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Error Analysis of Conventional Discrete and Gradient Dynamic Programming 

PETER K. KITANIDIS AND EFI FOUFOULA-GEORGIOU 1 

St. Anthony Falls Hydraulic Laboratory, Department 'of Civil and Mineral Engineering, University of Minnesota, Minneapolis 

An asymptotic error analysis of the conventional discrete dynamic programming (DDP) method is 
presented, and upper bounds of the error in the control policy (i.e., the difference of the estimated and 
true optimal control) at each operation period are computed. This error is shown to be of the order of 
the state discretization interval (AS), a result with significant implications in the optimization of multi- 
state systems where the "curse of dimensionality" restricts the number of states to a relatively small 
number. The error in the optimal cost varies with AS 2. The analysis provides useful insights into the 
effects of state discretization on calculated control and cost functions, the comparability of results from 
different discretizations, and criteria about the required number of nodes. In an effort to reduce the 
discretization error in the case of smooth cost functions, a new discrete dynamic programming method, 
termed gradient dynamic programming (GDP), is proposed. GDP uses a piecewise Hermite interpolation 
of the cost-to-go function, at each stage, which preserves the values of the cost-to-go function and of its 
first derivatives at the discretization nodes. The error in the control policy is shown to be of the order of 
(AS) 3 and the error in the cost to vary with AS '•. Thus as AS decreases, GDP converges to the true 
optimum much more rapidly than DDP. Another major advantage of the new methodology is that it 
facilitates the use of Newton-type iterative methods in the solution of the nonlinear optimization prob- 
lems at each stage. The linear convergence of DDP and the superlinear convergence of GDP are 
illustrated in an example. 

1. INTRODUCTION 

Dynamic programming has found many applications in 
water resources planning, particularly in the optimization of 
reservoir operations. In fact, water resource problems have 
served as a stimulus to the development of dynamic program- 
ming and a water resources study by Mass•3 [1946] preceded 
in publication the foundational work of Bellman [1952] in 
advancing the functional equations of dynamic programming. 

The literature on dynamic programming (or "multistage op- 
timization") theory and applications is very extensive, the 
books of Bellman [1957] and Bellman and Dreyfus [1962] 
being the classic references. Dynamic programming solves the 
overall optimization problem in stages and, whenever appli- 
cable, reduces the cost of computations. In general, if the 
problem can be decomposed into N stages with m decision 
variables at each stage, the cost increases approximately with 
N m 2, as compared with N 2 m 2 for solving the problem in a 
single stage. State of the art reviews with extensive lists of 
references on dynamic programming and its application are to 
be found in the work by Yakowitz [1982] for several water 
resource problems, Yeh [1985] for optimal reservoir oper- 
ation, and Kitanidis [1983] for real-time optimal reservoir op- 
eration. In this work we will assume that the reader is familiar 

with the basic concepts of dynamic programming, such as 
decomposition into stages, state variables, and the cost-to-go 
function, so that we may concentrate on computational as- 
pects of discrete dynamic programming. 

Discrete dynamic programming (DDP) has been the most 
common numerical method used for the application of dy- 
namic programming. First proposed by Bellman [1957], it has 
found numerous applications in water resources planning: 
Buras [1963], Gablinger and Loucks [1970], Loucks and Falk- 
son [1970], Butcher [1971], Su and Deininger [1974], and 
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Askew [1974], to mention a few of the earliest works. How- 
ever, in the past 10 years considerable effort has been directed 
toward developing new computational techniques for the solu- 
tion of the functional equations of dynamic programming. The 
objective of these methods is to avoid the main computational 
disadvantage of DDP, known as the "curse of dimensionality" 
(see, for example, Yakowitz [1982] for a discussion of these 
methods and appropriate references). They are iterative 
schemes that concentrate on obtaining an optimal state- 
control trajectory, starting from a given initial state and sub- 
ject to deterministic inputs. In this case one can do away with 
the discretization of state variables (under lenient conditions 
of differentiability) and the optimization is with respect to a 
finite number of decision variables. Such methods, which fur- 
thermore make use of efficient nonlinear programming tech- 
niques to optimize at each stage, can be much faster than 
DDP. 

It must be realized, however, that DDP was designed to 
solve a more difficult problem than obtaining a single optimal 
trajectory: to find at each stage the optimal control policy, i.e., 
the control variables as functions of the continuous state vari- 

ables, so that a given criterion is optimized. The calculation of 
the optimal policy at all stages is desirable in many cases and 
required in stochastic systems where no single trajectory can 
be projected with certainty. The difficulty is that now, opti- 
mization is with respect to a finite number of decision func- 
tions (minimization of a cost functional). Unless analytical 
solutions are available, as in the linear quadratic Gaussian 
case [Wasimi and Kitanidis, 1983; Laoiciga and Marino, 1985] 
or in small-perturbation approximations [Kitanidis, 1985], 
one must resort to computer-based numerical methods which 
approximate optimization of a functional (an "infinite- 
dimensional" problem) by optimization with respect to a finite 
number of decision variables, a problem amenable to 
computer-based methods of solution. This approximation in- 
troduces a discretization error, such as when a function is 
substituted by its values at some points, and is also the root of 
the dimensionality curse. Let it be emphasized that neither the 
discretization error nor the djmensionality curse are innate to 
dynamic programming but plague whatever method of solu- 
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tion substitutes a decision function with a finite number of 

decision variables. 

In computing the optimal control policy of a continuous 
state-space system via DDP, cost-to-go functions of continu- 
ous state variables are replaced by sets of values at discrete 
grid points. Values at points between nodes are obtained 
through interpolation. It is understood that the solution of the 
resulting approximate problem (estimated control policy) will 
be different from the solution of the original problem (true 
control policy). Solution accuracy is an important but seldom 
considered aspect of discrete dynamic programming. 

Yakowitz [1982] cautions that "one should be wary of pro- 
posed solutions until the deleterious effects of discretization 
have been somehow bounded and found acceptable." From a 
practical viewpoint, the question is, How fine a discretization 
is needed? According to Klerne• [1977a], Savarenskiy [1940] 
and Doran [1975] recommended discretization of each state 
variable into 5 to 10 nodes and Moran [1959] into 15 to 20. 
These authors were apparently concerned with the accuracy in 
calculating probabilities (e.g., calculation of probability of full 
reservoir). Klerne• [1977a, p. 149] performed theoretical and 
numerical studies which showed that too coarse a discrete 

storage representation "may completely distort reality in most 
unexpected ways .... An inadequate number of storage states, 
besides causing a decrease in accuracy, may result in a gradual 
collapse of the optimization scheme. This collapse may escape 
attention, since the computer algorithm may keep working 
and producing results that may even seem reasonable." 

In this paper, an asymptotic error analysis of the conven- 
tional discrete dynamic programming method is presented, 
and upper bounds on the error in the control policy (the 
difference of the estimated and true control policies) at each 
operation period are computed. This error is shown to be of 
the order of the state discretization interval AS, a result with 

significant practical implications, especially in multistate sys- 
tems where the curse of dimensionality restricts the number of 
discretization nodes for each state variable to a relatively 
small number. The error in the estimation of the minimum 

cost is shown to vary with AS •. 
Another contribution of this paper is a new discrete dynam- 

ic programming method, which is termed gradient dynamic 
programming (GDP). This method is based on a piecewise 
Hermite interpolation of the cost-to-go function at each stage. 
In this method the values of the cost to go and the values of 
its first derivatives (gradient) are calculated on the nodes of 
the grid and preserved. The GDP method is shown to yield an 
estimated control policy whose asymptotic proximity to the 
true control policy varies with (AS) 3, while the estimate of the 
optimum cost varies with AS 4. This implies that halting the 
state discretization interval improves the solution of DDP by 
a factor of 2, whereas the solution of GDP is improved by a 
factor of 8. That the above asymptotic results hold well even 
for finite AS is demonstrated in an example involving the 
optimal control of a single-reservoir system. 

2. ASYMPTOTIC ERROR ANALYSIS OF CONVENTIONAL 

DISCRETE DYNAMIC PROGRAMMING 

For the sake of simplicity our analysis will be limited to the 
scalar deterministic case. Analysis for the multivariate case 
would follow the same lines and the conclusions would not be 
affected. We will discuss this issue as well as the effect of 

stochastic inputs at the end of the section. 

Consider a single-reservoir system to be operated over a 
time horizon of N periods ("stages"). Let S(k) denote the reser- 
voir storage (state variable) at the end of period k, and 
u(k + 1) and q(k + 1) denote the regulated release (control 
variable) and inflow, respectively, during period k + 1. The 
constraints on the system consist of the continuity equation, 
the nonnegativity and capacity constraints on the storage, and 
the nonnegativity constraint on the control' 

S(k + 1) = S(k) + q(k + 1) - u(k + 1) (!a) 

O_< S(k + l)_< K (lb) 

0 < u(k + 1) (lc) 

Let F•,[S(k)] denote the cost-to-go function when there are 
N-k periods to go. Under the usual assumptions of multistage 
optimization, the functional equation of the system can be 
written as 

F•,[S(k)]= min {c•,[S(k),u(k + 1)]+F•,+•[S(k + 1)]} (2) 
u(k + 1) 

k=N--1,...,0 

where F•[S(N)] is a given function of the final storage, and 
cn( ) is the loss function at stage k, a function of the storage 
at the beginning of period k + 1, and the release during period 
k + 1. For the error analysis which is performed in this sec- 
tion, it will be required to assume that these functions are 
three times differentiable, although the third derivative does 
not need to be continuous. If u*(k + 1) denotes the optimal 
release corresponding to S(k), (2) yields a reeursive equation 
for the computation of the cost-to-go function: 

F•,[S(k)] = c•,[S(k), u*(k + 1)] 

+ F•+ •[S(k) + q(k + 1)- u*(k + 1)] (3) 

If one of the constraints (lb) or (lc) is binding, it uniquely 
determines the solution. In our case the discretization error 

affects the control when no constraint is binding. Omitting the 
arguments of cn( ) and F n+ x( ), the true optimal release 
U*(k + 1) is the solution to equation 

c•c•,/c•u + (dF•, + O/du = 0 (4a) 

or 

ack/a, - (dF•,+ O/dS = 0 (4b) 

Note that the minus sign appeared from the application of the 
chain rule of differentiation, i.e., 

dF•, + • dF•, + • dSo, + • ) dF•, + • 
du(k + 1) dS(k + 1)du(k + 1) dS(k + 1) 

In many applications of DDP the search for optimum is 
restricted to the finite set of u(k + 1) for which S(k)+ 
q(k + 1)- u(k + 1) is a node. If this is the case, it is obvious 
that the error in the control is of order AS, the state dis- 
cretization interval. For differentiable ck and Fn+ x, a poten- 
tially more accurate procedure is to include in the search the 
solution to an approximation of (4b) in which the cost-to-go 
function is replaced by an interpolation scheme which uses the 
nodal values. Since such issues are seldom discussed in the 

DDP literature, our interpretation is that the cost-to-go func- 
tion is approximated by the simplest possible scheme, i.e., a 
piecewise linear function which reproduces the values calcu- 
lated at the nodes. Let S•_ x and S• denote the lower and upper 



KITANIDIS AND FOUFOULA-GEORGIOU.' GRADIENT DYNAMIC PROGRAMMING 847 

grid points (storage states) between which the storage S(k) + 
q(k 4- 1)- u*(k 4- 1) falls, where u* is the calculated control. 
Then (4b) is approximated in conventional discrete dynamic 
programming through 

C•Ck Fk + l t(Sl) -- F k + •'(St- •) 
= 0 (5) 

c•u AS 

where Fk+ x'(S) is the piecewise linear function which repro- 
duces the cost to go computed at the nodes, and AS is the 
storage discretization interval; u*(k 4- 1) is determined from 
the solution of (5), which solution is assumed to exist. (That is, 
we will now deal with the case that u*(k 4- 1) does not corre- 
spond to a node.) Let Fk+ 1'(S)= Fk+ 1(S)+ P(S). The esti- 
mated optimal release u*(k 4- 1) differs from the true optimal 
release U*(k + 1) by AUk+ 1, 

u*(k + 1)= U*(k + 1)+ AUk+ 1 (6) 

Our intention is to relate AUk+ 1 to AS and, in particular, to 
determine the order of convergence of u*(k + 1) to U*(k + 1) 
through asymptotic analysis [-see Luenberger, 1973, p. 127]. 

A Taylor series expansion of the terms of (5) around 
U*(k + 1) gives 

•c k 

U*(k + 1) 

•2C k 
Auk + 1 AS U*(k+ 1) A* 

dFk + 1 
dS 

(St- A*) +- • (St -- Fk+ 1 
A* 2 dS 2 A, A, 

dF+ll (s,_, A*) l d2Fk+ll (st_ 1 } - -- A*)2 
dS A, 2 dS 2 A* 

1 

AS 
[Pk+ •(S,) -- Pk+ l(Sl - 1)] 

2) 4- O(Atlk + 1 4- O(AS 2) = 0 (7) 

where the symbol A* = S(k) + q(k + 1)- U*(k + 1) has been 
introduced for convenience in notation, and O represents the 
order of terms which have been neglected. These orders were 
obtained by observing that the lowest-order omitted terms are 

I 03Ck 2 I I d3Fk+ 1 __ A.)3 A.)3] 20u 3 Auk + 1 4- 6 AS • [(St -- (Sl- 1 -- 

1 03Ck+ • 2 
2 •U 5 AUk+l +--• 

1 d3Fk+ • 
6 •-i [(St --A*)2 

4- (S l -- a*)(Sl_ 1 -- a*) 4- (Sl_ 1 -- a*) 2] 

Then setting B l = S t -- IS(k) + q(k + 1)- u*(k + 1)], which is 
of order AS, 

(S l -- A*) 2 -- (B t -- Au k + 0 2 

2 _ 2BtAuk = O(Auk+ 2) = Bt 2 + Auk + • + • • + O(AS 2) 

and similarly for (S t_ • - A). 
Returning to (7), since S t -- S t_ • = AS, the above equation 

reduces to 

•c._2.• I dFk + • Ou v,(k + x) dS 
•2C k 

.,4* 

Auk + 1 
U,(k+ 1) 

d2Fk+l I tSl4-Sl-1 dS2 A. 2 1 •- A* --• [P(St)- P(S t_ 1)] 
2) = + O(Auk+ • + O(AS 2) 0 (8) 

Since U*(k 4- 1) is the solution of (4b), the sum of the first two 
terms vanishes and, after simplifying the notation, (8) further 
reduces to 

•2C k d2Fk + • { St + S t_ • c3u 2 Auk+i-- c3S • 2 [S(k)+q(k+ 1)- U*(k + 1)]} 
1 

AS 
[Pk+•(St)-- Pk+•(St_O] = 0 (9) 

Denote by e the distance of the midpoint of the interval (S t_ 1, 
St) to the storage value S(k) + q(k + 1) - u*(k + 1); i.e., e = (S t 
+S t _ 0/2-!-S(k)+q(k+ 1)-u*(k+ 1)3 (see Figure 1). 

Then (9) can be simplified to 

O2Ck Au k 0142 + 1 d2Fk+ 1 (Auk + __ dS 2 1 

1 

AS 
[Pk+ l(S/) -- Pk+ •(St- 0] = 0 (10) 

Assuming that U*(k + 1) is a unique local minimum so that 
the second derivative of the objective function is positive, i.e., 

•2C/d/•U2 4- (d2Fk+ •)/dS 2 > 0 

(10) can be solved in terms of Au k + • 

(d2Fk+l)/dS 2 1 
AUk + 1 O2Ck d2Fk + 1 AS •2C k d2Fk + 1 

t 
dS 2 

ß [Pk+ •(St) -- Pk+ •(St- 0] (11) 

where all derivatives are calculated at values corresponding to 
U*. 

Fk+l 

A*-- S(k) + q(k+l) - U*(k+l) 

St 

I // ,,s 

S<k, + qCk+l,- u'Ok+l, / l k+l /-1 

Fig. 1. Schematic representation of the cost to go function at stage 
k + 1 and definition of some terms used in the analysis. 
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dFk+ I 
dS 

OCk 
•U 

S• S•_• 

while the truly minimum cost to go is given by 

F•ES(k)] = c•[S(k), U*(k + 1)] 

+ F•+•[S(k + 1) + q(k + 1)- U*(k + 1)] (13) 

Expanding the terms at (12) around U*(k + 1) and accounting 
for (4b) and the definition of P(S) we obtain 

P•ES(k)] = P• + z(S,)[S(k) + q(k + 1)-u*(k + 1)-S t_ z](AS)- z 

+ Pk + ,(St_ ,)ES, - S(k) - q(k + 1) + u*(k + 1)](AS)- ' 

+•[au 2 Auk+,2+ d2Fk+ 1 [(Sl __ A,)2 dS 2 
A* -- S•_, - Auk+ 

AS 

__ A,)2 S-- A*+ Auk+,]} (14) q- (Sl- 1 AS 

where terms known to be of order AS 3, Au k+ , 3 are neglected. 
Using the definition of e, (14) is now simplified to read 

Fig. 2. Geometric representation of the error in the estimation of 
optimal control. 

The solution is also given geometrically in Figure 2. The 
two solid straight lines represent (dFk+ O/dS and Oc•/c•u plot- 
ted against S(k + 1) (for given initial value S(k) and input 
q(k + 1)). These lines are depicted as straight because neglect- 
ing higher-order terms is equivalent to assuming that F•,+, 
and c k are quadratic at the scale of AS. Point A is the point 
which satisfies (4b) and consequently corresponds to the true 
optimum. Point B is the intersection of Oc•/Ou and the hori- 
zontal line at [Fk+ i(S/) -- F•,+ i(St_I)](AS) -1. (Note that this 
horizontal line crosses dF•, + 1/dS at F, the midpoint between S t 
and S t_ ,.) Consequently, B corresponds to the control calcu- 
lated from (5) with the actual cost-to-go function Fk+ ,. Final- 
ly, C is the intersection of Oc•,/Ou and the horizontal line at 

IF k + ,(St)-- F k + i(S/_ 1)](AS) - 1 

+ [P•+ ,(S,)- P• + ,(St_ ,)](AS)- ' 

Thus C is the point which corresponds to u*(k + 1). The error 
Auk+, is depicted geometrically by segment DE and e by seg- 
ment FD. Then, Auk +, = BE - BD. 

BE EA [(d2Fk + ,)/dS 2] 
e + BD FG c•2ck d2Fk +, 

•U 2 dS 2 

Pk[S(k)] = Pk +, (St)IS(k)+ q(k + 1)-u*(k + 1)-S t _ ,](AS)- ' 

+ ek + ,(St- ,)[St -- S(k) -- q(k + 1) + u*(k + 1)](AS)- ' 

I (a2Ck d2Fk+,) AU k 2 -It- 5 k • u 2 -It- dS2 + 1 

I d 2F k + 1 _ •2 + - -•-•- 2 
(15) 

where Au k +, is given by (11). 
With (11) and (15) at our disposal we can now show that 

Auk+, • O(AS) and Pk • O(AS2) at every k = 1, ..-, N- 1. 
The proof will be given by mathematical induction. At the last 
stage, k - N- 1, Pk+, vanishes, since the terminal cost func- 
tion is given. Then taking absolute values of the terms of (11) 

(16) 

Thus Au N is of order AS. Taking absolute values of the terms 
of(15) 

IP•- , [S(N -- 1)]1 

[[(d2Fn)/dS2][(O2cn_ 1)/aU 2] 
F a2CN•_7- d-•Fj 
b • +dS 2 

d2Fn 
+ • AS 2 (17) 

BD= 

1 

AS 
[Pk+ l(S/) -- Pk+ I(S/- 1)] 

Combining, we obtain (11). 
Now, we turn our attention to establishing a recursire equa- 

tion for the calculation of Pk(S). Given the notation es- 
tablished earlier, the cost to go may be computed in DDP 
using linear interpolation: 

Fk'[S(k)] = ck[S(k ), u*(k + 1)] 

+ F k + ,'(St)IS(k) + q(k + 1) - u*(k + 1) - St_ ,](AS)- ' 

+ Fk+ ,'(S t_ ,)[S t -- S(k)- q(k + 1) + u*(k + 1)](AS)-' 

Thus P•_, is of order AS 2. It remains to show that if Pk+, • 
O(A$2), then u k +, • O(A$) and Pk • O(A$2) ß From (11), 

I(d2Fk+,)/dS21 AS 
IAuk+ •1 <- 

c• 2c k d 2F k +, 2 
+• 

•U 2 dS 2 

1 IP•+ •(s,) - P•+ •(st_ 01 
+ (•8) 

02 C k d 2 F k +, AS 
•+ 
•2 d$2 

Both terms on the right-hand side are of order AS. In (15), all 
(12) terms on the right-hand side are of order AS 2. Taking absolute 
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values, 

IPn[S(k)]l • 

I g(d2Fk + O/dS2]g(O2ck/Ou2)]l d2Fk + • AS 2 + dS2 

1 1 
+ - {[Pk+ ,(S,) -- Pk+ ,(S,_ ,)32}(AS2) -• 

2 82Ck d2Fk+ • 

1 (d 2F k + 1)/dS 2 
IPk+ ,(S,) - Pk+ ,(S,_ ,)l 

20aCk d2Fk+ • 
C•U 2 dS 2 

+ IPk+ •(S,)I[S(k) + q(k + 1)- u*(k + 1)- St_ •](AS) -• 

+ IPk+ •(St_ OI [St - S(k) - q(k + 1) + u*(k + 1)](AS) -• 
(19) 

Equations (18) and (19) are the sought after upper bounds 
on the error in the control and the cost-to-go functions, re- 
spectively. 

Thus our analysis has shown that Au k ,,• O(AS) and IFk+ •' 
--Fk+ •l "• O(AS'-). To avoid unnecessary complications, the 

proof was given for the scalar case. This is common practice 
wherever asymptotic analysis is used in optimization or nu- 
merical analysis. Exactly the same methodology can be used 
in the multivariate case using matrix-vector notation, the for- 
mulae for the expansion into Taylor series of functions of 
many variables, and retention of the lowest-order terms. As in 
the scalar case, it can be shown that as the discretization 

intervals decrease in size, DDP converge linearly in the con- 
trol and quadratically in the cost. 

In the stochastic case, the objective is to minimize the ex- 
pected value of the expression of (2): 

Fk[S(k)] = min {ck[S(k), u(k + 1)] 
u(k + 1) 

+ E I-Fk+ •l-S(k) + q - u(k + 1)TI} 
q(k + •) 

where 

(20) 

EEFk+ •[S(k + 1)+ q- u(k + 1)]] 
q 

=; Fk+•[S(k + 1) + q -- u(k + 1)]p{q) dq 11 q 

and p(q) is the probability density function of inflow q. Then, 
one can repeat the same analysis except that the cost-to-go 
function is replaced by its expected value. The conclusion that 
IAuk+ x l -• O(AS) and IFk'-- Fkl "• O(AS 2) would remain unaf- 
fected by stochasticity. However, the coefficients of pro- 
portionality would be affected since they would depend on the 
second derivative of ElF k + •] rather than of F k + •. Expectation 
is weighted averaging which smooths out variability in F k+ •. 
For convex F k + a, the maximum value of the second derivative 
of E[Fk+ •] is smaller than the maximum of the second deriva- 
tive of F k + •. Thus the maximum error for the stochastic case 
tends to be smaller than the maximum error for the determin- 

istic case with the same cost functions, constraints, and the 
mean values of the inflows. 

3. PRACTICAL SIGNIFICANCE OF THE RESULTS 

The analysis was motivated from a study of the operation of 
the reservoirs of the Des Moines River, in Center, Iowa, using 
DDP [e.g., Zaphirakos, 1982; Wasirni and Kitanidis, 1983; 
Collado, 1984]. Like other practitioners before us, we were 
concerned about the effect of state (storage) discetization on 
the accuracy of the control (release) and cost of operation 
determined through DDP. A review of the literature revealed 
no lack of case studies which report on the number of nodes 
which was considered "adequate" in a particular problem. 
However, we could find no rules which indicate whether these 

same numbers would be applicable to another case study with 
different cost functions, constraints, and inputs. 

Evaluating the effect of state discretization is paticularly 
important in multistate problems where computational con- 
siderations often preclude the use of fine grids. It is also im- 
portant because, as Klerneg [1977a] pointed out, a comparison 
between two different alternatives is meaningful only if the 
operation and its cost were calculated with approximately the 
same accuracy for each alternative. A case in point is compari- 
son of the operation of two reservoirs of different sizes, under 
consideration for construction at the same site. How should 

one discretize to obtain results of comparable accuracy? 
Klemeg studies this problem through computational experi- 
ments. His results indicate that it is the discretization interval 

(roughly capacity divided by the number of nodes) which must 
be kept constant, rather than the total number of grid nodes. 

Our objective was to relate the error in the estimated con- 
trol I/Xul and cost of operation IF'-FI to the discretization 
step AS. To obtain results of general applicability an analyti- 
cal approach was followed. The basic assumptions in this 
analysis are that cost functions are smooth enough to satify 
some conditions of differentiability and that AS and Au are 
small so that only leading terms need to be retained in power 
series expansions. In a strict mathematical sense, our results 
become exact asymptotically as AS--} 0 but are quite accurate 
for finite values of AS. The results of such analyes have proven 
their usefulness in optimization [Luenber•ler, 1973] and nu- 
merical analysis [Dahlquist and Bjorck, 1974] because they 
yield results of practical usefulness even for finite values of the 
"small" parameter. For conventional DDP, the results are ac- 
curate if the stagewise cost and the cost-to-go functions may 
be approximated by quadratic functions in neighborhoods 
about the optimum and radii of the order of AS. For example, 
for the linear quadratic problem the analysis is exact for any 
value of AS. 

In the case of conventional DDP, it has been shown that 
the error in control I/Xul is of order AS, while the error in the 
calculaed cost function IFk+ •'--Fk+ •l Varies with AS 2. Thus 
doubling the number of nodes should reduce Au by a factor of 
about 2 and IF k + •' - F k + •l by a factor of about 4. An interest- 
ing practical implication of I/Xul-• o(/xs) is in optimizing the 
short-term operation of a system where the (daily or weekly) 
release in each period is a small percentage of the reservoir 
capacity. The error in determining release through DDP may 
be large in relative terms, unless AS is much smaller than the 
typical value of volume released in a single stage. Another 
interesting implication is in comparing the operation of two 
reservoirs of different sizes. Assuming that the stagewise and 
cost-to-go functions are the same, our analysis indicates that 
comparable results are obtained when the same AS is used for 
both reservoirs, a conclusion which is in agreement with the 
observations of Klerneg [ 1977a]. 
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The coefficient of proportionality in the linear relation be- 
tween Au and AS was shown to depend on the ratio of the 
second derivative of the cost-to-go function to the Hessian 
(sum of the second derivatives of the stagewise cost and cost- 
to-go functions). If the cost-to-go function is flat compared to 
the stagewise cost function, this coefficient is small and the 
results of DDP are accurate even for large AS. At the extreme 
(and usually unrealistic) case of practically linear cost-to-go 
function, DDP gives exact results even with the minimum 
possible number of nodes. For a highly curved cost-to-go 
function the same coarse grid would give results which are in 
serious error. Thus our analysis indicates that there is no 
single number of nodes which can be recommended for all 
cases. The appropriate number of nodes depends on the ratio 
of the curvatures (second derivatives) of the cost-to-go and the 
stagewise cost functions. 

The calculated cost tends to the true minimum with qua- 
dratic order of convergence, since the error is of order AS 2. 
Thus convergence in cost is always faster than convergence in 
control. This is fortunate for the practical usefulness of DDP, 
since it is the total operation cost we are concerned with. 
Quite often, seemingly serious deviations from the optimum 
control may produce not as serious a deterioration in the total 
operation cost. These features will be illustrated in the exam- 
ple for finite AS. 

These results apply to deterministic as well as stochastic 
cases. An interesting implication of this analysis is that the 
effect of the state discretization error tends to be less in the 

stochastic case than in the deterministic case with the same 

economic parameters and mean inflow. This amelioration is 
the consequence of the smoothing associated with taking 
average values in the stochastic case. 

4. GRADIENT DYNAMIC PROGRAMMING 

In this section an apparently new computational technique 
for the solution of DDP problems is proposed. The primary 
motivation for its development was the desire to reduce the 
discretization error and thus achieve better accuracy than the 
one achieved by conventional DDP with the same grid. An- 
other important objective was to take advantage of sophisti- 
cated nonlinear programming techniques to solve the single- 
stage optimization problem. While such techniques have 
found applications in successive-approximation versions of 
DP, they have been neglected in discrete DP. 

Before examining a particular method, let us discuss the 
general issue of how a state discretization affects the calcu- 
lated control and cost functions. As is illustrated by the analy- 
sis in section 2, the source of the discretization error can be 
traced back to the approximation of the cost to go (a function 
of continuous state variables) through interpolation from a 
finite number of grid points. In DDP, the value of the cost to 
go is calculated at each node and the cost-to-go function is 
approximated through piecewise linear interpolation. We have 
already shown that with this scheme the error in the calcu- 
lated control is proportional to the discretization interval. 
Thus the key to improving the convergence rate would be to 
adopt a more accurate interpolation scheme. 

The "most accurate or appropriate" interpolation scheme 
for a given problem depends on the smoothness properties of 
the function which is approximated and, in particular, its dif- 
ferentiability properties [see Davis, 1975]. For cost-to-go func- 
tions which hardly have continuous first derivatives, a piece- 

wise linear approximation may be the wisest choice. However, 
for functions which have derivatives of high order (a "higher 
degree of smoothness" according to Davis [1975, p. 5]), more 
sophisticated interpolation schemes can reduce the approxi- 
mation error quite significantly, and as we will illustrate with 
a particular case, reduce the error in the estimation of the 
control. 

In GDP the cost to go and its derivatives with respect to 
state variables are calculated at all nodes. Then the cost-to-go 
function is piecewise approximated through the lowest-order 
polynomials which preserve at the surrounding nodes the cal- 
culated cost to go and its derivatives. The methodology is 
described for the multivariate case in the work by Foufoula- 
Georgiou and Kitanidis [1986]. In this paper we will first de- 
scribe GDP in a simplified form applicable to the univariate 
case and then evaluate the effects of state discretization on 
control and cost. 

With the terminology established in section 2, let 

F•, + •(S,_ •), F•, + •(S,), 

dF•, + • l dS s, 

dF•,+ i l dS st-• 

be the values and the first derivatives of the stage (k q-1) 
cost-to-go function evaluated at the grid points St_ • and St, 
where S t_ • and S l define the interval within which the value 
S(k) + q(k + 1) - u*(k + 1) falls. Let G k+ x be the polynomial 
approximation of Fk + • in the interval I-S l_ •, St]. The form of 
G k + x will be determined so that 

G•,+ •(S t_ •) = F•,+ •(S t_ •) (21a) 

G•,+ •(St) = F•,+ •(S,) (2lb) 

I (21c) dS s,_• dS s,_• 

dG•+• I dF•+• I (21d) dS s, dS 

A computationally useful expression of the polynomial ap- 
proximation Gn + •(S) is of the form 

G•, + •(S) = A(S)F•, + •(S t_ •) + B(S)F•, + 

I I (22) dS s,_• dS s, 

where A(S) is 1 at S t_ x, 0 at St, and its first derivative is zero at 
S t_ • and St; B(S) is 0 at S t_ x, 1 at S t, and its derivatives are 
zero at S t and S t_ •; C(S) is 0 at S t_ • and S t and its derivative 
C'(S) is 1 at S t _• and 0 at St; and D(S) is 0 at S t _x and S t , 
while D'(S) is 0 at S t_ • and 1 at S t. The lowest-order coefficient 
polynomials which satisfy these conditions are 

A(S) --- (AS) 3 (S -- S t_ 1) q- T (S -- Sl) 2 (23a) 

B(S) = (AS) 3 (S t -- S) q- (S- S l_ 1) 2 (23b) 
1 

C(S) = (AS) • (S - S t_ •)(S - St) • (23c) 
1 

D(S) = (AS) 2 (S- St)(S- S t_ •)• (23d) 
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This method is known as Hermite interpolation (see, for exam- 
ple, Cheney [1982, p. 61]). It can be shown that of all the 
functions which reproduce the values of F•, + x and dF k + x/dS at 
the nodes, the piecewise cubic approximation function defined 
by (22) and (23) is the one with the smallest average squared 
curvature [see Schultz, 1973, p. 31]. These relations can be 
generalized in the n-dimensional space in computational ef- 
ficient ways [-Kitanidis, 1986]. 

The first derivative of G•, + x(S) is then expressed as 

dG•, + x(S) dA dB 
- dS (St_ 0 + (St) 

I dD OF•,+ x r dC OF•, +___• -t • (24) + dS 8S s,_• dS OS s, 

where 

dA 

dS 

6 

(AS) 3 (S- S,)(S- S,_ x) (25a) 
dB 

dS 

6 

(ASp (S -- St)(S -- St_ x) (25b) 
dC 

dS 

1 

(AS) 2 {(S -- St) 2 + 2(S- St-x)(S- St)} (25c) 
dD 

dS 

1 

(AS) 2 {(S -- S,_ x) 2 + 2(S- S,_ x)(S- St) } (25d) 

Notice that dA/dS + dB/dS = 0 implying, as it was expected, 
that the solution depends on the difference (and not on the 
individual values) of the cost-to-go function at the end points 
of the interval. In contrast to conventional DDP, this approxi- 
mation of the cost-to-go function has continuous first deriva- 
tives everywhere. 

One of the major advantages of GDP is that it facilitates 
the application of the iterative Newton method for the solu- 
tion of the single-stage nonlinear programming problem. 
Newton methods can be computationally very efficient. Their 
convergence rate improves with the accuracy of the available 
estimate of the second derivative of the objective function. 
Conventional DDP assumes piecewise linear cost-to-go func- 
tion and, consequently, is of little use in calculating its second 
derivatives. In GDP d2F•, + x/dS 2 is calculated from 

d2G•,+ x(S) d2A d2B 
dS - dS 2 F•,+ •(S t_ x) + •-• F•,+ x(St) 

d2C c3F•,+ x l + dS 2 OS s,_• d2D OF•,+ x l dS 2 OS 
(26) 

where 

d2A/dS2_ 12 { (AS) 3 (S- 
d2B/dS 2 = -d2A/dS 2 

d2C/dS 2 = 
2 

(AS) 2 {2(S - St) + (S - St_ x)} 

d2D/dS -- 
2 

(AS) 2 {2(S - St_ ,) + (S- St)} 

(27a) 

(27b) 

(27c) 

(27d) 

Then, following a Newton iteration 

Eu*(k + 1)]'+x = Eu*(k + 1)1' 

L Ou2 + dS2 L r3U dG•,+ xl (28) dS 

where the first and second derivatives are calculated at values 

corresponding to [u*(k + 1)] i. Iterations continue until con- 
vergence is achieved within the feasible region. If the search 
leads to an infeasible control, the following procedure is fol- 
lowed. The constraint which is violated becomes binding in 
which case it alone determines the optimum. Then, the La- 
grange multiplier which corresponds to this constraint is cal- 
culated and if it is nonnegative the search is terminated 
(Kuhn-Tucker conditions are satisfied). Otherwise, the search 
is reinitialized starting from that point. The procedure con- 
verges under mild convexity requirements. (This procedure is 
generalized in the multidimensional case as the projected 
Newton method.) The Newton method has quadratic order of 
convergence, i.e., it has the asymptotically fastest rate of con- 
vergence among the commonly used gradient-based iterative 
methods. Here u*(k + 1) is a function of S(k). Then, the recur- 
sive equations which give F•,[S(k)] and dF•,[S(k)]/dS at the 
previous stage k are 

F•,[S(k)] = c•,[S(k), u*(k + 1)] 

+ G•,+ x[S(k) + q(k + 1)- u*(k + 1)1 (29) 

dFk Ocn Ocn du* dGn + x ( du*h as - as as as/ 

du* (.Oc {30) -as + as + au 7d as 
where the arguments in (30) have been omitted for riorational 
simplicity. (For example, dF•/dS is with respect to S(k) and 
dO•+ •/dS is with respect to S(k + 1).) If no constraint is bind- 
ing, bc•bu - dO•+ •/dS = 0 and (30) reduces to 

8/dS = Oc/OS + + ,)/dS 0 

If a constraint is binding, u*(k + 1) will be a (known) function 
of S(k) denoted by u* =f[S(k)], and du*/ds in (30) will be 
replaced by df/dS. For example, when one of the constraints 
(lb) becomes binding, (la) results in a control policy u*(k + 1) 
which is a linear function of S(k), i.e., df/dS = 1, and therefore 

dF•/dS = bc•/bS + bc•/bu (32) 

$. PIECEWISE CUBIC APPROXIMA•ON OF • 

CONSOL POLICY FOR GDP 

Every discrete dynamic programming method estimates the 
control policy only at the grid points. For points in-between 
an approximation is needed. For the conventional DDP 
method a piecewise constant or a piecewise linear approxi- 
mation is usually made. A more elaborate approximation, e.g., 
via a higher-order polynomial, would essentially require the 
estimation of the derivatives of the control policy at the grid 
points, a task which involves second and higher derivatives of 
the cost-to-go function. Since DDP assumes zero second de- 
rivatives of the cost-to-go function within intervals, such 
closer approximation of the control policy would be of limited 
value. This is not the case, however, for the proposed GDP 
method. In fact, cubic approximations of the control policy of 
GDP can be easily obtained. This requires the computation of 
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th$ first derivatives of the control policy on the grid points, 
and this computation is illustrated below. 

If a constraint is binding, it determines un+,* as well as 
du n + ,*/dS. In the case of (lb), 

(dun+ ,*)/dS = 1 (33) 

while in the case of (lc), 

(du n + ,*)/dS = 0 (34) 

If no constraint is binding un+,* will be the solution of (4b). 
Taking partial derivatives of (4b) with respect to S(k) 

* d2Fn+ ( dun+,) *. O2Ck O2Ck dun+• ' 1 = 0 (35) 8S8'• + 8u 2 OS dS 2 dS 

from which 

•2C k d2Fn +, 
I 

du n + ,* OSOu dS 2 
dS •2C k d2Fn +, 

OU 2 dS 2 

(36) 

where the derivatives dun+,*/dS, [02cn/OSOu], 02cn/Ou 2, and 
d2Fn+,/dS 2 are evaluated at S(k), [u*(k + 1) and S(k)], 
u*(k + 1), and S(k) + q(k + 1) -- u*(k + 1), respectively. Nat- 
urally, in the above equation F n + • is replaced by its approxi- 
mation function G n + ,,i.e., a piecewise cubic function. 

Having at every stage k the values u n + ,* and the derivatives 
dun+,*/dS at all the points of the grid, a piecewise cubic ap- 
proximation of the control policy can be obtained. For exam- 
ple, the approximation polynomial of the control in the inter- 
val IS t_ •, St] would be 

dFn+, dGn+, 
dS dS 

1 
< 

72x//• ' 
d4Fn + 1 

dS • 
(AS) 3 (39) 

where d'•Fn+,/dS '• is evaluated at a point within the interval. 
The proof of the above lemma is given in the appendix. Equa- 
tions (38) and (39) will now be used in the error analysis of the 
gradient dynamic programming method. 

Using the established terminology and assuming that F n +, 
and its derivative are known without error at the grid nodes 
one can write 

OU u.(n + ,) 

Ocn 

Ou v,{n+ •) 

dGn+'l = 0 (40) dS s{n)+q{n+ ,)-u.{n+ ,• 

dFn+'l = 0 (41) dS s(n) + q(n + , )- v,(n + • ) 

Expanding the terms of (40) around the true optimal policy 
U*(k + 1) and keeping only the lowest-order terms 

0cn 02cn I + • Au k +, 
Oil U*(k+ 1) 0U2 U*(k+ 1) 

dGn +, + Auk +, 
dS a, -- s{n)+ q(n + ,)- v,(n + ,) dS2 

(42) 

Subtracting (41) from (42) 

AUn + ,!k Ou 2 U.(k + 1) 

d2Gn + 1 
+ 

dS • A*) 
u n + ,*(S) = A(S)u n + ,*(S,_ ,) + B(S)u n + ,*(S,) 

* dun+'* I + C(S) dun+' + D(S) 0S (37) ds s,_ • 

where A(S), B(S), C(S), and D(S) are given, as before, from (23). 
As it is shown theoretically in the next section (for AS 

asymptotically tending to zero) and as it is illustrated in the 
examples (for finite AS), GDP with only a small number of 
discrete states is as accurate in estimating the control policy as 
the conventional DDP with a much larger number of states. 
To benefit, however, from the coarser discretization that GDP 
permits, the approximation of the control function presented 
above becomes essential. 

6. ERROR ANALYSIS OF GRADIENT DYNAMIC PROGRAMMING 

Consider the true cost-to-go function Fn+,(S) in the closed 
interval [St_,, St] of length AS and its approximation (esti- 
mated cost-to-go function) Gn+•(S) in the same interval. 
Fn+ •(S) and Gn+,(S) satisfy conditions (21). Furthermore, for 
the purposes of the error analysis, it is assumed that 
has continuous fourth derivatives. Before proceeding with the 
error analysis, the following lemma is needed. 

Lernrna. If Gn+,(S ) is a polynomial approximation of 
F n + ,(S) in an interval of length (AS), and G n + ,(S) is so defined 
as to preserve the values Fn+ ,(S) and the values of the first 
derivatives dF n+ a(S)/dS at the end points (St_ • and St) of the 
interval (condition (21)), then for any point within the interval 

1 

IFn+ 1 -- Gn+ 1l -< • 
daft 

dS • 
(AS) • (38) 

k, dS A. dS A. 

Then using (39), neglecting the higher-order term AuAS 2 and 
taking absolute values, 

1 I(da'Fn + O/dSa'l AS 3 =- iAun+ ,max(GDP)l IAun+•l -< 72x//• 02Cn d2Fn+, 
OU • + dS 2 

(44) 

where the derivatives 02cn/Ou 2, d2Gn+,/OS 2, and 04Fn+,/OS 4 
are evaluated at U*(k + 1), S(k) + q(k + 1) -- U*(k + 1), and a 
point in the interval within which S(k) + q(k + 1)- u*(k + 1) 
falls, respectively. Thus Au k +, • O(AS3). 

The cost to go may now be calculated from (29) rewritten as 

F•,'[S(k)] = c•,[S(k), u*(k + 1)3 

+ Gn+ ,IS(k) + q(k + 1)- u*(k + 1)3 (45) 

while the truly optimum satisfies (13). Subtracting (13) from 
(45) 

Fn'[S(k)] -- Fn[S(k)] 

= cn[S(k), u*(k + 1)]- cn[S(k ), U*(k + 1)] 

+ %+,(A* - -- 

dGn + I -- Oct Auk+, +Gn+,(A*) -- ' AUn+ ,--Fn+,(A*) 
Ou v, dS A, (46a) 
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where terms of order higher than AS`* have been neglected. 
Using (4b) and keeping again the lowest-order terms 

Fk'[S(k)] - Fk[S(k)] = Gk+ •(A*)- Fk+ •(A*) (46b) 

and from (38) 

1 d`*Fk+ • AS`* (47) IFk'[S(k)] -- Fk[S(k)]l --< 3-• as'* 

The derivative of the cost to go, for no constraint binding, 
satisfies (31) rewritten as 

dFk' OCk I aG+ I - + (48) 
dS OS •, dS s(•)+q(•+ •)-•,(•+ •) 

while the actual satisfies 

dFk OCk I dF+, I - + (49) 
dS OS v, dS A, 

Subtracting (49) from (48), expanding and keeping the lowest- 
order terms 

' I dG+' I dFk dFk_ 02Ck Auk+• + 
dS dS OuOS •v, dS A, 

where we used that 

d2Gk + • Au k + • •'œ A, dS A, 

- ( 02ck d2Fk+ 1.)Auk + 1 dS 2 

dGk + 1 
dS A* 

dFk + 1 
dS 

.• o(as •) (50) 
A* 

d2Fk + d 2Gk+ 1 Au k • dS 2 + -- •i AUk+ + O(A$5) 
In the derivation of (44), (47), and (50) Fk+ x and dFk+ x/dS 

were assumed known without error. This should be the case at 

the last stage, i.e., for k + 1 - N. At other steps, the approxi- 
mately calculated nodal values Fk+ •' and dFk+ •'/dS are used 
in the place of Fk+ • and dFk+•/dS in (22). However, since 
IFk + •' - Fk + • I '" O(AS`*) and ]dF k + •'/dS - dF k + ddSI 
O(AS3), one may easily verify by repeating the analysis of (40) 
through (50) that 

IAuk+ xl '• O(A$3) (51a) 

IF•'- F,,I • O(a$ '•) (51b) 

dFk' dFk • O(AS 3) (51c) 
ds ds 

Thus while the convergence of DDP is linear, the conver- 
gence of GDP is of order three. However, the reader is re- 
minded that the improved order of convergence of the GDP is 
predicated on a higher degree of smoothness of the cost-to-go 
function than that required by DDP. Thus in the expansions 
into Taylor series for GDP we assumed that the cost to go is 
four times continuously differentiable, while for DDP that it is 
twice continuously differentiable. 

7. EXAMPLE OF A SINGLE-RESERVOIR OPERATION SYSTEM 

The system under study is a simplified representation of the 
Saylorville Reservoir, on the Des Moines River, Iowa. The 
dam is located 214 miles upstream from the mouth of the Des 
Moines River on the Mississippi River and about 9 miles 

upstream from the city of Des Moines, Iowa. At full flood 
control pool, elevation 890 ft above mean sea level (msl), the 
lake extends 54 miles upstream from the dam, occupies about 
16,700 acres of land, and the storage is 670,000 acft. At conser- 
vation pool, elevation 833 ft above msl, the lake extends for 
about 17 miles upstream, occupies 5400 acres, and corre- 
sponds to storage 74,000 ac-ft. The project is owned by the 
federal government and is operated and maintained by the 
U.S. Army Corps of Engineers, Rock Island District. 

The optimization problem studied here is a finite-horizon, 
short-term optimal control problem. The operating horizon 
consists of five periods, each period equal to a fortnight. The 
control variables are the amounts of water released from each 

reservoir and the state variables are the amounts of water 

stored in each reservoir. All variables are expressed in units of 
1000 ac-ft. The operating cost consists of a terminal cost c r 
and stagewise costs c k. The role of the terminal cost is to make 
the short-term operation consistent with the long-term objec- 
tives. It is assumed that c r is a linear function of the amount 
of water remaining in the reservoir at the end of the operating 
horizon, 

c T - aS(T) (52) 

where a is a cost coefficient assumed equal to 1/150. The 
stagewise cost ck, which represents flood damages, is assumed 
a function of the release u(k + 1) at stage k. Approximately, 

c k=O u(k+ 1)_<R 

( )3 Ck= u(k + 1)--R u(k + 1)>R 
R 

(53) 

k-0,1,2,3,4 

where R is the maximum "no damage" release taken equal to 
140. The capacity of the reservoir is K = 600. The system 
dynamics and constraints are described in (la)-(lc) for k ---0, 
1,2,3,4. 

The performance criterion is 

d = • CkEu(k + 1)] + aS(5) (54) 
k=0 

and releases are determined by minimizing the value of J (or 
the expected value of the cost to go at each stage, for the 
stochastic case). 

The above optimal control problem has been solved by 
both the conventional DDP and the proposed GDP methods. 
The purpose was to compare the estimated control policies for 
several state discretization schemes to the "true" control 

policy of the system. The true control policy was computed 
numerically using a very fine discretization scheme (number of 
states, NS- 62) and was for all practical purposes the same 
for both DDP and GDP methods. The true optimum was also 
checked with nonlinear programming. The discretization 
scheme of Savarenskyi (see, for example, Klemeg [1977b]) was 
used. With this scheme, the storage values of zero (empty 
reservoir) and K (full reservoir) are considered separate states. 

Two examples, one with deterministic input and the other 
with stochastic input of the same mean and a specified lognor- 
mal marginal probability distribution, have been studied. The 
inflows to the system have been assumed statistically indepen- 
dent. This assumption, although not realistic for biweekly 
flows, serves well the illustrative purpose of our case studies. 
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Fig. 3. Optimal release u*(1) and total cost as functions of the initial storage S(0). Deterministic case; state discretization 
scheme of four nodes. 

7.1. Deterministic Case 

The input to the system over the five operating periods is 
assumed to have the shape of a symmetric hydrograph with 
values 

q(1) = 80 q(2) = 100 q(3) = 130 

q(4) = 100 q(5) = 80 

In all cases we enforced the constraint that the release should 

not be less than the smaller of R and available water, 
S(k) + q(k + 1). Figures 3, 4, and 5 show a comparison of the 
optimal release u*(1) during the first operating period, as a 
function of the initial storage S(0) for three state discretization 
schemes with 4, 8, and 14 discrete nodes (NS = 4, 8, and 14), 
respectively. 

It is observed that the conventional DDP with NS = 4 

yields an optimal control policy which considerably differs 
from the true one. As NS increases, the maximum error de- 
creases and maximum IAu(DDP)I • I/NS (linear rate of con- 
vergence). G DP yields a policy which is very close to the true 
one, even for NS as small as 4. Furthermore, the improvement 
from NS - 4 to NS = 8 is definitely superlinear. Figures 3, 4, 
and 5 compare the total costs for the same discretization con- 
figurations, as calculated by each methodology. It is obvious 
that GDP is near optimal even with as few as four nodes. This 
is particularly interesting since the cost-to-go function does 
not have continuous higher-order derivatives in this opti- 
mization problem. 

7.2. Stochastic Case 

The previous example was further solved for stochastic in- 
flows, having at each operating period i a lognormal distri- 
bution with mean O(i) and variance Var (q(i)), where 

c•(i) = (80, 100, 130, 100, 80) 

Var (q(i)) = (900, 900, 900, 900, 900) 

The probability distribution of the input was represented with 
10 discrete values placed at equal probability intervals apart. 
Since our objective is to study the effect of state discretization, 
we will assume that this representation is adequate for our 
purposes. The acceptable probability of violating the nonnega- 
tivity or capacity constraints were set equal to five percent. 
Then, the objective is to minimize 

F•,[S(k)] = min {c•,[u(k + 1)] 
u(k + 1) 

l 

+ • p,F•,+ x[S(k) + q,(k + 1)- u(k + 1)]} (55) 
i=1 

as compared to the deterministic case, in which 

Fn = min {c•,[u(k + 1)] 
u(k + 1) 

-•- Fk+ i[S(•) •- •(• •- 1)- u(k + 1)]} (56) 

The weights p•, i = 1, 1, ..., l in (55) correspond to the prob- 
abilities of having inflow within the ith interval of the discrete 
representation of inflows. Thus the summation in (55) extends 
over values of F•+t computed at points around the value 
S(k) + 4(k + 1) -- u(k + 1). 

Figures (3 and 7 compare the optimal release u*(1) obtained 
for two discretization schemes with four and eight states, re- 
spectively, to the true optimal release. The corresponding cal- 
culated mean operating costs are also compared in the same 
figures. It is obvious that GDP yields more accurate solutions 
than DDP. By comparing the accuracy of calculated release 
policies in Figures 6 and 7 one may confirm the linear conver- 
gence of DDP and the superlinear convergence of GDP. 

By comparing Figures 3 and 7 it becomes obvious that for 
the same discretization levels both DDP and GDP are more 

accurate in the stochastic than in the deterministic case. This 

should be attributed to the smoothing effect of averaging 
(equation (55)). For example, in DDP, the weighted second 
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Fig. 4. Optimal release u*(1) and total cost as functions of the initial storage S(0). Deterministic case' state discretization 
scheme of eight nodes. 

derivative 

t d2Fk+'l i= 1 as2 s(k) +qi(• + 1)-v,(t,+ •) 
takes less extreme values than 

d2F•+ • l as2 s(to+g(t•+ •)- v,o•+ • 
and, consequently, the discretization error should be smaller 
in the stochastic case. 

In stochastic DDP, the linear nonnegativity and capacity 
constraints are replaced by their deterministic equivalents [see 
Stedinger et al. [1984] and their list of references). Therefore 
when a constraint is binding the stochastic optimal control 
differs from the deterministic one by an amount depending on 
the allowable probability of violating the constraints. This 
probability was taken equal to 5%. In the example considered, 
the nonnegativity constraint becomes binding much more 
often than the capacity constraint. Therefore for small initial 
storages, the stochastic case results in lower (more conserva- 
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Fig. 5. Optimal release u*(1) and total cost as functions of the initial storage S(0). Deterministic case; state discretization 
scheme of fourteen nodes. 
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Fig. 6. Optimal release u*(1) and total cost as functions of the initial storage S(0). Stochastic case' state discretization 
scheme of four nodes. 

tive) releases, and consequently higher costs, as compared to 
the analogous deterministic case. All of the above points can 
be clearly observed in Figures 6 and 7. 

8. SUMMARY AND CONCLUSIONS 

The effect of state discretization on estimated control vari- 

ables (such as releases) and cost functions was studied for two 
versions of discrete dynamic programming. Analytical ex- 
pressions were obtained assuming small discretization interval 
and the results were verified in a case study involving the 

optimization of reservoir operation. 
First, the effect of state discretization in conventional DDP 

was studied. In DDP the cost to go is calculated at each node 
of the discretization grid and is approximated through linear 
interpolation for points between nodes. The error in the con- 
trol was shown to vary linearly with the discretization interval 
and the error in the cost function to vary with the square of 
the discretization interval. The coefficients of proportionality 
depend on the ratio of the second derivatives ("curvature") of 
the cost-to-go functions over the second derivative of the 
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Fig. 7. Optimal release u*(1) and total cost as functions of the initial storage S(0). Stochastic case; state discretization 
scheme of eight nodes. 
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stagewise cost. The analysis thus has shown that there is no 
single number of nodes which would achieve the same accu- 
racy for all cases. On the basis of bounds which are analyti- 
cally derived, one can determine whether results obtained 
from different cases are of comparable accuracy. In the sto- 
chastic case it is the expected value of second derivative of the 
cost to go which is relevant and the effect of state dis- 
cretization tends to be less in the stochastic case than in the 

deterministic one. 

Gradient dynamic programming is discrete dynamic pro- 
gramming in which the cost-to-go function F and its first 
derivatives with respect to the state variables are calculated at 
all nodes. Between nodes, F is approximated with the lowestZ 
order polynomial which preserves both the values of F and its 
first derivatives calculated at the nodes. For smoothly varying 
functions this approximation is much more accurate than the 
piecewise linear approximation of conventional DDP. The 
error in the control was shown to vary with the third power of 
the discretization interval and the error in the cost to vary 
with the fourth power of the discretization interval. 

APPENDIX: PROOF OF LEMMA (EQUATIONS (38) AND (39)) IN 
SECTION 5 

Consider a function h(x), x • [xx, x•.], which has continuous 
fourth derivatives and at the end points of the interval [x x, 
satisfies the conditions 

h(xx) = h(x2) = 0 
(A1) 

h'(xx) = h'(x2) = 0 

where h' denotes the derivative of h. It will be shown that h(x) 
is of the order Ax '•, where Ax = x 2 -- x•. 

Performing a Taylor series expansion about xx and using 
conditions (A 1) 

h(x) = «h"(xxXx - x1) 2 -'[- •h(3)(xlXx - xl) 3 

+ 2m4h{4>(•)(x - xl) 4 (A2) 

h'(x) = h"(x,Xx - xx) + «h{3)(xl)(x -- X1) 2 

+ {h{•(•)(x- x•)' (A3) 

where • lies between x• and x. Setting x = x2 and using con- 
ditions (A1) 

0 = «h"(xOAx 2 + {h{3•(xOAx 3 + •hm(•2)Ax '• (A4) 

0 = h"(xOAx + «h{3>(x•)Ax 2 + •h{4)(•2)Ax3 (A5) 

where (2 lies between x• and x 2. Solving (A4) and (A5) in 
terms of h"(xi) and 

= • h (•2)Ax (A6) h"(xx) • {•'> 2 

h{3)(x•) = - «h(4)(•2)Ax (A7) 

Substituting in (A2) and (A3) 

h(x) = •[Ax -- 2(x -- xx)](x -- Xl)2Axh(4)(•2) 

+ •(x -- x,)½h{'•(•) (A8) 

h'(x) = •[Ax -- 3(x -- xx)](x -- xx)Axh{'*>(• 2) 

q- -•(X -- Xl)3h(4)(•) (A9) 

It is obvious that if the fourth derivative of h is zero, h 

vanishes everywhere in the interval [xx, x2]. Otherwise, 
h(x) ..• O(Ax •') and h'(x)..• O(Ax3). To obtain analytical ex- 

pressions of the bounds, consider the case of small Ax. Be- 
cause of the continuity of the fourth derivative, h{4>(•2) tends 
to h{4•(•) as Ax decreases and •2 tends to •. Consequently, 

h(x) = 2m4[Ax2(x -- xx) 2 -- 2Ax(x -- xx) 3 + (x -- xx)'•]h{'•>(0 

(A10) 

h'(x) = •2 [Ax2(x - xx) - 3Ax(x - xx) 2 + 2(x - 

(All) 

Maximizing the absolute values of these expressions 

Ih(x)l _< 3-•4h{4)(•)Ax 4 (A12) 

1 
Ih'(x)l _< h{4)(•)Ax 3 (A13) 

72,/5 
Then, by defining h(x)= Fk+ l(X)- Gk+ •(x), the difference 

between the actual cost to go and its approximation, we 
obtain inequalities (38) and (39). 
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