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ABSTRACT: Cold-season precipitation statistics in simulations from the storm-resolving WRFModel at 6-km and 1-h reso-
lution over western North America are analyzed. Pseudo–global warming future simulations for the 2041–80 period, con-
strained by GCMs under the RCP8.5 scenario, are compared to the 1981–2020 historical simulation. The analysis focuses on
the dynamical properties of precipitation time series at subdaily scales and on the morphology of storms. The statistical distri-
bution of precipitation intensities in each pixel of the simulation domain is characterized through nonparametric statistical in-
dicators: frequency of wet hours, mean wet-hour precipitation intensity, and Gini coefficient as a measure of the temporal
concentration of the precipitation volume. Additionally, the temporal and spatial Fourier power spectra of precipitation time
series and precipitation fields are analyzed. The half-power period (HPP) and half-power wavelength (HPW) are defined as
spectral measures of the characteristic scales of precipitation’s temporal and spatial patterns. The results show statistically sig-
nificant increases in the mean wet-hour precipitation intensity and in the Gini coefficient in 99% of the pixels, indicating that
the seasonal precipitation volume becomes more concentrated within a smaller number of hours with higher precipitation in-
tensity. The statistics of change in the frequency of wet hours are more contrasted across the simulation domain. The changes
are also reflected in the power spectra, which show the spatial and temporal variability increasing proportionally more with
finer spatial and temporal scales and the HPW and HPP decreasing. These projected changes are expected to have conse-
quences, not only in terms of hydrologic impacts but also in terms of the predictability of precipitation patterns.

SIGNIFICANCE STATEMENT: The precipitation characteristics of winter storms over the western United States
and southwestern Canada are analyzed in future climate simulations for the 2041–80 period. As compared to present-
day climate, the most intense parts of the storms are projected to produce a higher rainfall volume, with increased con-
centration over smaller areas and shorter time intervals. The propensity of rainfall intensity to vary rapidly over time
will be enhanced in the future according to the simulations. These model predictions imply an increased risk of rapid
flooding in small basins. They also suggest that predicting several hours ahead the time and location at which a storm
will produce maximum rainfall may become more challenging in the future.
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1. Introduction

Change in precipitation under global warming is expected
to manifest in a complex way: Beyond changes in the mean
annual precipitation volume, changes in the frequency of
storms, the frequency of extreme high values, the duration
of wet spells and dry spells, the magnitude and timing of the
diurnal cycle, seasonal cycle, and the multiannual cycles such
as ENSO may occur. At the storm level, statistics regarding
the spatial extent, geometrical properties, trajectory, and
dynamics of storms may also be changing. A large volume
of literature covering all these different aspects has already

been published, reporting statistics derived from a wide range
of different approaches and metrics, applied to different datasets
(e.g., O’Gorman 2015; Pascale et al. 2016; Donat et al. 2016; Pfahl
et al. 2017; Swain et al. 2018; Liu et al. 2019; Giorgi et al. 2019;
Mamalakis et al. 2021; Thackeray et al. 2022; Chan et al. 2023;
Chen et al. 2023; Abdelmoaty and Papalexiou 2023). While this
rich literature, comprising global, regional, and local analyses,
provides a thorough far-reaching understanding of change in pre-
cipitation under global warming, a synthesis of consistent findings
has still to be reached (Zaitchik et al. 2023).

The Clausius–Clapeyron relationship, which determines the
saturation vapor pressure of water in the air as a function of
the temperature, establishes that the water-holding capacity
of the atmosphere increases by 7% for every 1-K increase in
temperature. While constraints on Earth’s energy budget con-
fine the increase in the global precipitation volume to a much
lower rate (between 1% and 3% for every 1 K), the increase
in the intensity of high precipitation extremes may actually
follow the 7%/K rate and even surpass it (Berg et al. 2013;
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Westra et al. 2014; Lenderink et al. 2017; Fowler et al. 2021).
This change in extreme statistics beyond the Clausius–Clapeyron
relationship is associated with changes in the dynamics, organi-
zation, and morphology of precipitation systems and in convec-
tive precipitation systems in particular.

Evaluating storm morphology and subdaily dynamics in nu-
merical simulations of historical and future climates requires
that these simulations explicitly resolve individual storms with
adequate spatial and temporal resolutions (typically 1-h or
finer temporal resolution and spatial resolutions no coarser
than 10 km). Such simulations are extremely computationally
expensive to run over large domains and over long periods.
Global storm-resolving simulations at such resolutions can
generally simulate only a few months’ worth of data at the
cost of several million CPU hours (Stevens et al. 2019;
Takayabu et al. 2022; Kendon et al. 2021). When comparing
climate simulations under historical and future conditions, the
simulated periods must be long enough to account for internal
variability. This is particularly true when the comparison fo-
cuses on rare events. We note that, at hourly and kilometric
resolutions, the occurrence of precipitation can be considered
a statistically rare event, as, in most regions of the world, less
than 20% of hours are precipitating hours (Venugopal and
Wallace 2016), and most of the annual precipitation is in fact
brought by no more than 30 storm events each year (Goffin
et al. 2024). To obtain a reasonable sample size of simulated
storms for robust statistical analyses, one must therefore con-
sider simulations covering periods of several years. Moreover,
if one wants to average out the effect of multiannual climate
cycles such as ENSO, the simulated period should reasonably
cover several decades. At the moment, storm-resolving simu-
lations covering several decades are only available at the re-
gional scale (Lucas-Picher et al. 2021).

In the present study, we analyze high-resolution (1 h, 6 km)
numerical simulations for 40 years of historical and 40 years
of future climate conditions in western North America, to study
changes in the cold-season (October–March) spatiotemporal
patterns of precipitation with emphasis on the mesoscales
(spatial scales ranging from 20 to 200 km) and submesoscales
(spatial scales finer than 20 km) and on the subdaily temporal
variability. These simulations have been generated under the
Strategic Environmental Research and Development Program
funded by the U.S. Department of Defense to investigate
future changes in precipitation intensity–duration–frequency
in military installations in the western United States and under
the HyperFACETS project (Framework for Improving Analysis
and Modeling of Earth System and Intersectoral Dynamics
at Regional Scales) funded by the Department of Energy to
evaluate the scientific credibility of models for decision-
making, with focus on simulating the western North American
hydroclimate and the influence of complex topography. This
unique set of simulations is one of the very few existing
storm-resolving simulation datasets covering several decades
over an area of several million square kilometers, for both
historical and future climate. The present analysis builds upon
and expands the analyses by Chen et al. (2018, 2019, 2023) and
Koszuta et al. (2024), focusing on the changing characteristics of
precipitation in western North America under global warming.

Beyond the abovementioned projects, the western North
America area has been the focus of several recent publica-
tions dealing with changes in precipitation characteristics
under global warming (e.g., Liu et al. 2017; Huang et al.
2020; Gensini et al. 2023; Rahimi et al. 2024). With the fre-
quent occurrence of atmospheric rivers during the cold sea-
son (Rutz et al. 2014; Gershunov et al. 2019), western North
America is particularly exposed to hazards induced by intense
precipitation occurring over durations (a few hours) such as
flash floods, landslides, and debris flow (Ralph and Dettinger
2011; Cordeira et al. 2019; Guilinger et al. 2023). The typical
cold-season atmospheric rivers occurring in western North
America can be classified as mesoscale convective systems
or mesoscale convective complexes with pronounced spatial
anisotropy. An atmospheric river typically produces intense
precipitation over a narrow band; while its length may extend
over distances up to 2000 km, the width of the rainband is gen-
erally on the order of 100–300 km. As convective systems,
atmospheric rivers show strong spatial variability at mesoscale
and submesoscale, with individual convective cells within atmo-
spheric rivers having typical dimensions of a few kilometers
to a few dozen kilometers. Also, while, as a mesoscale system/
complex, an atmospheric river may last for up to 2 or 3 days,
individual convective cells within the system may develop and
decay within periods of a few hours. Thus, spatially localized
patterns of extreme precipitation intensities over short time
periods within atmospheric river systems are of particular
importance in terms of hydrological impacts and hazards.

Classically, high extremes are defined as values above a cer-
tain quantile (95th and 99th percentiles being often chosen).
From such a definition, several issues may arise. First, the se-
lection of a specific quantile is always partially arbitrary, as
the definition of an extreme value varies depending on the
data user and the targeted application (Pendergrass 2018;
VanBuskirk et al. 2021). The results of studies for which dif-
ferent quantiles have been chosen to define extreme values
are not easily compared or compiled together. Alternatively,
the statistical analysis of extremes can be performed using a
parametric representation of the distribution of precipitation
intensities. Here again, different choices made in terms of pa-
rameterization make different studies hardly comparable with
each other. Moreover, either with quantile-based approaches
or with parametric approaches, a critical element in statistical
studies of extremes is the scale dependence of the statistics.
Indeed, extreme analyses conducted at different scales (e.g.,
seasonal scale, daily scale, and hourly scale) can hardly be
compared with each other because the statistical distribution
of precipitation rates can change drastically from one scale to
another. At subhourly and kilometric resolutions, measured
precipitation intensities show a high fraction of zeros and
a skewed heavy-tail distribution for above-zero intensities. At
coarser scales, the fraction of zeros decreases and the skewness
of the distribution reduces. Therefore, a suitable parametric
representation of the distribution of precipitation intensities at
one scale may be unsuitable at another scale, and the inter-
pretation of a certain quantile value as an extreme at a given
scale may not hold at another scale.
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When it comes to evaluating storm morphology and
dynamics, many studies rely on object extraction, either in
precipitation time series or in multidimensional (spatial
or spatiotemporal) precipitation fields, an object being a
continuous/coherent feature localized and delimited in space
and time, as, for example, a storm, a storm complex, a convec-
tive cell, or a cluster of convective cells within a storm (e.g.,
Guinard et al. 2015; Ferreira et al. 2018; Chen et al. 2023).
Here again, results can be highly sensitive to the way objects
are defined and the parametric choices (in particular to the
thresholds chosen for object extraction). Object-based metrics
are therefore case specific and not easily comparable across
different studies. Such methods are not always fully automat-
able and generally require human supervision and fine para-
metric tuning, making them cumbersome to apply on large
datasets or across multiple datasets.

The present study relies on the use of nonparametric met-
rics that do not require subjective selection of thresholds and
that can be easily computed over large regions, long periods
of time, and across multiple datasets, in contrast to the cum-
bersome and subjective object extraction methodologies.
Changes in the statistical distribution of hourly precipitation
intensities are assessed through the frequency of wet hours,
the mean precipitation intensity of wet hours, and the Gini
coefficient of hourly precipitation intensities. The Gini co-
efficient is a nonparametric measure of the concentration of
a summable quantity within a population; it is used here to
characterize the shape of the distribution of precipitation inten-
sities and quantify the relative contribution of high-intensity
extremes. Regarding the space–time dynamics and morphology
of storms, we rely on temporal spectral analysis of the hourly
precipitation time series and spatial spectral analysis of the
hourly precipitation fields. To quantify the uneven change in
precipitation variability across spatiotemporal scales, we com-
pute the ratios of future/historical spectral power as functions
of the temporal Fourier frequency (period) and of the spatial
Fourier wavenumber (wavelength). Additionally, we introduce
two summary indicators derived from the Fourier spatial and
temporal power spectra: the half-power period (HPP) and
the half-power wavelength (HPW), which are measures of
the characteristic temporal and spatial scales of precipitation
features and patterns.

The analyzed data consist of the outputs of constrained
long-term numerical weather simulations with the Weather
Research and Forecasting (WRF) Model. Future simulations
for the 2041–80 period performed following a pseudo–global
warming (PGW) approach (Lucas-Picher et al. 2021; Brogli
et al. 2023) are compared to the historical simulation covering
the 1981–2020 period. The data are described in detail in
section 2. Section 3 presents the methodology and metrics
used to quantify change in the spatial and temporal patterns
of precipitation across scales (from daily to hourly temporal
scales and across mesoscale and submeso-spatial scales).
Section 4 presents the results of the comparison of precipita-
tion statistics between the historical and PGW simulations;
it is followed by a short analysis of the scale dependence
of the results (section 5) and by a summary and discussion
(section 6).

2. Data: Historical and PGW future WRF simulations

Hourly surface precipitation fields simulated by the WRF
Model version 3.8 (Skamarock et al. 2008) at 6-km resolution
over the western United States, southwestern Canada, and
part of the northeastern Pacific Ocean are analyzed in the pre-
sent study. The WRF Model was set to simulate atmospheric
processes across 35 altitude levels from the surface to the 100-hPa
level, with cloud microphysics resolved through the Morrison
double-moment scheme (Morrison et al. 2009). For the 1981–
2020 historical period, the model is run with lateral boundary
conditions and sea surface temperature from the North American
Regional Reanalysis (NARR). The PGW simulations are
obtained by rerunning the same model, for the same period,
with modified NARR boundary conditions. Specifically, the
NARR boundary conditions (temperature, water vapor, pres-
sure, and surface variables) are adjusted by adding a pertur-
bation D. The perturbation D is specific to each variable and
each calendar month and is derived from the difference in the
monthly mean values of the corresponding variables between
the targeted future period and the historical period in global
climate model (GCM) simulations. Three different PGW sim-
ulations for the 2041–80 period, with D values from three
different CMIP5 GCMs, CESM1-CAM5, CanESM2, and
HadGEM2-ES, have been analyzed. The computational cost
of the historical simulation and of each one of the PGW simu-
lations is two million CPU hours. The three selected GCMs
were retained for their faithful representation of atmospheric
rivers in western North America over the historical period
(Gao et al. 2015). For all three GCMs, the high-greenhouse-
gas-emission scenario, representative concentration pathway
(RCP) 8.5 was selected. For conciseness, only the results
corresponding to the simulation with perturbation from the
CESM1-CAM5 GCM are presented in detail in the present
article. Summarized results for the PGW simulations with the
other two GCMs (CanESM5 and HadGEM2) are provided in
section 4e.

These historical and PGW simulations have been previ-
ously utilized in several published studies (Chen et al. 2018,
2019, 2023; Koszuta et al. 2024). More details about the simu-
lation setup are provided in the supplemental material to
Chen et al. (2018). Details about the perturbation of the
boundary conditions for the PGW simulations are given in
the “method” section of Chen et al. (2023). Evaluations of the
historical simulation against observations are also reported
in these precedent studies; for example, in Chen et al. (2018),
comparison with the PRISM dataset (Daly et al. 2008) showed
correlation coefficients higher than 0.9 between the WRF his-
torical simulation and PRISM in terms of daily precipitation
amounts across 1080 watersheds located within the simulation
domain. Further evaluation of the historical simulation is pro-
vided as supplemental material to the present article (Fig. S1
in the online supplemental material), showing that, for three
of the specific aspects and metrics we focus on in the present
study, namely, frequency of wet hours, mean hourly precipita-
tion intensity, and temporal concentration of the precipitation
volume measured through the Gini coefficient, the cold-season
spatial climatic patterns of the historical simulation are highly
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consistent with those of the CONUS 404 high-resolution re-
gional hydroclimate reanalysis (Rasmussen et al. 2023).

3. Methodology and metrics

a. Distributions of precipitation intensities and Gini coefficient

Classically, the statistical distribution of precipitation inten-
sities is represented through a probability density function
(PDF), and various parameters (e.g., empirical moments, shape
parameters, etc.) are derived to characterize specific aspects
of the PDF. If fX is the PDF of a variable X (e.g., hourly pre-
cipitation intensity at a given location), its cumulative density
function (CDF) FX is defined as

FX(x) 5
�x

2‘
fX(u)du: (1)

Because we are interested in quantifying the relative contribu-
tion of precipitating hours with a certain intensity to the seasonal
precipitation accumulation, we also consider the cumulative
share function (CSF) of precipitation intensities, defined as

FX(x) 5
1
X

�x

0
ufX(u)du, (2)

where X is the statistical mean of X. The value FX(x) of the
CSF at intensity x corresponds to the fractional contribution
of hourly intensities between 0 and x to the total precipitation
volume. The CSF can be used to describe the distribution of

any nonnegative quantity and makes particular sense when
this quantity can be “accumulated,” as is the case for precipi-
tation intensities, which, if integrated over a certain time pe-
riod and a certain area, amount to a precipitation volume.
While the PDF, CDF, and CSF are uniquely related to each
other, considering that the distribution of hourly precipitation
intensities at kilometric resolutions is skewed and heavy
tailed, and because of the importance of high precipitation
extremes in terms of hydrological impacts, the CSF, which
puts more emphasis on the higher precipitation intensities, is
arguably a more insightful representation than the PDF and
CDF in our case. While the CSF has been designated under
different names (e.g., “weighted CDF”), and its definition has
not been exactly formalized and standardized, the concept
has been used several times in precipitation studies (Lebsock
and L’Ecuyer 2011; Venugopal and Wallace 2016; Guilloteau
et al. 2023). The PDF, CDF, and CSF of hourly precipitation
intensities (for wet hours only, i.e., excluding zeros) during
the cold season in an arbitrarily selected pixel of the simula-
tion domain (at coordinates 45.688N, 122.88W, near Portland,
Oregon) are shown in Fig. 1 for both the historical and PGW
simulations, as an illustrative example.

The function relating the CSF of X to the CDF of X is the
Lorenz curve LX (Fig. 1d), defined such that

LX[FX(x)] 5 FX(x): (3)

The Lorenz curve is often used in economics to represent the
distribution of wealth among a population (Gastwirth 1972).

FIG. 1. Historical and future distributions of cold-season hourly precipitation intensities (excluding zeros) for an ar-
bitrarily selected pixel of the simulation domain at coordinates 45.688N, 122.88W, near Portland, Oregon. The distribu-
tions are shown as empirical (a) PDF, (b) CDF, (c) CSF, and (d) Lorenz curve. From the Lorenz curve, we compute
the Gini coefficient asG5 12 2G, where G is the area under the Lorenz curve.
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If X is nonnegative, the Lorenz curve is a function from [0, 1]
to [0, 1] and, ∀ u in [0, 1], LX(u)# u. Interestingly, the Lorenz
curve LX remains unchanged if X is multiplied by a constant
positive scaling factor, which means that if Y 5 aX, with
a 2 R

1, thenLY(u)5 LX(u). Therefore, changes in the Lorenz
curve really characterize changes in the shape of the distribu-
tion rather than a linear intensification (or decrease) of all
precipitation intensities. Let us consider the quantity:

GX 5

�1

0
LX(u)du: (4)

Since 0 # LX(u) # u, it follows that 0 # GX # 0.5. If X is
constant over time, then FX(x) 5 FX(x), LX(u) 5 u, and
GX 5

�1
0 udu5 0:5. Classically, the Gini coefficient GX asso-

ciated with the distribution fX and the Lorenz curve FX is
defined as (Gastwirth 1972)

GX 5 1 2 2GX : (5)

By definition, 0 # GX #1. Along with the Lorenz curve, the
Gini coefficient is often used in economics to measure the
concentration of wealth within a population.

Here, we use the Gini coefficient to characterize the shape
of the distribution of precipitation intensities during wet
hours. In our case, a high Gini coefficient corresponds to a
high concentration of the precipitation volume within the wet
hours, meaning that a small fraction of the wet hours contrib-
utes to a disproportionally high fraction of the precipitation
volume. Conversely, a low Gini coefficient corresponds to a
low concentration over time, the lower limit being 0, when the
precipitation intensity is constant, and all wet hours contrib-
ute equally to the precipitation volume. In precipitation stud-
ies, the Gini coefficient is sometimes used as an alternative to
the coefficient of variation or other measures of concentration
relying on parametric representations of the statistical distri-
bution of precipitation intensities (Alijani et al. 2008; Rajah
et al. 2014; Monjo and Martin-Vide 2016; Sangüesa et al. 2018;
Dong et al. 2021).

b. Fourier temporal and spatial power spectra, HPP,
and HPW

The temporal dynamics of hourly precipitation time series
(hyetographs) is evaluated through the temporal Fourier
power spectrum in the present study. The power spectrum of
the 40-yr hourly precipitation time series is computed in every
6-km-resolution pixel of the simulation domain. The Fourier
power spectra do not necessarily show peaks at particular fre-
quencies (the diurnal cycle of precipitation has a low ampli-
tude during the cold season over the simulation domain), yet
the general shape of the power spectrum and the decrease
rate of spectral power with increasing frequency provide use-
ful information about the temporal dynamics of precipitation.

From the temporal Fourier power spectrum P(f), we define
the half-power frequency as the Fourier frequency fhp such as

� f5fhp

f50
P(f )df 5

� f5fs /2

f5fhp

P(f )df , (6)

where fs is the data sampling frequency. This means that 50%
of the signal’s energy comes from its variations at frequencies
lower than fhp and 50% comes from its variations at frequen-
cies higher than fhp. Interpreting the Fourier power spectrum
as the statistical distribution of the signal’s energy across fre-
quencies, fhp is in fact the median frequency of this distribu-
tion. The HPP is the inverse of the half-power frequency. The
HPP, expressed in time units (minutes, hours, or days), can be
interpreted as a characteristic duration of the features/patterns
in the precipitation time series (computed as an average over
numerous features with potentially very different durations).
Small values of HPP correspond to precipitation intensities
varying rapidly over short periods of time (sharp hyetographs),
and larger HPP values characterize smoother temporal dynamics.

The temporal Fourier spectral analysis of the hourly pre-
cipitation time series is complemented by a spatial Fourier
spectral analysis of the hourly precipitation fields relying on
a two-dimensional Fourier transform. The 2D Fourier spectra
are defined as functions of the spatial wavenumber and of the
spatial direction (azimuth). In this study, the 2D Fourier spec-
tra are reduced to univariate functions by integration across
all azimuths; we thus obtain omnidirectional spatial power
spectra which are functions of the wavenumber only. The
same way, the half-power frequency is defined as the median
frequency of the distribution of spectral energy given by the
temporal Fourier power spectrum [Eq. (6)], we define the half-
power wavenumber as the median wavenumber of the distribu-
tion of spectral energy given by the spatial Fourier power
spectrum P(w):

�w5whp

w50
P(w)dw 5

�w5ws /2

w5whp

P(w)dw, (7)

where ws is the data spatial sampling wavenumber (the num-
ber of samples per distance unit, i.e., the inverse of the grid
spacing interval for spatially gridded data). The HPW ex-
pressed in distance units (km in the present study) is the in-
verse of the half-power wavenumber. The HPW derived from
the spatial Fourier power spectrum can be interpreted simi-
larly to the correlation distance derived from the spatial cor-
relogram or variogram but has the advantage of not relying
on a parametric representation of the structure function
(power spectrum variogram or correlogram). Small values of
the HPW correspond to precipitation fields showing large
magnitudes of precipitation gradients over short distances;
conversely, large HPW values correspond to precipitation
fields showing high correlation between precipitation intensi-
ties in nearby locations (i.e., smoother spatial fields with
larger characteristic length scales).

4. Results

In this section, we present in detail the statistical comparison
of the outputs of the 2041–80 PGW simulation with perturbation
of the boundary conditions derived from the CESM1-CAM5
model, RCP8.5 scenario, to that of the 1981–2020 historical sim-
ulation. The analysis focuses exclusively on the October–March
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cold season which concentrates most of the annual precipitation
volume in western North America.

a. Precipitation volume, frequency of wet hours, and
mean hourly intensity

We first focus on the change in the mean cold-season pre-
cipitation volume, which we decompose as the number of wet
hours (hours with nonzero precipitation) multiplied by the
mean hourly precipitation intensity (the mean intensity of all
wet hours), at the 6-km pixel resolution. The cold-season pre-
cipitation volume is found to increase nearly everywhere
within the simulation domain from the historical simulation to
the PGW simulation, as 98% of the pixels see a 4% or more
increase (Fig. 2). The increase rate of the average precipita-
tion volume within the simulation domain is 118%, and the
median value of the per-pixel distribution of relative change
in precipitation volume is124%. Noticeably, a proportionally
larger increase in the precipitation volume occurs on the lee-
ward side (eastern slopes) of the Cascades and Sierra Nevada
mountain ranges as compared to the windward side (western
slopes), as reported in Huang et al. (2020) and Koszuta et al.
(2024).

Regarding the frequency of wet hours, the changes between
the historical simulation and the PGW simulation are more
spatially contrasted: While a majority of pixels, 60%, see a

14% or more increase in wet-hour frequency, 12% of pixels
see a decrease of at least 24%. The areas where the wet-hour
frequency decreases are essentially the Pacific Ocean above
408N, the coastal areas of the Pacific Northwest, and parts of
the Rocky Mountains (Fig. 2b). While 50% of the pixels show
relative increase in the frequency of wet hours of 16% or
more, the average frequency of wet hours within the simula-
tion domain only increases by 12.8% (as areas with increas-
ing frequency of wet hours and areas with decreasing
frequency of wet hours tend to cancel out in average). The
mean hourly precipitation intensity (mean intensity of wet
hours) is found to increase nearly everywhere within the sim-
ulation domain as 99% of pixels see a 14% or more increase.
The median per-pixel increase is 117%, and the increase
in the mean hourly intensity averaged over all pixels is114.5%.
The increase in the mean hourly intensity is remarkably ho-
mogeneous across space (Fig. 2c) as compared to the change
in the frequency of wet hours. The spatially homogeneous
increase in the precipitation intensity drives the increase in
the spatially averaged cold-season precipitation volume over
the simulation domain. On the leeward side of mountains, the
conjoint increase in precipitation intensity and wet-hour fre-
quency produces larger increase in the precipitation volume
than on the windward side, where the increase in intensity is
partially counterbalanced by the decrease in wet-hour frequency.

FIG. 2. Change in (a) cold-season precipitation volume, (b) frequency of wet hours, and (c) mean hourly precipita-
tion intensity, between the historical simulation (1981–2020) and the CESM1-CAM5 PGW simulation (2041–80). The
frequency of wet hours is computed as the fraction of all hours with precipitation intensity above zero. The mean
hourly precipitation intensity is computed as the mean intensity of all wet hours (i.e., excluding zero-intensity hours).
For each statistic, the change is expressed as the ratio of the future value over the historical value (change ratio). The
statistical distributions of change ratios across the pixels of the simulation domain for all three statistics are shown in (d).
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Considering that the temporal statistics are computed over
40-yr-long hourly time series (i.e., about 175 000 samples ex-
cluding the warm season), a proportional change of 62% in
the frequency of wet hours or mean precipitation intensity is
statistically significant at the 1024 level.

b. Distribution of hourly precipitation intensities,
temporal concentration, and Gini coefficient

We now focus on the full statistical distribution of hourly
precipitation intensities during the wet hours at each pixel, in-
stead of their mean value only. We use the Gini coefficient to
assess changes in the shape of the distribution of nonzero pre-
cipitation intensities. This measure of change in the shape of
the distribution is agnostic to linear scaling between historical
and future precipitation intensities, the linear scaling having
already been quantified through the ratio of future mean
intensity over historical mean intensity (Fig. 2c). The Gini
coefficient, being a bounded quantity computed through first-
order integrals, is stable and resilient to outliers (unlike most
of other statistical shape parameters, which generally relate to
the second- and higher-order moments of the distribution).
Figure 3a shows the value of the Gini coefficient of the tem-
poral distributions of cold-season hourly precipitation inten-
sity, computed in each pixel of the simulation domain, for the
historical period. Figure 3c shows the future and historical dis-
tributions of the Gini coefficient G across all the pixels. One
can see that the distribution of the Gini coefficient is shifted
toward higher values in the future as compared to the historical
simulation. Figs. 3b,d show the relative change in the temporal
concentration of precipitation intensities across every pixel.
Because the historical Gini coefficient is higher than 0.5 in

most pixels, we quantify the change in the concentration
through the ratio Gfuture/Ghistorical rather than the ratio of the
future and historical Gini coefficients [with G 5 0.53 (12 G)
from Eq. (5)]. This allows to better highlight change in pixels
where the historical value of G is high (i.e., with low value of
Ghistorical). The G coefficient is found to decrease in 99% of the
pixels, meaning that the Gini coefficient measuring the con-
centration of the precipitation volume within the wet hours
increases in 99% of the pixels. Similarly to the mean precipi-
tation intensity (Fig. 1c), the increase in the temporal concen-
tration of precipitation is remarkably homogeneous across
the simulation domain (Fig. 3b). The increase in the Gini co-
efficient reflects the fact that the intensity of the higher quan-
tiles of the distributions increases proportionally more than
that of the lower quantiles from the historical simulation to
the future simulation. This finding is consistent with numerous
studies that suggest that high precipitation extremes increase
(or will increase) at a higher rate than low and medium inten-
sities under global warming (Papalexiou and Montanari 2019;
Kunkel et al. 2020; Thackeray et al. 2022).

c. Temporal and spatial power spectra, half-power
period, and half-power wavelength

We now focus our analysis on the temporal dynamics of
hourly precipitation, to try to understand how changes in the
statistical distribution of intensities relate to changes in the
form of the hyetographs. This part of the analysis relies on
the comparison of the Fourier power spectra of the hourly
precipitation time series during the cold season for the future
simulation with that of the historical simulation. Figure 4a
shows the Fourier power spectra of the winter precipitation

FIG. 3. Change in the temporal concentration of the precipitation volume across wet hours during the cold season
between the historical simulation (1981–2020) and the PGW simulation (2041–80). (a) Map of the Gini coefficient
G 5 1 2 2G of the temporal distribution of intensities for the historical simulation. (b) Map of the change ratio
Gfutur/Ghistorical per pixel. (c) Distribution of the Gini coefficient across all pixels, for the historical and PGW simula-
tions. (d) Statistical distribution of the change ratio Gfutur/Ghistorical across all pixels.
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time series, averaged over all pixels and all 40 years (the
power spectra at each pixel are averaged together, not the
time series). One can see that the spectral power is systemati-
cally higher in the future as compared to the historical period,
which corresponds to an increase in the statistical variance of
hourly precipitation intensity time series [the statistical vari-
ance equals the integral of the spectral power over (0, fs/2],
where fs is the sampling frequency]. The increase is propor-
tionally higher at higher frequencies (Fig. 4b), which indicates
that the magnitude of short-duration features increases pro-
portionally more than that of longer-duration features. The
power spectrum is “whitening” in the future: As the decrease
rate of the spectral power with frequency dampens, the power
spectrum gets more similar to that of a white noise. This re-
veals that the propensity of precipitation intensity to vary
(increase or decrease) rapidly over short periods of time is
enhanced in the future. We can describe this change as a

“sharpening” of the hyetographs. Fig. S2 illustrates with ideal-
ized synthetic data how changes in the shape of the hyeto-
graphs generally translate in terms of change in the Fourier
power spectrum.

In the following, we use the HPP as a measure of the
“sharpness” of the hyetographs. Shorter HPPs correspond
to sharper hyetographs, and longer HPPs correspond to
smoother hyetographs. The HPPs computed from the pixel-
averaged Fourier power spectra (Fig. 4a) for the historical
and PGW simulations are, respectively, 35 and 28 h. Figure 5
shows the change in the HPP across the different pixels of the
study domain. The HPP decreases in 77% of the pixels. One
shall note that the Fourier power spectrum of the intensity
time series is affected by the zeros, and therefore, so is the
HPP. Generally, higher fraction of zeros (lower frequency of
wet hours) and shorter storm durations correspond to lower
HPP. For the historical period, for example, the pixel values
of the frequency of wet hours and of the HPP are positively
correlated (CC 5 0.82). However, even though a majority of
pixels (76%) see an increase in the frequency of wet hours, a
majority of pixels (77%) see a decrease of the HPP. This
means that, in many pixels, the effect of the sharpening of the
hyetograph during the wet periods on the Fourier power spec-
trum dominates the effect of the increasing number of wet
hours. The pixels for which the HPP is not decreasing are es-
sentially located in the Canadian part of the Northern Prairie,
where the frequency of wet hours increases by more than
20% (see Fig. 1b). This dramatic increase in the frequency of
wet hours in the Northern Prairie can be explained by increased
amount of water vapor in atmospheric rivers and water vapor
being transported further inland during atmospheric river
events. Atmospheric rivers that were only affecting the west-
ernmost regions of the simulation domain in the historical
simulation penetrate further inland and reach the Northern
Prairie more frequently in the PGW simulation. While the
sharpening is also occurring in the Northern Prairie, the in-
crease in the frequency of wet hours dominates the statistics
of change in this region.

We now assess how changes in the temporal dynamics of
precipitation relate to changes in the morphology of storms
and the spatial patterns in hourly precipitation fields through
spatial Fourier analysis. For each hour, in both the historical
simulation and the PGW, the omnidirectional spatial Fourier
power spectrum of the precipitation intensity map over the
simulation domain is computed. All hourly power spectra
between October and March are then averaged over the
40 years of the simulation. Similarly to what is seen in the
temporal power spectrum (Fig. 4), an increase in the spec-
tral power at all spatial wavenumbers is observed in the spa-
tial power spectrum (Fig. 6), reflecting the increase in the
spatial variance of the precipitation fields. Consistently with
what was shown by the temporal power spectra, for the spatial
spectrum, the spectral power increases proportionally more
at higher wavenumbers, reflecting a spatial sharpening of
the precipitation features, meaning that the spatial vari-
ability (spatial gradients) associated with small-scale features
increases more significantly than that of the larger-scale fea-
tures. Specifically, the spectral power associated with large

FIG. 4. Change in the Fourier power spectrum of the winter pre-
cipitation time series. (a) Historical and future power spectra. The
power spectra are computed using a fast Fourier transform in each
pixel and for each year’s cold season (October–March) and then
averaged over all pixels and all 40 years. From the Fourier power
spectrum P(f), we determine the half-power frequency fhp such as�f5fhp
f50 P(f )df 5 �f5fs /2

f5fhp
P(f )df , where fs is the sampling frequency

(24 cycles day21 in our case). The HPP is the inverse of the half-
power frequency. (b) Ratio of the future spectral power over the
historical spectral power as a function of the Fourier frequency.
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scales (wavelength . 200 km, i.e., meso-alpha and synoptic
scales) increases by 35%–45%, the spectral power associated
with the meso-beta scale (200 km . wavelength . 20 km)
increases by 45%–75%, and the spectral power associated
with the submesoscales (wavelength , 20 km) increases by
75%–90%. One must note that the 6-km resolution of the
simulations only allows to resolve wavelengths coarser than
12 km. The spectral analysis shows that the amplification of
precipitation variability in the PGW simulation as compared
to the historical simulation becomes increasingly salient when
analyzing increasingly fine temporal and spatial scales. This
suggests that simulations with resolutions even finer than those
analyzed in the present study may therefore be necessary to
fully apprehend the changing nature of precipitation under
global warming.

The HPW, which is the spatial equivalent of the half-power
period, is reduced from 385 to 278 km from the historical sim-
ulation to the PGW simulation (Fig. 6). Figure 7 shows the lo-
cal change in HPW across the different pixels of the domain.
To allow the computation of spatially localized power spectra,
a continuous 2D wavelet transform relying on the isotropic
Ricker wavelet (Mexican hat wavelet) is used (Antoine et al.
1993). The continuous wavelet transform provides the same
information as the Fourier transform, with the advantage of
being localized. As previously with the Fourier spatial trans-
form, the continuous spatial wavelet transform is applied on
each hourly precipitation map between October and March
and the spectra are averaged over 40 years. Even if a fairly
high variability in the change ratio from one pixel to the next
can be observed over land, the general pattern shows the
HPW decreasing in most pixels (79% of the pixels). The

decrease is particularly salient over the Pacific Ocean above
the 378N latitude. The more complex patterns and higher vari-
ability over land can be attributed to the local effect of orog-
raphy on storms’morphology.

d. Gini coefficient of the spatial distribution of
precipitation

In this last result section, we assess how the change in pre-
cipitation under global warming manifests itself in terms of
the spatial concentration of the precipitation volume. Here
again, we rely on the Gini coefficient as a measure of concen-
tration. However, instead of assessing the temporal concen-
tration at a given location (pixel), we assess the spatial
concentration at a given time, by looking at the distribution of
intensities across pixels. Figure 8 shows the Lorenz curve of
the distribution of the mean cold-season precipitation volume
across all the pixels of the simulation domain, for the histori-
cal and PGW simulations. In terms of the spatial distribution
of the mean seasonal precipitation volume, the Gini coeffi-
cient decreases from 0.50 for the historical period to 0.47 in
the future (a statistically significant difference at the 10215

level according to the Kolmogorov–Smirnov test), meaning a
more homogenous spatial distribution in the future. Indeed,
the mean seasonal precipitation volume tends to increase pro-
portionally more in semiarid areas such as California, Nevada
and Arizona, the Northern Prairie, the Columbia Plateau, the
Interior plateau in British Columbia, and the eastern (leeward)
slopes of the Sierra and Cascade Mountains, than in wet
regions such as the coastal parts of Oregon, Washington,
and British Columbia and the western (windward) slopes of
the Cascade and Rocky Mountains (see Fig. 2a). This finding

FIG. 5. Change in the HPP of hourly precipitation time series during the cold season between the historical simula-
tion (1981–2020) and the PGW simulation (2041–80). (a) Map of the HPP for the historical simulation. (b) Map of the
change ratio HPPfuture/HPPhistorical per pixel. (c) Distribution of the HPP across all pixels for the historical and PGW
simulations. (d) Statistical distribution of the change ratio HPPfuture/HPPhistorical across all pixels.
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seems to go against the “wet gets wetter, dry gets dryer” para-
digm, often suggested in the literature to describe changing
patterns of precipitation under global warming (Chou et al.
2009; Liu and Allan 2013; Polson and Hegerl 2017; Zaitchik
et al. 2023). One must however note that, within our simula-
tion domain, the regional and local spatial patterns are essen-
tially driven by orography. The Koszuta et al. (2024) study,
derived from the same dataset as the one used for the present
analysis, discusses in detail the weakening of the orography-
driven patterns; its findings are found to apply to other re-
gional simulations in which orographic effects are resolved. In
contrast, the “wet gets wetter, dry gets dryer” paradigm gen-
erally refers to the synoptic patterns associated with moisture
transport and the projected expansion of the Hadley cell (Lu
et al. 2007; Vallis et al. 2015). The “wet gets wetter, dry gets
dryer” paradigm is in fact mostly relevant to tropical and sub-
tropical regions, and its general validity is subject to contro-
versy over land in particular (Byrne and O’Gorman 2015).

One must note that the fact that the mean cold-season pre-
cipitation volume is more homogeneously distributed across

the simulation domain in the future does not mean that pre-
cipitation is more homogeneously distributed within individ-
ual storms. In fact, the increasing Fourier spectral power at
fine scales and the decreasing half-power wavelength (Figs. 6
and 7) suggest the opposite. To locally assess the spatial distri-
bution of hourly precipitation intensities during storms, we
define four climatically and geographically homogeneous sub-
regions within the study domain and focus on the 1500 rainiest
hours (in terms of regionally averaged precipitation intensity)
in each subregion, over 40 years, for both the historical simu-
lation and the PGW simulation. The subregions, defined as
the coastal parts of Oregon and Washington (excluding the
Olympus Peninsula), the plains of California (coast and Central
Valley), the Northern Prairie (east of the Rocky Mountains
above 468N), and the Pacific Ocean between 408 and 508N, are
represented in Figs. 9 and 10 (top panels). For each subregion,
and for each one of the 1500 rainiest hours, the Gini coefficient
of the spatial distribution of hourly precipitation intensities across
all the pixels of the subregion of interest (at 6-km resolution)
is computed. The statistical distribution of the 1500 Gini co-
efficients computed for the PGW simulation is compared
to the distribution for the historical period (Figs. 9 and 10,
lower panels). One can see that for the Oregon–Washington,
California, and Pacific Ocean subregions, the distribution of
the Gini coefficients is shifted toward higher values in the fu-
ture. For the Oregon–Washington subregion, the median
value of the Gini coefficient increases from 0.46 to 0.50, over
California, it increases from 0.55 to 0.57, and over the Pacific
Ocean, it increases from 0.69 to 0.73. In all three regions, the
change in the distribution of the Gini coefficients is statistically
significant at the 0.001 level according to the Kolmogorov–
Smirnov test. Over the Northern Prairie, the historical and fu-
ture distributions of the Gini coefficients are not significantly
different from each other (p value of 0.75). Over the three
other regions, the increase in the spectral energy at short
wavelengths (Figs. 6 and 7) corresponds to an increased spatial
concentration of the hourly precipitation volume. The tempo-
ral sharpening of the hyetographs discussed in the previous
section thus concurs with a spatial sharpening of the storms.
This spatial sharpening is consistent with the findings of the
Chen et al. (2023) study, which presents an object-based analy-
sis of storm morphology at the daily resolution from the same
dataset as the one used here.

It is worth noting that, when it comes to the spatial concen-
tration and variability of storms, the change is most salient
over the Pacific Ocean, above 378N (Figs. 7 and 10). Over mid-
latitude oceans, the formation and evolution of precipitation
systems is essentially driven by the atmospheric conditions
(including temperature and humidity). Over land, precipitation
patterns are influenced by a wider range of factors, including
orography which can have a strong local influence, rendering
the patterns more complex and more variable.

e. Multi-GCM PGW simulations

Repeated analyses with PGW simulations constrained by
two other GCMs, CanESM2 and HadGEM2-ES, also under
the RCP8.5 scenario, provided consistent results regarding

FIG. 6. Change in the spatial Fourier power spectrum of the
hourly precipitation fields. (a) Historical and future power spectra.
The power spectrum of each hourly precipitation field during the
cold season (October–March) is computed using a 2D fast Fourier
transform over the whole simulation domain. The hourly power
spectra are then averaged over the 40 simulated years.
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the increase in the mean precipitation intensity during the wet
hours, and the increase in the concentration of the precipita-
tion volume within the wet hours, measured through the Gini
coefficient (Fig. 11), as well as the increase in the spectral
power at the high temporal frequencies and high spatial wave-
numbers (Fig. 12). The change in the frequency of wet hours

is more contrasted across simulations, with the HadGEM2-ES
simulation in particular showing a decrease in the frequency
of wet hours in 60% of the pixels. It is interesting to note that
the statistic showing the most spatially contrasted changes,
the frequency of wet hours, is also the statistic showing the
most contrast across the different PGW simulations. The dif-
ferences between the three PGW simulations reveal how the
uncertainties in the future boundary conditions propagate
through the storm-resolving WRF simulation scheme. Taking
the variability of the statistics across the different PGW simu-
lations as a measure of uncertainty, it appears that, while
future change in the frequency of wet hours within the simula-
tion domain is rather uncertain, the increase in the mean
hourly precipitation intensity and in the concentration of the
precipitation volume within wet hours are predicted with rea-
sonably high confidence under the assumptions of the PGW
simulation setup.

5. Scale dependence of the statistics

As mentioned in the introduction, comprehensively assessing
change in precipitation is made a difficult and cumbersome
task by the scale dependence of the statistical distributions. For
example, the results of the previous section show increasing
spatial concentration of precipitation at the hourly time scale
during the 1500 rainiest hours of the record within most sub-
regions (Figs. 9 and 10) but decreasing spatial concentration
across the whole simulation domain of the seasonal precipita-
tion volume (Fig. 8). Spectral analysis, as presented in section 4c,
allows to partially assess the signal’s variability across multiple
scales. However, power spectra fundamentally relate to the
autocovariance/autocorrelation of the signal and thus only

FIG. 7. Change in the HPW of the cold-season hourly precipitation fields between the historical simulation
(1981–2020) and the PGW simulation (2041–80). (a) Map of the HPP for the historical simulation. (b) Map of
the change ratio HPWfuture/HPWhistorical per pixel. (c) Distribution of the HPW across all pixels for the historical and
PGW simulations. (d) Statistical distribution of the change ratio HPWfuture/HPWhistorical across all pixels.

FIG. 8. Lorenz curves of the spatial distributions of the 40-yr-
mean cold-season precipitation amount across all the pixels of the
simulation domain, at 6-km resolution, for the historical and PGW
simulations. The difference between the future and historical Gini
coefficients is statistically significant at the 10215 level according to
the Kolmogorov–Smirnov test.
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characterize the dependence of the second statistical moment
(variance) to scale/resolution. In our case, the spectral analy-
sis suggested that the finer the scale, the higher the magnitude
of the change (in terms of both temporal and spatial scales,
Figs. 4 and 6), at least within the range of scales resolved by
the simulations. Yet it is important to assess up to which
scales the change is appreciable. Figure 13 shows the distribu-
tion of the change ratio across the pixels of the simulation do-
main, for the frequency of occurrence of precipitation (i.e.,
the frequency of wet hours, frequency of wet days), the mean
precipitation intensity during wet periods, and the concentra-
tion of the temporal distribution of precipitation intensities
during wet periods, when the data are analyzed at 6-km and
24-h resolution and 102-km and 1-h resolution, in addition to
the original 6-km and 1-h resolution. The objective here is to
assess the sensitivity of the results to both spatial and tempo-
ral resolutions.

The frequency of occurrence of precipitation is the statistic
for which the change is the most contrasted across different
resolutions. At the original 6-km and 1-h resolution, 76% of
pixels see an increase in the frequency of occurrence of precipi-
tation and the median change value is 16%. At the 102-km
and 1-h resolution, 79% of pixels see an increase in the fre-
quency of occurrence of precipitation and the median change

value is also 16%. At the 6-km and 24-h resolution, 92% of
pixels see an increase in the frequency of occurrence of precipi-
tation and the median change value is 112%. Regarding the
mean precipitation intensity during wet hours (or wet days),
the change is more consistent across resolutions, with increas-
ing values in more than 99% of the pixels at all resolutions.
The magnitude of the increase is however variable across
scales with median values of 117.3%, 115.8%, and 113.4%,
respectively, at 6-km and 1-h resolution, 102-km and 1-h reso-
lution, and 6-km and 24-h resolution. Finally, change in the
temporal concentration as measured by the Gini coefficient is
also showing consistency across resolutions. The G increases
and thus G decreases in more than 96% of the pixels at all
resolutions. The median values of the G decrease rate are
fairly similar at different resolutions, with 24.4% at the 6-km
and 1-h resolution, 24.0% at the 102-km and 1-h resolution,
and23.9% at the 1-km and 24-h resolution.

To summarize this analysis of the scale dependence of
the change in precipitation statistics, increases in the (zero-
excluded) mean precipitation intensity and in the Gini coeffi-
cient are observed at all three selected resolutions but are
most salient at the finest 6-km and 1-h resolution. The fre-
quency of occurrence of above-zero precipitation intensity
shows a more complex scale dependence; at the coarser 24-h

FIG. 9. Statistical distributions of the Gini coefficients characterizing the spatial distributions of hourly precipitation
intensities across the pixels of the Oregon–Washington and California subregions of each one of the 1500 rainiest
hours in each subregion. The distributions for the PGW simulation (2041–80) are compared to the distributions for
the historical simulation (1981–2020).
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temporal resolution, the frequency of occurrence appears to
increase in most pixels and proportionally more than that at
the 1-h resolution. While the increase in the precipitation vol-
ume is essentially driven by an increase in the mean hourly
precipitation intensity within the wet hours, if the data are an-
alyzed at the daily resolution, the statistics show a substantial
increase in the wet-day frequency, by 8.5% on average over
the simulation domain (against an increase of only 2.8% in the
wet-hour frequency), and conversely a lower increase in the
mean intensity of above-zero values than at the hourly resolu-
tion. This is a clear example of the fact that analyses of the
same dataset, with the same methodology, at different resolu-
tions, can lead to seemingly diverging findings and different
interpretations.

6. Summary and discussion

a. Summary

Changes in cold-season precipitation statistics between his-
torical and PGW simulations over the western United States
and southwestern Canada were analyzed. The comparison of
the 2041–80 PGW simulation with perturbations of boundary
conditions from the CESM1-CAM5 model under the RCP8.5
scenario to the historical 1981–2020 simulation revealed an in-
crease in the cold-season precipitation volume (118% in av-
erage), mostly driven by an increase in the mean intensity of
wet hours (114.5% in average), across the whole simulation
domain. The frequency of wet hours showed more contrasted

changes within the domain with a general increase (12.8% in
average) but also a decrease in a significant fraction of the
simulation domain, essentially over the Pacific Ocean above
408N, the coastal areas of the Pacific Northwest, and parts of
the Rocky Mountains.

Our analysis also assessed the change in the temporal con-
centration of precipitation during the wet hours through the
Gini coefficient. The Gini coefficient of the distribution of
precipitation intensities was found to increase in 99% of the
pixels, meaning that the proportional contribution of the
high-intensity wet hours to the total precipitation volume in-
creases in the future: The intensity values associated with the
higher quantiles of the distribution increase at a higher rate
than the mean of the distribution. This sharpening of the hyeto-
graphs at the hourly resolution is accompanied by an increase
of the statistical variance. The spectral analysis revealed that
the additional variability (variance/energy) is essentially carried
by the fine subdaily temporal scales, as the spectral power in-
creases proportionally more at higher Fourier frequencies. The
statistical consequence of this is a decrease of the half-power
period (HPP) in 77% of the pixels.

The analysis of the temporal variability was complemented
by an analysis of the spatial variability. The half-power wave-
length (HPW), which is the spatial equivalent of the HPP,
computed from the spatial power spectra of hourly precipita-
tion intensity fields, decreases over 79% of the pixels of the
domain. The spatial spectral power is found to increase more
significantly at shorter spatial wavelengths, with a 45%–75%

FIG. 10. As in Fig. 9, but for the Pacific Ocean and northern Prairie subregions.
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increase at the meso-beta scale (200 km. wavelength. 20 km)
and up to 90% increase at the submesoscale (wavelength ,

20 km). Similarly to what is found regarding the temporal
structure of the hyetographs, the increase in the spectral
power at fine scales in the spatial spectra corresponds to a
sharpening of the smaller spatial features in hourly precipita-
tion fields. Over the Pacific Ocean, along the coastal regions
of Oregon and Washington, and in the plains of California,
the statistical distribution of the Gini coefficients characteriz-
ing the spatial distributions of hourly precipitation intensities

within the 1500 most intense rainy hours over 40 years is
shifted toward higher values in the PGW simulation. This
means that, at the hourly time scale, the precipitation volume
becomes more concentrated inside a smaller fraction of the
storm area, where the most intense precipitation occurs.

b. Discussion

The statistical analysis presented here relies exclusively on
direct empirical statistics, without parametric fitting, prepro-
cessing of the data, object extraction, thresholding, or quantile
selection. It is therefore relatively straightforward to repro-
duce and apply across multiple large datasets. The computa-
tional complexity of all the algorithms used here is of order N,
where N is the size of the data. This matters as, in our specific
case for example, even if we considered one variable only,
and only one altitude level (surface level), for each simulation
(PGW or historical), the output data are made of 3.4 3 1010

samples (193 600 pixels times 4380 h times 40 years).
The change in the temporal and spatial structure was as-

sessed through spectral analysis among other statistics. While
power spectra may be challenging to apprehend for nonexperts

FIG. 11. Statistical distributions of the change ratio (ratio of the
future value over the historical value) across all the pixels of the
simulation domain, for the frequency of wet hours, the mean pre-
cipitation intensity of wet hours, and the coefficient G derived from
the Lorenz curve, for three different pseudofuture simulations con-
strained by three different GCMs. The three GCMs are CESM1-
CAM5, CanESM2, and HadGEM2-ES.

FIG. 12. (a) Ratio of the future spectral power over the historical
spectral power as a function of the Fourier spatial wavenumber for
three different pseudofuture simulations constrained by three dif-
ferent GCMs. (b) Ratio of the future spectral power over the his-
torical spectral power as a function of the Fourier temporal fre-
quency for three different pseudofuture simulations constrained by
three different GCMs. The three GCMs are CESM1-CAM5,
CanESM2, and HadGEM2-ES.
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and often require supplemental analyses for interpretation, spec-
tral analysis allows to rapidly and nonparametrically detect var-
iations and changes in the spatial and temporal structure of any
climatic variable. One shall note that the utility of Fourier spec-
tral analysis is not restricted to the analysis of narrowband sig-
nals and periodic modes of variability such as the diurnal and
seasonal cycles; it can provide information about any type of
signal and any form of variability, including pseudorandom or
chaotic variability and the so-called “background noise” or
“weather noise” (Mann and Lees 1996). Multidimensional spec-
tral analysis also provides tools to evaluate the spatial direction-
ality and anisotropy in precipitation features as well as their
propagative properties (Guilloteau et al. 2021). These aspects

were also assessed for the presently analyzed datasets; however,
no salient changes were found between historical and PGW sim-
ulations (not shown), possibly due to the limitations of the PGW
simulation approach. Indeed, when perturbating the historical
NARR boundary conditions month by month, we preserve their
day-to-day variations. Therefore, while the storms’ thermody-
namics show a response to the warmer and moister atmosphere,
the timing of the occurrence of storms in the PGW simulations
is the same as in the historical simulation. Direct downscaling of
GCM simulations (McGinnis and Mearns 2021; Rahimi et al.
2024) would arguably be a more adapted approach to evaluate
these other aspects of change in precipitation.

The physical drivers behind the intensification of the mean
hourly precipitation rate, the increased concentration of the
precipitation volume across space and time, and the increased
spatial and temporal variability and “sharpness” of precipita-
tion features are to be sought in the enhancement of the con-
vective activity in a warmer and moister atmosphere. Higher
atmospheric temperatures and greater water-holding capacity
of the atmosphere allow for potentially more latent heat to be
released during moist convection processes. The consequence
of this is a general increase in the convective available poten-
tial energy (CAPE), leading to more widespread, and/or
more intense, and/or more organized convection (Trapp et al.
2007; Prein et al. 2017; Fowler et al. 2021; Bao et al. 2024). In
Chen et al. (2023), the spatial sharpening of storms at the
daily temporal resolution was attributed to the intensification
of updrafts within convective cores. It however remains
uncertain which effect, between the increase in the spread
of convection (meaning the increasing convective to strati-
form precipitation ratio), the increase of the intensity of
convection, and the increase in the convective organization,
has more impact on precipitation statistics at different scales.
While increasing convective intensity may have more impact at
the submesoscale and subdaily scale, change in the degree of or-
ganization of convection is expected to have more consequences
at the coarser meso and daily scales (Bao and Sherwood 2019).
Future analyses of storms’ structure, including the degree of
convective organization, in convection-permitting simulations
shall shed more light on the mechanisms driving the future
changes in storms and precipitation characteristics.

In the present study, the increased spatial and temporal
concentration of precipitation and sharpening of precipitation
features is established from historical and PGW future simu-
lations at the regional scale in western North America. Be-
cause the CAPE and the latent heat released during moist
convection processes are expected to increase on average
across the globe under global warming (Seeley and Romps
2015), the findings of the present regional study are likely to
be relevant to many other regions of the world. However, be-
yond the thermodynamics of moist convection, many factors
influencing the characteristics of precipitation are likely to
also change under global warming (in particular, synoptic cir-
culation patterns controlling the transport of water vapor),
and the response of precipitation dynamics to global warming
will undoubtedly vary from one region to another. Currently,
the high computational cost of storm-resolving simulations at
hourly resolutions does not allow for an analysis such as the

FIG. 13. Statistical distributions of change in the precipitation sta-
tistics across all the pixels of the study domain at different spatial
and temporal resolutions. For each statistic, the change is ex-
pressed as the ratio of the future value over the historical value
(change ratio).
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one presented here to be performed globally. Storm-resolving
regional simulations in other areas of the world need to be an-
alyzed to confirm or infirm the generalizability of the present
results [see e.g., the Dallan et al. (2024) study in the Alpine–
Mediterranean region].

In regard to the consequences of the projected changes in
terms of hydrological impacts, higher mean precipitation in-
tensity and higher spatiotemporal concentration of precipita-
tion naturally imply higher runoff rates and higher flood
susceptibility, especially regarding flash floods in small hydro-
logic basins. In addition to the direct hydrological impacts,
the increase of the spatiotemporal variability of precipitation
at fine scales may negatively impact our capacity to produce
accurate precipitation forecasts in the future, as shorter time
persistence and sharper spatial gradients typically render fore-
casting more challenging (Germann and Zawadzki 2002). If
the typical spatial and temporal dimensions of precipitation
features decrease in the future, as is suggested by the decrease
in the HPP and HPW statistics in the PGW simulations, the
effective resolution (Wedi 2014; Bolgiani et al. 2020) of mod-
els and forecasts shall improve accordingly to maintain ade-
quacy. We note that these considerations are also relevant
when it comes to observations and observational products
(Guilloteau et al. 2017; Herrera et al. 2019; Guilloteau and
Foufoula-Georgiou 2020), which are used to evaluate numeri-
cal models and are also assimilated in some models.
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