1 Method of Moments

The first three moments and the lag-one covariance of the

interarrival times of the semi-Markov model SMGG are given as

75
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functions of the parameters a5 35, Py and P, as follows:

1 (1-a,)(2-p;)  (1l-a,)(2-p,)

E(x8) = 2 IS 1 277 (6.2)
2-a)-3, Py Py

1 1- - pit+6 1- - p,+6

fd) = [( a,)(p;"- pyt6) . (1-a;)(p,"- Py )]’ (6.3)
2-3,-3, Py P
: ( ) )( : : )2( ) (6.4)
c, = 1-a,)(1l-a,)(— - —) (a,+a,-1 6.4
1 (2-a1-a2)2 1 2 Py °, 1792

The above four equations can be numerically solved for 35 3, Pys and
Py using, for instance, the Newton-Raphson method. Since all four
parameters are probabilities, they must lie inside the interval [0,1].
Therefore, a transformation was applied to these parameters to
unconstrain them, and the search carried out in the unconstrained
space. Denoting by y the real parameter, y<=(2,u), and by y' the
unconstrained parameter, y'e(-=,+=), the following transformation was
used:

%

y =2+ (u-2) sin“(y") (6.5)

where ¢ and u are the lower and upper bounds on the parameters. The
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values of 2 = 0.01 and u = 0.99 were used tb avoid numerical problems
at the bounds.

Due to the long tail of the probability distribution of the
interarrival times, the use of the third moment in the estimation is
not desirable. A modified method of moments estimation which involves
the median instead of the third moment; was»tested. The median X of
the pdf of the interarrival times of the semi-Markov model SMGG, is

given by the following equation:

1 X X
_ [(1-a2)(1-p1) + (1-ai)(1-p2) ] = 0.5. (6.6)
(2-a1-a2) ’

Modified method of moments estimates were then obtained by simply

substituting (6.6) for (6.3).

6.2 Approximate Maximum Likelihood Estimates (MLE)

Let Ii’ i=1,2,... n, denote the type of the ith interval in one
realization of length n of the point process. Then, Iig{I,II}, where
I stands for type 1 interval and II for type 2 interval. Let I also
denote the vector (Il’ Iz, cees In)T, that is, the vector of the types
of intervals of all n interarrival times of the given realization.
The general form of the likelihood function of a two-state semi-Markov

model can be expressed as:

L(x) =

I— 1
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where the summation is over all possible vectors I, i.e., over all
possible vectors of length n formed by the two elements I and II.

Observe in the above expressiohlthatlthe term (A) depends only on the
vector of interarrival times x = (xl, Xos =oes xn)T and the parameters
of the two geometric distributions P> and Pos while the second term
(B) depends only on the transition probabilities, 2, and 3, of the
‘Markov chain ofbintervals, i;e.,

L(x) = f(x,py.p,) fag,a5) (6.8

)
L
where f(-) denotes function of (-). It becomes apparent from fé.?)
that the likelihood function of the semi-Markov model cannot be
expressed in a tractable closed form as function of the parameters 3,
3, Pps p2~and the vector of observations x. Although numericat
evaluation of the likelihood function is possible, it is infeasible
for typical sample sizes of several hundred values, since it requires
double summations over all possible vectors I.

In view of the above, an approximate maximum Tikelihood
estimation procedure has been developed. This procedure consists of
two steps. The first step involves the maximum 1likelihood estimation
of s Pys and P> where & is the equilibrium probability of the

Markov chain of intervals. Given the equilibrium probability e,, the

1’
transition probabilities, 3, and a5, of the Markov chain of intervals
are subsequently obtained. It 1is understood that although the
parameters Py and p, are exact maximum likelihood estimates, the

parameters 3 and a, are not and thus the method is termed approximate

maximum likelihood. Details of this method follow.
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The probability mass function (pmf) of the interarrival times of

the semi-Markov model is given as:

x-1 )X‘l

p(x) = e;py(1-p;)™ " + (1-e1)p,(1-p, (6.9)
where e is the equilibrium probability of the Markov chain of
intervals, i.e., the unconditional  probability of any interval being

of type 1. The log-likelihood function L'(x) is

n n
L0 = LG0T = 10 T (x0T = E Tna(x;)]
i= i=
(6.10)
n xi-l x1-1
= E ]n[elpl(l-pl) + (1'e1)p2(1‘p2) ]

Parameter estimates for > Py and P, can be obtained by maximizing
L'(x), for instance, using the simplex method of Nelder and Mead
(1965). The optimization is carried out in the unconstrained space
using again the transformation (6.5). Estimates of the parameters a;
and a, can subsequently be obtained by one of the two methods
described below.

6.2.1 Estimation of the Transition Probabilities Using the First
Autocorrelation Coefficient

The first autocorrelation coefficient of the semi-Markov model is

given as

r, = c(a,1 +a, - 1), (6.11)
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where

2
e, (1-e.)(1/p; - 1/p,)
¢ = 1 1 1 2 50 (6.12)
1-p1 1-p2 1 1
e + (1-e,) + e (l-e)(— - —)
12 17 27 5
P1 P2 P P

and e is the equilibrium probability of the Markov chain, given in

terms of the transition probabilities as
e = (1-a,)/(2-2;-a,). (6.13)

Equations (6.11) and (6.13) can be solved for a; and a,, giving

3, (l-el)(rl/c +°1) + 2e1 -1

and : ' (6.14)

a, el(rl/c +1) - 2e1 + 1.
From the above two equations it can be shown that for acceptable
parameter estimates, that is, 0 < a;, 2 < 1, the following inequality

must hold:

-min( , ) < < 1. (6.15)
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Note that the value min(el/(l-el) R (l-el)/el) = min (el/ez, e2/e1)
corresponds to the ratio of the smallest to the largest equilibrium
probability, a value always less than 1. The inequality (6.15),
therefore, is consistent with the requirement that the autocorrelation

function of the process, given as
(6.16)

is less than one in absolute value. Note also that the equal signs in
(6.15) are not permitted since from (6.11) they can be shown to
correspond to the following trivial cases. The right hand side equal
sign implies a *ta, = 2, and therefore a = 1 and a, = 1, in which
case the system remains forever in the initial state. The left hand
side equal sign implies 3 = 0 and a, = 0, in which case the system
a{ternates deterministically between the two states and given the
initial state, the behavior of the system is non-random.

Therefore, estimates for 3, and 2, cannot be obtained by thg
above method, unless the ratio of the estimated first autocorrelation
coefficient " to the value c, satisfies (6.15). The value of ¢ is
obtained from (6.12) using the values of 1> Pys Py estimated from the
approximate maximum likelihood function. It was found that (6.15)’was
not satisfied in general, and therefore the transition probabilities

cannot always be estimated using this method.

6.2.2. Bayesian Approach to Estimation of the Transition
Probabilities

Let E1.q » B2 denote the conditional probabilities of an

interval having length X given that it is of type 1 (I) or type 2
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(11), respectively. In view of the geometric distributions for the

two types of intervals, these probabilities can be written as

xi-l

gl,i p(X=inI) = Pl(l'Pl)
and (6.17)

xi-l

£y

1 p(x=xi|II) = pz(l'pz)

The conditional probabilities of an interval being of type 1 or type 2

given that it has length x=x, , i.e., p(I|x=x1) R p(II\x=xi) can now

be determined. Using Bayes theorem

p(1, x=x) p(1) p(x=x111) e,

p(1[x=x;) = - - LT (5.18)
p(x=x;) p(x=x;) p(x=x;)
and analogously,
et, . (l-e.)&, .
p(I1|xex;) = 28l - L 2 (6.19)

p(x=x;) = plx=x;)

where 15 and 62 ; are given in (6.17) as functions of the parameters

Py and Py and p(x=xi) is given from (6.9) for X=X 5o

The transition probabilities 3 and a, can be estimated as

: n
(1% A Tlxiyy) /3 p(LIx)

a, = p(I|1) = ¢
1 - i=1 i



where p(I[xi), p(I[x;,,) are given in (6.18), and p(x=x;), p(x=x,,)

in (6.9).

6.3 Monte Carlo Tests of Estimators

The fitting methods considered are basically variations of method
of moments (MOM) and Maximum Likelihood (ML) estimation methods. 1In
particular, the following five methods were tested for efficiency and
consistency in estimation:

ML: MOM on E(X), E(x?), E(x%)

, E(X7) and Cov(l) ~ a;, Ay, Pps Py

M2: MOM on E(X), E(XZ)’ median and Cov(l) - a1, a5, Pys Py

) 3y : ~
M3: MOM on E(X), E(Xz), E(X7) s Py Pos coupled with reovags
M4: ML - 15 Pys Pos coupled with rLT s

M5: ML ~ s Pys Pos Bayesian approach - a;, a, .

Recall from Chapter 5 that depending on whether a + >1 (or
< 1), the first and all the odd-lagged autocorrelation coefficients of
the interarrival times become positive (or negative). Most of the
daily "rainfall structures analyzed exhibited a positive
aﬁtocorrelation structure of intervals, although few significant
lag-one autocorrelation coefficients were present as, for example, for
the station of Denver. In view of the above, Monte Carlo tests of

estimators were performed for sets of parameter values for a; and 3,
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such as both of the above model structures are covered.

The first set of parameters tested was { a = 0.4, 3, = 0.3,
P 0.8, P, = 0.2 } . These parameter values correspond to an
occurrence process with a mean interarrival time of 2.98 days, a
standard deviation of 3.59 days (coefficient of variation c, = 1.2), a
skewness coefficient equal to 3.01, and a first autocorrelation
coefficient r= -0.08. The conditional intensity function for these
parameters takes the form hk = 0.335 + O.186(0.38)k, which indicates a
clustering of counts. Such statistics are representative of daily
rainfall occurrence processes, as can be seen from Table A.2 of
Appendix A. Five hundred synthetic sequences of 50, 100, 200, 500 and
800 events were generated from a semi-Markov model with the above
parameters. The implied rate of occurrence of the process is

m=1/2.98 = 0.34 days™"

, and therefore these sequences correspond to
approximately 150, 300, 600, 1500, andf2400 days of observation,
respectively.

The five methods (M1, M2, M3, M4, and M5) discussed previously
were fitted to all synthetic sequences. The bias and standard
deviation of the estimated parameters are given in Table 6.1. As was
expected, the consistency (bias) and efficiency (variability) of the
estimators improve with the number of events available for the
estimation. The best estimators in terms of root mean square error
(RMSE = ((bias)2 + variance)l/z) were methods M4 and M5 which are the
two approximate maximum likelihood estimation methods using the first
autocorrelation coefficient and a Bayesian approach, respectively.

Method M4 has a low bias but a large variance as compared to method M5

which has a larger bias but a much smaller variance for the parameters
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a, and 3. It is also observed from Table 6.1 that in terms of RMSE

1
method M4 is the best for large sample sizes (larger than 500 events)
whereas method M5 is the best for small sample sizes. This was
expected given that method M4 involves an estimate of the first
autocorrelation coefficient of the intervals. In addition, method M5
always gives a fit, whereas method M4 failed in a number of cases.
The second set of parameters tested was {a1 = 0.9, a, = 0.6,

P = 0.8, Py = 0.4} . These parameters correspond to an occurrence
process with mean interarrival time 1.5 days (mean rate of occurrence,
h

m = 0.667 days ~), a standard deviation of 1.11 days (coefficient of

variation c, = 0.74), and skewness coefficient ¢ = 4.02. The
autocorrelapion function of the process is re = rl(a1 + 3, - l)k'l,
where r - 0.1, and'(a1 + 3, - 1) = 0.5, and the conditional intensity
function is h_ = 0.667 + 0.05(0.76)%. These functions indicate a
strong dependence stucture in the intervals but a'felatively small
clustering in the counts. The results of the estimation methods are
shown in Table 6.2. Method M5 performed poorly, whereas method Md
gave satisfactory parameter estimates. ~These results suggest that
method M4 may perform better when a strong autocorrelation in the
interarrival times is present, and method M5 when the clustering of
counts is the more significant element of dependence.

The effect of the first autocorrelation coefficient of the
process on the consistency and efficiency of the estimators a5 3, Py

and P, was also tested. For the discussion that follows, the

convention is made that e corresponds to the geometric distribution



Table 6.1 Monte Carlo Results on Estimators foria Semi-Markov Model with Parameters
a, = 0.4, a, = 0.3, Py = 0.8, and Py = 0.2.

Rias Standard Deviation

N m m' Method a 2, P ' Py a, a, Py P,

50 500 68 Ml 0.0674 -0.0332 0.0172 0.0018 0.2162 0.1926 0.1007 0.0450
129 M2 0.0790 0.0204 -0.0674 0.0066 0.2492 0.2287 0.1060 0.0485
159, M3 0.1134 0.0176  -0.0044  -0.0144 0.2729 0.2433 0.2062 0.0677
318 M4 0.0261 0.0255 0.0207 0.0031 0.2346 0.1237 0.1237 0.0518
500 M5 0.1029 0.1258 0.0122 0.q080 0.1546 0.1517 0.1330 0.0582

100 500 122 Ml 0.0091 -0.0292 0.0252 -0.0020 0.1009 0.1813 0.1177 0.0317
215 M2 0.0424 -0.0214 -0.0673 0.0017 0.2061 0.1766 0.0878 0.0360
238 M3 0.0433 0.0385 0.0182 -0.0049 0.2506 0.2369 0.1838 0.0509
412 M4 0.0004 -0.0047 0.0124 0.0016 0.1988 0.1745 0.1012 0.0355
500 M5 0.1023 0.1315 0.0138 0.0055 0.1204 0.1154 0.1072 0.0412

|

200 500 188 M1 0.0128 -0.0092 0.0173 -0.0011 0.1634 0.1227 0.1118 0.0259
375 M2 0.0658 -0.0614 -0.0813 -0.0059 0.1684 0.1510 0.0706 0.0273
291 M3 0.0317 0.0053 -0.0091 -0.0090 0.2152 0.1776 0.1845 0.0402
482 M4 -0.0029 -0.0152 0.0016 0.q004 0.1523 0.1405 0.0770 0.0255
500 M5 0.1109 0.1255 0.0039 0.0014 0.0828 0.0824 0.0793 . 0.0267

500 400 229 M1 0.0061 -0.0040 0.0213 0.007 0.1200 0.1125 0.1103 0.0208
347 M2 0.0506 -0.0602 -0.0766 -0.0052 0.1320 0.1132 0.0574 0.0210
322 M3 0.0197 -0.0085 0.0012 -0.0057 0.1743 0.1311 0.1544 0.0309
397 M4 -0.0043  -0.0005 0.0030 0.0017 0.1082 0.0966 0.0510 0.0179
400 M5 0.1069 0.1293 0.0039 0.0021 0.0576 0.0560 0.0518 0.0185

}

800 250 163 M1 0.0105 -0.0029 0.0169 —0.d004 0.1223 0.1040 0.1144 0.0196
233 M2 0.0504 -0.0524 -0.0743 —0.@055 0.1098 0.0926 0.0511 0.0182
212 M3 0.0090 -0.0075 0.0028 -0.0056 0.1609 0.1305 0.1500 0.0286
250 M4 -0.0035 0.0001 0.0609 0.@016 0.0854 0.0732 0.0399 0.0147
250 M5 '0.1080 0.1285 0.0C11 0.@017 0.0451 0.0443 0.0401 0.0148

N = number of events in each sequence
m = number of sequences
m'= number of sequences a method succeeded



Table 6.2 Monte Carlo Results on Estimators for a Semi-Markov Model with Parameters a; = 0.9,
a, = 0.6, p, = 0.8, and p, = 0.4.
2 1 2
Bias Standard Deviation
N m m' Method a a, P Po a 2y P Py
50 500 61 M1 -0.1587 -0.1560 0.0737 0.0129 0.2078 0.2712 0.0826 0.1027
0 M2 - - - - - - - -
180 M3 -0.1158  -0.1837 0.0448 -0.1292 0.2303 0.2623 0.1400 0.1995
191 M4 -0.1623 -0.1412 0.0775 0.0085 0.2279 0.2736 0.0984 0.1388
500 M5 -0.2396 -0.2484 0.0259 0.1003 0.2439 0.2435 0.1105 0.1756
100 500 149 M1 -0.1298 -0.1452 0.0589 0.0189 0.1820 0.2573 0.0744 0.0953
0 M2 - - - - - - - -
258 M3 -0.0974  -0.1357 0.0437 -0.0650 0.2059 0.2682 0.1271 0.1759
287 M4 -0.1030 -0.1105 0.0489 -0.0030 0.2003 0.2813 0.0928 0.1249
500 M5 -0.1897  -0.2939 0.0297 0.0510 0.2015 0.2000 0.0981 0.1501
200 500 254 M1 -0.0994 -0.0896 0.0506 0.0185 0.1514 0.2293 0.0706 0.0839
0 M2 - - - - - - - -
321 M3 -0.0785 -0.0913 0.0453 -0.0247 0.1570 0.2533 0.0956 0.1438
353 M4 -0.0623  -0.0891 0.0263 -0.0031 0.1522 0.2530 0.0783 0.1052
500 M5 -0.1635 -0.3170 0.0234 0.0197 0.1820 0.1819 0.0826 0.1170

L8
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with the higher parameter i.e., the distribution with the shorter ,
tail. A value of e > 0.5, therefore, implies that shorter
interarrival times have greater probability of occurrence. The
parameter set considered is {e, = 0.6, Py = 0.9, Py = 0.1}. Depending
on selected values for the first autocorrelation coefficient res
several sets of transition probabilities (al, a2) were obtained and
the corresponding processes tested. Table 6.3 and Figure 6.1 show the
results of this experiment. [t is observed that the bias in the
parameters 3 and 2y increases as a function of rs and that the bias
in 3, (where 2, corresponds to the transition probabi]ity’of the
Tonger tail geometric distribution) is always greater than the bias in
a . In terms of RMSE it can be concluded that method M4 performs
better when a strong dependence srtucture is present and method M5
when a strong clustering of counts is present. Method M5 seems to
give parameter estimates which are more variable but iess biased than
those of method M4.

1 From the above preliminary analysis, our conclusions regarding
the estimators tested can be summarized as follows. MOM estimates
have a very high likelihood of failure and should be avoided given the
long tail distribution of the interarrival times. Methods M4 and M5
seem to perform the best and it is suggested that method M4 should be
used whenever feasible, especially for large sample sizes (on the
order of 500 events). For smaller sample sizes it is suggested that
method M4 is used when the dependence of intervals is stronger than
the clustering of counts, and method M5 when the clustering is

stronger than the dependence in intervals. In view of the above



Table 6.3

Monte Carlo Pesults on Estimators for Semi-Markov Models with
(al, a?) Consistent with the Fixed Parameters e = 0.6, Py = 0.

Various Sets of Parameters
9, and Py = 0.1.

Bias

Standard Deviation
]
N m m' Method ay a, P P, a 2y P Po
100 500 37 M 0.0668 0.0269  -0.0621 0.0017 0.1266 0.1324 0.1028 0.0109
a1+a2=0.5 223 M2 -0.0174 0.0415 -0.1176 0.0053 0.1800 0.1220 0.0702 0.0200
a1=0.4 126 M3 0.0006 0.0762 -0.0538 0.0004 0.2117 0.1593 0.1686 0.0278"
a2=0.1 363 M4 0.0023 0.0276 0.0085 0.00326 0.1303 0.1143 0.0521 0.0186
r1=—0.17 500 M5 0.0883 0.1402 0.0027 0.0030 0.0747 0.0633 0.0536 0.0180
100 500 65 M 0.0604  -0.0565 0.0872 -0.0027 0.1187 0.1251 0.1399 0.0197
a1+a?=0.8 391 M2 -0.0246 -0.0219 -0.1272 0.0061 0.1663 0.1553 0.0847 0.0198
a1=0;52 202 M3 0.0263 0.0419 -0.1104 -.0053 0.2488 0.2174 0.2490  0.0464
a?=0.28 483 M4 -0.0152 -0.0212 0.0046 -0.0022 0.1293 0.1484 0.0543 0.0182
ri=-0.068 500 M5 0.0334 0.0519 0.0046 0.0031 0.0706 0.0729 0.0544 0.0182
100 500 R M 0.0665 -0.0905 -0.4215 -0.0054 0.1160 0.1906 0.1319 0.0191
a1+a2=1 411 M2 -0.0053 -0.0276 -0.1373 0.0053 0.1525 0.1852 0.0863 0.0201
a1=0.6 238 M3 0.0665 0.0015 -0.1295 0.0065 0.2236 0.2467 0.2774 0.0649
a2=0.4 497 M4 -0.0153 -0.0284 0.0020 0.0026 0.1342 0.1709 0.0541 0.0169
r1=0 500 M5 -0.0041 -0.0071 0.0020 0.0026 0.0701 0.0793 0.0539 0.0169
100 500 58 M 0.0019 -0.1123 -0.1245 -0.0055 0.1014 0.2055 0.1502 0.0225
a1+a2=1.5 310 M2 0.0032 -0.0523 -0.1629 -0.0032 0.1018 0.1819 0.0859 0.0197
a1=0.8 243 M3 0.0291 -0.1113 -0.1233 0.0005 0.1465 0.2257 0.2784 0.0592
a?=0.7 464 M4 -0.0167 -0.0455 0.0025 0.0029 0.1180 0.1763 0.0605 0.0189
ri=+0.17 500 M5 -0.0944 -0.1526 0.0039 0.0033 0.0748 0.0896 0.0596 0.0187

Note: M, m and m' have been defined in Table 6.1.
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Figure 6.1 Bias and variability of the approximate

maximum l1ikelihood estimators as functions
of the first autocorrelation coefficient.
Model 1is that of Table 6.3.
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results, only methods M4 and M5 were used for fitting the semi-Markov
model to the daily rainfall occurrences. These results are given in

the next chapter.



: CHAPTER 7
APPLICATION OF THE SEMI-MARKOV MODEL TO DAILY RAINFALL OCCURRENCES

The Sixth no sooner had begun
About the beast to grope,
Than, seizing on the swinging tail
That fell within his scope,

"I see," quoth he, "the Elephant
Is very like a rope!"

The analysis of the six daily rainfall records in Chapter 4 has

revealed that the Snoqualmie Falls and Roosevelt stations may be of

special interest. This is due to the tremendous variability they
exhibit within a year, as well as to the non-Poissonian clustered
rainfall ‘occurrence structures within each of the seasons. In
addition, Snoqualmie Falls lies in a significantly different
climatologic regime than Roosevelt, and therefore these two stations
have different underlying rainfall generating mechanisms. For
example, the mean interarrival time for Snoqualmie Falls ranges from
1.34 days for December to 4.26 days for July, while for Roosevelt the
corresponding figures are 4.67 for July to 22.52 for May. For these
reasons, the Snoqualmie Falls and Roosevelt daily rainfall sequences

were selected to demonstrate the fitting of the semi-Markov model.

7.1 Selection of Seasons and Seasonal Statistical Analysis

The objective of the season discrimination methodology is to
identify periods (seasons) within the year in which the statistical

structure of the process remains constant, i.e., does not vary over

92
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time. The statistical stfucture of the daily rainfall process is
completely characterized by the probability laws of two properties:
the number of events (rainy days) within a season, and the daijly
rainfall amounts. For the number of events within a season, the
relevant properties to be examined are the probability distribution
function of the interarrival times and the second order properties of
counts, specifically the spectrum of counts, variance time curve and
index of dispersion. For the non-zero daily rainfall amounts, the
property of interest is the probability distribution function. A1l
these properties must be examined in parallel for a successful
selection of seasons. It is also understood that physical
considerations (including an understanding of the climatic conditions
of the region) and subjective jddgment play an important role in this
process. |

For the Snoqualmie Falls and Roosevelt stations, the following

homogeneous seasons were jdentified after careful examination:

Snoqualmie Falls Roosevelt
Season 1: Jan, Feb, Mar Jan, Feb, Mar, Apr
Season 2: Apr, May, Jun May, Jun
Season 3: Jul, Aug Jul
Season 4: Sept, Oct Aug
Season 5: Nov, Dec Sept, Oct
Season 6: - Nov, Dec

A statistical analysis, similar to that of Chapter 4, was

performed on a seasonal basis and the results are given in Tables
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7.1 - 7.5. For the Roosevelt station, 30 years of data (1948-1977)
were analyzed, whereas for Snoqualmie Falls the analysis was performed
only on the last 15 years of the record (1963-1977). The reason for
the different record lengths is that Snoqualmie Falls has a fairly
high rate of occurrence, i.e., large number of events in each season,
which permits a reliable analysis for a shorter recording length, at a
considerable savings in computer resources.

Figures 7.1 and 7.2 show the properties of intervals
(Tog-survivor function) and counts (spectrum of counts, variance time
curve and index of dispersion) for the two stations. Comparison of
the seasonal empirical curves with the corresponding curves for the
months constituting each season (Figures A.7-A.12 of Appendix A)
revealed no significant differences confirming the selection of

seasons.

7.2 Fitting the Semi-Markov Model to the Daily Rainfall Occurrences

From the Monte Car]o analysis in Chapter 6, it was concluded that
the two most consistent and efficient estimation methods are the
approximate maximum likelihood (ML) methods M4 and M5 (see Chapter 6
for details). These methods will be referred to in this chapter as
ML1 and ML2, respectively. It is also recalled that although the
Bayesian estimation method (ML2) always gives parameter estimates,
method ML1, based on the first autocorrelation coefficient, gives
parameter estimates if and only if the constraint of (6.15) is
satisfied.

The results of fitting the semi-Markov model to the seasons for
Snoqualmie Falls and Roosevelt are shown in Table 7.6. The

interpretation of the estimated parameters for Snoqualmie Falls
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suggest that the interarrival times of the process are sampled from
two geometric distributions, one with mean at the order of 1 day
(p1 = 0.9) and the other at the order of 2.5 to 7 days (p1 x 0.4 to
0.15). For this station, it is also observed that the transition
probability ay is always greater than 0.5 which suggests that small
interarrival times are most 1likely to be followed by small
interarrival times, an indication of clustering. For the Roosevelt
station, method ML1 did not give feasible parameter estimates for one
season (mgnth of July), and both methods gave a value of P at the
bound (p1 = 0.99) for three out of six seasons. Problems with fitting
the model to this station were expected given the small number of
events available for estimation.

The assessment of the goodness of fit of the semi-Markov model
~ was performed by comparing empirical functions of the data which were
not used in the estimation with their theoretical counterparts.
Figures 7.3 and 7.4 show these comparisons for some selected seasons
and stations. It is observed that the theoretical spectra of counts
are surprisingly close to the empirical ones, especially for
Snoqualmie Falls. This is a sign of a good fit, given that this
function was not explicitly used in the estimation. The agreements
for the variance time curves generally is not as good. This is not
surprising since the estimated variance time curve is much more
variable than the estimated spectrum of counts. It should be noted
that the model does a good job in preserving the probability
distribution of the interarrival times as expected, since this

information is used explicitly in the estimation.
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Table 7.1 Autocorrelation Coefficients of Interarrival Times--
Seasonal Analysis (Si corresponds to the ith season)

59 ) 33 S4 Sg S6

(a) Snogualmie Falls

" 0.047 -0.054 -0.010 0.025 0.036
) -0.026 0.074 0.057 -0.026 0.034
rs 0.032 0.016 -0.022 0.032 -0.040
ra -0.022 -0.009 0.051 -0.053 -0.040
rs 0.003 0.042 -0.050 -0.042 -0.031
(b) Roosevelt
" 0.009 -0.058 -0.112 -0.013 -0.051 -0.020
rs 0.067 -0.249* 0.073 -0.056 0.072 -0.050
r3 0.088 0.048 -0.008 0.056 0.081 -0.074
T2 -0.036 -0.044 0.006 0.073 0.008 0.019
rg -0.006 -0.050 -0.098 -0.073 0.032 -0.035

Table 7.2 Statistics of the Interarrival Times--Seasonal Analysis

_ Number

Season X Sy c, Cs of Events
(a) Snoqualmie Falls (15 years)

1 1.496 1.377 0.920 4,217 896

2 2.101 2.603 1.239 4,085 672

3 3.715 5.235 1.409 2.924 246

4 2.271 2.776 1.222 3.781 391

5 1.393 1.125 0.808 4,212 657
(b) Roosevelt (36 years)

1 7.821 13.601 1.739 3.437 502

2 18.973 19.088 1.006 0.837 75

3 4.671 4.759 1.019 1.739 152

4 6.052 10.880 1.798 4,345 191

5 8.153 11.631 1.427 2.278 222

6 8.165 14.565 1.784 5.579 231
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Table 7.3 Autocorrelation Coefficients of Non-Zero Daily Rainfall
Amounts--Seasonal Analysis (Si
ith season)

corresponds to the

S

S

1 2 3 4 5 6
(a) Snoqualmie Falls
" 0.238** (0.058 0.094 0.054 0.130**
rs 0.008 0.016 0.011 0.016 0.023
rs -0.014 -0.07 -0.046 0.057 0.014
ra 0.011 -0.026 -0.023 0.025 -0.003
re 0.051 -0.010 0.012 0.014 -0.009
(b) Roosevelt
r 0.069 0.117 -0.072 0.049 0.109 0.082
rs 0.008 -0.115 -0.092 -0.030 -0.035 0.080
r3 0.029 0.185 0.042 -0.030 0.012 0.212**
ra -0.043 -0.114 0.023 0.015 0.057 0.011
g -0.034 -0.087 -0.177* 0.074 -0.025 0.059

Table 7.4 Statistics

Analysis

of the Non-Zero Daily Rainfall

Amounts--Seasonal

Season

X

S

X

Cy

(a)

Snoqualmie Falls (15 years)

1 0.373 0.456 1.222 3.019
2 0.240 0.281 1.170 2.559
3 0.216 0.274 1.270 2.116
4 0.311 0.342 1.099 1.963
5 0.407 0.474 1.164 2.165
(b) Roosevelt (30 years)
1 0.268 0.312 1.166 2.263
2 0.217 0.269 1.241 2.099
3 0.262 0.352 1.343 2.757
4 0.278 0.367 1.322 2.801
5 0.345 0.518 1.501 3.240
6 0.350 0.437 1.248 2.224
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Table 7.5 Cross Correlation Coefficients of the Non-Zero Daily
Rainfall Amounts with Preceding and Following Interarrival
Times (Xi = interarrival time following the event Pi)

Season (X1-2’ P.) (Xi-l’ Pi) (X:, P.) (X P.)

i i’ 1 i+1°
(a) Snogqualmie Falls

1 -0.030 -0.093** -0.147** -0.089**

2 -0.069 -0.087* 0.068 0.041

3 0.086 0.079 -0.206** -0.197**

4 0.036 -0.123* -0.162** -0.062

5 0.011 -0.111* -0.091 -0.065
(b) Roosevelt

1 0.003 -0.043 -0.093* -0.045

2 0.013 0.050 -0.154 0.014

3 -0.835 0.019 -0.014 -0.051

4 -0.035 -0.019 -0.007 0.008

5 -0.103 -0.13 -0.001 -0.018

6 0.018 -0.036 -0.096 -0.105
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Table 7.6. Results of Fitting the Semi-Markov Model to the Daily
Rainfall Occurrences

Season  Method 3 3, P P, e

(a) Snoqualmie Falls

1 ML1 0.776 0.380 0.958 0.364 0.735

ML2 0.740 0.279

2 ML1 0.599 0.227 0.905  0.248 0.659
ML2 0.651 0.326

3 ML1 0.534 0.434 0.929 0.144 0.549
ML2 0.539 0.430

4 ML1 0.631 0.454 0.916 0.248 0.597
ML2 0.601 0.407

5 ML1 0.759 0.369 0.971 0.425 0.723

ML2 0.407 0.273

(b) * Roosevelt

1 ML1 0.463 0.568 0.917 0.075 0.446
©oML2 0.411 0.523

2 ML1 0.049 0.661 0.990 0.039 0.263
ML2 0.123 0.680

3 ML1 - - 0.624 0.165 0.688

ML2 0.271 0.668

4 ML1 0.782 0.183 0.376 0.053 0.789
ML2 0.790 0.210

5 ML1 0.245 0.556 0.990 0.080 0.370
ML2 0.386 0.635

6 ML1 0.376 0.551 0.990 0.075 0.419
ML2 0.374 0.548

ML1 = Approximate maximum likelihood estimates (MLE) coupled with
the first autocorrelation coefficient
MLZ2 = Approximate MLE with a Bayesian approach
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Figure 7.3 Comparison of empirical and theoretical spectra
of counts for Snoqualmie Falls--seasonal analysis.
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7.3 Modeling the Non-Zero Daily Rainfall Amounts

Based on previous research (see Chapter 2) and some exploratory
analyses, the following three marginal distributions were selected as
candidates to fit the daily rainfall amounts: Weibull, Gamma, and
mixed exponential. The properties and fitting procedures for these
distributions are discussed below.

Weibull distributioﬁ. The probability density function (pdf) of

the Weibull distribution is:

a  xX=Y X=Y
f(x) = — (—) expl-(—) 1, (7.1)
B-v B-Y g-Y

where a, B, and Y are parameters to be estimated. The mean, standard
deviation and skewness coefficient are given in terms of the

parameters a, B8, and v as:

u =Y+ (g-v) I(1+1/q), (7.2)
o = (g=v) [T(1+2/a) - r2(141/a)1}/2, (7.3)
[ (143/a) - 3T(142/a) [(1+1/a) + 2r°(1+1/q)
cg = 7 172 ; (7.4)
[r(1+2/a) - 1°(1+1/a)]

(see Kite, 1978), where () is the usual gamma function. A method of
moments parameter estimation procedure was followed. This consists of
solving (7.4) iteratively for a, and then solving (7.2) and (7.3) for

the other two parameters, g8 and Y.
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Gamma distribution. The pdf of the three parameter gamma

distribution is:

f(x) = (—)  expl-(—)1, (7.5) .

where a, B, and Y are parameters to be defined. The mean, standard

deviation and skewness coefficient are given as

u=aB+Y,

g = a/B , (7.6)
and

cg = 2/VB ,

i

from which method of moments estimates can be easily obtained.

Mixed exponential distribution. The pdf of a mixed expdnentia]

distribution is
f(x) = allexp[-xlx] + (l-a)xzexp[-xzx], (7.7)
where \ and A, are the parameters of the two exponential

distributions and « is their mixing ratio. The mean and variance of

this distribution are
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2. % L e )
¢ = —+ — + a(l-a) (— - —
)\2 )\2

1 2 MR

Everitt and Hand (1981) suggest several methods of estimating the
parameters a, Ays and Ao Here, the method of maximum likelihood was
used.

The log-likelihood function of a mixed exponential distribution

is

—
—
x
~
i
—
>
m

n =3
-
—
>
~
-

(7.9)
n .
151 In{ax,expl-2;x;]1 + (1-a)ryexpl-Ayx;1}.

Estimates of the parameters were obtained using the Nelder and Mead
(1965) simplex algorithm for the maximization of L'(x). Notice that
the parameter o is a probability, and therefore should lie in [0,1].
The transformation (6.5) was used to constrain this parameter.

A1l three distributions were fitted to the non-zero daily
rainfall amounts. A visual comparison indicated that the mixed
exponential gave the best fit, and this distribution was subsequently
used for all seasons. Figures 7.5 and 7.6 show the empirical and
fitted mixed exponential cumulative probability plots for the fitted
distributions. The parameters of the fitted distributions are given

in Table 7.7.
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Table 7.7 Parameters of the Mixed Exponential Distribution Fitted to
the Non-Zero Daily Rainfall Amounts

Season a Xl Az

(a) Snoqualmie Falls

1 0.182  17.627 2.257
2 0.201  17.033 3.504
3 0.412  17.500 3.065
4 0.120  26.743 2.855
5 0.152  19.654 2.123
(b) Roosevelt
1 0.251  16.347 2.963
2 0.558 9.631 2.797
3 0.514 9.527 2.317
4 0.387  11.626 2.514
5 0.561 8.406 1.577
6

0.276 17.303 2.163
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7.4 Coupling the Models for Occurrences and Amounts and Overall Model
Performance

The cross correlation analysis of interarrival times and non-zero
rainfall amounts (Table 7.5) indicated that no significant
correlations were present for the Roosevelt station but that small,
although significant, correlations were present for Snoqualmie Falls.
The significance of the Snoqualmie Falls correlations may be due in
part to the greater number of events at that station. If the small
correlations are taken to justify an assumption of independence, this
implies that given the occurrence of an event, the corresponding daily
rainfall amount does not depend on whether or not the event was the
first or last rainy day in a sequence of rainy days. If independence
is assumed, the coupling of the rainfall occurrence model with the
rainfall amounts model becomes easy, since the two processes are
simply superimposed. For example, a generation scheme for daily
rainfall sequences, would consist of generating the position of daily
rainfall occurrences from a semi-Markov model, and then assigning to
each rainy day a rainfall amount from the desired marginal
distribution.

For the purposes of streamflow prediction, or other applications
where a mass balance is desired, one is interested in the distribution
of the total rainfall over the next t days. For example, for
rainfall/runoff studies, an important property of a daily rainfall
generation scheme is its ability to preserve the total rainfall
amounts over periods of given length, i.e., one week or one month.
The statistical properties of the accumulated rainfall process are

given below.
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Let R(t) denote the accumulated rainfall process over a period of

length t. Then,

(7.10)

where {Yi} is the process of the non-zero daily rainfall amounts and
{Nt} is the daily rainfall occurrence process. Making the assumption
that the non-zero daily rainfall amounts {Yi}’ are independent and
identically distributed, and that the daily rainfall occurrence
process {N,} is independent of the rainfall amounts process {Yi} , the

mean and variance of R(t) are given as

E[R(t)] = uymt ' (7.11)

and
var[R(t)] = oy mt + My v(t), (7.12)

where uy = E[Yi], oyz = Var(Yi), V(t) is the variance time curve of
the counting process {Nt'h and m is its rate of occurrence. For a
semi-Markov model, m and V(t) are given in terms of the parameters a1
35, P> and Py from equations (5.29) and (5.34) of Chapter 5. For a
mixed exponential distribution, ”y and oyz are given in terms of the
parameters a, SR by (7.8).

Table 7.8 shows the empirical seasonal means and standard

deviations together with their theoretical counterparts for the fitted’
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Table 7.8 Comparison of the Empirical and Theoretical Seasonal Means
and Standard Deviations

Mean Standard Deviation
Season -
Empirical  Theoretical Empirical  Theoretical
(a) Snoqualmie Falls
1 22.145 | 22.426 5.821 5.288
2 10.621 10.255 2.643 2.513
3 3.352 : 3.468 1.587 1.484
4 8.689 - 8.238 2.749 2.699
5 17.789 - 17.506 : 4.445 4.729
(b) Roosevelt

1 4.481 - 4.086 2.326 1.688
2 0.542 * 0.676 0.649 0.629
3 1.341 : 1.767 0.841 1.156
4 1.768 1.369 1.654 0.964
5 2.570 2.511 2.188 1.644
6 2.698 2.573 2.620 1.519
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model. The preservation of these seasonal statistics are very
satisfactory for Snoqualmie Falls, whereas for the station of
Roosevelt the results are not as good. This is not surprising given

the small number of events available for the estimation of the model

parameters.




CHAPTER 8
SUMMARY AND CONCLUSIONS

And so these men of Indostan
Disputed loud and long,

Each in his own opinion
Exceeding still and strong.

Though each was partly in the right
And all were in the wrong !
John Godfrey Saxe (1816-1887)

Reprinted in Engineering Concepts
Curriculum Project (1971)

Several authors have recently had apparent success in applying
continuous-time point process models to daily rainfall observation
sequences. In this work we have shown that major problems arise when
the observation sequence represents cumulative rainfall amoUnts over a
period (e.g., one day) which is on the order of the process
interarrival time. In particular, the use of continuous-time point
process models for daily rainfall occurrences may result in incorrect
inferences about the underlying rainfall generating mechanisms. Since
daily rainfall occurrences form a discrete point process, it seems
only natural that daily rainfall sequences should be compared with the
discrete independent Bernoulli, and not with the continuous Poisson
process. Daily rainfall structures that are underdispersed (more
regular occurrences) relative to the independent Poisson process may
in fact be overdispersed (more random occurrences) relative to the

Bernoulli process.

114
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The statistical analysis of six daily rainfall records from
diverse climatologic regimes throughout the U.S. (Snoqualmie Falls,
Washington; Roosevelt, Arizona; Austin, Texas; Miami, Florida;
Philadelphia, Pennsylvania; and Denver, Colorado) has confirmed the
inappropriateness of the continuous point process modeling approach
for the daily rainfall occurrence process. The daily rainfall
occurrences for some months and somé stations are underdispersed
relative to Poisson, a condition that 1is inconsistent with the
continuous point process models used by other authors. However,
comparison of the statistics of the rainfall occurrence processes at
these stations with- the Bernoulli indicated that all were clustered,
that is, overdispersed, which is consistent with the underlying
physical processes. A further diéadvantage of continuous point
process models 1is that they cannot be used for the generation of
synthetic rainfall sequences. It has been shown that, using these
models, generation of synthetic rainfall sequences leads to serious
upward biases in the event interarrival times and in dependence
structures which may be much different than those of the apparent
generating process.

To meet these shortcomings of continuous point process models, a
discrete point process model has been developed and its §tructdra1
properties derived. The model belongs to the class of semi-Markov
(or Markov renewal) processes and has a flexible structure. 1In the
semi-Markov model the sequence of times between events is formed
through sampling from two geometric distributions, according to
transition probabilities specified by a Markov chain. In that sense,

higher probabilities of transition from the geometric distribution
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with the smaller mean to the same geometric distribution, rather than
to the one with the larger mean, incorporates a clustering structure
in the process.

Several methods for fitting the proposed model have been studied.
Due to the heavy-tailed distributions of the interarrival times,
method of moment estimates do not perform well. An approximate
Tikelihood method which estimates the equilibrium probabilities of the
Markov chain of intervals, and subsequently the transition
probabilities, has been proposed. This approximate maximum likelihood
approach was found to perform adequately, especially for daily
rainfall structures with small autocorrelations in the sequence of
interarrival times.

The semi-Markov model was fitted to the daily rainfall
occurrences of the Snoqualmie Falls and Roosevelt stations, both on a
monthly and seasonal basis. Seasons were selected after a careful
examination of all the statistical properties of intervals and counts.
The fit of the model was assessed by the preservation of selected
statistical properties of the series which were not used directly in
the estimation. It was shown that the fitted model gave a theoretical
spectrum of counts surprisingly close to the empirical one. The
semi-Markov model of daily rainfall occurrences coupled with a mixed
exponential distribution for the non-zero daily rainfall amounts
preserved the seasonal means and standard deviations for the
Snoqualmie Falls station, but not for the Roosevelt station. The
preservation of cumulative rainfall amounts over longer periods (e.g.,

weeks or months) is an important property of a daily rainfall
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genération model, especially when the model 1is wused for
rainfall/runoff studies.

The proposed use of discrete-time point process models (including
the semi-Markov approach) for daily rainfall occurrences opens a
number of areas for future research. Among these are the following:
(1) The possible use of alternate discrete point process model
structures for daily rainfall. For example, it seems feasible to
derive discrete point process models with structures similar to the
two-level hierarchical structures of the continuous Poisson cluster
models, i.e., a discrete analogue of the Neyman-Scott model.
(2) Improved fitting techniques for discrete point process models.
Although continuous point process models have been extensively studied
statistically, not much work has been done on discrete poi%t
processes. Specifically, for daily rainfall, alternate fitting
methods that explicitly preserve the monthly or seasonal rainfall
statistics might be 1nve§tigated. This would probably require an
iterative estimation scheme to accommodate the trade-off between exact
preservation of short and long term statistics.
(3) Application of the semi-Markov model to shorter time increment
rainfall sequences, such as hourly. In particular, the compatibility
of the semi-Markov model with continuous point process models applied
to the unobserved continuous generalized stochastic process, £(t) (see
figure 1.1), could be investigated. One interesting question, related
to ongoing work on process scale effects, is to determine whether the
statistics for daily rainfall derived using a continuous Neyman-Scott

model for &(t) are in agreement with the statistics obtained by
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modeling the daily rainfall sequences directly with a semi-Markov
model.

(4) Improved methods for coupling rainfall occurrence models with
rainfall amounts models. An area deserving further attention is the
development of a model structure that accounts for cross-correlation
between the occurrence and amounts processes. -

(5) Extension of discrete point process models to multiple
dimensions. This is essential generalization for rainfall-runoff

studies and for the estimation of missing data in rainfall sequences.




APPENDIX A

STATISTICAL PROPERTIES OF THE SIX DAILY RAINFALL
RECORDS ANALYZED
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rainfall amounts for Philadelphia, Pennsylvania.




Number of Rainy Days (events)

Total Anmual Rainfall (inches)

125

120 p

110 L
100 r

90 ¢

W\~
[
I
I
1

L A2 1 1
=] Cal =] ) (= r
v ') o) Vo) ~ ~
k=2l f=} =) (<)) (=} =2
= - - = —_ Py
30 r
"
25 L
20 ¢
15 F
10 |
3 F
9 L . 1 . 1 A PR S It 1 A 4
< v < w k= w
N v Nl Ne) ~ ~
=2} =2} f=2) =2} = =
= = = = ey =

Figure A.6 Number of rainy days per year and total annual
rainfall amounts for Denver, Colorado.



Table A.1 Autocorrelation Coefficients of Interarrival Times--Monthly Analysis
JAN FEB MAR APR MAY JUN JUL AUG SEP 0cT NOV DEC
(a) Snoqualmie Falls
rp 0.026  0.016 0.063 0.074 0.005 -0.077 0.038 0.096 0.072 0.001 -0.002 0.017
rs 0.004 -0.062 0.046 0.012 0.017 -0.015 0.012 0.111 0.089 0.020 0.043 -0.047
ry -0.009 -0.074 -0.014 0.084 -0.012 0.016 -0.064 0.021 :0.022 0.005 -0.016 -0.053
ra 0.077* -0.021 0.040 -0.056 0.029 0.014 -0.059 0.066 -0.020 0.011 -0.045 0.024
re  0.017 -0.010 0.017 -0.072 -0.017 -0.022 -0.127 -0.007 -0.026 0.001 0.019 -0.013
(b) Roosevelt
" -0.006 0.008 -0.056 0.039 -0.046 -0.0i2 -0.112 -0.013 -0.143 0.010 0.025 -0.006
ry 0.159 0.099 0.079 0.139 -0.206 -0.055 0.073 -0.05 0.052 0.003 0.063 -0.070
ry -0.015 -0.100 -0.043 0.135 -0.102 -0.200 -0.008 0.056 0.099 -0.042 0.183 -0.010
ry -0.091 -0.007 -0.046 0.045 0.111 -0.172 - 0.006 0.073 -0.092 0.140 -0.022 -0.018
re -0.063 0.058 -0.031 0.028 -0.161 0.079 -0.098 -0.073 0.011 0.043 -0.065 0.043
(c) Austin

ry 0.034 0.064 0.027 0.097  0.048 0.002 0.011 0.134 -0.055 0.042 0.159* 0.007
rs 0.061 0.010 0.003 0.007 0.089 -0.006 0.187* -0.003 -0.027 -0.039 0.070 0.023
ry 0.084 -0.084 0.116 0.007 0.074 -0.043 -0.106 -0.097 -0.039 -0.062 0.076 -0.005
ra 0.000 0.167* 0.002 0.158* 0.036 0.058 -0.056 0.001 -0.064 0.011 -0.009 0.154*
re 0.183* 0.081 0.000 -0.035 0.016 0.039 -0.047 -0.109 0.046 0.057 -0.006 0.090

9¢l



Table A.1 (Continued)
JAN FEB MAR APR MAY JUN JUL AUG SEP 0CT NOV DEC
(d) Miami
" 0.100 -0.051 -0.007 0.031A -0.073 0.014 0.009 0.035 -0.019 0.039 0.026 0.069
rs -0.024 0.021 0.094 0.058 0.063 0.019 --0.063 -0.061 -0.006 -0.063 -0.024 0.121
rs -0.062 -0.098 0.029 0.064 -0.040 0.066 -0.015 -0.022 -0.011 -0.036 . 0.014 0.182
ra 0.012 -0.074 0.027 0.022 -0.034 0.033 -0.013 0.019 -0.011 -0.057 -0.028 0.038
re 0.128 -0.051 0.030 -0.106 0.047 0.064 -0.006 0.049 0.001 -0.054 -0.054 0.006
Philadelphia
" -0.036 -0.045 0.006 0.000 0.022 -0.039 -0.032 -0.050 -0.052 -0.006 -0.087 0.045
ro 0.052 0.058 -0.060 0.024 0.068 0.018 0.093 0.002 0.080 0.015 -0.015 -0.011
rs 0.037 -0.052 -0.060 0.008 0.015 ' -0.043 0.053 -0.080 0.014 -0.015 -0.055 -0.046
ra -0.048 0.079 -0.036 0.041 -0.051 -0.028 -0.059 0.114 -0.165* -0.061 0.062 -0.042
rs 0.028 -0.060 0.024 -0.032 0.087 0.111  0.040 -0.037 -0.031 0.064 0.024 0.031
(f) Denver

r -0.097 -0.110 -0.018 -0.146* 0.027 0.004 0.052 -0.014 0.136 0.094 0.044 -0.069
rs 0.118 0.044 -0.055 0.128* -0.005 0.014 -0.056 -0.011 -0.013 0.079 0.050 -0.057
r3 0.063 -0.006 0.003 -0.012 -0.053 -0.032 0.037 0.041 -0.006 0.179* -0.090 0.081
rp 0.147 0.072  0.007  0.040 -0.057 0.000 -0.013 -0.014 0.014 0.057 -0.020 0.079
re -0.037 0.012 0.029 0.079 -0.001 -0.095 0.033 -0.007 -0.007 0.179* -0.024 -0.019
N = sample size ‘

* = significance at the 5% level

**%

significance at the 1% level

L21
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Table A.2 Statistics of Interarrival Times--Monthly Analysis

Number

X v
Month X Sy c, cs of events

(a) Snoqualmie Falls

Jan 1.393 1.171 0.841 3.825 667
Feb 1.499 1.328 0.886 3.933 557
Mar 1.542 1.548 1.004 5.542 607
Apr . 1.717 1.588 0.925 3.060 530
May 2.214 2.501 1.129 3.190 429
Jun 2.693 4.354 1.617 4.941 375
Jul 4.259 6.080 1.428 2.912 205
Aug 3.323 4.226 1.272 2.259 260
Sep 2.708 3.764 1.390 4.266 332
Oct 1.752 1.668 0.952 3.084 499
Nov 1.442 1.231 0.854 4.217 613
Dec 1.343 0.978 0.728 4.167 694

(b) Roosevelt

Jan 6.241 9.059 1.452 2.500 145

Feb 6.224 10.174  1.635 2.978 125
Mar 7.604 13.184 1.734 3.366 139
Apr 12.693  21.596 1.701 2.399 88
May 22.524  21.968 0.975 0.601 42
Jun 14.455 13.661 0.945 0.480 33
Jul 4.671 4.759 1.019 1.739 152
Aug 6.052 10.880 1,798 4.345 191
Sep 7.319 9.675 1.322 2.533 116
Oct 9.066 13.439 1.482 1.961 106
Nov 8.216 11.108 1.352 2.138 97
Dec 7.761  16.275 2.097 6.345 134

(c) Austin

Jan 3.513 3.973
Feb 3.881 5.315
Mar 4.480 4.484
Apr 3.808 4.048
May 4.232 5.258
Jun 5.197 6.972
Jul 6.553 8.724
Aug 5.278 6.531
Sep 4.613 6.471
Oct 4.654 5.988
Nov 4.615 6.059
Dec 4,359 5.924

.313 2.017 240
.369 4.277 227
.001 1.585 200
.063 2.329 224
.242 2.656 241
.342 2.038 178
.331 2.466 141
.237 2.251 162 -
.403 3.195 212
.287 3.254 188
.313 3.613 192
.359 3.069 209

= b e e e e e e



Table A.2 (Continued)

129

_ Number
Month X Sy <, Cg of events
(d) Miami
Jan 4.640 4.891 1.054 2.243 197
Feb 6.160 6.372 1.034 1.631 131
Mar 5.802 6.199 1.068 1.866 162
Apr 4.989 5.751 1.153 1.958 174
May 2.261 2.615 1.157 3.333 375
Jun 1.989 1.974 0.993 3.248 444
Jul 2.157 1.919 0.889 2.476 439
Aug 1.829 1.472 0.805 2.396 502
Sep 1.840 1.625 0.884 2.642 486
Oct 2.650 3.068 1.158 3.244 366
Nov 4.741 5.135 1.083 1.994 197
Dec 4.913 5.521 1.124 2.158 195
(e) Philadelphia
Jan 2.711 2.517 0.928 2.107 332
Feb 2.978 2.555 0.858 1.865 278
Mar 2.854 2.521 0.883 2.118 323
Apr 2.388 2.782 0.963 2.275 322
May 2.879 2.930 1.018 2.726 323
Jun 2.993 2.680 0.895 2.076 297
Jul 3.395 2.843 0.837 1.391 266
Aug 3.502 3.845 1.098 2.638 273
Sep 3.737 3.867 1.035 2.210 243
Oct 4.221 4.486 1.063 2.130 213
Nov 3.251 3.245 0.998 2.239 287
Dec 2.807 2.503 0.892 1.706 316
(f) Denver
Jan 5.458 6.015 1.102 1.777 168
Feb 4.421 4.794 1.084 2.502 164
Mar 3.668 4.513 1.230 2.950 244
Apr 3.552 4.078 1.148 2.130 259
May 2.965 3.071 1.036 2.006 283
Jun 3.483 4.047 1.162 2.752 261
Jul 3.114 3.132 1.006 2.002 280
Aug 3.836 4.035 1.052 2.447 244
Sep 4.872 6.304 1.294 2.977 187
Oct 5.993 7.049 1.176 1.861 141
Nov 5.813 6.121 1.053 1.633 155
Dec 5.560 7.067 1.271 2.439 150




Table A.3 Autocorrelation Coefficients of Non-Zero Daily Rainfall Amounts--Monthy Analysis

JAN FEB MAR APR MAY JUN JUL AUG SEP 0CT NOV DEC

(a) Snoqualmie Falls

r 0.296** 0.216** 0.126** 0.090* 0.013 0.077 -0.067 0.024 0.057 0.053 0.065 0.136**
rs 0.054 0.030 -0.014 -0.066 0.044 0.016 -0.074 0.109 -0.058 0.009 -0.017 0.007
ry 0.039 -0.075 -0.017 0.096* -0.044 -0.038 -0.051 0.086 -0.092 0.010 0.005 0.026
ra 0.028 -0.018 -0.022 -0.020 -0.067 0.083 -0.114 0.070 -0.030 -0.067 0.112 -0.010
re -0.006 0.045 0.017 -0.046 -0.089 -0.066 0.017 0.017 0.013 -0.076 0.030 -0.026
(b) Roosevelt
" 0.113 0.002 0.062 0.020 0.032 0.410* -0.072 0.049 -0.087 0.213* 0.065 0.136
o -0.066 -0.075 0.022 -0.100 0.074 -0.146 -0.092 -0.030 -0.025 0.020 0.107 -0.010
ry -0.008 0.141 -0.071 0.034 0.120 -0.186 0.042 -0.030 0.009 0.095 -0.018 0.033
ra -0.074 -0.044 0.056 0.085 0.036 -0.070 0.023 0.015 -0.053 0.043 0.015 -0.001
g 0.016 -0.025 0.158 0.211 0.403* 0.045 -0.177* 0.074 0.040 -0.109 -0.114 0.027
(c) Austin
" 0.244** 0.086 0.018 0.038 0.017 0.153* 0.132 -0.040 0.017 0.106 0.112 0.123
ro 0.123* -0.029 0.031 0.014 -0.035 0.100 -0.083 0.017 -0.108 -0.064 -0.007 0.002
ry 0.098 -0.069 -0.016 0.123* 0.073 0.015 0.000 -0.103 -0.075 -0.039 -0.044 0.017
" 0.200**-0.022 -0.090 -0.015 0.028 0.085 0.191* 0.078 -0.007 0.072 -0.020 -0.115
r5 -0.016 -0.035 -0.081 -0.085 0.039 0.062 -0.028 -0.004 0.092 -0.093 -0.067 -0.099

OEL



Table A.3 (Continued)
(d) Miami
" 0.118 0.092 0.022 -0.076 0.149** 0.158 -0.011 0.026 0.143 0.108 0.076 0.102
ry 0.129 0.066 -0.038 0.023 -0.052 0.019 0.038 -0.036 0.041 -0.081 0.010 -0.048
ry 0.007 -0.019 -0.088 -0.041 -0.015 . -0.093 -0.021 -0.010 0.015 0.030 -0.010 -0.029
ra -0.63 -0.047 -0.069 -0.005 -0.050 -0.113 0.081 -0.006 0.102 -0.011 0.007 0.127
re -0.108 0.066 -0.061 -0.071 -0.009 0.005 -0.021 0.028 0.044 0.014 -0.055 -0.057
(e) Philadelphia
" 0.009 -0.125* 0.025 0.003 0.007 0.094 -0.033 0.125* 0.011 -0.017 0.019 -0.056
ry 0.023 -0.018 0.013 0.121* 0.012 -0.040 -0.041 0.007 0.001 -0.067 -0.051 0.045
rs -0.050 0.094 -0.041 -0.060 0.120* -0.014 -0.013 -0.046 0.033 -0.057 0.072 -0.016
ra 0.016 -0.037 0.015 -0.073 -0.004 -0.060 0.012 -0.042 -0.035 0.101 0.003 0.041
re -0.003 0.072 -0.150** 0.013 0.013 0.060 0.041 -0.028 0.004 0.052 0.088 -0.119*
(f) Denver
" 0.005 -0.143 0.057 -0.043 0.083 0.119* -0.008 0.116 0.025 0.054 -0.055 0.345**
ro -0.047 -0.015 0.008 -0.042 -0.025 -0.022 0.037 -0.096 -0.080 -0.079 0.020 0.184**
rg -0.071 -0.054 0.028 -0.040 0.003 -0.061 0.126* 0.048 0.064 0.016 -0.003 0.029
ra -0.073 -0.030 -0.035 0.065 0.001 -0.070 -0.041 0.118 0.016 0.049 -0.027 -0.057
re -0.043 0.077 -0.066 -0.043 - 0.008 -0.061 0.050 -0.091 -0.119 0.057 0.110 0.052
N = sample size

*k =

significance at the 5% level
= significance at the 1% level

I€1



Table A.4 Statistics of Non-Zero Daily Rainfall
Monthly Analysis

132

Amounts--

Month X Sy c, cS
(a) Snoqualmie Falls
Jan 0.415 0.462 1.112 2.060
Feb 0.360 0.449 1.247 3.196
Mar 0.306 0.371 1.212 3.914
Apr 0.253 0.264 1.041 1.695
May 0.228 0.267 1.174 2.640
Jun 0.231 0.300 1.301 2.641
Jul 0.217 0.281 1.296 2.099
Aug 0.213 0.273 1.282 2.417
Sep 0.227 0.335 1.208 1.922
Oct 0.337 0.362 1.073 1.789
Nov 0.408 0.459 1.125 1.940
Dec 0.408 0.480 1.177 2.575
(b) Roosevelt
Jan 0.308 0.347 1.125 1.622
Feb 0.239 0.270 1.130 1.941
Mar 0.305 0.353 1.158 2.632
Apr 0.185 0.215 1.162 1.930
May 0.169 0.205 1.217 2.157
Jun 0.278 0.327 1.174 1.658
Jul 0.262 0.352 1.343 2.757
Aug 0.278 0.367 1.322 2.801
Sep 0.319 0.451 1.412 2.565
Oct 0.366 0.577 1.578 3.521
Nov 0.289 0.379 1.314 2.627
Dec 0.395 0.471 1.192 1.973
(¢) Austin

Jan 0.204 0.349 1.715 4.647
Feb 0.333 0.535 1.606 2.604
Mar 0.230 0.326 1.415 2.658
Apr 0.457 0.623 1.365 2.084
May 0.485 0.683 1.409 2.539
Jun 0.530 0.738 1.392 2.261
Jul 0.352 0.607 1.727 3.742
Aug 0.414 0.621 1.502 3.003
Sep 0.502 0.725 1.445 2.612
Oct 0.558 0.821 1.471 2.721
Nov 0.301 0.537 1.781 4,241
Dec 0.287 0.486 1.694 3.449




Table A.4 (Continued)
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Month X Sy <, cS
(d) Miami
Jan 0.316 0.411 1.302 1.994
Feb 0.373 0.588 1.578 3.527
Mar 0.359 0.686 1.910 6.316
Apr 0.585 1.161 1.986 6.151
May 0.584 0.884 1.512 3.195
Jun 0.562 0.778 1.385 2.745
Jul 0.367 0.478 1.300 2.592
Aug 0.424 0.637 1.502 3.501
Sep 0.469 0.667 1.443 3.041
Oct 0.482 0.828 1.719 3.917
Nov 0.372 0.831 2.235 4.400
Dec 0.280 0.411 1.471 2.263
(e) Philadelphia
Jan 0.265 0.334 1.260 2.416
Feb 0.300 0.338 1.128 1.758
Mar 0.349 0.393 1.125 1.861
Apr 0.317 0.388 1.227 2.169
May 0.307 0.387 1.259 2.095
Jun 0.387 0.600 1.551 2.985
Jul 0.423 0.587 1.388 2.293
Aug 0.449 0.618 1.337 2.707
Sep 0.421 0.650 1.545 3.410
Oct- 0.381 0.512 1.345 2.488
Nov 0.355 0.525 1.479 3.309
Dec 0.335 0.394 1.176 1.604
(f) Denver

Jan 0.093 0.137 1.480 3.117
Feb 0.120 0.151 1.257 2.471
Mar 0.145 0.182 1.253 2.904
Apr 0.205 0.369 1.805 4,948
Mar 0.249 0.435 1.748 3.526
Jun 0.194 0.365 1.878 4.499
Jul 0.198 0.304 1.534 2.679
Aug 0.161 0.288 1.788 3.502
Sep 0.202 0.283 1.402 2.358
Oct 0.198 0.258 1.301 2.518
Nov 0.146 0.157 1.075 1.455
Dec 0.102 0.141 1.386 4.267
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Table A.5 Cross Correlation Coefficients of the Non-Zero Daily
Rainfall Amounts with Preceding and Following Interarrival
Times (Xi = jinterarrival time following the event Pi)

(Ki2:P4) (Ki-1:P4) (X5, Py) (KiapoPy)
(a) Snogqualmie Falls

Jan -0.036 ~0.080* -0.089* -0.041
Feb 0.033 -0.120%* ~0.129%* -0.047
Mar -0.063 -0.022 -0.011 -0.065
Apr -0.068 -0.035 0.006 0.032
May -0.019 -0.024 -0.117 -0.124*
Jun ~0.055 -0.037 -0.007 -0.051
Jul -0.029 ~0.037 -0.198%* -0.118
Aug -0.001 -0.099 -0.132* -0.168%*
Sep 0.005 -0.086 -0.117* ~0.095
Oct 0.035 -0.064 -0.092* -0.149%*
Nov 0.033 0.030 “0.111% -0.097**
Dec -0.028 -0.134%+ -0.132% 0.013

(b) Roosevelt

Jan -0.046 -0.084 -0.112 -0.103
Feb -0.056 -0.010 0.059 0.102
Mar 0.247** 0.026 -0.058 -0.188*
Apr 0.049 0.194 -0.166 0.044
May 0.164 -0.067 -0.201 -0.065
Jun -0.102 -0.036 -0.011 0.248
Jul -0.085 - 0.019 -0.014 -0.052
Aug -0.035 -0.019 -0.007 -0.021
Sep -0.025 -0.075 0.064 -0.006
Oct -0.029 0.004 -0.157 -0.167
Nov -0.066 0.013 0.039 0.048
Dec -0.091 -0.007 -0.121 -0.130
(c) Austin
Jan -0.021 0.070 -0.023 0.013
Feb 0.044 0.037 0.128 -0.016
Mar 0.165%* -0.001 -0.104 0.007
Apr -0.016 -0.084 -0.070 -0.008
May 0.025 -0.039 0.054 0.017
Jun -0.048 0.125 0.057 0.168*
Jul -0.055 -0.031 -0.063 0.060
Aug 0.016 0.044 -0.085 -0.109
Sep 0.033 -0.006 0.041 0.105
Oct -0.005 0.029 0.007 0.061
Nov 0.009 -0.027 -0.021 -0.089

Dec 0.068 0.276** -0.046 -0.009
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Table A.5 (Continued)

(Xi_25P4) (X.1:P4) (X4, Py) (Xi415P4)
(d) Miami
Jan 0.017 0.159 0.061 -0.115
Feb -0.048 -0.088 -0.033 -0.054
Mar 0.078 -0.008 -0.078 0.035
Apr -0.041 -0.137 0.035 . -0.143
May -0.050 -0.081 -0.080 -0.033
Jun -0.014 0.008 -0.019 . -0.011
Jul -0.029 -0.038 -0.029 -0.014
Aug 0.018 -0.071 -0.016 -0.004
Sep 0.037 -0.016 -0.080 - -0.001
Oct -0.052 0.033 0.043 0.033
Nov 0.020 -0.061 -0.126 -0.114
Dec 0.077 -0.094 -0.029 -0.047
(e) Philadelphia
Jan 0.073 0.019 0.057 0.139*
Feb 0.039 -0.087 0.008 0.045
Mar 0.076 0.062 0.079 0.008
Apr 0.044 0.047 -0.061 -0.034
May -0.094 -0.061 -0.015 0.001
Jun -0.029 0.130* 0.049 -0.048
Jul -0.013 -0.008 -0.010 -0.028
Aug 0.095 0.142* -0.075 -0.087
Sep 0.000 0.059 0.120 -0.035
Oct 0.101 0.050 0.064 0.143*
Nov -0.026 -0.051 0.055 -0.003
Dec 0.112* -0.045 -0.051 -0.030
(f) Denver

Jan -0.048 -0.020 -0.112 0.000
Feb -0.003 -0.056 0.050 -0.054
Mar -0.010 0.009 0.045 0.015
Apr -0.049 0.204** -0.056 0.004
May -0.052 0.019 0.071 -0.104
Jun 0.093 -0.010 -0.076 -0.060
Jul -0.045 -0.035 -0.040 -0.002
Aug -0.050 0.077 -0.007 -0.050
Sep 0.046 -0.031 -0.004 -0.049
Oct 0.035 0.092 -0.068 -0.103
Nov 0.127 -0.017 0.145 0.065
Dec 0.163* 0.017 0.051 -0.052
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Figure A.7 Statistical properties of intervals and counts for

Snoqualmie Falls--monthly analysis.

I: Normalized spectrum of counts vs. frequency factor
II: Log-survivor function vs. interarrival time (days)
III: Variance of counts vs. interval length (days)

IV: Index of dispersion vs. interval length (days)
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Statistical properties of
Roosevelt--monthly analysis

intervals and counts for

I: Normalized spectrum of counts vs. frequency factor

IT:
IT1I:
IV:

Log-survivor function vs. interarrival time (days)
Variance of counts vs. interval length (days)
Index of dispersion vs. interval length (days)
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Figure A.9 Statistical properties of intervals and counts for
Austin--monthly analysis
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III:
IV:

Normalized spectrum of counts vs. frequency factor
Log-survivor function vs. interarrival time (days)
Variance of counts vs. interval length (days)
Index of dispersion vs. interval length (days)
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Figure A.9 (continued)
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Figure A.10 Statistical properties of intervals and counts for
Miami--monthly analysis
I: Normalized spectrum of counts vs. frequency factor

II:
III:
IV:

Log-survivor function vs. interarrival time (days)
Variance of counts vs. interval length (days)
Index of dispersion vs. interval length (days)
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Figure A.11 Statistical properties of intervals and counts for
Philadelphia--monthly analysis

I: Normalized spectrum of counts vs. frequency factor
IT: Log-survivor function vs. interarrival time (days)
III: Variance of counts vs. interval length (days)
IV: Index of dispersion vs. interval length (days)
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-~ APPENDIX B

DETAILS ON THE DERIVATION OF THE CONDITIONAL INTENSITY FUNCTION
OF THE SEMI-MARKOV PROCESS

The Laplace transform of the conditional intensity function of a

general two-state semi-Markov process is given as

x (s) (1-a,)f1*(s) + (1-a))F,*(s) + (1-a;-a,)(2-a;-a,) F *(5)F,*(s)
*(g) = ’

(2-a1-a2) l-alfl*(s) - a2f2*(s) - (1-a1-a2)f1*(s)f2*(s)

(B.1)

where fi*(s), i=1,2, are the Laplace transforms of the two probability
density functions of the interarrival times (see Cox and Lewis, 1978).
A geometric distribution with parameter p, can be written in the

continuous-function form

£(t) = 1 p(1-p)<Lo(t-k) (8.2)
k=1

where §(+) is the Dirac function. The Laplace transform of f(t) can

be easily shown to be
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where wé have made use of the fact that iﬁé(t-k)) = e'ks. Expressions

for fl*(s) and

to give

fzf(s}, analogous to (B.3), then substituted in (B.1)

(2-51-a2)h*(s)eS

Pp(1-a5) + py(l-a;) + [p1p2(2-a1-a2)2 - py(1-3,) - py(1-a;)3e”®
1+ [Pl(l'al) + pz(l'az) = 2]e-S + [1 f pl(l-al) = pz(l'az)Je-zs

S+ [p1p2(2-a1-a2)2 - sle”s

= ~ — Y ,4.1' (8'4)
1+ (g-2)e”S + (1-8)e”2S
where
§ = pl(l'az) + pz(l'al)
and (B.5)
B = py(l-a;) + p,y(1-a,)

To obtain h(t) the inverse Laplace transform of (B.4) is needed. The
polynomial in the denominator of (B.4) has two real roots, one equal
to 1 and the other equal to (1-8), and therefore (B.4) can be written

as

where G and A are
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= (B‘7)
B
A = S - G (B‘8)
2-a1-a2
By taking the inverse Laplace transform of (B.6)
L7 (s)e’T = 1 [6 + A(1-8)KI5(t-k) (8.9)
k=0 .
h(t) takes the form
h(t) = © [6 + A(1-8)%Is8(t-k) (8.10)

k=1

Comparing (B.10) with the discrete-analogue expression of the

conditional intensity function, that is

n(t) = 1

h S(t-k)
k=1

we can write

hk =G + A(l-s)k

(B.11)
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Note that G of (B.7) reduces to the constant intensity, m, of the

semi-Markov model. Therefore, (B.11) takes the form

hk =m+ AW (B.12)
where,

A= e Pt &Py - m (B.13)
and

W=1- pl(l-al) - p2(1-a2) . (B.14)

This completes the proof of PROPOSITION 3 of Chapter 5 which gives the

conditional intensity function of a semi-Markov process.
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