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Abstract

Soil moisture–precipitation coupling (SMPC) plays a critical role in Earth’s water and energy

cycles but remains difficult to quantify due to synoptic-scale variability and the complex in-

terplay of land–atmosphere processes. Here, we apply high-dimensional model representation

(HDMR) to functionally decompose the structural, correlative, and cooperative contributions of

key land–atmosphere variables to precipitation. Benchmark tests confirm that HDMR overcomes

limitations of commonly used correlation and regression approaches in isolating direct versus indi-

rect effects. For example, analysis of gross primary productivity using a light-use-efficiency model

shows that linear regression underestimates the temperature effect, while HDMR captures it accu-

rately. Applying HDMR to CONUS404 reanalysis data reveals that morning soil moisture explains

up to 40% of the variance in summertime afternoon precipitation over the Great Plains, more than

double prior estimates. On days with afternoon rainfall (12-hour totals of 4.7-8.2 mm), first-order

SM effects can boost precipitation by up to 8 mm under wet conditions, with an additional 3 mm

from second-order interactions involving temperature and moisture. By capturing real-world co-

variability and higher-order effects, HDMR provides a physically grounded, data-driven framework

∗Corresponding Author: jasper@uci.edu

1

https://arxiv.org/abs/2506.13939v1


for diagnosing land–atmosphere coupling. These results underscore the need for more nuanced,

interaction-aware data analysis methods in climate modeling and prediction.

1 Introduction

The interaction between soil moisture (SM) and precipitation is a critical driver of Earth’s surface water

and energy cycles [1]. This SM-precipitation coupling (SMPC) modulates near-surface processes and

exerts control on energy partitioning [2], boundary layer dynamics [3, 4], and mesoscale circulation [5],

thereby influencing regional extremes of precipitation [6, 7] and droughts [8]. SMPC occurs across a

continuum of spatiotemporal scales, spanning distances from a few to several thousands of kilometers and

extending from diurnal cycles to seasonal patterns [9, 10]. Moreover, SMPC exhibits substantial regional

variability in both its strength and sign, attributed to the sensitivity of evapotranspiration to SM and

of atmospheric conditions to latent heat fluxes [11]. An in-depth understanding of the coupling between

SM and precipitation is essential for accurate weather forecasting and climate modeling, especially in

the context of global warming and ongoing land-cover and land-use changes.

SMPC mechanisms can have either positive or negative effects on precipitation. These effects are

categorized as positive (wet soil) or negative (dry soil) outcomes. As illustrated in Figure 1, a wet soil

supports larger latent heat fluxes (or evapotranspiration) in a SM-limited regime [12], increasing the

air’s moisture content, moist static energy (MSE) [13] and evaporative fraction (EF) [2]. The triggered

convection initiation and shallow planetary boundary layer (PBL) development [14] promote convective

cloud formation and precipitation. Drier soils on the contrary have higher surface temperatures, a larger

temperature gradient, and convective triggering potential (CTP) [15]. Enhanced thermal updrafts in

turn reduce convection inhibition (CIN) and promote air parcels to reach the lifting condensation level

(LCL) to form precipitation [16, 17]. At the mesoscale, both of these feedback mechanisms primarily

manifest on a diurnal basis, especially during the midday hours of the warmer seasons. Precipitation
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recycling is a more straightforward SMPC mechanism but has a more prolonged, non-local, and large-

scale impact on the atmosphere [9, 18].

Over the past two decades, many data-driven and simulation-based studies have investigated the

strength, sign, and governing mechanisms or pathways of SMPC [15, 2, 16, 17, 19, 4]. However, there is

still ongoing debate about the extent and causal influence of SM on afternoon precipitation, particularly

in hotspot regions such as the Central and Southeastern United States and the Sahel [2, 16, 20]. One

major factor influencing SMPC estimates is the resolution and quality of SM data [21, 22]. Another

important, yet underexplored, factor is the variability in how coupling strength is defined and computed

across different studies. Most previous work quantifies SMPC using simple statistical metrics or model

diagnostics, each with its own set of limitations, as discussed in earlier studies [1]. Specifically, linear

(Pearson) [23, 4] or partial correlation coefficients [24] have been widely used to quantify the direct

associations between SM and precipitation or convection initiation. These analyses are often preceded

by Principal Component Analysis, which is applied to isolate the leading modes of variability in SM,

precipitation, and temperature [25, 7]. However, correlation analysis fails to detect nonlinear and

multivariate relationships among land–atmosphere variables. Although the coefficients of a multiple

linear regression model can provide some insights into coupling strength [26, 27], such models are

inherently linear and additive. They do not distinguish between direct and indirect effects, nor can

they capture nonlinear interactions or multivariate dependencies among land-atmosphere variables and

precipitation. Composite and Bayesian analyses offer some improvement by examining precipitation

patterns under varying SM conditions and classifications [2, 28], but these approaches also fall short

in disentangling direct effects from cooperative effects of land–atmosphere variables. Causal inference

may help dial in on the direct relationship between SM and precipitation occurrence [29] but ignores

higher-order synergies and interactions within the land–atmosphere system [30].

Global and regional climate models provide valuable causal insights into SMPC. These models can

simulate the effects of SM perturbations on precipitation. This sensitivity is commonly used as a
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Figure 1: Schematic illustration of positive (”wet-soil effect”) and negative (”dry-soil effect”) soil mois-
ture–precipitation coupling (SMPC). Key variables include soil moisture (SM), latent heat flux (LHF),
sensible heat flux (SHF), land surface temperature (LST), precipitable water (PW), moist static energy
(MSE), lifting condensation level (LCL), planetary boundary layer (PBL), and convective triggering
potential (CTP). The arrows and interactions demonstrate how wet and dry soil conditions influence
boundary-layer moisture, development, and precipitation.

proxy for the strength of land–atmosphere coupling [28, 31, 32, 33] or, alternatively, as the fraction of

precipitation variance explained by SM, based on comparisons between reference and prescribed SM

climatologies [34, 35]. However, such coupling diagnostics or inferred causal relationships are subject to

considerable uncertainties, primarily due to the physical parameterizations of convective and boundary-

layer processes within climate models [36, 37, 38]. Moreover, artificially imposed SM states used in

model experiments often fail to capture realistic antecedent conditions (e.g., the memory effects of prior

precipitation) thereby reducing the analysis to a one-way feedback that oversimplifies the full complexity

of land–atmosphere interactions. Finally, because these diagnostics rely on controlled perturbations that

cannot be reproduced in observational settings, direct validation of the modeled causal relationships is

infeasible [1].

State-of-the-art data and sensitivity analysis methods offer new opportunities to analyze high-
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dimensional multivariable datasets from both models and observations in the search for robust SMPC

signals across spatiotemporal scales. Here, we illustrate the application of one such method – High-

Dimensional Model Representation (HDMR) [39, 40, 41] – to CONUS404 reanalysis data. HDMR is a

generalization of Sobol′ [42] finite multivariable function expansion to dependent variables, and decom-

poses the multivariate relationships and coupling among land–atmosphere variables into a hierarchical set

of first-, second-, and higher-order response/component functions that capture direct and indirect effects

of land–atmosphere variables to precipitation. HDMR’s ability to parse out the structural, correlative,

and cooperative contributions of land-atmosphere variables to precipitation exceeds the capabilities of

commonly used correlation and regression methods and offers deeper insights into the multiple different

pathways through which SM modulates precipitation in both modeling and observational frameworks.

Our case studies demonstrate HDMR’s potential for inferring causative relationships, quantifying the

strength and sign of SMPC across CONUS and diagnosing land-atmosphere coupling in weather and

climate models.

2 High Dimensional Model Representation

Most correlation and regression-based methods capture only direct and linear relationships between SM

and precipitation, thereby overlooking the contributions of bivariate and higher-order cooperative effects

(e.g., compound contribution of SM and PW) and internal coupling (e.g., SM-LST) of land-atmosphere

variables [1]. HDMR, on the contrary, decomposes the SMPC into a hierarchy of component functions

and uses an analysis of covariance (ANCOVA) to separate direct (structural) from indirect (correlative

and cooperative) effects (see Figure 2). This enables a more systematic, multivariate and multivariable

evaluation of how SM influences precipitation.

Let x = (x1, . . . , xd)
⊤ be a vector of d input variables (e.g., morning SM and other land-atmosphere

variables in Table 1) that explain afternoon precipitation or target variable y. HDMR decomposes the
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Figure 2: Schematic overview of the HDMR second-order decomposition of afternoon precipitation as
a function of antecedent SM, LST and PW.

afternoon precipitation y into a sum of hierarchical component functions [40]:

y = y0 +

n1∑
i=1

fi(xi) +

n2∑
1≤i<j≤d

fij(xi, xj) +

n3∑
1≤i<j<k≤d

fijk(xi, xj, xk)

+ · · ·+ f12...d(x1, x2, . . . , xd) + ϵ, (1)

where y0 is the mean 12-hr accumulated precipitation between noon and midnight (local time, and

on days that experience afternoon rainfall) in units of mm and ϵ ∼ N (0, σ2
ϵ ) is a zero-mean normally

distributed residual with constant variance, σ2
ϵ . The first-order terms, fi(xi), capture the individual

contribution of each input variable, while the second- and higher-order terms such as fij(xi, xj), . . . ,

characterize cooperative contributions of two or more variables to y. In many physical systems, third-

and higher-order terms are often negligible [43, 41]. Therefore, we retain only the n12 = n1 + n2 =

d+ d(d− 1)/2 first- and second-order component functions:

y = y0 +

n12∑
u=1

fu(xu) + ϵ, (2)

where index u runs over both individual (d) and pairwise d(d − 1)/2 terms, and xu denotes the

subvector corresponding to the individual (xi) and pairwise (xi,xj) components of the input vector
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x = (x1, . . . , xd)
⊤. The component functions fu quantify the individual and bivariate contributions of

the land-atmosphere variables to precipitation.

To successfully delineate the direct and indirect (cooperative/correlative) effects of the land-atmosphere

variables, the component functions must satisfy a so-called relaxed vanishing condition [44]

∫ 1

0

wu(xu)fu(xu)dxi = 0, (3)

where wu(xu) is the joint probability density function of the variables in xu. (3) enforces hierarchical

orthogonality of the component functions. This condition ensures a unique functional decomposition

that properly distinguishes between structural, correlative, and cooperative contributions of the input

variables [40, 41]. By definition, the relaxed vanishing condition requires each second-order function

fij(xi, xj) to be orthogonal to its associated first-order counterparts fi(xi) and fj(xj). This orthogonality

ensures that each second-order HDMR term captures new, interactive information about the target

variable y not already represented by lower-order terms. Only then can we successfully unravel the

dynamic web of land-atmosphere variables.

Each component function is represented by a set of orthogonal polynomials ϕr(xi) (see Materials

and Methods 5.3.1). The corresponding expansion coefficients are estimated via D-MORPH regression

(see Materials and Methods 5.3.2) and ensure hierarchical orthogonality. Next, the contribution of each

component function fu(xu) to the total variance Var[y] of y, is quantified by structural and correlative

sensitivity indices [45]:

Sa
u =

Var[fu(xu)]

Var[y]
and Sb

u =
Cov[fu(xu),

∑n12

m̸=u fm(xm)]

Var[y]
. (4)
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Their sum defines the coupling index Su of fu(xu):

Su = Sa
u + Sb

u . (5)

The cooperative coupling index of xi sums up all higher-order coupling indices associated with variable

xi,
∑

j ̸=i Sij(xi, xj). A closely related measure, the total effect [46]:

ST
i (xi) = Si(xi) +

∑
j ̸=i

Sij(xi, xj), (6)

quantifies the total explained variance of y by variable xi through its direct (structural) and indirect

(correlative due to dependencies with other variables and cooperative due to nonlinear interactions) ef-

fects. HDMR shares elements with information-theoretic approaches [47, 48], which decompose mutual

information into unique, redundant, and synergistic components. This information partitioning, how-

ever, assumes knowledge of the marginal and joint probability density functions (PDFs) of the variables,

which can be challenging for high-dimensional datasets. In contrast, HDMR decomposes the target vari-

ance into structural, correlative, and cooperative contributions without requiring an underlying PDF,

making it computationally more efficient and scalable to large datasets. Below, we present HDMR

results for three case studies of increasing complexity. Details of the data, models and methods used in

these studies are found in the Materials and Methods.

3 Results

3.1 Case I: A Simple Bivariate Function

We consider a simple bivariate function y = x1 + x2 + x1x2 and compare the results of HDMR, cor-

relation analysis, and multiple linear regression analysis for two different cases. In Exp1A x1 and x2
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are independent, whereas these two variables are negatively correlated in Exp1B with rx1,x2 = −0.6

(see Materials and Methods 5.2.1 for details on the properties of x1 and x2). Figure 3 presents the

results of our analysis for Exp1A (left) and Exp1B (right) where in each panel, the large bars depict the

total fractional variance of y explained by x1 (blue) and x2 (orange) according to HDMR, correlation

analysis, and linear Regression. For HDMR, the smaller stacked bars in dark blue and red portray the

first-order structural and correlative contributions, respectively. The smaller purple and pink bars in

Exp1B denote the cooperative effect of the second-order component function f12(x1, x2). In Exp1A with
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Figure 3: Fractional contributions of x1 and x2 to variance of y according to HDMR, Correlation
analysis, and Linear Regression for Exp1A (left) and Exp1B (right). The large bars (blue for x1 and
orange for x2) represent each method’s total explained variance. For HDMR, the stacked (smaller) bars
show the first-order structural and correlative contributions, respectively. The cooperative (interactive)
effect of x1 and x2 equals the net difference between the HDMR total and the sum of structural and
correlative effects.

uncorrelated inputs, HDMR’s total effects for x1 and x2 are about 55% in line with their equal impact

on y in (10). The structural effect of 43.8% reflects each variable’s individual contribution to y. The

correlative contribution of 0.3% for both variables is negligible (not visible in bars) and testifies to the

independence of x1 and x2. The interaction term S12 = ST
1 − Sa

1 − Sb
1 of about 10.9% accounts for the

remainder. The sum of the total effect
∑

ST
i does not necessarily equal 1 because the interaction term

S12 is counted twice in (6). If we compute the normalized total effect STN
i (xi) instead:

STN
i (xi) = Si(xi) +

1

2

∑
i ̸=j

Sij(xi, xj), (7)
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then STN
1 (x1) = STN

2 (x2) = 43.8 + 11/2 = 49.3%. This matches the theoretical expected contribution of

50% for x1 and x2 in (10). Correlation analysis and multiple linear regression report noticeably lower

values of 42.6% and 45.5% using (23)-(24), respectively. These two numbers are in agreement with

HDMR’s structural effects for x1 and x2 but omit the interaction altogether. This merely illustrates

that correlation and regression-based methods overlook the contribution of the product term x1x2 and

do not adequately capture cooperative effects on y.

The right panel shows that correlation rx1,x2 = −0.6 among variables x1 and x2 drastically reduces

the fractional explained variance by these two variables according to correlation analysis and multiple

linear regression. This correlation does not affect HDMR-based estimates of the total effects of x1 and

x2. Both are locked in at 50% and split into a structural part of 30.9% and correlative component of

17.5%. This time, the interaction term explains only 2% of the variance of y. This is noticeable less than

in the uncorrelated case and this reduction is due to the negative correlation rx1,x2 = −0.6 of x1 and x2.

These results reiterate HDMR’s ability to successfully decompose the variance of y in the presence of

variable correlation and interaction. Correlation and regression methods fail in doing so.

3.2 Case II: A Light-Use-Efficiency (LUE) Model

We use a light use efficiency (LUE) model to simulate data of gross primary productivity (GPP,

gC/m2/day) as a function of SM, net radiation Rn, 2-m air temperature T2m, and wind speed u. Details

are presented in the Materials and Methods 5.2.2. We use this simulated data set to quantify the con-

tributions of x1 = SM, x2 = Rn, x3 = T2m and x4 = u to GPP. All three methods (HDMR, correlation

analysis, and multiple linear regression) are in agreement (see Figure 4a) on the importance of the four

input variables in explaining the variance of GPP. Net radiation exerts the largest control on GPP,

followed by 2-m air temperature, SM and wind speed. The effects of SM and wind speed are relatively

minimal. Despite assigning similar rankings to the input variables, correlation analysis and multiple lin-

ear regression substantially underestimate the explained GPP variance by the different variables. This
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is particularly true for T2m or x3. Correlation analysis (22.8%) and multiple linear regression (19.3%)

substantially underestimate the temperature contribution to GPP. According to HDMR, the explained

GPP variance by T2m is 50.7%. To understand these differences, Fig. 4b examines the structural and

Figure 4: Top row: (a) total fractional variance of GPP explained by soil moisture x1, net radiation
x2, 2-m air temperature x3 and wind speed x4 according to HDMR, correlation analysis, and multiple
linear regression, and (b) structural and correlative effects of HDMR component functions. Bottom row:
scatter plots of (c) multiple linear regression and (d) HDMR predicted GPP values (x-axis) against their
simulated values (standardized) from the LUE model, with the 1:1 reference line. The small insets in
(c,d) present density estimates of a Gaussian kernel for the [-1,1] data range (Scott bandwidth = 0.22).

correlative contributions of the HDMR component functions. The structural effect of T2m of about 30%

is already about 10% larger than the total explained GPP variance by correlation analysis and multiple

linear regression. This result underscores HDMR’s effectiveness in capturing nonlinear dependencies
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that are missed by linear methods. In addition, several second-order component functions contribute

significantly to GPP, indicating strong interactive effects among the variables. Notably, the joint influ-

ence of radiation and temperature (x2, x3) explains nearly 20% of the variance in GPP, an effect that

correlation and regression methods fail to capture. The structural and correlative contributions of the

component functions jointly explain 99% of the GPP variance. This inspires confidence in the HDMR

functional decomposition of the LUE model. Further evidence for this is presented in Fig. 4d which

shows an excellent agreement (R2 = 0.99) of HDMR predicted and LUE simulated GPP values. Multiple

linear regression, on the contrary, explains a much smaller fraction (R2 = 0.58) of the GPP data (see

Fig. 4c).

3.3 Case III: Soil Moisture–Precipitation Coupling (SMPC)

3.3.1 Hot Spots of SMPC

We now apply HDMR to CONUS404 reanalysis data to quantify the SMPC strength and identify hotspot

regions across the Conterminous United States, focusing on the summer months (April–September) from

2012 to 2021. Data preparation is described in sections 5.1 and 5.2.3 of the Materials and Method. In

short, we examine the 12-hour accumulated precipitation (12:00–24:00 local time), as function of x1

morning SM (07:00 local time) and five auxiliary land–atmosphere variables including x2 LST, x3 PW,

x4 LAI, and the x5 horizontal and x6 vertical wind speeds at 10 meter. Synoptic effects were removed

by relinquishing samples with antecedant rainfall in the 24 hours leading up to the afternoon events.

Figure 5a shows HDMR-derived estimates of the total variance in afternoon precipitation over

CONUS that is explained by SM alone. We benchmark these results against correlation analysis (Fig.

5b) and multiple linear regression (5c), as these two data analysis methods are commonly used in SMPC

studies [9, 23, 33, 26, 49].

All three methods identify the Great Plains as a region of relatively strong SM influence on precipita-
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Figure 5: Total fractional variance of afternoon accumulated precipitation (from noon to midnight)
during the warm season (April-September, 2012–2021) explained by morning SM across CONUS: (a)
HDMR, (b) correlation analysis, and (c) multiple linear regression. Only grid cells with 5, 000 or more
valid data samples are shown in color.

tion. The three methods differ substantially in their magnitudes of the explained precipitation variance.

According to HDMR, SM explains between 0–40% of the summer convective precipitation variance

over much of the central and northern Great Plains. This is much larger than the 5-15% derived from

correlation analysis and multiple linear regression. Physically, SM plays a particularly influential role

in regions where evapotranspiration is water-limited. In these transitional zones, moderate anomalies

in soil wetness can have a considerable impact on surface energy fluxes and boundary-layer moisture,

thereby influencing convective initiation and rainfall patterns [1]. In contrast, humid regions such as

the Southeastern US are characterized by SM abundance and operate under energy-limited conditions,

where precipitation is primarily controlled by atmospheric dynamics than by local SM variability or land

surface processes [1]. This regime is reflected in the low SM-based explained variance seen in Figure

5. Nevertheless, SM may still influence the frequency of afternoon rainfall events through a positive

feedback between evaporative fraction and precipitation [2]. Similarly, the mountainous western US also

exhibits relatively weak SM impacts on precipitation, with the notable exception of regions influenced

by monsoonal surges (e.g., New Mexico), aligning with previous studies [50, 51].

Our results are in strong qualitative agreement with GLACE findings [35], but demonstrate a much

stronger signal over the Great Plains. According to HDMR, morning SM explains up to 40% of sum-

mertime precipitation variance in this region. This signal is much stronger than the approximately
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16% of Koster et al. [35]. Two methodological differences likely explain this discrepancy. First, Koster

et al. used a global climate model with relatively coarse resolution and simplified convection schemes,

whereas our analysis is based on CONUS404 – a high-resolution WRF-derived reanalysis data set that

much better captures and describes mesoscale convective systems, boundary-layer dynamics, and pre-

cipitation patterns. Second, the GLACE simulations quantify SMPC strength (∆Ω) by prescribing soil

moisture climatologies. This “local-sensitivity” approach decouples the land-atmosphere feedback, sup-

pressing the natural co-variability among land surface and atmospheric variables. In contrast, HDMR

is a variance-based global sensitivity analysis method that allows all land-atmosphere variables to vary

simultaneously. It partitions precipitation variance into direct (unique) and indirect (shared) contri-

butions from individual drivers and their interactions. As a result, HDMR provides a more physically

consistent and substantially higher estimate of SM control on warm-season precipitation.

3.3.2 Structural, Correlative, and Cooperative Coupling Effects

The results in Fig. 5 raise an important question: Why does HDMR outperform correlation analysis and

multiple linear regression in decomposing precipitation variance? Is this a result of model complexity,

specifically, the large number of estimable expansion coefficients in the hierarchical polynomial compo-

nent functions of the HDMR functional decomposition? To investigate this, we retain the exact same

polynomial basis but estimate the expansion coefficients using ordinary least squares (OLS) rather than

the HDMR-specific D-MORPH regression. The OLS estimator does not enforce the relaxed vanishing

condition in (3), which is critical for disentangling first- and higher-order structural and correlative

effects. For a representative grid cell in the northern Great Plains (46.2◦N, 106.0◦W), the OLS-derived

SM component function is

fOLS
1 (x1) = 0.122ϕ1(x1) + 0.102ϕ2(x1) + 0.068ϕ3(x1), (8)
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yielding a structural coupling index of Sa
1 = 3%. Using the same basis functions, D-MORPH regression

produces:

fHDMR
1 (x1) = 0.433ϕ1(x1) + 0.320ϕ2(x1) + 0.212ϕ3(x1), (9)

with a substantially higher coupling index of Sa
1 = 34%. While both functions explain the same propor-

tion of variance in precipitation (R2 = 57%), the OLS parameterization of the SM component function

obscures the direct SM effect. In contrast, hierarchical orthogonality enforced by D-MORPH regres-

sion uniquely partitions the variance into structural, correlative, and cooperative effects (see Figure 6),

making the physical role of SM explicit. These findings highlight that HDMR’s superiority lies not in a

richer basis, but in its ability to delineate compound influences. This is a prerequisite for mechanistic

interpretation of land-atmosphere coupling. To further unravel how SM, LST, and PW individually
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Figure 6: HDMR results for CONUS: Structural (a1-c1), correlative (a2-c2), and cooperative (a3-c3)
coupling indices of (a) SM, (b) LST, and (c) PW.

and jointly contribute to precipitation, we analyze their structural, correlative, and cooperative HDMR
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indices (Figure 6). LAI, u10, and v10 have only a minimal contribution to the afternoon precipitation

(see Figure S1) and are not discussed further. Provided that SM’s total effect in the Great Plains (Fig-

ure 5, left panel) can exceed 30%, its structural contribution (Fig. 6a1) makes up almost 80% of that

fraction, indicating a direct and “stand-alone” SM impact on precipitation variability. Correlative SM

contributions are generally small and possibly even somewhat negative (Fig. 6a2). This finding demon-

strates that once the direct contribution of SM to precipitation is accounted for, correlation with other

inputs do not systematically amplify precipitation. Yet, for certain hot spots SM displays a moderate

cooperative effect (Fig. 6a3) with other variables, underscoring SM’s nontrivial interactions with other

land-atmosphere variables. Indeed, the nonzero total coupling indices S12 and S13 in the Northwestern

US (see Figure S2) indicate that morning SM, surface heating, and atmospheric humidity jointly influ-

ence surface moisture fluxes, CIN, and evaporative cooling, thereby potentially modulating afternoon

precipitation.

The roles of LST and PW differ markedly from SM, especially in mountainous and coastal regions.

Their structural indices approach 10–25% over the Rocky mountains (Fig. 6b1-c1) and highlights the

importance of abundant surface heating and atmospheric moisture for boundary-layer destabilization

and moist convection. Yet, some regions exhibit negative correlative indices (Fig. 6b2-c2), where high

temperatures coincide with conditions that suppress local rainfall potentially due to dry soils and reduced

CAPE [52]. PW shows a structural effect of up to 25% in the Southern Rockies and Gulf Coast (Fig. 6c1),

where moisture-rich air enhances convective potential [53]. However, in areas frequently affected by

large-scale moisture advection, negative correlative contributions diminish PW’s net influence. The

cooperative effects (Fig. 6b3-c3) of LST and PW are generally modest across CONUS, with localized

enhancements along the Southeastern coast, the Southern Rockies, and the Northeastern US-regions

where compound processes such as surface heating and tropospheric moisture advection more strongly

influence afternoon precipitation Overall, the total effects of LST and PW (Figure S3) are comparatively

smaller and generally below 15% across CONUS. This reaffirms the dominant control of SM on warm-
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season precipitation and its characteristic hot spots within transitional climate zones.

3.3.3 The Functional SMPC

The most pronounced SMPC signal is observed over the Great Plains (Fig. 5a), and, thus, we further

examine this region to help unlock the physical mechanisms that govern the feedback between SM and

precipitation. Fig. 7a displays the first-order SM component functions, f1(x1), for three representative

grid cells in the northern (46.2◦N, 106.0◦W, blue line), central (37.7◦N, 98.5◦W, orange line), and

southern (30.4◦N, 100.1◦W, green line) Great Plains. The mean 12-hour afternoon rainfall for the

analyzed days (i.e., y0) at the three grid cells is 4.7, 8.0, and 8.2 mm, respectively. For a cell in

the northern Great Plains (NPG), we display the second-order component functions of variable pairs

SM,LST and SM,PW designated f12(x1, x2) and f13(x1, x3) in Figs. 7b and 7c, respectively. The two

bivariate interaction terms have relatively high total coupling indices (S12 = 8.2% and S13 = 9.6%),

compared to other SM-related second-order terms (see Figure S2). This warrants a closer inspection.
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Figure 7: HDMR results of SMPC in the Great Plains: (a) First-order contribution of SM, f1(x1), to
afternoon precipitation for three representative grid cells located in the northern (46.2◦N, 106.0◦W, blue
line), central (37.7◦N, 98.5◦W, orange line), and southern (30.4◦N, 100.1◦W, green line) Great Plains
denoted NGP, CGP, and SGP, respectively, (b,c) Contribution of second-order component functions,
f12(x1, x2) (SM–LST) and f13(x1, x3) (SM–PW) to precipitation for the NGP grid cell. Coupling indices
S1, S12, and S13 quantify the fraction of precipitation variance explained by their respective first- and
second-order component functions.

In Fig. 7a, the first-order SM component functions exhibit a roughly piecewise relationship between

soil wetness and precipitation at the three Great Plains sites, highlighting a distinct “wet-soil advantage”.
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12-hour afternoon precipitation shows minimal sensitivity to soil wetness when SM drops below 0.2

cm3/cm3 for the NGP and CGP, and below 0.3 cm3/cm3 for the SGP. Above these thresholds, increasing

SM leads to enhanced 12-hour precipitation, with peak increases of approximately 6, 8, and 2 mm for the

NGP, CGP, and SGP, respectively. These results align closely with the spatial structure of SMPC shown

in Fig. 5a1. As expected, the strongest SMPC signals are in the northern and central US, whereas farther

south (e.g., in Texas), moisture advection from the Gulf of Mexico and stronger capping inversions likely

suppress the local influence of SM on afternoon rainfall [54].

The second-order SM-LST component function f12(x1, x2) for the NGP (Fig. 7b) indicates that SM-

LST coupling can modulate precipitation by up to 3 mm when wet soils coincide with high surface

temperatures. While the first-order SM component function quantifies the direct contribution of soil

water availability to precipitation, the interaction term f12(x1, x2) reveals how co-occurring high SM

and LST jointly enhance evapotranspiration and convective development. Strong solar heating over

moist surfaces amplifies moisture fluxes and boundary-layer growth, thereby boosting precipitation.

Conversely, low LST suppresses surface fluxes and reduces precipitation, even when SM is abundant.

Fig. 7c shows that SM-PW interactions can contribute up to 3 mm of additional precipitation when

soils are wet (SM > 0.30 cm3/cm3) and atmospheric moisture is moderately high (2 < PW < 3 cm).

This cooperative effect between SM and PW underscores how moist soils, in tandem with elevated

tropospheric humidity, can reduce convective inhibition and promote more efficient rainfall production

once storms initiate [55]. Accordingly, while LST and PW alone do not dominate precipitation variability

at this NGP location (Fig. 6b,c), their joint interactions with SM explain nearly 10% of the summertime

rainfall variance. Thus, HDMR reveals not only the direct “wet-soil advantage” but also key compound

effects arising from the co-variability of surface temperature and atmospheric humidity.
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4 Discussion and Conclusions

Soil moisture precipitation coupling (SMPC) exerts strong control on Earth’s water and energy cycles,

yet is difficult to observe, examine, and quantify due to synoptic effects and the complex and intricate

web of land-atmosphere variables involved. Correlation analysis and regression-based methods have

become the standard in analyzing SMPCs but are unable to adequately characterize nonlinear and

cooperative (compound) effects. In this paper, we introduced functional data decomposition by means of

high-dimensional model representation (HDMR) to delineate the structural, correlative, and cooperative

contributions of key land-atmosphere variables to precipitation. HDMR [40] is a generalization of Sobol’s

functional decomposition [42] to dependent (correlated) input variables. Both HDMR and Sobol’s

method trace their roots to the analysis of variance (ANOVA), which decomposes output variability

into contributions from individual inputs and their interactions. While Sobol’s approach assumes input

independence, HDMR relaxes this assumption, making it suitable for more complex, real-world datasets

with correlated drivers.

A synthetic benchmark experiment with a simple bivariate function showed that HDMR does not

suffer the limitations of commonly used correlation and regression analysis methods in distinguishing

between direct and indirect (correlative) effects. Data analysis of gross primary productivity (GPP)

from a light-use-efficiency model demonstrated that commonly used regression methods substantially

underestimate the temperature contribution to GPP, while HDMR accurately captured this effect. Next,

continental-scale analysis of CONUS404 reanalysis data confirmed the presence of SMPC hot spots in

the central and northern Great Plains. Our regional SMPC characterization aligns closely with earlier

modeling studies [34, 35], however, the HDMR-based functional decomposition can explain up to 40%

of the variance in summertime afternoon rainfall. This is a substantially higher fraction than the ∼ 16%

reported both by Koster et al. [35] and by our linear regression analysis. This difference in the SM

coupling strength is attributable to three main factors:
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(i) We use CONUS404 – a 4 km WRF-based reanalysis data product – which explicitly resolves

mesoscale convective and boundary-layer processes, preserving the pathways through which SM

influences precipitation.

(ii) HDMR is a covariance-based global sensitivity analysis method that allows all land–atmosphere

variables to vary jointly, instead of varying one at a time. This yields physically consistent esti-

mates of coupling strength.

(iii) HDMR enforces hierarchical orthogonality among component functions, allowing it to retain and

disentangle structural, correlative, and cooperative effects. Such signals are often missed by simpler

data analysis methods.

HDMR results further demonstrate that on summer days with afternoon rainfall (12-hour totals of 4.7

to 8.2 mm), first-order SM effects can increase precipitation by up to 8 mm when soils are sufficiently

wet. Second-order effects associated with warm and moist conditions can potentially contribute another

3 mm.

Distinct roles of land surface temperature (LST) and precipitable water (PW) emerged in mountain-

ous and coastal regions, where surface heating and atmospheric moisture supply usually outweigh local

SM effects. While both LST and PW contribute moderately to afternoon precipitation in areas such as

the Rocky Mountains and Gulf Coast, their cooperative interactions with SM are particularly variable

over the northern Great Plains, highlighting the dynamic nature of land–atmosphere coupling. Collec-

tively, the HDMR results provide a unified framework for understanding how morning SM competes

with thermal and moisture conditions in shaping afternoon precipitation. This holistic perspective is

particularly valuable in transitional climate zones, where SM variability can exert substantial control

over surface energy partitioning and rainfall intensity.

As with any higher-order polynomial expansion, the HDMR functional decomposition requires sub-
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stantial data resources. To ensure robust estimates of coupling strength, the number of data samples

N must exceed sufficiently the number of expansion coefficients l [41]. This condition will be met with

simulated or satellite-based datasets, but HDMR’s data requirements increase rapidly with the number

of input variables d and order of decomposition, potentially requiring sparse basis representations or

regularization techniques. It is also important to note that, although the polynomial component func-

tions in HDMR can capture nonlinear relationships, they are empirical representations of observed (or

simulated) input–output behavior rather than explicit mechanistic models. As such, the causal pathways

inferred through HDMR must ultimately be validated using process-based modeling and experimental

studies.

Our SMPC analysis focuses on a specific diurnal lag, namely, 7:00 am land-atmosphere conditions

on same-day afternoon precipitation. However, SMPC is not constrained to a single timescale or lag

structure [56, 57, 58]. Future research can explore wetness-dependent lag dynamics to account for

slower, long-memory couplings, particularly under dry conditions where delayed responses may be more

pronounced.

We conclude that HDMR offers valuable new insights into SMPC processes and represents a powerful

addition to the suite of data analysis tools used by hydrometeorologists and hydroclimatologists. By

disentangling the direct, correlative, and cooperative contributions to precipitation variability, HDMR

enables a more nuanced diagnosis of land–atmosphere coupling, potentially guiding future improvements

in parameterizations of convection and boundary layer processes in weather and climate models.
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5 Data, Materials, and Software Availability

5.1 CONUS404 Dataset

The publicly available CONUS404 dataset [59, 60], provides hourly hydroclimate reanalysis at a 4 km

spatial resolution over the conterminous United States (CONUS) for water years 1980–2021. This data

offers a realistic platform for examining how morning SM and other factors influence afternoon precipita-

tion. We focus on warm-season diurnal SMPC processes by selecting data from April to September over

the 2012–2021 period, analyzing afternoon-to-midnight (12:00–24:00 local time) precipitation. Morn-

ing conditions of SM and other land–atmosphere variables are used as antecedent states within our

SMPC analysis framework. CONUS404 was generated by dynamically downscaling fifth-generation
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Figure 8: Ten-year time-averaged values of (a) morning (07:00 local time) soil moisture (SM) and (b)
cumulative afternoon precipitation (12:00–24:00 local time) from the CONUS404 reanalysis dataset for
the warm seasons (April–September) of 2012–2021. Data are upscaled from 4 km to 16 km using 4× 4
averaging.

ECMWF reanalysis (ERA5) using version 3.9.1.1 of the Weather Research and Forecasting (WRF)

Model. The primary physical configurations of the CONUS404 reanalysis include the Thompson micro-

physics scheme [61], Yonsei University planetary boundary layer scheme [62], Rapid Radiative Transfer

Model for General Circulation Models [63], and Noah-MP land surface model [64]. A key advancement

over its predecessor, CONUS1 [65], is the Miguez-Macho–Fan groundwater scheme [66, 67], which sub-

stantially reduces biases in surface energy fluxes and convective precipitation. Figure 8 displays the

10-year (2012–2021) mean morning soil moisture (SM) and mean afternoon precipitation (12:00–24:00

local time) during the warm season (April–September).
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Table 1 list the CONUS404 variables used in this study. Soil moisture (SM), surface skin temperature

(LST), precipitable water (PW), leaf area index (LAI), and wind components (u10 and v10) are used as

input variables to HDMR and used to predict afternoon precipitation P . These variables characterize key

aspects of the land–atmosphere system, including the thermodynamic environment, evapotranspiration,

and moisture availability, all of which influence convective triggering and precipitation formation [1, 51].

Wind speed and direction capture the potential for moisture advection, which can modulate SPMC [68].

Case studies and data preprocessing steps are discussed in the next section.

Table 1: Land-atmosphere variables of CONUS404 used in this study

Variables Symbol Units

Grid-scale cumulative precipitation P mm
Soil moisture SM cm3/cm3

Surface skin temperature LST K
2-m air temperature T2m K
Precipitable water PW m
Leaf area index LAI -
U-component of wind speed at 10 m u10 m/s
V-component of wind speed at 10 m v10 m/s

5.2 Case Studies and Experimental Design

We provide the information needed for each case study so that our analyses and numerical experiments

can be independently replicated. Specifically, we explain how HDMR’s input data were prepared and

processed. In each study, HDMR takes as input an N × d matrix X, consisting of N samples of the

input variables x1, . . . , xd and an N×1 vector y = (y(1), . . . , y(N))⊤, containing the corresponding values

of the target variable. Prior to executing our HDMR toolbox in MATLAB (or Python), we standardize

the entries of both X and y. As a result, each column of X (i.e., each input variable) has zero mean and

unit standard deviation. This preprocessing step promotes consistency across HDMR trials and case

studies.
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5.2.1 Case I: A Simple Bivariate Function

To verify that HDMR recovers variance partitions under both uncorrelated and correlated inputs, we

analyze the scalar-valued function

y = x1 + x2 + x1x2 + e. (10)

with d = 2 input variables, x1 and x2, which are sampled from a bivariate normal distribution, x ∼

N2(µ,Σ) with unit mean µ = (1 1)⊤ and 2 × 2 covariance matrix, Σ. The noise term, e ∼ N (0, σ2
e)

is small compared to Var[y]. We draw at random two data sets, X1 (Exp1A) and X2 (Exp1B), of

N = 5, 000 samples using the covariance matrices:

Σ1 =

[
1.0 0.0

0.0 1.0

]
Σ2 =

[
1.0 −0.6

−0.6 1.0

]
. (11)

The variables x1 and x2 are independent in data set X1 of Exp1A, whereas they exhibit a negative

correlation of −0.6 in X2 of Exp1B.

The function output y is linearly dependent on x1 and x2 individually but also their product (i.e.,

the interaction term). In Exp1A with uncorrelated inputs, HDMR reduces to Sobol’s method with

correlative coupling indices equal to zero. Exp1B demonstrates how correlation among input variables

influences the partitioning of structural, correlative, and cooperative effects.

5.2.2 Case II: Light Use Efficiency Model

The Light Use Efficiency (LUE) model simulates gross primary productivity (GPP) in units of grams

of carbon per square meter per day:

GPP = ε0Rn · PAR · f(SM) · g(T2m) · h(u), (12)
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where ε0 = 1.8 (gC/MJ) is the baseline (maximum) LUE, Rn (W/m2) signifies the net radiation, PAR =

0.45 is the unitless fraction of Rn that is photosynthetically active radiation and f(SM), g(T2m), and

h(u) are dimensionless response functions of SM, 2-meter air temperature and wind speed, respectively.

These functions are given below:

f(SM) =



0 if SM < SMw

SM− SMw

SMf − SMw

if SMw ≤ SM < SMf

1 if SM ≥ SMf

(13)

g(T2m) = exp[−(T2m − 25)2/100] (14)

h(u) = {1 + exp[−0.5(u− 2)]}−1, (15)

where SMw = 0.1 and SMf = 0.3 are the soil’s wilting point and field capacity in units of cm3/cm3,

respectively.

We use the CONUS404 reanalysis dataset and extract hourly values of SM, T2m, u10, and v10 for a grid

cell located at 38.80◦N, 97.15◦W, in the central US. Next, we compute the wind speed u = (u2
10+ v210)

1/2

(m/s) and time series of Rn (W/m2) using Text S1. Then, we evaluate Eq. (12) and simulate a yearly

dataset comprised of N = 8,760 hourly GPP values capturing diurnal to seasonal variability in ecosystem

productivity. The standardized LUE model input variables make up the columns of the N × 4 input

matrix X, where x1 = SM, x2 = Rn, x3 = T2m and x4 = u. The simulated GPP values are standardized

and stored in an N×1 vector y. This {X,y} dataset serves as input to HDMR to estimate the structural,

correlative, and interactive contributions of SM, Rn, T2m, and u to plant productivity.
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5.2.3 Case III: Soil Moisture-Precipitation Coupling (SMPC)

This study investigates soil moisture–precipitation coupling over the contiguous US. To address this ob-

jective, we implement the following CONUS404 data preparation steps. First, to balance computational

feasibility and preserve mesoscale variability, the original 4 km CONUS404 outputs are aggregated to 16

km × 16 km grid cells. Next, we remove data of synoptic systems [2, 69], as they can obscure local soil

moisture impacts. Large-scale stratiform events, for example, can yield a misleading positive correlation

between antecedent SM and subsequent rainfall [70]. Therefore, we focus attention on precipitation

events in the months of April-September of 2012-2021 that satisfy the following two criteria [71], (i) the

start time, tstart, of afternoon rainfall is between 12:00-14:00 local time, (ii) in the antecedant period

between tstart − 24 and tstart − 1, the grid cell is rain-free. For all grid cells that satisfy the above two

criteria, we compute the 12-hr cumulative rainfall between tstart and tstart + 11 hr. This rainfall total,

expressed in millimeters, constitutes a single entry y(i) in the data vector y. The corresponding morning

values at 07:00 local time of SM and the other auxiliary land–atmosphere variables listed in Table 1

serve as the explanatory variables for y(i). These morning conditions are stored in the ith row of input

matrix X, denotes as x(i) = (x1, . . . , x6) = (SM,LST,PW,LAI, u10, v10).

The above data preprocessing steps reduce the number of valid rain-initiation events to only a few

hundred for many grid cells across the central US. To satisfy HDMR data requirements, we combine

data from 5× 5 blocks of 16× 16 km grid cells in X and y, corresponding to aggregated areas of 80× 80

km. This upscaling in spatial resolution substantially increases the number of data points N , ensuring

robust estimation of the polynomial expansion coefficients in the HDMR functional decomposition. As

a result, we obtain a single set of coupling metrics for each 80 × 80 km block. Figure 9 displays the

sample size N of the HDMR input matrix X and the N × 1 data vector y for each aggregated block

across CONUS. Blocks with N < 5, 000 are discarded from the HDMR analysis (e.g., the southwestern

US) as the warm-season precipitation is not frequent enough to yield robust SMPC signals.

26



120°W 110°W 100°W 90°W 80°W 70°W
25°N

30°N

35°N

40°N

45°N

50°N
Sample Size, N

0

2000

4000

6000

8000

10000

N

Figure 9: Contour map of sample size N used in the HDMR analysis of SMPC, based on a 10-year
excerpt (2012–2021) of the CONUS404 dataset for warm-season months (April–September).

Note that we do not include net radiation (Rn) as an explanatory variable in our HDMR analysis

because it is a byproduct of LST and other land–atmosphere variables. Including Rn would confound

the inference of the individual and cooperative effects of LST on afternoon precipitation [51].

5.3 HDMR Method

5.3.1 Polynomial Construction of Component Functions

We follow Li and Rabitz [40] and construct each component function as a sum of linear multiples of

orthonormalized polynomial functions. Specifically, for a single dimension xi, we define a family of

polynomials:

ϕ1(xi) = a1xi + a0, degree p = 1 (16a)

ϕ2(xi) = b2x
2
i + b1x1 + b0, degree p = 2 (16b)
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ϕ3(xi) = c3x
3
i + c2x

2
i + c1x1 + c0 degree p = 3. (16c)

We select p = 3 for our case studies. The values of coefficients a, b and c are derived from Gram-

Schmidt orthonormalization. This process builds an orthonormal basis of polynomial functions on the

unit interval with respect to a chosen weighting function. Each HDMR component function then appears

as a linear combination of these orthonormalized polynomial functions of degrees 1 to p

fi(xi) =

p∑
r=1

α(i)i
r ϕr(xi) (17a)

fij(xi, xj) =

p∑
r=1

[
α(ij)i
r ϕr(xi) + α(ij)j

r ϕr(xj)
]

+

p∑
r=1

p∑
s=1

β(ij)ij
rs ϕr(xi)ϕs(xj), (17b)

where the extended bases of the second-order component functions will help satisfy the vanishing con-

dition in (3). Parenthesized superscripts in α and β indicate which component function (or functions)

they belong to, while non-parenthesized superscripts refer to their position in the input vector, x.

If we substitute (17a) and (17b) into (1) we obtain a closed-form expression for the relationship

between land-atmosphere variables x = (x1, . . . , xd)
⊤ and 12-hr accumulated precipitation y. This

expression has l = d · p + d(d − 1)(2p + p2)/2 unknown expansion coefficients and its different terms

correspond to the marginal and cooperative effects of the input variables to precipitation. Specifically,

the first-order SM component function, f1(x1) =
∑p

r=1 α
(1)1
r ϕr(x1), quantifies the sign and magnitude

(in units of mm) of the SM contribution (direct effect) to precipitation.

5.3.2 D-MORPH Regression

Recall that x(1), . . . ,x(N) is a N × d matrix with N different samples of the input variables x1, . . . , xd

and y(1), . . . , y(N) is a N × 1 vector with corresponding values of the target variable, then we can write
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(2) in matrix form Φc = b and yield

Φ =


ϕ(x(1))⊤

...

ϕ(x(N))⊤

 and b =

 y(1) − y0
...

y(N) − y0

 , (18a)

where ϕ(x)⊤ is a 1× l design vector with orthonormalized polynomial functions of (17) (and products

thereof) evaluated at their respective entries of x and arranged in appropriate order, c is a l×1 coefficient

vector with values of α and β, and the N × 1 vector b stores differences between measured/simulated

y(i)’s and the mean value y0 of the training samples, i = (1, . . . , N).

To offer some protection against underdetermined problems N < l or a rank-deficient design matrix,

we remove duplicate entries of the basis functions (i.e., ϕr(xi)) of the first- and second-order component

functions. This reduced system is easier to solve in practice [40]. First, we determine the least squares

values ĉls of the expansion coefficients

ĉls = (Φ⊤Φ)†d, (19)

where the l × (l − d · p) matrix (Φ⊤Φ)† is the generalized pseudo inverse of the l × l Gramian matrix,

G = Φ⊤Φ, which satisfies all four Moore-Penrose conditions [72, 73] and whose redundant rows (first

d · p rows of the first-order basis functions) are removed and d is the (l− d · p)× 1 vector Φ⊤b without

the first d · p rows. Diffeomorphic Modulation (dm) under Observable Response Preserving Homotopy

(D-MORPH) regression [39] enforces hierarchical orthogonality of the component functions in pursuit

of the optimum coefficients

ĉdm = Vl−r(U
⊤
l−rVl−r)U

⊤
l−rĉls, (20)

where Ul−r and Vl−r equal the last l − r columns of the l × l matrices U and V determined from

singular value decomposition PB = UΣV⊤ of the product of a l × l projection matrix P = Il − G

and l× l constraint matrix B of inner products of the orthonormalized polynomials. Matrix B enforces

the relaxed vanishing condition of (3) [39], Il is the l × l identity matrix and r signifies the number of
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nonzero singular values.

Our HDMR implementation uses bootstrapping to quantify the uncertainty of the inferred component

functions and coupling indices [41]. However, the resulting bootstrap confidence intervals are consistently

very narrow, and therefore we do not present them in this paper. This is primarily due to the relatively

high ratio of the number of samples N in each 16×16 km grid cell to the number of expansion coefficients

l. For example, with d = 6 explanatory variables, the third-order p = 3 polynomial expansion in our

HDMR analysis has l = d ·p+d(d−1)(2p+p2)/2 = 243 expansion coefficients. As we only use grid cells

with N > 5, 000, the ratio of N and l exceeds 20, and the confidence intervals of the coupling indices

are negligibly small.

5.4 Other Methods

We benchmark the HDMR results against two other commonly used methods. For each column (input

variable) of matrix X we compute Pearson’s linear correlation coefficient, rxi,y, between xi and y [74]

rxi,y =

∑N
j=1(x

(j)
i −mxi

)(y(j) −my)√∑N
j=1(x

(j)
i −mxi

)2
√∑N

j=1(y
(j) −my)2

, (21)

where mxi
is the sample mean of xi and i = 1, . . . , d. Then, we also use multivariate linear regression

y = β0 + β1x1 + β2x2 + · · ·+ βdxd + ϵ, (22)

to explain the standardized target variable y from the standardized input variables x1, . . . , xd of matrix

X. Values of the intercept β0 and multiplicative coefficients β1, . . . , βd are determined using ordinary

least squares (OLS). The OLS estimator β̂ = (β̂0, . . . , β̂d)
⊤ is equal to β̂ = (X⊤X)−1X⊤y.

To compare the results of the two methods to the coupling indices of HDMR, we must turn the rxi,y’s
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and βi’s into measures of the normalized explained variance:

R2
i,C = r2xi,y

(23)

R2
i,LR =

β2
i s

2
i + βisi

∑
j ̸=i rxi,xj

βjsj

Var[y]
, (24)

where R2
C,i and R2

LR,i are the explained variances of y by xi according to correlation analysis and

multivariate linear regression, respectively, rij is the correlation coefficient of xi and xj, and si and sj

denote the sample standard deviations of xi and xj, respectively. This unifies the output of correlation

analysis and linear regression with the covariance-based coupling indices of HDMR, allowing direct

comparisons.

Data, Materials, and Software Availability

The CONUS404 dataset is available from the National Center for Atmospheric Research (NCAR) Re-

search Data Archive, as described by Rasmussen et al. [60]. MATLAB and Python implementations

of the HDMR toolbox can be downloaded from https://github.com/jaspervrugt/HDMR_EXT. Post-

processing software will be archived on Zenodo along with the final version of the CONUS404-derived

dataset.
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Supporting Information

Text S1. Calculation of Net Radiation from CONUS404 Datasets

Net radiation, Rn [W/m2], can be derived from five inputs in the CONUS404 dataset: the downward

shortwave flux, Rin
s [W/m2], the downward longwave flux, Rin

l [W/m2], the surface emissivity, εs [-],

the land-surface albedo, α [-], and the land-surface temperature, LST [K]. Using the Stefan–Boltzmann

constant σ = 5.67×10−8Wm−2K−4, we express the outgoing longwave flux via the standard blackbody

emission formula

Rout
l = σεs LST

4. (25)

Following Zotarelli et al. [75], the net radiation then becomes

Rn =
(
Rin

s − αRin
s

)
−
(
Rin

l − Rout
l

)
. (26)

In other words, this formula accounts for the net shortwave term
(
Rin

s minus its reflection due to α

and the net longwave term Rin
l minus the outgoing Rout

l , yielding a physically grounded estimate of Rn.

We use this approach for the second case study in the main text, where net radiation is one of the

meteorological drivers in the simplified Light Use Efficiency (LUE) model.
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Figure S1: Partition of (a) LAI, (b) u10, and (c) v10 into structural, correlative, and cooperative
contributions. Each panel (e.g., a1–a3) parallels Figure 8 of the main text, but for variables with
minimal overall impact on precipitation. Only grid blocks with at least 5,000 valid rain-initiation events
are shown (same for the next two figures).
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Figure S2: Total coupling indices S1j showing cooperative effects between SM and each other variable.
Panels (a)–(e) respectively depict the SM–LST, SM–PW, SM–LAI, SM–u10, and SM–v10 cooperative
contributions. These maps indicate where morning SM co-varies with surface temperature, atmospheric
moisture, vegetation, or wind fields to influence afternoon precipitation beyond their individual (first-
order) roles.
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Figure S3: Total fractional variance of afternoon precipitation explained by each non-SM variable
across the CONUS. Panels (a)–(e) present the HDMR-derived total effect of (a) LST, (b) PW, (c) LAI,
(d) u10, and (e) v10, similar to Figure 7 of the main text (which focuses on SM).
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