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Inferences about the underlying rainfall generating mechanism made through a model fitted to the 
sampled rainfall series at a particular time scale are meaningful only if they are invariant under the time 
Scale of measurement at which the fitting of the model is made. Following the work of I. Rodriguez- 
Iturbe et al. (1984), this assertion is tested by examining the compatibility of the Neyman-Scott (N-S) 
model for the continuous underlying rainfall with sampled realizations taken over intervals ranging from 
one hour to one day. The results suggest that the N-S model is inconsistent at different time scales, and 
therefore mathematical descriptions of rainfall using this model are inevitably limited to the time scale of 
measurement at which a description of rainfall is sought. These findings are quite general, in that they 
apply to any model with rainfall deposited instantaneously at times described by a N-S process, regard- 
less of how the amounts associated with the events are distributed, and of the dependence structure of the 
amounts. 

1. INTRODUCTION 

Precipitation is a continuous intermittent process over 
space and time, which is usually recorded as cumulative 
amounts over fixed time intervals and at fixed locations. If one 

assumes the existence of an underlying rainfall generating 
mechanism evolving continuously in time, a challenging prob- 
lem is to infer the mathematical structure of this unobserved 

process from its sampled realizations at discrete time intervals, 
such as hours or days. One way to approach this problem is 
to hypothesize a model for the continuous underlying process 
and estimate its parameters by comparing the theoretical 
properties of the derived discrete processes at different time 
scales with the ones estimated from the sampled realizations. 
If the parameters of the hypothesized model are not the same 
when estimated from data at different time scales, say, hourly 
and daily, this model is not consistent at both time scales, and 
little can be said about the underlying generating mechanism 
[Rodriguez-lturbe et al., 1984'1. 

The importance of time scale considerations in modeling 
rainfall was recently pointed out by Rodriguez-lturbe et al. 
[1984•, who illustrated the dependence of the mathematical 
representation of rainfall on the time scale of measurement. 
They examined three models for the unobserved continuous 
time rainfall intensity process. Two of those were marked 
Poisson processes with different mechanisms for the process of 
marks: in one model the marks were rainfall volumes per 
event (Poisson white noise model), and in the other volumes 
and durations of events (Poisson rectangular pulses model). 
The third model was a marked Ncyman-Scott (N-S) process 
where the marks were volumes per event (Ncyman-Scott white 
noise model). By comparing the derived second-order proper- 

•Now at Department of Civil Engineering, Iowa State University, 
Ames. 

Copyright 1986 by the American Geophysical Union. 

Paper number 5W4301. 
0043-1397/86/005W-4301505.00 

ties of the accumulated rainfall amounts over different time 

scales with their empirical counterparts, they concluded that 
among the models studied the Neyman-Scott white noise 
model provided the best description of rainfall at both the 
hourly and daily time scales. More recently, Valdes et al. 
[1985] reexamined the time scale sensitivity of the above three 
rainfall models using temporal rainfall series generated from 
the space-time rainfall intensity model of Waymire et al. 
[1984]. They arrived at conclusions similar to those of 
Rodriguez-lturbe et al. [ 1984] regarding consistency of models 
with respect to second-order statistics, but demonstrated that 
none of the models were able to preserve the statistics of 
extremes. 

The present paper has two objectives. The first objective is 
to examine the time scale consistency of the Neyman-Scott 
process which has been suggested as a physically realistic 
model for short time increment rainfall occurrences. Our ap- 
proach in addressing this objective is somewhat different from 
that of Rodriguez-lturbe et al. [1984] and Valdes et al. [1985] 
in that it employs properties of the discrete time occurrence 
series and not of the cumulative rainfall amounts, thus avoid- 
ing assumptions regarding the correlation and distributional 
properties of the instantaneous rainfall amounts and cross- 
correlation properties between occurrences and amounts. The 
second objective is to present methods of estimating the con- 
tinuous underlying N-S model from the discrete rainfall oc- 
currence series and examine the sufficiency of second order 
statistics of the discrete occurrence or amounts process in 
identifying the underlying continuous model. The reader un- 
familiar with point process terminology and methods will find 
the review paper of Waymire and Gupta [1981], and the paper 
of Guttorp [1986] useful in understanding the mathematical 
development presented in sections 2 and 3. Alternatively, the 
reader interested only in the results and their applications may 
skip directly to section 4. 

The paper contains two parts. In the first part (which con- 
sists of sections 1 to 4) we study the compatibility of the N-S 
model for the underlying rainfall generating mechanism. We 
seek descriptions of the underlying rainfall occurrence process, 
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Nt, by means of the discrete time occurrence series Zk(A), and 
not the cumulative rainfall amounts series Y•(A). Thus our 
approach does not require assumptions about the distri- 
butional properties of the instantaneous rainfall amounts and 
the correlation properties of occurrences and amounts. The 
discrete time occurrence series Zk(A) is defined as 

Zn(A) = I(N((kA, (k + 1)A]) > 0) k _> 0 (1) 

where N(A) denotes the number of events of Nt falling into the 
set A, and I(E) is 1 if E occurs and 0 otherwise. The only 
model hypothesized for N t is a Neyman-Scott model, since, as 
is shown analytically in the next section, Poisson-based 
models are unlikely to be adequate when a significant depen- 
dence in the cumulative rainfall amounts at any time scale of 
interest exists. It will be shown that the parameters of the N-S 
model estimated from the series Zn(A) at different time scales A 
(i!x, •A/, •, ¬, «, and 1 days) are not consistent, implying that the 
N-S model does not provide an adequate description for N t 
compatible with sampled realizations at different time scales. 

In the second part of this paper (which consists of sections 5 
and 6) we have examined carefully the model and model fit- 
ting procedure of Rodri•tuez-lturbe et al. [1984] and have 
made some key observations which lead to the conclusion that 
the N-S white noise model cannot, in general, bc consistent at 
all time scales. In particular, it is shown that the parameter of 
the N-S model which is related to the dispersion of events in a 
cluster is uniquely determined by the rate of decay of the 
autocorrelation function of the cumulative rainfall amounts 
and therefore cannot bc the same at all time scales. Fur- 

thcrmorc, it is shown that the parameters of the final N-S 
model arc highly sensitive to the assumption of the distri- 
bution of cluster sizes (Poisson or geometric), and therefore if 
possible, the selection of this distribution should bc made on 
physical grounds and not simple mathematical convenience. 

Finally, some suggestions on integration of our approach 
with the approach of Rodriguez-lturbe et al. [1984] for the 
estimation of a continuous-time marked Neyman-Scott proc- 
ess which, although not consistent, preserves both the cumula- 
tive rainfall amounts and binary rainfall occurrence series at 
the time scale of interest, arc made. This is especially impor- 
tant for the estimation of the N-S model from daily data 
where the second autocorrelation coefficient r: is usually insig- 
nificant and the model can bc quite sensitive to the assumed 
value for r2. 

2. MATHEMATICAL STRUCTURE OF THE UNDERLYING 

RAINFALL OCCURRENCE PROCESS 

To obtain some insight as to what classes of models may be 
appropriate for the underlying rainfall occurrence process N t 
it is important to study the relation of the properties of Nt to 
the properties of an observed realization resulting from Nt, 
such as the cumulative amounts Y•, at different time scales A. 
Below we compute the second order properties of Y• for a 
general marked occurrence process N t. 

Let P•v and pray(u) denote the rate and second-order product 
moment of a stationary continuous-time point process (Nt, 
0 _< t _< T). These properties are defined as 

P•v = lim P{dN t = 1}/dt (2) 
dt-} O 

and 

pNN(U)= lim P{dNt=dNt+,= 1}/dtdu (3) 
dt,du--} 0 

where dNt = Nt+dt- N r The parameter pN•u) measures the 
probability density of two events u time units apart. Let U( ) 
denote the rainfall intensity process. Then, if Y• stands for the 
observed rainfall amount in the ith time interval of length A, 
U( ) is white noise, and X is distributed as U(A), 

•o• •(t•+ Cov (Yi, Y•+ •)=E U(t)U(s) dN, dNs- E2(X)p•vaA 2 
A 

(4) 

Conditioning on N(0, A] = n, N((kA, (k + 1)A]) = rn, the first 
term in (4) becomes 

where 

E(E2(X)nm) = E2(X) p•(t- s) dt ds 

= E2(X)A ha(v - kA)p•(v) dv 

ha(s) = 1 -Isl/A -A •< s •< A 

ha(s) = 0 otherwise 

[compare Guttorp and Thompson, 1984]. Noticing that 

pN2A 2 = A ha(v - kA)pN 2 dv 

we find that 

(5) 

(6) 

where Va = Var (Na) is the variance-time curve of N t evalu- 
ated at t = A days. Note from (7) and (8) how the covariance 
and variance of the rainfall amounts depend on the width A of 
the discretization interval. 

The conclusion of Rodriguez-lturbe et al. [1984] that Pois- 
son based models did not provide adequate descriptions of N t 
for the Denver data can now be reached by alternate compu- 
tations. Assume, as in their case, that Xi are independently 
exponentially distributed, so that E(X 2) = 2E2(X). Solving (8) 
for Va and substituting data from Table 1 of Rodriguez-Iturbe 
et al. for hourly (A = •) and daily (A = 1) time scales, we find 
that 

V•- V•/24 = 40.906/E2(X)- 1.76 
(9) 

E(X) = 2.125/PN 

(It should be emphasized that throughout this paper, A is in 
days, and hence for example, A = • corresponds to an hourly 
sampling interval.) Note that since Vi > Va/24, we must have 
E(X) < 4.82, and p• > 0.441. Assuming a linear variance-time 
curve (this is typically the case asymptotically; compare Cox 
and lsham [1980, chapter 2]) we find from (9) that the slope of 

Cov (Y1, Y•+ •)= E2(X)A ha(v- kA)c•v) dv (7) 

where c•N(u)= p•(u)- p•2 is the covariance density of the 
point process N t. In the case of a Poisson process, the covari- 
ance density c•N is identically zero, whence the same is true 
regarding the covariance between amounts in different time 
intervals. Therefore if significant correlation of rainfall 
amounts at different time scales is found, a model with inde- 
pendent counts, such as the Poisson model, is not expected to 
give a good description of the continuous process Nt. 

A similar computation shows that 

Var (Yx)= p•A Var (X) + VaE2(X) (8) 
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the variance time curve is 9.06pN e - 1.76, which for pN = 1.69, 
the rate of occurrence of the N-S model found by Rodriguez- 
Iturbe et al. for Denver data, gives V t = 25.05t. Notice that for 
a Poisson process V t = pst, so in this case we would have 
V• = 1.69t. Thus the data suggest substantial overdispersion, 
or clustering, relative to a Poisson model. 

On the basis of the above results, we have examined only 
the Neyman-Scott model as a possible model for Nt. The pa- 
rameters of this model have been estimated by comparing the 
theoretical first- and second-order properties of the discretized 
processes Zk(A ) with those of the observed series, at different 
time scales A. Estimation methods are discussed in the next 

section. 

3. ESTIMATION OF CONTINUOUS-TIME POINT PROCESSES 

FROM DISCRETE OCCURRENCE SERIES 

Let (N t, 0 _< t < T) be the counting process of onset times of 
rainfall events (i.e., N t is the number of rainfall events that 
started before time t). In order to fit (and test the fit of) models 
of the point process N t, one needs exact records of onset times. 
Usually, such records are unavailable, and onset times must 
be inferred from observations of the amounts over fixed time 

intervals, such as 1 hour or 1 day. This has two drawbacks: 
the arrival onset times are unknown, so some rounding error 
is inevitable (discretization), and the actual number of events 
in each time interval is unknown, in that the presence only or 
absence of rainfall is recorded (clipping). The discretized and 
clipped time series Zk(A) was defined in (1) in terms of the 
continuous point process N t. In this section, methods of esti- 
mation of the parameters of N t from properties of the Zn(A) 
series are presented. 

3.1. Maximum Likelihood Estimators 

Below we develop the necessary theory to derive the likeli- 
hood function of the sequence (Z•, k = 1, ..., n) in terms of the 
zero-probability function 

•(A) = P(N(A) = 0) (10) 

of the underlying point process N t. Here N(A) counts the 
number of events of Nt that fall in the set A. 

Let x and y be the strings of O's and l's. We combine strings 
by concatenation, so e.g., x ly stands for the string that first 
coincides with x, then has a 1 followed by the string y. Let 
x.y denote all strings starting with x, then having an arbi- 
tracy symbol (i.e., either 0 or 1) and then the string y. The 
following trivial lemma will allow computation of the prob- 
ability P(z) of any string z, in terms of (A) evaluated at rela- 
tively simple sets A. 

Lemma: 

P(ylx) = P(y. x)- P(yOx) 

We use the lemma to reduce the given string z to only the 
symbols 0 and ß by removing all l's starting from the left. An 
example given in the appendix will make the procedure clear. 

This procedure, albeit straightforward, will be fairly tedious 
for a typical data set. The resulting likelihood function will be 
a linear combination of the zero-probability function evalu- 
ated at unions of disjoint intervals. Expressions of •(A), where 
A is the union of two such intervals, are given in the work by 
Guttorp [1986], and the methods there are easily (but tedi- 
ously) extended to more general sets of the required form. 

3.2. Method of Moments 

The statistical properties of Zn(A) for several models for N, 
have been computed by Guttorp [-1986]. Here, only the 
properties of interest for the case of a Neyman-Scott process 
with geometrically distributed cluster sizes are given: 

ms = E(Z•,)/A = (1 -- B) 

c•, = E(Z,Z,+•,)/A 2 = B(D•,- B) 

Cn = E(ZtZt+•)/A 2 = B(1 -- B) 

and therefore 

where 

k>_'l 

k=O 

(11) 

(12) 

In the above equations, 2 is the rate of the primary events 
(cluster centers); p is the parameter of a geometric distribution 
of the number of (secondary) events per cluster center; and fi 
is the parameter of the exponential distribution of the time 
between secondary events and their cluster centers. Since the 
N-S model has three parameters, denoted by 0 = (2, p, fi), the 
expressions for ms, r•, and re are adequate for the estimation. 

Observe from (13)-(15) that the values of rn are insensitive 
to the values of the parameter fi, in that large changes in fi 
may result in only small changes in rk. Numerical simulation 
revealed that the derivatives of rn with respect to 2 are indeed 
very small (order of 10-3) at the regions of fi which seem to be 
of interest to rainfall modeling and therefore care must be 
exercised in solving these equations. Also notice that for ap- 
propriate combinations of parameter values, De may take on 
values ver•y close (or equal, in some cases) to D•, thus making 
the system of equations underdetermined. In those cases, sev- 
eral N-S models give rise to discrete realizations Zn(A) with 
the same first three moments. In view of the above, these 
equations were tested through simulation before being used 
for the rainfall data analysis. For example, given the insen- 
sitivity of the system to large changes in fi, it is important to 
test the variability in fi induced by the sampling variability in 
r • and r e. 

Five hundred continuous-time occurrences were generated 
from a Neyman-Scott model with known parameters 0 and 
were subsequently discretized at different time scales corre- 
sponding to 1, 2, 4, 6, 12, and 24 hours. The length of the 
sequences corresponds to twenty years of hourly data or a 
maximum of 3000 events, whichever is reached first. Using the 
discrete-time series, the parameters of the Neyman-Scott 
model were estimated. Table la shows the simulation results 

for 0 = (0.10, 0.05, 5.00), Table lb for 0 = (0.10, 0.40, 1.00), and 
Table lc for 0 = (0.30, 0.15, 17.00). The parameter vectors 0 
were chosen so as to cover ranges of parameter values thought 
of being representative of rainfall data at different time scales 
(see next section). 

From Tables la-lc it is observed that in general, the un- 
derlying N-S process is well identified and estimated from the 
observed discrete realizations. The failures (no solution of the 
equations) are many times caused by small negative empirical 
covariances c• or c2, while only positive theoretical covari- 
ances of Zn(A) are permissible when Nt is a N-S process (see 

B = e- x• '1 - (1 - p)e- • (14) 

x•[ P + (1 - p)e -•ø'- •)'•(1 - eS•) = e- _ _ - _ ] 

rk = (D• - B)/(1 - B) k > 1 (13) 
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TABLE la. Mean Value and Standard Deviation of the Parameters 

(2, p, /•) of the Neyman-Scott Model Fitted to Discretized Data at 
Time Scales A - •,•, •-•, •, ¬, «, and 1 Days 

1 

A __• ! i _• « (f= 72) 2a, 12 6 a, 

Mean 0.105 0.103 0.102 0.102 0.102 0.101 
Standard 0.029 0.012 0.009 0.009 0.009 0.009 

Mean 0.050 0.051 0.051 0.052 0.052 0.080 
Standard 0.013 0.007 0.009 0.011 0.017 0.056 

Mean 5.144 5.081 5.027 5.027 5.083 4.601 
Standard 1.671 0.701 0.478 0.479 0.690 1.824 

TABLE lc. Same as Table la, But With Population Parameters 
2 = 0.30, p = 0.15, and fi - 17.00 

A 1 1 1 2• T• • (f= 106) (f= 268) (f= 275) 

Mean 0.303 0.302 0.302 0.300 0.296 0.291 

Standard 0.027 0.017 0.015 0.015 0.016 0.021 

Mean 0.149 0.150 0.148 0.164 0.458 0.718 
Standard 0.017 0.016 0.030 0.066 0.097 0.105 

Mean 17.087 17.091 17.349 16.994 6.419 2.038 
Standard 2.088 1.306 2.407 5.503 2.373 1.202 

Results are based on 500 replicates; f is the number of failures. 
Population parameters are 2 - 0.10, p - 0.05, and fi - 5.00. 

equation (12) in which D•, D 2 > B, and B > 0 for all 0). De- 
pending on the values of the parameters, problems of non- 
uniqueness and nonidentifiability are experienced at different 
regions of discretization time interval. All these problems are 
well explained by examining the Jacobian of the system and 
the theoretical values of m, c•, and c2 at the values of the 
population parameters. 

4. ANALYSIS OF RAINFALL OCCURRENCE DATA 

The Neyman-Scott model was fitted to rainfall occurrence 
data from Denver, Colorado (1952-1972) and Seattle-Tacoma 
(Sea-Tac) International Airport, Washington (1965-1982). The 
discretized occurrence series at time scales A equal to 
¬, ! and 1 days were created from hourly data, and the 2, 

method of moments fitting procedure described in section 3 
was used for the estimation. Each month was assumed a ho- 

mogeneous period and was fitted separately. In order to avoid 
the abrupt transition from the one month to the next (end 
effects), the series were adjusted so that each month starts at 
the beginning of the first rainy period completely included in 
the month and ends at the end of the last dry period com- 
pletely included in the month. Table 2 shows the parameters 
of the N-S model fitted to data from Denver, and Table 3 to 
data from the Sea-Tac Airport. It can be seen that the esti- 
mated parameters differ drastically at each time scale and they 
exhibit a very smooth trend, unlikely to have resulted from 
numerical problems. 

Therefore we conclude that there is not a unique N-S model 
which, when discretized at time scales A, results in series Zk(A) 
with the first three moments equal to the moments of the 
rainfall occurrence series at the appropriate time scales. Intro- 
duction of higher-order moments in the estimation has not 

TABLE lb. Same as Table la, But With Population Parameters 
•, = 0.10, p - 0.40, and fi - 1.00 

2•. 12 6 

x 1 A (f=101) (f-69)(f=31)(f-n) • 

Mean 0.205 0.147 0.095 0.095 0.100 0.100 
Standard 0.035 0.040 0.034 0.024 0.007 0.004 

Mean 0.780 0.573 0.371 0.377 0.397 0.398 
Standard 0.097 0.140 0.130 0.093 0.025 0.020 

Mean 13.420 3.526 1.150 1.006 1.009 1.018 
Standard 9.582 2.441 0.726 0.441 0.168 0.094 

been examined herein. However, it has been verified that auto- 
correlation coefficients at higher lags are adequately pre- 
served. 

5. COMMENTS ON THE NEYMAN-SCOTT WHITE NOISE MODEL 

The Neyman-Scott white noise model of interest consists of 
a Neyman-Scott model (with Poisson distributed cluster sizes) 
for the occurrence of the instantaneous bursts and an ex- 

ponential distribution for the rainfall magnitudes associated 
ß 

with each burst. Here the necessary properties of the accumu- 
lated rainfall amounts Y(A), where A is the time scale of 
measurement in days, are given. For more information on this 
model, see the paper of Rodri•luez-lturbe et al. [1984]. 

Let E(Y), Var (Y), and ck denote the mean, variance, and 
lag-k autocovariance of the cumulative rainfall amounts Y. 
Then, Rodriguez-lturbe et al. [1984] give 

where 

E( Y) = A2E(X)E(v) (16) 

Var (Y) = 0•A + 2½ (fiA - 1 + e- 
02 - t•a)2 e - •(t• - 1)a c• =•¾(1 -e 

(17) 

where 

Ox = 22E2(X)E(v) (19) 

02 =/l/•E2(X)E(v(v- 1))/2 (20) 

In the above equations the convention is made, as before, that 
•l and • will always be given in days- • and A in days; v 
denotes the number of events in a cluster. (A typographical 
error in equation (42) of Rodriguez-lturbe et al. [1984], which 
has 02 not divided by 2, has been corrected here.) From the 
above equations, several observations are made as follows. 

5.1. Observation 1 

The autocorrelation function of the cumulative rainfall 

amounts Y(A) resulting from the integration of a Neyman- 
Scott white noise model has a Markovian dependence struc- 
ture, which depends only on the cluster size and dispersion of 
events in a cluster. 

Specifically, it can be shown that 

r• = r•e -•(•- •)a (21) 

(1 - e- •A)2 
r a = (22) 

2['E(2•vE(--v•)) A + (fiA-1 + e-•a)] 

k • 1 (18) 
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TABLE 2. Parameters (2, p, fi) of the Neyman-Scott Model Fitted 
to Rainfall Occurrences at Denver, Colorado (Period 1952-1972) 

24 12 6 4 2 

January 
,• 0.206 0.174 0.168 0.170 0.184 -.. 
/5 0.049 0.077 0.131 0.189 0.249 ... 
fl 11.022 6.441 4.240 3.695 3.330 -.. 

February 
/• 0.244 0.221 0.200 0.206 0.226 ... 
/• 0.033 0.039 0.097 0.136 0.070 -.- 
fl 10.978 8.977 6.339 5.211 9.894 .-- 

March 
• 0.307 0.272 0.219 0.205 0.217 -'- 
/5 0.026 0.032 0.075 0.087 0.141 ... 
fl 12.326 9.378 4.768 4.030 3.395 .-. 

April 
• 0.308 0.286 0.257 0.264 0.260 0.235 
/5 0.026 0.049 0.100 0.133 0.272 0.372 
fl 12.097 9.361 5.488 5.340 3.406 1.758 

May 
• 0.385 0.351 0.316 0.324 0.216 0.310 
/• 0.040 0.073 0.126 0.182 0.312 0.350 
fl 12.762 8.334 4.542 3.672 0.600 1.957 

June 

,• 0.371 0.372 0.331 0.336 0.219 0.311 
/• 0.148 0.205 0.350 0.456 0.450 0.573 
fl 16.650 11.815 4.373 3.360 0.409 1.532 

July 
• 0.364 0.356 0.377 ...... 0.282 
i6 0.198 0.292 0.424 ...... 0.586 
fl 21.261 14.465 12.358 ...... 0.849 

August 
• --- 0.321 0.330 0.341 .-. 0.286 
/5 ß .- 0.325 0.447 0.278 ... 0.482 
fl -.- 14.530 11.322 21.496 --- 3.411 

September 
/• 0.280 0.271 0.256 0.251 0.236 0.273 
/5 0.048 0.090 0.206 0.249 0.402 0.353 
fl 13.861 9.875 4.896 3.730 1.711 2.509 

October 

• 0.207 0.166 0.149 0.152 0.152 0.183 
/5 0.027 0.041 0.081 0.151 0.192 0.389 
fl 11.527 7.304 4.480 3.502 3.085 2.835 

November 
/• 0.251 0.225 0.177 0.192 0.178 "' 
i0 0.029 0.060 0.125 0.134 0.111 '" 
fl 13.513 9.564 4.301 5.243 4.812 --- 

December 

/• 0.237 0.217 0.180 0.182 0.178 0.169 
i6 0.060 0.094 0.153 0.150 0.345 0.381 
fl 12.463 8.543 4.238 4.737 2.189 1.631 

Here, A is the discretization interval in days. 

ig a function of only fi and the first two moments of v, and not 
of the other two parameters of the model 2, and E(X). Note 
that this result is contrary to the implication of Rodriguez- 
Iturbe et al. [1984] that the autocorrelation function depends 
on all the parameters of the model. 

5.2. Observation 2 

In view of the above observation, a simple estimation pro- 
cedure of the N-S white noise model with Poisson distributed 

cluster sizes is proposed. 
1. Fit an exponential function to the autocorrelation func- 

tion (ACF) rk, k >_ 1 of the amounts, or at least to the part of 
the ACF desired to be preserved. The parameter of the ex- 
ponential function gives the value of the parameter fi of the 
N-S white noise model. 

2. Since r• depends only on fi and E(v), substitute in (22) 
the value of fi and solve for E(v). 

3. Then, from E(Y) and Var (Y), solve for the other two 
parameters to get 

E(X) = Var (Y)/[2 + E(v)(/IA - 1 + e-na)//?] (23) 

2 = E(Y)/(E(X)E(v)) (24) 

Other one parameter distributions for v will yield slightly dif- 
ferent algebraic expressions (see section 6). 

5.3. Observation 3 

The above estimation procedure will give a fit which pre- 
serves the mean, variance, and r• of the cumulative rainfall 
amounts exactly, and the ACF rk, k > 2 to the desired degree 
of accuracy. Since, in general, it is not true that the rate of 
decay of the ACF of the cumulative rainfall amounts is the 
same for all discretization time intervals (e.g., 1 hour, 2 hours, 
ß .., 24 hours), it is expected that the fitted N-S models at 

TABLE 3. Parameters (2, p, •) of the Neyman-Scott Model Fitted 
to Rainfall Occurrences at Seattle-Tacoma Airport 

(Period 1965-1982) 

_._1 

1.204 
0.028 

18.008 

0.917 
0.032 

15.814 

0.876 
0.053 

16.058 

0.813 
0.083 

18.274 

0.471 
0.086 

19.395 

0.513 
0.069 

20.056 

• ñ x x 1 

January 
0.953 0.811 0.724 0.582 0.443 
0.058 0.077 0.075 0.152 0.184 
9.041 5.796 4.754 2.124 1.014 

February 
0.688 0.538 0.528 0.469 0.441 
0.053 0.076 0.104 0.166 0.254 
8.237 5.238 3.506 2.042 1.132 

March 

0.678 0.520 0.463 0.405 0.403 
0.082 0.079 0.096 0.156 0.215 
8.155 5.066 3.596 2.051 1.772 

April 
0.671 0.534 0.471 0.469 ... 
0.131 0.147 0.161 0.178 ... 
8.975 5.088 3.756 3.860 --. 

May 
0.419 0.372 0.340 0.281 0.295 
0.134 0.207 0.237 0.359 0.446 

12.000 6.706 4.433 1.645 1.676 
June 

0.433 0.388 0.350 0.265 0.249 
0.130 0.181 0.240 0.340 0.454 
9.875 6.596 4.121 1.087 0.832 

July 
0.249 0.247 0.231 0.224 .-- 
0.117 0.194 0.216 0.475 -.. 
8.641 6.916 5.815 3.691 ... 

Au•lust 
0.410 0.308 0.305 0.242 0.289 
0.092 0.132 0.155 0.241 0.236 
8.212 3.537 3.630 1.564 3.908 

September 
0.524 0.394 0.357 0.319 0.280 
0.098 0.124 0.132 0.252 0.307 
9.398 4.696 3.828 1.791 1.018 

October 

0.561 0.443 0.392 0.374 0.360 
0.071 0.113 0.138 0.248 0.639 

10.326 4.741 3.580 2.539 0.409 
November 

0.805 0.645 0.607 0.573 0.142 
0.082 0.112 0.123 0.251 0.143 
9.029 5.090 4.496 2.445 0.103 

December 
0.948 0.813 0.749 0.630 0.681 
0.055 0.083 0.098 0.202 0.316 
8.452 5.374 4.224 1.934 1.772 

0.288 
0.055 

15.540 

0.564 

0.065 
17.797 

0.664 

0.056 

19.268 

0.622 

0.046 

14.908 

1.017 

0.037 

19.329 

1.245 

0.025 
18.790 

Here, A is the discretization interval in days. 
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these time scales will not have the same parameter/•. In fact, 
at the daily time scale, where for practical purposes r 2 '• 0, the 
system of equations is underdetermined, and an infinite 
number of N-S models can be found which preserve E(Y), Var 
(Y), and rx exactly and have r 2 '• 0. For example, the models 
Mx and M2, where 

E 2 = 0.090 days- [E 2 = 0.090 days- (X) 1.186 mm (X) 2.821 mm 

MX'[E(• 19.91 M2:[E(• 8.34 3.5 days- x 3.0 days- x 

have the same E(Y), Var (Y), and r x, and practically zero r 2 
(r 2 = 0.004 for Mx, and 0.008 for M2). The first model was 
fitted by Rodriguez-lturbe et al. [1984] to the May 15-June 15 
daily rainfall data from Denver, and the second was fitted by 
us by simply fixing the value of • to 3 days-x. It is thus 
obvious that more information is needed to be able to dis- 

criminate one model from the other. A possible way to pro- 
ceed would be through an integrated estimation approach in 
which the properties of both the Y• and Zk series are used. 
Although we have not pursued this idea in the present paper, 
simple calculations show that models Mx and M 2 give series 
Zk with properties close to each other, but not quite the same. 
For example, ma(Mx)=0.847 days -• and ma(M2)=0.859 
days -x, co(Mx)= 0.130, and co(M2)-' 0.121, which implies 
that at large time scales, such as days, difficulties may be 
encountered in model selection even with this integrated ap- 
proach. For small time scales there is no problem, and the N-S 
parameters can be uniquely determined by the proposed esti- 
mation procedure. 

6. SENSITIVITY OF THE N-S MODEL ON THE ASSUMED 

DISTRIBUTION FOR THE CLUSTER SIZE 

Two versions of the Neyman-Scott model have been used 
for modeling rainfall. The one assumes a geometric distri- 
bution for the number v of events in a cluster [e.g., Kavvas and 
Dellcur, 1981; Ramirez and Bras, 1985], and the other assumes 
a Poisson distribution [e.g., Smith and Karr, 1985; Rodriguez- 
lturbe et al., 1984]. In most of the times, the selection of the 
one distribution versus the other has been decided upon math- 
ematical convenience. For example, Smith and Karr [1985] 
could only derive maximum likelihood estimators for the case 
of a Poisson distribution, while the authors of the present 
paper can only obtain closed form expressions for the proper- 
ties of the Z•(A) series for the case of a geometric distribution. 
The question we pose is to what extent the assumed distri- 
bution for v affects the parameters of the final N-S model. This 
is especially important in the cases where these parameters 
have been given physical interpretations by many authors. 

The properties of the cumulative rainfall amounts Y(A) 
which have been computed by Rodriguez-lturbe et al. [1984] 
for the case of a Poisson distribution for v can be easily com- 
puted for the case of a geometric distribution. For the ap- 
proach to these computations, the reader is referred to the 
paper of Rodriguez-Iturbe et al., while here only the final 
expressions are given. œ(Y), Var (Y), and c• are again given by 
(16)-(18), where 0• and 02 are now given as 

o• = 2,•œ•(x)/t, (25) 

02 = 2fiE2(X)(1 - p)/p2 (26) 

(instead of equations (19) and (20)), and where p is the parame- 
ter of the geometric distribution for v. It can be easily shown 

that the so derived amounts have again a Markovian depen- 
dence (equation (21)), where now r• is given as 

(1 -- e- •a)2 
- (27) 

r x - [ P fiA + (fiA _ i + e- •a)I 21_ p 
In the sequel we will use the notation NSG and NSP for the 
N-S model with geometric and Poisson distribution for v, re- 
spectively. Using the fitting procedure proposed in the pre- 
vious section (observation 2), the NSG model is fitted to the 
hourly rainfall data of the period May 15-June 15 of the 
Denver station. This model is then compared to the NSP 
model fitted to the same data by Rodriguez-Iturbe et al. 

As was discussed earlier, the parameter/• of the N-S model 
is uniquely determined by the desired approximation of the 
ACF of the series Y. Keeping therefore the same (indeed very 
satisfactory) approximation as that of Rodriguez-Iturbe et al. 
(see Figure 7 in their paper), we have determined the value of 
/•=4.8 days -x. Preservation of rx in (27) computes 
p = 0.1042. Then, solving (16) and (17) (where 0x and 02 are 
given in (25) and (26)), we find E(X) = 0.416 mm, and 2 = 0.53 
days-x. Compare now the models 

E 2=0.098days- • [E 2=0.53days- (X) 1.264mm NSG: (X) 0.416 mm 

NSP' [E(• 17.20 [E(• 9.597 4.8 days- x 4.8 days- x 

where NSP is the one given by Rodriquez-Iturbe et al. (Table 
1 in their paper). Obviously, the assumed form of the distri- 
bution of the cluster size drastically affects the parameters of 
the fitted N-S model. 

7. CONCLUSIONS 

In this paper the issue of compatibility of the continuous- 
time Neyman-Scott (N-S) occurrence process N,, with sampled 
discrete occurrence series Z•(A) at time scales ranging from 1 
hour to 1 day, has been studied. Our results agree with those 
of Valdes et al. [1985] and show that the instantaneous N-S 
model is not a consistant model for rainfall series recorded 

over different sampling intervals. These findings are quite gen- 
eral in that they apply to any model with rainfall deposited 
instantaneously at times described by a Neyman-Scott proc- 
ess, regardless of how the amounts associated with the events 
are distributed, and of the dependence structure of the 
amounts. The implications of this time scale inconsistency are 
twofold. First, a N-S model fitted to a particular time scale 
should not be used for extrapolations at other time scales, 
since, for example, the model fitted to hourly rainfall amounts 
does not preserve the daily amounts. Second, the N-S model 
does not provide an adequate description of the underlying 
rainfall generating mechanism, and thus no physical meaning 
should be attached to its parameters. 

Several observations regarding the N-S white noise model 
have been made. First, the autocorrelation function of the 
rainfall amounts series resulting from integration of the N-S 
white noise model has a Markovian dependence structure de- 
pending only on the parameters of the clusters, and not the 
parameter of the instantaneous rainfall amounts. This obser- 
vation leads to a simple fitting procedure. Second, the as- 
sumed distribution (Poisson or geometric) for the cluster size 
plays an important role in the final N-S model. Therefore 
since selection of the one distribution versus the other does 
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not seem possible based solely on physical considerations, it 
does not seem possible to attach a physical meaning to the 
model parameters, and the N-S process must be interpreted as 
a descriptive and time scale-dependent model, rather than a 
prescriptive one. 

APPENDIX: EXAMPLE DEMONSTRATING THE LIKELIHOOD OF Z k 
IN TERMS OF THE ZERO PROBABILITY FUNCTION OF N t 

Let the series Zk consist of the string z = 01001. Then, 

P(z) = P(01001) = P(0. 001)- P(00001) 

P(0. 001) - P(0- 00. ) - P(00000) 

P(00001) = P(0000 ß ) - P(00000) 

so 

P(z) = P(O . 00. ) - P(O . 000) - P(0000 . ) + P(00000) 

In terms of •(A) we get (compare the computations in the 
work by Guttorp [1986] 

P(z) = •((0, A]U(2A, 4A])- •((0, A]U(2A, 5A]) 

- •((0, 4A]) + •((0, 5A]) 

Expressions for •(A) where A is the union of two such inter- 
vals are given in the work by Guttort• [1986], and the methods 
there are easily (but tediously) extended to more general sets 
of the required form. 

The resulting likelihood function is a function of the param- 
eters of the continuous-time model. The method of maximum 

likelihood calls for maximizing this function. In general, this 
optimization problem may be quite involved. The Poisson 
process case, however, is quite simple. Since 

•(• (kiA,(k,+li)A))=exp(-p•l,) 
provided that ki + li < k•+ •, we get 

l(p) = log P(z; p) = N, log (1 -- e -t'a) -- (n -- N,)pA (A1) 

so the maximum likelihood estimate /5 is the solution to 
/(p) = O, or 

log (1 -- N) (A2) 
where N = N./n. This is the same estimator as that obtained 
by the method of moments, equating the observed moment N 
to its expected value Am•,(A). 
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