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Abstract
Precipitation remains one of the most challenging climate variables to observe
and predict accurately. Existing datasets face intricate trade-offs: gauge obser-
vations are relatively trustworthy but sparse, satellites provide global coverage
with retrieval uncertainties, and numerical models offer physical consistency but
are biased and computationally intensive. Here we introduce PRIMER (Pre-
cipitation Record Infinite MERging), a deep generative framework that fuses
these complementary sources to produce accurate, high-resolution, full-coverage
precipitation estimates. PRIMER employs a coordinate-based diffusion model
that learns from arbitrary spatial locations and associated precipitation values,
enabling seamless integration of gridded data and irregular gauge observations.
Through two-stage training—first learning large-scale patterns, then refining
with accurate gauge measurements—PRIMER captures both large-scale clima-
tology and local precision. Once trained, it can downscale forecasts, interpolate
sparse observations, and correct systematic biases within a principled Bayesian
framework. Using gauge observations as ground truth, PRIMER effectively cor-
rects biases in existing datasets, yielding statistically significant error reductions
at most stations and furthermore enhancing the spatial coherence of precipi-
tation fields. Crucially, it generalizes without retraining, correcting biases in
operational forecasts it has never seen. This demonstrates how generative AI
can transform Earth system science by combining imperfect data, providing a
scalable solution for global precipitation monitoring and prediction.
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1 Introduction

Precipitation–when, where, and how much water falls from the sky to the earth surface–
governs freshwater availability, agricultural productivity, flood hazards, and ecosystem
health across the globe [1]. Despite its significance, precipitation remains one of the most
challenging climate variables to observe and predict accurately. This challenge stems from
precipitation’s fundamental nature: unlike most climate variables that vary smoothly
across space and time, precipitation manifests as discrete, intermittent pulses with striking
discontinuities [2, 3]. These processes depend crucially on small-scale cloud microphysics
processes [4] that remain poorly understood or simulated. Besides, these processes are
highly sensitive to environmental conditions: small perturbations in temperature, humidity,
or aerosol concentrations can determine whether clouds produce no rain, light drizzle, or
torrential downpours [5, 6]. Furthermore, the triggering and organization of convection–
the primary mechanism for intense precipitation–depends on complex interactions between
boundary layer turbulence [7], atmospheric stability [8], and mesoscale circulations [9, 10]
that remain computationally prohibitive to simulate explicitly. These complexities create
fundamental observational and predictive challenges.

Currently, we rely upon three sources to derive precipitation information, namely
in-situ gauge observations, remote sensing, and numerical simulation that potentially
assimilate in-situ and remote-sensed data [11]. Each of these three sources comes with
inherent limitations regarding their accuracy, coverage, and resolution. Ground-based
observations from rain gauges provide the most direct and accurate measurements at point
locations. However, gauge networks exhibit severe spatial limitations: even 2.5◦× 2.5◦ grid
cells contain less than two gauges on avearge [12], let alone the oceanic and remote regions.
Satellite remote sensing offers near-global coverage, but measures precipitation indirectly.
Passive microwave sensors on polar-orbiting satellites detect emission and scattering
signatures from hydrometeors, providing relatively direct estimates but with limited
temporal sampling (2-4 observations per day) [13]. Infrared sensors on geostationary
satellites offer frequent observations (every 10-30 minutes) but only measure cloud-top
temperatures, requiring empirical relationships to infer surface precipitation–a particularly
poor assumption for shallow, warm clouds that produce significant precipitation in
tropical and maritime regions [14]. Numerical weather prediction and reanalysis products
provide physically consistent, complete spatiotemporal coverage by assimilating available
observations into dynamical models [15]. However, precipitation in these systems emerges
as the end result of a complex chain of parameterized processes—radiation, convection,
cloud microphysics, and boundary layer turbulence—each contributing its own errors [16],
with their errors compounding multiplicatively. The consequence of these observational
and simulational limitations is profound: current precipitation datasets often disagree
by as much as the signal itself [11, 16]. In tropical regions, the spread among different
products can exceed 300 mm/hr of the mean precipitation [2], fundamentally limiting
our ability to close the global water budget, validate climate models, or provide reliable
information for water resource management.

A promising solution to these challenges lies in data fusion–leveraging the complemen-
tary strengths of multiple data sources to produce precipitation estimates that surpass
any individual source in accuracy, resolution, and coverage [17–29]. Among data fusion
approaches, Bayesian methods provide the most principled solution. The key insight is
elegant: by deriving an informative prior distribution from all available sources, we can
encode existing knowledge in a statistically coherent form. Once established, this prior
can be updated via Bayes’ theorem with any new observation–accounting for each source’s
unique error characteristics through tailored likelihood functions [30, 31]. The framework
naturally weights observations by their reliability and propagates uncertainties to yield
full posterior distributions [32], essential for risk assessment.
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Recent advances in deep generative models [33–35], particularly probabilistic diffusion
models [36, 37], offer a transformative opportunity for implementing the above Bayesian
framework. Diffusion models have demonstrated remarkable ability to learn complex,
high-dimensional distributions–from natural images [38] to protein structures [39]–making
them ideal candidates for capturing the intricate patterns of precipitation. Crucially,
these models can serve as learned priors for Bayesian inference, where their probabilistic
foundations enable principled uncertainty quantification. Once trained, they function as
“plug-and-play” priors [40–42]: the same learned distribution can be applied to diverse
inference tasks–bias correction, downscaling, or gap-filling–by simply changing the likeli-
hood function without retraining. Despite the promises, implementing this framework
for precipitation faces three fundamental challenges. First, precipitation’s extreme spa-
tiotemporal variability–from localized convective cells to continental-scale fronts–makes
it extraordinarily difficult to be captured in a single prior distribution. Second, con-
structing an informative prior becomes paradoxical when no individual data source is
trustworthy or comprehensive. Each source captures different aspects of precipitation
across mismatched scales, creating a circular dependency where we need accurate data to
build a prior, yet need a prior to evaluate data accuracy. Third, even with a reasonable
prior, posterior sampling is challenging due to the high dimensionality of precipitation
fields and the complexity of observation likelihoods. These barriers define the frontier for
deploying generative AI in Earth system science, demanding innovations that transcend
conventional generative modelling approaches.

To address these challenges, we introduce PRIMER (Precipitation Record Infinite
MERging), a novel framework that reconceptualizes how diffusion models can learn from
imperfect, heterogeneous precipitation records here after for relevant probabilistic inference
tasks. Our key insight is that probabilistic diffusion models need not be trained on perfect
samples – instead, they can be viewed as spectral regression models that progressively
learn from low-frequency structures to high-frequency details as we gradually corrupt the
target distribution using Gaussain noise [43]. This property enables us to construct an
informative prior by learning conditional distributions of precipitation patterns for each
data source, where the conditioning explicitly captures each dataset’s characteristic biases.

Implementing this multi-source learning faces a fundamental architectural barrier.
Conventionally, diffusion models work on samples residing on fixed-resolution grids [44],
forcing us to interpolate heterogeneous observations to common resolutions. This interpo-
lation is particularly destructive for precipitation: it smooths sharp gradients at convective
boundaries, introduces artificial correlations between sparse gauge points, and—most crit-
ically—destroys the very precision that makes gauges valuable. For sparse gauge networks
covering less than 1% of the domain, interpolation essentially fabricates information that
doesn’t exist. We therefore require an architecture that can learn priors directly from each
source’s native sampling structure. This necessity drives our adoption of coordinate-based
diffusion models, which represent precipitation as continuous spatial fields x : R2 → R
rather than tensors. In this formulation, both dense grids and sparse gauge observations are
simply different sampling patterns of the same underlying field. PRIMER directly learns
from arbitrarily and sparsely distributed points—each defined by its latitude, longitude,
and precipitation intensity—without relying on spatial interpolation (see Fig.1a)—gauge
observations influence the function locally while gridded data constrain large-scale struc-
ture. Our two-stage training strategy is thus a natural choice: we first learn the baseline
priors PERA5(x) and PIMERG(x), which represent the climatological distributions of precip-
itation fields x derived from climate reanalysis, i.e., fifth generation ECMWF atmospheric
reanalysis (ERA5), and satellite-based retrieval dataset, i.e., Integrated Multi-satellitE
Retrievals for GPM (IMERG). We then fine-tune the model using gauge observations
to incorporate local accuracy, yielding the updated prior P∗(x) (Fig. 1b; star indicates
that it supposes to be a better prior). The coordinate-based representation ensures that
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gauge information enhances rather than corrupts the prior, as each source contributes
at its natural scale. Once trained, PRIMER supports diverse applications through prin-
cipled posterior sampling: given observations O—whether from biased satellites, sparse
gauges, or coarse forecasts—we can sample from posterior P∗(x | O) to produce improved
ensemble estimates. Empirical evaluations demonstrate the effectiveness of our approach:
when assessed against approximately 1,000 independent rain gauges across a diverse set
of precipitation events, PRIMER reduces errors at the majority of sites. It also enhances
the representation of extreme events and improves the realism of spatial structures, and
generalizes effectively to previously unseen operational forecasts without retraining. By
transforming the challenge of heterogeneous, imperfect data from a limitation into a
strength, PRIMER establishes a new paradigm for precipitation data fusion that extends
naturally to other Earth system variables plagued by observational trade-offs.
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Fig. 1: Overview of PRIMER. (a) No single precipitation dataset provides uniformly
reliable estimates across all spatial scales. PRIMER addresses this challenge by integrating
heterogeneous data sources, including gridded reanalysis (e.g., ERA5), satellite-retrieved
products (e.g., IMERG), and sparse but accurate in-situ gauge observations. (b) Our
goal is to fuse information from these diverse datasets into a coherent and accurate prior
distribution. PRIMER is trained in two stages. In Stage 1, the model is pretrained on
gridded datasets to learn baseline priors PERA5(x) and PIMERG(x). In Stage 2, it is fine-
tuned using gauge observations and their corresponding locations to produce a updated
prior P∗(x). Weight sharing across data sources enables the model to leverage large-scale
spatial patterns from gridded products while incorporating localized constraints from
sparse gauge observations. In the following experiments, we will demonstrate that P∗(x)
yields superior accuracy compared to PERA5(x) and PIMERG(x).
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2 Results

2.1 Reproducing climatological distributions

The gist of the PRIMER methodology is to learn a trustworthy prior distribution of pre-
cipitation fields, thereafter applying it for a broad range of relevant probabilistic inference
tasks, so as for accurate, high-resolution, full-coverage precipitation estimates and fore-
casts. Before verifying the probabilistic inference results, we should ensure the accuracy
of the learned prior distribution. As directly evaluating such high-dimensional priors is
intractable, we instead assess their statistical properties as proxies [45–47]. We compare
unconditionally generated samples from PIMERG(x), PERA5(x), and the final prior P∗(x)
against their respective reference datasets. In particular, we focus on the climatological
mean and standard deviation of precipitation (Fig. 2). At the grid-point level, the agree-
ment is clear. For mean precipitation (Fig. 2a–f), both PIMERG(x) and PERA5(x) exhibit
strong spatial correspondence with IMERG and ERA5, achieving Pearson correlation
coefficients (PCCs) of 0.85 and 0.97, respectively. The standard deviation fields (Fig. 2g–l)
are likewise well reproduced (PCC = 0.75 and 0.86), highlighting PRIMER’s capacity to
represent not just the average precipitation distribution but also its variance. Notably, we
also introduce the updated prior P∗(x), constructed by fine-tuning PRIMER using sparse
but reliable gauge observations (data description is available in Method 4.6). Despite the
limited spatial coverage of gauge observations, this calibration yields a climatologically
consistent prior that preserves spatial structures learned from the gridded products while
injecting localized realism. This “climatological jailbreak” illustrates how PRIMER can
adapt to sparse in situ records without compromising coherence across scales. To fur-
ther evaluate spatial structure, we perform a radially averaged power spectral density
(RAPSD) analysis (Fig. 2m), which confirms that the learned priors accurately recover the
multiscale spectral characteristics of the reference datasets, especially across mesoscale
wavelengths, which are crucial for convective processes (see also Supplementary Informa-
tion (SI) Fig. D6). Additional statistical evaluations—including precipitation frequency,
extremes, skewness, and Empirical Orthogonal Function (EOF) modes—are provided in
the SI Fig. D7.

2.2 Case study on high-impact events

The previous section evaluated PRIMER’s ability to match climatological distributions.
After Stage 2 fine-tuning, the updated prior P∗(x) is expected to align more closely with
gauge observations; however, its actual skill remains to be validated through posterior
sampling experiments. To this end, we perform posterior sampling using different priors
while conditioning on the same observations O. By comparing the posterior samples
against the held-out gauge data, we directly assess the impact of the prior on posterior
accuracy, thereby quantifying how much fine-tuning improves alignment with real-world
observations. We examine three representative high-impact events. These events were
selected to span a wide range of precipitation regimes, including prolonged precipitation
associated with the Meiyu front, heavy precipitation driven by landfalling typhoons, and
localized convective extremes. The primary case, which occurred over Hubei Province,
China, during the East Asian summer monsoon on 2 July 2016, is shown in Fig. 3;
additional examples are provided in Fig. D9 and Fig. D10.

To evaluate the effectiveness of the posterior sampling, we define a relative skill metric,
∆M, based on standard performance scores, including mean absolute error (MAE) and the
continuous ranked probability score (CRPS). The CRPS provides a probabilistic measure
of an ensemble system’s accuracy (see Method 4.5.1). For each metric, ∆M quantifies
the improvement relative to the original precipitation datasets (ERA5 or IMERG), with
positive values indicating reduced error or enhanced skill. All evaluations are conducted
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Fig. 2: Climatological consistency between learned priors and reference
datasets. a–f, Spatial distributions of mean precipitation from IMERG (a), ERA5 (b),
gauge observations (c), the learned prior PIMERG(x) (d), PERA5(x) (e), and the final
updated prior P∗(x) (f). g–l, Standard deviation fields analogous to a–f. Pearson cor-
relation coefficients (PCCs) between each learned prior and its corresponding reference
(IMERG or ERA5) are indicated in the upper-left corner of relevant panels. m, Radially
averaged power spectral density (RAPSD) as a function of spatial wavelength (in degrees),
quantifying the spatial structure of precipitation fields. The learned priors PIMERG(x)
and PERA5(x) closely follow their references, and P∗(x) captures consistent multiscale
characteristics. All statistics are computed from 1,000 randomly sampled realizations.
Colorbars represent the units for each corresponding row.
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at a spatial resolution of 0.1°, where ERA5, IMERG, and posterior samples are compared
against independent gauge observations treated as ground truth.

As shown in Fig. 3c and Fig. 3f, the updated prior P∗(x) substantially outperforms
baseline priors derived from reanalysis (ERA5) and satellite retrievals (IMERG). The
ensemble-mean ∆MAE decreases from 0.46 mm/hr for P∗(x | OERA5) to 0.14 mm/hr
for PERA5(x | OERA5); a similar improvement is observed in the IMERG case, where
the ∆MAE decreases from 0.29 mm/hr to 0.14 mm/hr. These gains extend beyond
ensemble means: across individual samples, ∆MAE values for PERA5(x | OERA5) are
consistently lower than those for P∗(x | OERA5) (see SI Fig. D8). PRIMER allows the
posterior sampling process to incorporate not only the background field but also additional
gauge observations, if available. To evaluate this capability, we conduct an experiment
where a subset (20%) of gauge observations are assimilated during sampling (denoted as
“+ Inpaint”). This additional constraint significantly enhances accuracy, with posterior
mean ∆MAE increasing to 1.11 mm/hr and 0.97 mm/hr for the ERA5 and IMERG
cases, respectively. This highlights PRIMER’s capacity to integrate background field
with observational data. Spectral analysis further highlights distinctions among posterior
samples (see SI Fig. D8). While PERA5(x | OERA5) retains low-frequency biases, both
P∗(x | OERA5) and its Inpaint variant enhance high-frequency components.

2.3 Statistical verifications

We applied PRIMER to a curated test set of 150 precipitation events from 2016, selected
based on the criteria detailed in SI C.2. For each event, 50 posterior samples were drawn
from P∗(x | O), where O corresponds to raw data from either ERA5 or IMERG. In this
process, PRIMER downscales ERA5 data to 0.1° resolution and performs bias correction,
while directly correcting biases in IMERG. To evaluate the improved accuracy of the
prior P∗(x), we also conducted posterior sampling using the baseline priors (PERA5(x)
and PIMERG(x)) under identical settings. At each gauge location, we computed the
mean absolute error (MAE) and continuous ranked probability score (CRPS) of the
posterior distributions. MAE was calculated using the ensemble mean of each posterior
compared against the corresponding gauge observation, while CRPS assessed the full
probabilistic accuracy. We then calculated differences in both metrics between the baseline
posteriors—PERA5(x | O) and PIMERG(x | O)—and the posterior P∗(x | O). Specifically,
∆MAE and ∆CRPS are defined as the baseline scores minus those of P∗(x | O), such
that positive values indicate improved performance.

Figures 4a–b reveal widespread reductions in mean absolute error (MAE), highlighting
PRIMER’s ability to systematically correct biases inherent in the original datasets,
outperforming the baseline priors PERA5(x) and PIMERG(x). Figures 4c–d show even
deeper blue tones in CRPS, indicating more substantial improvements in probabilistic
estimates. This suggests that PRIMER not only improves point estimates but also models
the full posterior distribution more accurately, thereby reducing uncertainty and enhancing
the reliability of ensemble-mean outputs. Notably, the largest improvements are observed
in the Sichuan Basin and Pearl River Delta—regions with dense populations and strong
economic activity—likely due to the higher density of gauge observations available for
Stage 2 fine-tuning.

Beyond reducing pointwise error, PRIMER also enhances the physical realism of
existing precipitation datasets. To comprehensively evaluate the performance of PRIMER,
we adopt two complementary perspectives: the member view and the envelope view. The
member view analyzes statistics from a single sample, representing one physically plausible
realization. In contrast, the envelope is constructed by selecting, at each gauge location, for
a given event, the maximum precipitation value across 50 posterior samples. As illustrated
in Fig. 5a, both P∗(x | OERA5) and P∗(x | OIMERG) more accurately reproduce the
frequency distribution of precipitation, particularly at higher intensities. Both perspectives
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Fig. 3: Case study of a Meiyu precipitation event on 2 July 2016 at 05 UTC.
a, Precipitation field from IMERG at the target time, with gauge locations shown as red
dots (used as ground truth for evaluation). b, Posterior mean and standard deviation from
P∗(x | OIMERG) inferred by PRIMER. c, Probability density functions (PDFs) of changes
in mean absolute error (∆MAE), computed at gauge locations by comparing 100 posterior
samples and the original IMERG data against observations. For each posterior sample,
∆MAE is calculated as the difference between the sample’s MAE and that of IMERG,
with positive values indicating effective bias correction by PRIMER. d, Precipitation
field from ERA5. e, Posterior mean and standard deviation from P∗(x | OERA5). f, PDFs
of ∆MAE relative to ERA5, analogous to c. In c,f, different curves represent various
posterior distributions as labeled; ensemble means are marked with stars.

reveal improvements in the representation of heavy precipitation tails compared to the
existing datasets, underscoring PRIMER’s capacity to detect high-impact precipitation
events that are often underrepresented in deterministic products. Improvements in spatial
structure are further quantified using pixel-wise Pearson correlation coefficients (PCCs)
with respect to gauge observations (Fig. 5b). P∗(x | OERA5) and P∗(x | OIMERG) show
markedly enhanced structural agreement relative to existing datasets, suggesting that
PRIMER not only reduces local biases but also restores spatial coherence. While various
methods have been proposed to assess spatial organization and feature propagation [48, 49],
we employ a simplified yet informative diagnostic based on two-dimensional spatial lagged
correlation coefficient (Method 4.5.2, Fig. 5c). Physically, these correlation characterizes
how anomalies at a reference point are spatially linked to those at surrounding locations,
thereby revealing key features of precipitation system organization. We approximate the 0.6
correlation contour with an ellipse and extract two geometric descriptors: the focal length
(F ), indicative of spatial extent, and the orientation (O), which captures the dominant
directional alignment. Results show that both P∗(x | OERA5) and P∗(x | OIMERG)
produce orientations that are more consistent with reference orientations derived from
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Fig. 4: Improvement of PRIMER over the baseline in bias correction of
existing precipitation datasets. a,b, Improvements of PRIMER over the baseline
after bias correction of ERA5 (a) and IMERG (b) evaluated by mean absolute error
(MAE). c,d, Corresponding changes in continuous ranked probability score (CRPS)
under the same settings. Each dot denotes a gauge station, with errors evaluated against
gauge observations (serving as ground truth). Positive values (blue) indicate improved
performance of PRIMER relative to the baseline model, while negative values (red) denote
deterioration. The predominance of positive values suggests that PRIMER consistently
achieves better bias correction effect, likely due to its ability to learn a more accurate
prior distribution P∗(x) by leveraging sparse, discrete gauge observations. Error statistics
are based on 150 precipitation events from 2016. For spatial distributions of each model’s
MAE relative to ERA5 or IMERG, refer to SI Fig. D11.

gauge observations, indicating improved spatial alignment. In terms of focal length,
P∗(x | OERA5) exhibits a clear reduction, while P∗(x | OIMERG) shows no substantial
improvement. These results demonstrate PRIMER’s effectiveness in correcting spatial
anisotropy of precipitation systems.

2.4 Improving operational forecasts without retraining

PRIMER is not only effective for bias correction and downscaling of existing precipitation
datasets, but also exhibits strong generalization. Figure 6 illustrates PRIMER’s ability
to correct biases in previously unseen operational precipitation forecasts, using the
ECMWF High-Resolution Forecast (HRES) as a representative example [50]. Despite
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Fig. 5: Improved intensity distribution and spatial coherence after bias correc-
tion of existing datasets. a, Log-transformed histogram of precipitation intensity (2
mm/hr bins) at only gauge locations, aggregated over test sets. This panel highlights the
ability of different datasets to reproduce the tail of the precipitation distribution (with
purple line as the ground truth). b, Probability density functions (PDFs) of pixel-wise
Pearson correlation coefficients (PCCs) between each dataset and the individual gauge
observations. Higher PCC values indicate better structural fidelity to ground truth. c,
Spatial lag correlation maps, with the 0.6 PCC contour visualized for each dataset. Ellip-
tical fits to these contours are used to quantify the spatial coherence, including the major
axis length (focal distance, F ) and orientation angle (O), as summarized below c. Colors
in panels a–c are illustrated in the below legend.

never being trained on HRES, PRIMER successfully corrects systematic biases in a
typical precipitation event caused by typhoon landing (Fig. 6a,e). The ensemble mean of
P∗(x | OHRES) (Fig. 6b,f) aligns with HRES, while each member (Fig. 6c,g) captures a
diverse range of physically plausible precipitation scenarios, reflecting the model’s ability
to encode meaningful uncertainty. Maps of ∆CRPS (Fig. 6d,h) with widespread positive
values (blue dots) indicate that PRIMER produces a reliable probabilistic ensemble
system for HRES. These improvements arise from the Bayesian posterior sampling
mechanism. By drawing samples from P∗(x | OHRES), we effectively use the learned prior
distribution P∗(x)—which has been calibrated to match gauge statistics—to adjust the
original HRES forecasts. This process mitigates systematic biases inherent in the original
HRES forecasts. To illustrate these benefits more intuitively, we present time series at two
representative gauge locations (Fig. 6i,j). The ensemble envelopes generated by PRIMER
closely track observed precipitation peaks, offering a reliable uncertainty quantification
for HRES. Taken together, these results underscore that PRIMER can perform physically
consistent corrections on new forecast products without additional retraining (zero-shot
adaptation) using its learned prior P∗(x). This highlights the broader utility of PRIMER
as a foundation model for downstream applications in precipitation prediction.

3 Discussion

Existing precipitation datasets exhibit a persistent trade-off among spatial coverage,
temporal resolution, and measurement accuracy, with no single data source simultane-
ously meeting these criteria. This fundamental limitation necessitates sophisticated fusion
methods capable of integrating heterogeneous observations while overcoming the deficien-
cies from each source. Generative AI, particularly probabilistic diffusion models, offers a
powerful approach by capturing intricate distribution of precipitation patterns. However,
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Fig. 6: Bias-correction for operational forecasts without retraining. a, e: HRES
forecasts at 18-hr and 36-hr lead times (other lead times see Fig. D14), initialized at
00:00 UTC on 14 September 2016, coinciding with the landfall of Typhoon Meranti. b,
f : Ensemble means. c, g: Four representative ensemble members, illustrating internal
variability and structural diversity. d, h: Spatial distribution of ∆CRPS, with blue
indicating improvement and red indicating deterioration. i, j: Precipitation time series at
two representative gauge stations (more stations see Fig. D15); gray envelope denotes the
spread across 100 ensemble members.

practical application has been severely limited by intrinsic challenges: the extreme vari-
ability and discontinuity of precipitation, and most important the paradox of establishing
reliable priors from individually imperfect and incomplete datasets.

To overcome these barriers, we introduce PRIMER that directly represents precipi-
tation as a continuous spatial field, seamlessly incorporating sparse gauge observations
alongside dense gridded data without destructive interpolation. Our two-stage train-
ing procedure uniquely exploits the complementary strengths of different data sources:
we initially establish robust climatological priors by leveraging broadly available grid-
ded products, which, despite their wide coverage, exhibit considerable uncertainties.
These priors are then refined using sparse but accurate gauge observations. Benchmark
evaluations highlight PRIMER’s capability to effectively integrate gauge observations
with gridded data, providing localized realism without sacrificing large-scale spatial
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coherence—a significant innovation termed climatological jailbreak. Experimental results
demonstrate PRIMER’s superiority in bias correction and super-resolution enhancement
of existing precipitation datasets, consistently outperforming priors derived solely from
single-source observations. Furthermore, experiments reveal that incorporating additional
gauge observations during posterior sampling process significantly enhances accuracy,
underscoring PRIMER’s promising potential for future data assimilation applications.
Crucially, PRIMER exhibits robust zero-shot generalization, maintaining physical consis-
tency when applied to previously unseen operational forecasts. These findings underscore
PRIMER’s substantial potential as an advanced, principled approach for reliable and
physically coherent precipitation data fusion.

Despite the impressive performance of PRIMER, one notable limitation is the lack of
high-quality, in-situ gauge observations over oceanic regions. Sparse instrument coverage
in oceanic regions presents a challenge. Another limitation of our study is that we focused
on precipitation fusion within China, rather than globally. This decision was primarily
driven by the substantial computational demands of performing global precipitation fusion,
which would require resources far beyond our current capacity, given that we only have
access to two A100 40G GPUs. Additionally, precipitation is one of the most complex and
discontinuous variables in the climate system, which provides a stringent benchmark for
validating our methodology before considering its application to broader climate domains.

Looking ahead, several compelling directions emerge from this study. First, integrat-
ing additional precipitation records [51, 52]—such as more gauge observations or even
advanced ground-based radar observations—could further improve the learned prior.
Second, the PRIMER framework is intrinsically extensible. Its architecture naturally
supports the integration of auxiliary meteorological variables—such as temperature, wind,
and humidity—as additional channels. This opens a promising pathway toward holistic
representations of the atmospheric state. In particular, applying this framework to future
climate simulations from CMIP [53, 54] offers a unique opportunity. By training on Earth
system model outputs across multiple scenarios, a generalized version could be developed
to learn coherent, external-forcing-aware distributions of the Earth system state. Such a
generative model would facilitate projections of future Earth system evolution and deepen
our understanding of its underlying statistics. These directions highlight the broader
potential behind PRIMER as a scalable and principled foundation for advancing Earth
system science.
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4 Method

4.1 Problem formulation

A general formulation of the precipitation data fusion task involves two key components:
(1) constructing an informative prior distribution over the precipitation field, and (2)
performing posterior inference given new observations.

Let x denote the target precipitation field. Different data sources—including gridded
products such as satellite-derived and reanalysis datasets, as well as sparse in-situ gauge
measurements—provide multiple versions of x, each with varying spatial coverage and
accuracy. Our goal is to effectively leverage these heterogeneous sources to construct a
unified prior distribution P (x). This prior plays a central role, as it is expected to integrate
statistical characteristics of each source through a balanced fusion. A key innovation of this
work lies in the design of a principled experimental framework for modelling such a prior.

Once an informative prior is established, posterior inference is conducted as new
observational evidence O becomes available. Posterior distribution P (x | O) can be
factored into two components: the prior distribution P (x), and the likelihood P (O | x).
Another innovation of our work is the effective implementation of posterior inference that
balances the prior and the observations, ensuring the inferred precipitation field reflects
both the climatological variability and the specific constraints provided byO. Consequently,
this Bayesian framework naturally enables various downstream applications, such as
super-resolution by conditioning on coarse-resolution data, bias correction by conditioning
on biased estimates, and data assimilation by jointly conditioning on observations and
background fields.

4.2 Preliminary on diffusion models

To construct a prior distribution, we employ score-based diffusion models within a
principled learning strategy. To enable the model to distinguish between sources during
training, we associate each sample with a corresponding entity embedding ei (e1 =
(1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1)) [55], which is injected into the model. This embedding
functions as a source identifier, enabling the model to learn distinct priors for different data
sources. Specifically, e1 corresponds to ERA5, e2 to IMERG, and e3 to gauge observations.
Here, we first outline the foundations of the traditional diffusion framework before
extending its conceptual scope. The forward diffusion process evolves the data distribution
into a tractable Gaussian through a stochastic differential equation (SDE) [36, 37, 56, 57]:

dxt = f(xt, t) dt+ g(t) dWt, (1)

where xt ∈ Rn is the state at time t, f(xt, t) is the drift function, and Wt is a standard
Wiener process. To generate samples from priors, we solve the reverse-time SDE [56, 58]:

dxt =
[
f(xt, t)− g2(t)∇xt logPθ(xt | ei)

]
dt+ g(t) dWt, (2)

where the score function ∇xt logPθ(xt | ei) denotes the gradient of the log-density with
respect to different sources. Since this score is intractable, we approximate it using a
neural network fθ. We provide a theoretical justification for our proposed two-stage
training strategy in SI Section B.1.

4.3 PRIMER

Traditional diffusion models typically rely heavily on U-Net architectures [44], which
require inputs and outputs to be uniformly gridded data with fixed resolution. This
architectural constraint limits their flexibility, particularly when processing discrete, sparse
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gauge observations. PRIMER utilizes a new framework inspired by recent theoretical
advances [59–62], which generalizes diffusion models from finite-dimensional Euclidean
space to an infinite-dimensional Hilbert space H, as illustrated in Figure B1 (see SI
Section A for the origin of the name). In this setting, each element x ∈ H is a function
x : Rn → Rd, where Rn denotes coordinates and Rd represents physical quantities. Both
dense gridded data and sparse gauge observations are treated as partial realizations of
an underlying function, allowing PRIMER to natively integrate heterogeneous records.
Following Bond et al. [59], we define H as L2([0, 1]n → Rd), where L2 denotes the space
of functions f such that

∫
[0,1]n |f(x)|

2 dx <∞.

4.3.1 Mollification

While tempting, using white noise in the forward diffusion process poses a fundamental
issue. Let ϵ(c) be a white noise where each c ∈ Rn is sampled independently from N (0, 1).
For ϵ to lie in the Hilbert space H, it must be square-integrable. However, ϵ(c) violates
this, as its norm diverges. To address this, PRIMER applies a Gaussian kernel k to mollify
the noise: ξ(c) = (k ∗ ϵ)(c) =

∫
Rn k(c−c′)ϵ(c′) dc′. The resulting smoothed noise is square-

integrable and thus belongs to H, as rigorously proven in SI B.2. Similarly, PRIMER
also mollifies x0, which ensures that Lx0 inherit the same smoothness properties. In
practice, this operation is implemented efficiently using Discrete Fourier Transformations
(DFT). In Fourier space, mollification corresponds to: ϵ(ω) = e∥ω∥2t ξ(ω), where ω ∈ Rn

denotes the frequency vector, and t = σ2/2, with σ being the standard deviation of
kernel k (a detailed derivation is provided in SI B.3). Directly applying the inverse
transformation is often numerically unstable, thus we employ Wiener filter, defined as

[59, 63]: ϵ̃(ω) = e−∥ω∥2t

e−2∥ω∥2t+ϵ2
ξ(ω), where ϵ is a small positive regularization parameter.

4.3.2 Network architecture

Neural Operators are capable for learning a map between two functional spaces [62,
64–66]. Neural operators achieve discretization invariance by learning integral kernels
parameterized via neural networks. Specifically, for an input function x : Rn → Rd, with
observations at m distinct spatial locations, the operator K(x; θ) is defined as:

(
K(x; θ)x

)
(c) =

∫
Rn

κθ

(
c,b, x(c), x(b)

)
x(b) db,

where κθ : Rn×Rn×Rd×Rd → R is a kernel function parameterized by θ, which captures
complex non-local dependencies. However, applying Neural Operators like FNO [66]
directly to extensive spatial domains presents scalability and computational efficiency
challenges [59]. PRIMER implements a hybrid multi-scale architecture that synthesizes
the strengths of Neural Operators and convolutional networks. PRIMER first processes
the input feature x ∈ Rd×m using a series of SparseConvResBlocks, which primarily
employ sparse depthwise convolutions [67], producing updated features with shape RD×m,
where D ≫ d. This embedding step projects low-dimensional input features into a
higher-dimensional space, a crucial operation in deep learning that enables the model
to capture richer representations. For the motivation behind SparseConvResBlock, see
SI. B.6. Since the features lie on an irregular set of discrete locations, we project them
onto a coarse regular grid based on their spatial coordinates. This transformation aligns
the features to a structured tensor. A U-Net is applied to this grid to capture multi-scale
context. As we are ultimately interested in observations at the original irregular target
locations, the processed grid features are reprojected to these coordinates via bilinear
interpolation, yielding a feature tensor of shape RD×m. Finally, a subsequent series of
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SparseConvResBlocks refines the features to produce the output tensor of shape Rd×m.
For details about network architecture, see SI B.5

4.3.3 Model training

The model is optimized by minimizing a simplified denoising objective [36, 56, 59]
(derivation provided in SI Section B.4):

L = Et

[
∥fθ(xt, t, ei)− ξ∥2H

]
, (3)

where xt denotes the noisy input at time step t, ei represents the embedding of data source,
ξ is the ground-truth noise, and ∥ · ∥H denotes the loss norm defined in Hilbert space H.
We adopt a two-stage training procedure. In Stage 1, the model is jointly trained on ERA5
(e1) and IMERG (e2) data. In Stage 2, we specialize the pretrained model to sparse gauge
observations (e3), following a personalization-inspired strategy akin to DreamBooth [68].
Specifically, we fine-tune the model using a shared-weight strategy, where training samples
are proportionally drawn from multiple data sources. The total loss is computed as:

Lfine-tuning = α1LERA5 + α2LIMERG + α3Lgauge, (4)

with weights α1 = 0.1, α2 = 0.4, and α3 = 0.5. This strategy enables the model to
preserve global climatological priors while adapting to high-fidelity signals, effectively
grounding the generative manifold towards real-world observations.

All models are optimized using the AdamW optimizer with β1 = 0.9, β2 = 0.99, and
weight decay of 4× 10−6. The full training and inference pipelines are summarized in SI
Algorithm 1 and SI Algorithm 2, with an overview schematic shown in SI Fig. B2. For
the configuration of the hyperparameters, see SI Section B.7.

4.4 Posterior sampling

In tasks such as bias correction, downscaling, and data assimilation, the objective is to
infer an unknown target state x from observations O. A Bayesian framework enables the
incorporation of prior knowledge through a prior distribution P (x), facilitating posterior
inference via Bayes’ theorem: P (x|O) ∝ P (O|x)P (x). When employing PRIMER as
priors, the standard reverse-time SDE can be adapted to sample from the posterior
distribution. The modified reverse diffusion process takes the form:

dxt =
[
f(xt, t)− g2(t) (∇xt logPθ(xt | ei) +∇xt logPθ(O | ei, xt))

]
dt+ g(t) dWt. (5)

This formulation requires two key components: the time-dependent score function
∇xt logPθ(xt | ei), which can be approximated by a trained score network; and the
gradient of the likelihood ∇xt logPθ(O | ei, xt), which remains challenging to estimate
due to the generally intractable dependency between O and xt. Several recent studies
have proposed various strategies to address posterior sampling within the diffusion
framework [40, 41, 69]. In light of the characteristics of our problem setting, we adopt
two representative approaches: Inpainting [70–72] and SDEdit [73].

Inpainting in diffusion models reconstructs unobserved regions by conditioning on
partial observations O. A binary mask m indicates observed entries (mi = 1 if observed).
At each reverse-time step t, a denoised estimate x̂t is first computed. To enforce consistency
with known observations, we blend the latent state using

xt = m⊙ q(xt|O) + (1−m)⊙ x̂t,

where ⊙ denotes element-wise multiplication. The term q(xt|O) is constructed by applying
the same forward noise process to O; that is, for each observed entry, we simulate its
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noisy counterpart at step t under the forward SDE. This blending operation preserves
observed values while allowing the model to impute missing regions, approximating the
posterior distribution p(x|O). SDEdit can be viewed as a special case of inpainting where
the entire input field is treated as observed, i.e., m = 1. However, a key distinction lies
in its use of a noise level parameter τ , which determines the strength of forward noise
applied to the input before denoising. This parameter controls the extent to which the
model is allowed to deviate from the original input, balancing fidelity and diversity. To
select an appropriate τ , we conduct a sensitivity analysis on IMERG precipitation data
for 13 June 2016 at 23:00 UTC. For each noise level from 0.1 to 0.9 in steps of 0.1, we
generate an ensemble of 50 samples from posterior P∗(x | OIMERG) and compute both the
ensemble mean root mean square error (RMSE) and the continuous ranked probability
score (CRPS) over 50 repeated subsampling trials, each selecting 10 members randomly.
As shown in SI Fig. B4, performance improves with increasing τ up to around 0.6, beyond
which both RMSE and CRPS begin to deteriorate. This suggests an optimal trade-off
at 0.6 noise levels, where PRIMER maintains sufficient variability to explore plausible
outcomes while preserving alignment with observational constraints.

4.5 Statistical methods

In the main text, we analyze the statistical properties of different prior distributions,
including PERA5(x), PIMERG(x), and the updated prior P∗(x). These priors are then used
for posterior sampling. To isolate the effect of the prior, all posterior distributions are
conditioned on the same observational evidence O. As a result, differences in posterior
accuracy primarily reflect differences in the quality of the corresponding priors. To evaluate
the performance of each posterior distribution, we adopt the following evaluation method,
described in detail below.

4.5.1 Evaluation metrics

Deterministic accuracy.

To assess the accuracy of the ensemble mean forecast, we report the Mean Absolute
Error (MAE) and the Pearson Correlation Coefficient (PCC). MAE captures the average
absolute deviation between the predicted ensemble mean x̂ and the observed value x:

MAE =
1

N

∑
i

|x̂i − xi| . (6)

where i indexes the grid points corresponding to the gauge locations. PCC measures the
linear association between predicted and observed spatial fields:

PCC =

∑
i(x̂i − ¯̂x)(xi − x̄)√∑

i(x̂i − ¯̂x)2
√∑

i(xi − x̄)2
. (7)

Here, ¯̂x and x̄ denote the spatial means of the predicted and observed fields, respectively.
High PCC indicates strong spatial agreement.

Probabilistic skill.

We use the Continuous Ranked Probability Score (CRPS) [74], a proper scoring rule that
measures the quality of probabilistic forecasts by comparing the predicted cumulative
distribution function (CDF) F with the observation y. It is defined as:

CRPS(F, y) =

∫ ∞

−∞

(
F (x)− 1{x≥y}

)2
dx, (8)
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where 1{x≥y} is the Heaviside step function centered at y. Lower CRPS value indicates a
better-calibrated ensemble system.

4.5.2 Evaluation tool

Spatial lagged correlation coefficient

We evaluate the spatial dependency of a geophysical field x ∈ RH×W by computing its
correlation with spatially shifted copies. For each fixed offset (∆i,∆j), we compute the
Pearson correlation between x and its lagged version x∆i,∆j , using only the overlapping
valid gauge observations. This metric quantifies the degree to which values at one location
are linearly correlated with values at a fixed spatial offset (lag) from that location, thus
capturing the spatial dependency structure.

Empirical Orthogonal Function (EOF) decomposition

Given an anomaly matrix x ∈ RN×T , where each row corresponds to spatial points and
each column represents time instances, EOF decomposition factorizes x via [75]:

x = LY, (9)

where L ∈ RN×N contains orthonormal spatial modes (EOFs), and Y ∈ RN×T holds the
corresponding time coefficients (principal components). EOFs are derived as eigenvectors
of the covariance matrix S = 1

N−1xx
⊤, arranged in decreasing order of eigenvalues, which

represent the explained variance of each mode.

Radially averaged power spectral density (RAPSD)

To quantify spatial variability, we compute the radially averaged power spectral density
(RAPSD) using the open-source Pysteps library [76]. Given a 2D scalar field f(x, y) ∈

RH×W , its discrete Fourier transform is F (kx, ky) =
∑H−1

x=0

∑W−1
y=0 f(x, y) e

−2πi
(

kxx
H

+
kyy

W

)
,

and the corresponding power spectral density is

P (kx, ky) =
1

HW
|F (kx, ky)|2 . (10)

RAPSD is obtained by averaging P (kx, ky) over annular bins of constant radial

wavenumber k =
√

k2x + k2y:

RAPSD(k) =
1

Nk

∑
(kx,ky)∈Ak

P (kx, ky), (11)

where Ak denotes the components in each bin. We express RAPSD as a function of
wavelength λ = 1/k to highlight scale-dependent variability.

4.6 Data

Pretraining uses two gridded datasets: Integrated Multi-satellitE Retrievals for GPM
(IMERG) [77] and ERA5 [78]. IMERG provides global precipitation estimates at 0.1◦

spatial and 30-minute temporal resolutions, derived from GPM satellite observations. To
match ERA5’s hourly resolution, pairs of consecutive 30-minute IMERG intervals are
averaged to produce hourly estimates. The study focuses on East Asia (20-45°N, 100-
125°E), a region of high population density. After cropping, IMERG data form 250× 250
grids, with 2000-2020 (excluding 2016) used for training. ERA5, from ECMWF, provides
hourly precipitation at 0.25◦ resolution, yielding 100× 100 grids over the same domain.
Both datasets are log-transformed as x′ = log10(0.1 + x) and standardized using IMERG
statistics. For fine-tuning, we use dataset from Shen et al. [29], constructed using over
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30,000 Automatic Weather Stations (AWS) across China. The gridded dataset has a spatial
resolution of 0.1◦ and a temporal resolution of 1 hour, covering 2015 and 2017 for training,
and 2016 for testing. We select grid cells with at least one assimilated AWS observation for
training, and use a subset with no fewer than four AWS observations as ground truth for
evaluation, assuming higher reliability (see SI Fig. C5 for the spatial distribution of these
gauges). After identical cropping and preprocessing, the data are organized as two arrays:
gauge observation (N, 1) for precipitation intensity and gauge coordinate (N, 2) for
location (longitude, latitude), both of which are input into the model during fine-tuning.

IFS HRES is ECMWF’s flagship deterministic highresolution model and is widely
regarded as one of the best physics-based numerical-weather-forecast models in the
world [79, 80]. HRES produces hourly forecasts at a 0.1° horizontal resolution. It is
included in our experiments to demonstrate PRIMER’s strong generalization capability
even on datasets it was not trained on. For consistency, HRES forecasts undergo the same
cropping and preprocessing steps as IMERG.
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Appendix A Why “PRIMER”

The name PRIMER (Precipitation Records Infinite MERging) is deliberately chosen—not
only as an acronym, but also as a metaphor. In English, a “primer” refers to a preparatory
coating applied before the final layer of paint or makeup, ensuring better adhesion,
durability, and refinement. Similarly, our framework first performs extensive pretraining
on gridded products like ERA5 and IMERG before fine-tuning with sparse, high-quality
gauge observations. This staged approach allows PRIMER to seamlessly merge multi-
sources of records. We envision this method as a general-purpose “foundation layer” for
geoscientific modeling—particularly valuable in domains where accurate downstream
tasks rely on the fusing of heterogeneous records.

Appendix B Method details

B.1 Theoretical justification for dual-source integration

We provide a theoretical justification for our proposed two-stage integration framework
by drawing parallels with recent advances in diffusion theory [43, 81–84]. Specifically, we
aim to establish an upper bound on the Wasserstein-1 distance [85] between the true

precipitation distribution Ptrue and the learned model distribution P̂ . The model is trained
in two stages: first on a large, noisy gridded dataset D, and subsequently fine-tuned on a
sparse but high-fidelity gauge dataset D∗. In this setup:

• D comprises low-quality, relatively high-uncertainty samples;
• D∗ comprises accurate, relatively low-uncertainty gauge observations.

Assume we observe precipitation samples X1, . . . , Xn, independently drawn from the
following generative process:

Xi ∼ Ptrue ∗ N (0, σ2
i I), (B1)

where Ptrue =
∑k

j=1wjδµj is a finite k-component mixture of point masses (or equivalently,

a degenerate Gaussian mixture). Each δµj denotes a representative precipitation mode
with weight wj , and σi captures the noise level of the i-th observation. While this discrete
formulation does not fully capture the full distribution of precipitation fields, it provides
a tractable approximation that enables analytical insight into complex precipitation
distributions, in line with common practice in diffusion-based modeling. Our objective is
to learn a distribution P̂ that closely approximates Ptrue by minimizing their Wasserstein-1
distance:

W1(Ptrue, P̂) = min
C(Ptrue,P̂)

E(X,X′)∼C [∥X −X ′∥], (B2)

where C is a valid coupling between Ptrue and P̂ with marginals equal to P and P̂.
By invoking the theoretical framework established in [81], particularly Theorem 4.2,

we obtain the following upper bound. Let n be the total number of samples (from both D
and D∗), d the dimensionality of the data space, and k the number of mixture components.

Then, under mild regularity assumptions, there exists a procedure returning P̂ such that
with probability at least 1− δ:

W1(Ptrue, P̂) ≤ C

(
k

(
d+ log(1/δ)∑n

i=1 1/σ
4
i

)1/4

+ k3

(
k log k + log(1/δ)∑n

i=1 1/σ
4k−2
i

)1/(4k−2))
, (B3)

The estimation error bound naturally decomposes into two principal components. The first
term reflects the dimensionality reduction error, arising from the challenge of projecting
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high-dimensional precipitation fields (with dimension d) into a lower-dimensional subspace
of k modes. The second term quantifies the low-dimensional estimation error, which
captures the precision of parameter estimation within this k-dimensional space. This
decomposition mirrors the two-stage process used in our framework and aligns closely
with recent analyses in ambient diffusion [81]. In the first stage, the model compresses
the data into a reduced representation, where the estimation accuracy depends on
the effective sample size, approximately represented by

∑n
i=1 1/σ

4
i . Here, the gridded

dataset D—although characterized by high noise levels σi—offers substantial benefit
due to its extensive spatial coverage and large number of samples. While noise rapidly
degrades high-frequency information, it affects low-frequency components (i.e., structural
patterns) to a lesser degree. Consequently, gridded datasets remain valuable for capturing
the overall structure of the precipitation field, making D instrumental in reducing the
dimensionality of the problem. In the second stage, the model performs fine-grained
estimation within the reduced space, where performance becomes sensitive to uncertainties.
The corresponding term in the bound depends on

∑n
i=1 1/σ

4k−2
i , emphasizing the critical

role of low-uncertainty gauge observations. Although our gauge dataset D∗ is sparse,
its markedly smaller noise variances make it disproportionately influential in this stage.
Analogous to the clean data in [81], D∗ effectively preserves high-frequency components.
This theoretical framing highlights a key insight: low-quality (noisy) data are primarily
useful for capturing structural information and aiding dimensionality reduction, while high-
quality (clean) data are essential for refining local accuracy. By strategically combining D
and D∗, our framework balances this trade-off, leveraging the complementary strengths
of each data source to robustly approximate the underlying precipitation distribution. To
illustrate this point concretely, consider a simplified case where p fraction of the dataset
is D∗ (gauge observations), and (1− p) fraction is D (reanalysis or satellite retrievals).
Then, Eq. (B3) simplifies to (see corollary 4.3 in [81]):

W1(Ptrue, P̂) ≤ C

(
k

(
d+ log(1/δ)

n (p+ (1− p)/σ4)

)1/4

+ k3
(

k log k + log(1/δ)

n (p+ (1− p)/σ4k−2)

)1/(4k−2)
)
,

(B4)
revealing that the high-uncertainty samples are down-weighted by 1/σ4 (dimensionality
reduction) and, more substantially, by 1/σ4k−2 (fine-grained estimation).

Overall, this theoretical framework underpins the rationale for our two-stage strategy:

1. Pretraining on D exploits its large sample size to establish robust large-scale spatial
structure (reflected in the first term of the bound);

2. Fine-tuning on D∗ leverages its high-fidelity observations to minimize local estimation
error (reflected in the second term).

B.2 Proof that mollified white noise belongs to L2 space

As established in the main text, white noise ϵ(c) is not an element of space H =
L2([0, 1]n → Rd). In this section, we formally show that its mollified version, obtained via
convolution with a Gaussian kernel, is square-integrable and hence admissible within the
Hilbert space.

Proof. Let G(c) = 1
(2πσ2)n/2 e

− ∥c∥2

2σ2 denote a Gaussian kernel with variance σ2. We define

the mollified signal as the convolution:

ξ(c) = (ϵ ∗G)(c).
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By the convolution theorem, the Fourier transform of ξ is the product of the transforms
of its components:

F [ξ](ω) = F [ϵ](ω) · F [G](ω),

where ω ∈ Rn denotes the frequency vector. The Fourier transform of the Gaussian is
again Gaussian:

F [G](ω) = e−σ2∥ω∥2/2.

Applying Parseval’s theorem, the squared L2 norm of ξ in physical space is equal to
that in frequency space:

∥ξ∥2 =
∫
Rn

|ξ(c)|2 dc =

∫
Rn

|F [ξ](ω)|2 dω.

Substituting the frequency-domain representation:

∥ξ∥2 =
∫
Rn

|F [ϵ](ω)|2 · e−σ2∥ω∥2 dω.

Assuming ϵ(c) is white noise, its power spectral density is constant in expectation:
|F [ϵ](ω)|2 = C. Thus:

∥ξ∥2 ∝
∫
Rn

e−σ2∥ω∥2 dω.

This is a standard Gaussian integral over Rn, yielding:∫
Rn

e−σ2∥ω∥2 dω =
( π

σ2

)n/2
<∞.

Therefore, the mollified signal ξ(c) has finite energy and lies in L2([0, 1]n → Rd),
satisfying the requirement for inclusion in the Hilbert space H used in PRIMER.

B.3 Proof of Fourier-domain relationship between original and
mollified fields

We aim to show that mollifying a signal x(c) ∈ H by convolving it with a Gaussian kernel
results in a Fourier-domain relation:

x̂(ω) = e∥ω∥2tĥ(ω),

where x̂(ω) and ĥ(ω) denote the Fourier transforms of the original and mollified fields,
respectively, and t = σ2/2 is determined by the kernel σ. This relation is central to the
spectral manipulation used in PRIMER.

Proof. Consider the Gaussian kernel in Rn:

k(c) =
1

(2πσ2)n/2
e−

∥c∥2

2σ2 , c ∈ Rn.

Its Fourier transform is given by:

k̂(ω) =

∫
Rn

k(c) e−iω·c dc.
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Substituting for k(c):

k̂(ω) =
1

(2πσ2)n/2

∫
Rn

e−
∥c∥2

2σ2 e−iω·c dc.

Complete the square in the exponent:

−∥c∥
2

2σ2
− iω · c = − 1

2σ2

(
∥c+ iσ2ω∥2 + σ4∥ω∥2

)
.

Thus:

k̂(ω) =
1

(2πσ2)n/2
e−

σ2∥ω∥2
2

∫
Rn

e−
∥c+iσ2ω∥2

2σ2 dc.

The integral evaluates to the normalization constant due to translation invariance:∫
Rn

e−
∥c+iσ2ω∥2

2σ2 dc = (2πσ2)n/2.

Therefore:

k̂(ω) = e−
σ2∥ω∥2

2 .

Setting σ =
√
2t gives:

k̂(ω) = e−∥ω∥2t.

For the mollified signal h(c) = (x ∗ k)(c), the convolution theorem implies:

ĥ(ω) = x̂(ω) · k̂(ω) = x̂(ω) · e−∥ω∥2t,

so rearranging yields:

x̂(ω) = e∥ω∥2t · ĥ(ω).
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Fig. B1: Conceptual illustration of the denosing process in the PRIMER.
Each point within the spaces χT , χT−1, . . . , χ0, and χD represents a function residing
in an infinite-dimensional Hilbert space, as indicated by the axes. Through iterative
transformations governed by neural operators K(x; θt) parameterised by kernel κθt ,
PRIMER progressively transforms the initial χT toward the targeted distribution χ0,
closely approximating the desired distribution represented by χD. The rightmost panel
visually illustrates such a function. The proximity between the distributions of χ0 and
χD highlights PRIMER’s capability in modeling the phase space (distribution), serving
as an useful prior.
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Fig. B2: Schematic illustration of the algorithm. The upper row depicts the forward
process: starting with an initial state x0, a smoothing gaussian kernel L is applied,
followed by random subsampling to create (Lx)0. Progressive noise addition generates
intermediate states (Lx)t and the final state (Lx)T . The lower row shows the reverse
process: beginning with the noisy observation (Lx)T , the neural network iteratively
denoises the signal through T repetitions, ultimately recovering Lx0. The inverse operator
L−1 then reconstructs the original signal x0 using Wiener filter.

B.4 Training and inference algorithm pseudocode

We introduce the transition distribution [59] in the forward process:

q(xt | x0) = N
(
xt;
√
ᾱt Lx0, (1− ᾱt)LL

∗) , (B5)

where L denotes the mollification operator and constant coefficient ᾱt ∈ [0, 1] controls
the balance between signal preservation and noise injection. The corresponding posterior
distribution can be derived analytically [56, 59]:

q(xt−1 | xt, x0) = N
(
xt−1; µ̃t(xt, x0), β̃tLL

∗
)
, (B6)

where the mean and variance are given by

µ̃t(xt, x0) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ξ

)
, ξ ∼ N (0, LL∗), (B7)

β̃t =
1− ᾱt−1

1− ᾱt
βt. (B8)

We use a neural network fθ to predict ξ. The reverse transition is defined as [56, 59]:

pθ(xt−1 | xt) = N
(
xt−1;µθ(xt, t), β̃tLL

∗
)
, (B9)

with the predicted mean given by

µθ(xt, t) =
1
√
αt

[
xt −

1− αt√
1− ᾱt

fθ(xt, t)

]
. (B10)
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Thus, PRIMER is trained by minimizing the following simplified objective [36, 56, 59]:

Lsimple = Et

[
∥µθ(xt, t)− µ̃t(xt, x0)∥2H

]
= Et

[
∥fθ(xt, t)− ξ∥2H

]
. (B11)

Algorithm 1 Training Procedure of PRIMER

Require: Gauge observations x0 ∈ RM×d (M gauges, each with a state vector in Rd),
gauge coordinates C ∈ RM×n (spatial locations in Rn), Gaussian mollifier kernel k,
diffusion schedule ᾱt

1: Sample white noise ε : Rn → Rd ∼ N (0, I)
2: for all coordinates c ∈ C do
3: Compute mollified noise: ξ(c)← (Lε)(c) =

∫
Rn k(c− c′)ε(c′) dc′

4: Compute mollified data: (Lx0)(c) =
∫
Rn k(c− c′)x0(c

′) dc′

5: Compute diffused sample at time t: xt(c)←
√
ᾱt · (Lx0)(c) +

√
1− ᾱt · ξ(c)

6: end for
7: Predict mollified noise using neural network: ξ̂ ← fθ(xt, t)

8: Compute loss: L ← ∥ξ̂ − ξ∥2C
9: Update model parameters θ using gradient descent on L

B.5 Network architecture

The overall network architecture is designed to flexibly handle sparse and irregularly
distributed observations, such as those from in-situ rain gauges, while maintaining strong
representational capacity across heterogeneous data sources. As detailed in Section 4.3.2,
the key distinction from a standard U-Net lies in the inclusion of multiple stacked
SparseConvResBlock modules at both the input and output stages of the network. These
modules are specifically designed to process inputs with sparse spatial distributions. The
input to the model consists of feature representations x ∈ RB×L×C along with their
corresponding spatial coordinates in RB×L×2, where B is the batch size, L is the number
of gauge locations, and C is the number of feature channels. After being processed by
a series of SparseConvResBlock modules, the features retain their shape while being
adapted to the sparsity of the input. These processed features are then transformed onto
a coarser, structured grid, which facilitates subsequent processing using a conventional
U-Net. See Supplementary Information, Listing 1, for the PyTorch implementation of the
sparse-to-grid transformation.
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Algorithm 2 Inference Procedure of PRIMER

Require: Coordinates C ∈ RM×n (M gauges, each are located in Rn), mollifier kernel k,
trained network fθ, diffusion schedule ᾱt, inverse signal-noise-ratio ϵ

1: Sample Gaussian white noise ε ∼ N (0, I)
2: for all coordinates c ∈ C do
3: Set initial sample:

xT (c)←
∫
Rn

k(c− c′)ε(c′) dc′

4: end for
5: for t = T, T − 1, . . . , 1 do
6: Predict mollified noise: ξ̂ ← fθ(xt, t)
7: Estimate denoised state:

x̂0 ←
xt −

√
1− ᾱt · ξ̂√
ᾱt

8: if t > 1 then
9: Sample new noise: ε ∼ N (0, I)

10: for all coordinates c ∈ C do
11: Compute mollified noise:

ξt−1(c)←
∫
Rn

k(c− c′)ε(c′) dc′

12: end for
13: Update sample:

xt−1 ←
√
ᾱt−1 · x̂0 +

√
1− ᾱt−1 · ξt−1

14: end if
15: end for
16: Apply Wiener filtering:

x0(ω)←
e−ω2t

e−2ω2t + ϵ2
· x̂0(ω)

17: return x0(c)
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from pytorch3d.ops import knn_points , knn_gather

def knn_interpolate_to_grid(x, coords , uno_coords , knn_neighbours):

"""

Interpolates sparse features to a structured grid using KNN.

Args:

x: Tensor of shape (B, L, C), input features at irregular

locations

coords: Tensor of shape (B, L, 2), spatial coordinates of x

uno_coords: Tensor of shape (y_length , 2), coordinates of target

structured grid

knn_neighbours: int , number of nearest neighbors to use

Returns:

Tensor of shape (B, y_length , C), interpolated features

"""

B = x.size (0)

target_coords = uno_coords.unsqueeze (0).repeat(B, 1, 1) # (B,

y_length , 2)

with torch.no_grad ():

_, assign_index , neighbour_coords = knn_points(

target_coords , coords , K=knn_neighbours , return_nn=True

)

# neighbour_coords: (B, y_length , K, 2)

diff = neighbour_coords - target_coords.unsqueeze (2)

squared_distance = (diff * diff).sum(dim=-1, keepdim=True)

weights = 1.0 / torch.clamp(squared_distance , min=1e-15)

neighbours = knn_gather(x, assign_index) # (B, y_length , K, C)

out = (neighbours * weights).sum (2) / weights.sum (2)

return out.to(x.dtype)

Listing 1: Transform sparse gauge representation to a structured coarse grid.

Upon completion of the U-Net forward pass, the resulting features are bilinearly
interpolated (using torch.nn.functional.grid sample function) back to the original set of
irregular input coordinates. Finally, multiple SparseConvResBlock modules are applied
to further refine the outputs at target spatial locations RB×L×2. The architecture of the
SparseConvResBlock module is shown in Figure B3, highlighting its ability to integrate
conditioning on both diffusion timestep and dataset source labels, enabling the model to
operate seamlessly across multi-source inputs with varying spatial coverage.

B.6 Rationale for the use of sparse convolution in PRIMER

Let f : D ⊂ R2 → R denote a spatially continuous function defined over a bounded domain
D, observed only at a finite set of locations C = {ci}Ni=1 ⊂ D, corresponding to sparse
gauge measurements. These observations form a discrete sample set S = {(ci, f(ci))}Ni=1.
We assume that f lies in a Sobolev space Hs(D), which consists of functions in L2(D)
whose weak derivatives up to order s are also square-integrable:

Hs(D) =
{
f ∈ L2(D) | ∂αf ∈ L2(D), ∀|α| ≤ s

}
,

where s > d/2 (with d = 2 in our case). This condition ensures that f is sufficiently
smooth. Moreover, we assume that f is approximately band-limited in the spectral domain;
that is, its Fourier transform f̂(ω) satisfies f̂(ω) ≈ 0 for ∥ω∥ > Ω, for some cut-off
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Fig. B3: Architecture of the SparseConvResBlock and its modulation mecha-
nism. The top panel illustrates the overall structure of the SparseConvResBlock, which
processes input features x ∈ RB×L×C and associated coordinates RB×L×2 through a
residual block comprising one sparse depthwise convolution. The term norm shares the
same shape as x ∈ RB×L×C and is precomputed by convolving a unit-valued sparse tensor
with fixed, non-trainable weights. The convolution kernel is initialized as a uniform aver-
aging filter, where each weight is set to 1/K2 (K refers the kernel size). This operation
estimates local support density, ensuring numerical stability. The bottom panel shows
the internal design of the modulate module, which conditions the representation on two
external variables: the diffusion timestep t ∈ RB×1 and the source label z ∈ RB×3 that
denotes the dataset identity. Specifically, the source label is a one-hot vector indicating
the origin of each sample, where ERA5 is represented as (1, 0, 0), IMERG as (0, 1, 0), and
gauge observations as (0, 0, 1). This encoding enables the model to learn dataset-specific
feature modulations while maintaining a unified architecture across heterogeneous data
sources. The timestep embedding is transformed by an MLP and split into scaling (tscale)
and shifting (tshift) components, applied to the normalized input. Simultaneously, the
source label contributes a scaling factor zscale that further modulates the representation.
This dual conditioning enables flexible control over the representation across both tempo-
ral and domain dimensions.
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frequency Ω > 0. This implies that the function’s energy is primarily concentrated in a
bounded low-frequency range. Consequently, even under sparse sampling, the dominant
frequency characteristics of f are preserved, especially the low-frequency content that
encodes large-scale spatial structure.

Traditional convolutional neural networks rely on regular grids, which impose
translation-equivariant operations on dense Euclidean tensors. In contrast, sparse convo-
lutional networks define a convolution operator Kθ directly on the irregular domain C
without requiring interpolation or resampling to a dense grid. The sparse convolution
operator Kθ is designed to operate on non-uniform point clouds by convolving features
over local neighborhoods defined on the support C. Given features h defined at sparse
locations, the sparse convolution updates features by aggregating information from neigh-
boring points via: (Kθh)(ci) =

∑
cj∈N (ci)

κθ(cj − ci) · h(cj). Here N (ci) denotes the

receptive field around ci, and κθ are learnable kernel weights that depend on relative
spatial coordinates. This formulation naturally adapts to the irregular geometry of gauge
networks and preserves local spatial relationships without imposing artificial gridding.

From a mathematical standpoint, the convolution operation can be interpreted as
a linear integral operator acting on the input function f . By the convolution theorem,
applying a spatial convolution is equivalent to performing a pointwise multiplication in the
frequency domain: f ∗κ ←→ f̂(ω) · κ̂(ω) where f̂ and κ̂ denote the Fourier transforms of
f and the kernel κ, respectively. This identity implies that convolutional neural networks
fundamentally implement structured linear operators in the spectral domain, modulated
by nonlinear activations in the spatial domain. In our setting, we consider a field f that
is band-limited and belongs to a Sobolev space Hs(D). The band-limited assumption

ensures that the energy of f̂(ω) is concentrated within a compact subset of the frequency
domain. Furthermore, since the gauge observations S = {(ci, f(ci))}Ni=1 are assumed
to sample f in a non-pathological manner—that is, the sampling locations {ci} are
well-distributed across the domain and do not systematically avoid critical regions—the
low-frequency components of f are approximately preserved under such sparse sampling
schemes. This stability implies that a sparse convolutional operator Kθ, though defined
over an irregular set C, still implements a meaningful approximation of the frequency-
domain filtering process. Therefore, the sparse convolution module can be regarded as a
discretized, sampling-robust spectral operator, providing the mathematical basis for its
application to be a core module in PRIMER.

B.7 Choice of experiment parameter

PRIMER is built using the PyTorch framework [86]. We summarize here the key hyper-
parameters used during training and inference. Due to the computational cost associated
with training PRIMER, we did not perform an extensive hyper-parameter search. Instead,
all values were chosen based on empirical experience. We expect that further tuning may
yield improved performance. Notably, training was intermittently paused and resumed mul-
tiple times, during which model weights were checkpointed and certain hyper-parameters
were adjusted to optimize convergence. Further systematic tuning may still improve
overall performance.

Appendix C Details of data

C.1 Locations of gauges

C.2 Test set

The 150 representative precipitation events used for evaluation in Fig. 4 and Fig. 5
were carefully selected from hourly gauge observations collected across the study domain
throughout 2016. At each timestamp, approximately 1,000 stations provided precipitation
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Table B1: Key parameters used in this study. All values are empirically chosen
without hyperparameter search.

Parameter Description / Value

OS Linux-5.10.0-34-cloud-amd64-x86 64-with-glibc2.31

Python version 3.10.0

GPU count 2

GPU type NVIDIA A100-SXM4-40GB

CUDA version 11.7

Overall parameters 430,058,544 trainable parameters

diffusion steps 1000

AdamW optimizer settings

beta1 0.9 (1st moment decay rate)

beta2 0.99 (2nd moment decay rate)

weight decay 4e-6

EMA (Exponential Moving Average) settings

decay 0.995

update every every 10 batches

Batch size Varied between 2–6 (per GPU) due to intermittent training interruptions

Learning rate Varied between 10−4 and 10−6 due to intermittent training interruptions

measurements. To ensure a robust and representative test dataset, we employed two
complementary intensity-based selection criteria. First, we identified the 100 timestamps
exhibiting the highest individual station precipitation intensities, specifically highlighting
localized extreme events. Second, we selected 50 additional timestamps characterized by
the highest average precipitation intensity across all stations, thus capturing widespread
precipitation scenarios. These distinct yet complementary selection strategies ensure
comprehensive coverage of heavy precipitation event types, enhancing the generalizability
and reliability of our model evaluations. Notably, there was no overlap between these two
subsets, resulting in a final, unique set of 150 precipitation events.

The test set includes the following 150 timestamps (formatted as YYYYMMDDHH):
2016070822, 2016070821, 2016071704, 2016070820, 2016061323, 2016071907, 2016081020,
2016061902, 2016072616, 2016050923, 2016040316, 2016062312, 2016070317, 2016042000,
2016071108, 2016072507, 2016082715, 2016071910, 2016071814, 2016062419, 2016080214,
2016071813, 2016070522, 2016091212, 2016050922, 2016062313, 2016070101, 2016050921,
2016071912, 2016070521, 2016061501, 2016081019, 2016081821, 2016061901, 2016072421,
2016082506, 2016061322, 2016071915, 2016071709, 2016071914, 2016070919, 2016060119,
2016071909, 2016091420, 2016060120, 2016071901, 2016071107, 2016071904, 2016072611,
2016070716, 2016062310, 2016062200, 2016080216, 2016090916, 2016060611, 2016071900,
2016080307, 2016080923, 2016082714, 2016070819, 2016081008, 2016062302, 2016080200,
2016061214, 2016060612, 2016081021, 2016062304, 2016050607, 2016060414, 2016070102,
2016091112, 2016062201, 2016071908, 2016072121, 2016071913, 2016070405, 2016071521,
2016082516, 2016070323, 2016062718, 2016072612, 2016061104, 2016070400, 2016070823,
2016061913, 2016071312, 2016052005, 2016082517, 2016071702, 2016092808, 2016072122,
2016091600, 2016080509, 2016061903, 2016061820, 2016062005, 2016051423, 2016052002,
2016070519, 2016062802, 2016071406, 2016102019, 2016071407, 2016102018, 2016102021,
2016102020, 2016052218, 2016052104, 2016071405, 2016071408, 2016102023, 2016102022,
2016052217, 2016052219, 2016071409, 2016102100, 2016061108, 2016102117, 2016052220,
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Fig. B4: Sensitivity of ensemble RMSE and CRPS to the noise level parameter
τ . Evaluation is performed across a range of noise levels from 0.1 to 0.9. Ensemble members
are sampled from P∗(x | OIMERG), and both the ensemble-mean root mean square error
(RMSE; blue) and the continuous ranked probability score (CRPS; orange) are computed
over 50 repeated subsampling trials, each using 10 randomly selected members. Shaded
bands denote ±1 standard deviation across repetitions. Both metrics show improvement
as τ increases up to 0.6, reflecting a favorable balance between accuracy and diversity,
but deteriorate beyond this point due to excessive stochasticity. These results support
the choice of an intermediate noise level to balance observational fidelity with generative
variability.

2016110719, 2016102015, 2016102118, 2016061109, 2016052211, 2016071106, 2016012817,
2016110720, 2016102121, 2016061107, 2016012816, 2016052103, 2016012803, 2016102120,
2016112305, 2016013112, 2016052023, 2016061111, 2016052100, 2016110823, 2016012815,
2016102122, 2016012813, 2016102119, 2016100622, 2016071410, 2016112220, 2016102103,
2016102102, 2016102101, 2016102116.
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AWS assimilated number ≥ 1 AWS assimilated number ≥ 4
a b

Fig. C5: Spatial distribution of assimilated AWS counts. Panels show the number
of automatic weather stations (AWS) assimilated into each grid point of the high spa-
tiotemporal gauge-satellite merged precipitation analysis from [29]. a, Grid points with at
least one assimilated AWS observation, representing the full set of available data used for
training. b, A more stringent subset showing grid points with four or more assimilated
AWS observations, used exclusively for model evaluation. This design ensures that the
test regions are better constrained by in-situ observations, enabling a robust assessment
of model performance.
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Appendix D Additional results

c

a b

d

Fig. D6: PDF of RAPSD between learned priors and reference datasets. (a-d)
shows the PDF of power at 0.5°, 1°, 1.5°, 2° wavelength respectively. All statistics are
derived from 1,000 randomly sampled realizations of precipitation fields.
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Fig. D7: Climatological structure comparison between learned priors and ref-
erence datasets. For clarity, the figure has been rotated 90° clockwise. Each row presents
a distinct climatological statistic: top to bottom, spatial distribution of maximum pre-
cipitation rate, frequency of precipitation events (> 1 mm/hr), the leading empirical
orthogonal function (EOF1), and skewness. Each column corresponds to a different data
source: IMERG, unconditional samples from PIMERG(x), ERA5, unconditional samples
from PERA5(x), gauge observations, and samples from the final updated prior P∗(x).
Panels associated with PIMERG(x) and PERA5(x) display Pearson correlation coefficients
(PCCs) with their respective reference datasets (IMERG and ERA5), highlighting struc-
tural agreement. Colorbars denote the units of each diagnostic. All statistics are derived
from 1,000 randomly sampled realizations of precipitation fields.
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Fig. D8: Case study of a Meiyu event. This figure complements Fig. 3 by illustrating
additional results sampled from alternative posterior distributions. a,b, Posterior samples
based on ERA5 and IMERG as conditional input, respectively. We show the original
precipitation field, the posterior mean and standard deviation, and four representative
ensemble members. c, Probability density functions (PDFs) of changes in mean abso-
lute error (∆MAE) relative to original ERA5 or IMERG, with positive values indicating
improved accuracy after bias correction. d, Radially averaged power spectral density
(RAPSD) curves demonstrate that prior P∗(x) effectively compensates for the underesti-
mation of high-frequency spectral power in ERA5, thereby enhancing spatial structure
realism. Note that we first interpolate ERA5 and samples from PERA5(x | OERA5) to 0.1
degree before RAPSD caculation. Overall, this case highlights the flexibility of PRIMER
in performing posterior sampling using diverse precipitation priors, including those derived
from reanalysis, satellite. Among them, the prior P∗(x) yields the most accurate recon-
structions, underscoring the value of incorporating sparse yet reliable gauge observations
for fine-tuning probabilistic models.
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Fig. D9: Case study of Typhoon Meranti (2016) precipitation event. Typhoon
Meranti, one of the most intense tropical cyclones recorded globally in 2016, made landfall
in southeastern China in mid-September, causing widespread flooding and infrastructure
damage. This figure is similar to Fig. D8.
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Fig. D10: Case study of an extreme precipitation event near Beijing. On 20
July 2016, an extratropical cyclone developed over North China, bringing prolonged and
intense precipitation to the Beijing-Tianjin-Hebei region. This event, known as the “7·20”
rainstorm. This figure is similar to Fig. D8.
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Fig. D11: Spatial distributions of ∆MAE and ∆CRPS. As in Fig. 4, but showing the
reduction in MAE and CRPS after bias correction using PRIMER (prior P∗(x)) and the
baseline priors (PERA5(x) and PIMERG(x)), applied separately to ERA5 and IMERG. The
evaluation is based on 150 precipitation events that occurred in 2016. Overall, PRIMER
outperforms the baseline method, as evidenced by larger mean relative error reductions
(annotated in the top-left corner of each panel).
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a b

c

Fig. D12: Enhancement of spatial variability in test datasets. Due to the lack
of power spectral references based on gauge observations, IMERG (0.1° resolution) is
used as a proxy for evaluating fine-scale precipitation features. a, Radially averaged
power spectral density (RAPSD) of log-transformed precipitation intensity, showing that
PRIMER effectively restores high-frequency variability absent in the original ERA5 data.
For consistency, ERA5 data are interpolated to a 0.1° grid prior to RAPSD computation. b,
Probability density functions (PDFs) of spectral power at wavelengths of 0.5° (top) and 1°
(bottom). While ERA5 (0.25° resolution) underrepresents spectral power at these smaller
scales, samples that are generated from posteriors P∗(x | OERA5) shift the distribution
toward higher power, indicating improved representation of fine-scale structure.
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Fig. D13: Temporal correlations in test datasets. As a supplementary analysis
to Fig. 5, temporal correlations are assessed by computing the autocorrelation with a
lag of up to 10 hours. Correlations are computed exclusively at gauge locations and
averaged over all paired precipitation events from a subset of 2016, for gauge observa-
tions, ERA5, P∗(x | OERA5), IMERG, and P∗(x | OIMERG). Results show that applying
PRIMER to ERA5 and IMERG preserves the intrinsic temporal dynamics, as evidenced
by comparable autocorrelation structures before and after correction. Notably, original
ERA5 and IMERG exhibit higher temporal correlations than gauge observations, reflect-
ing artificial persistence introduced probably by numerical model, data assimilation and
satellite retrieval processes. After PRIMER mollification, the temporal correlations of
P∗(x | OERA5) and P∗(x | OIMERG) decrease and become closer to those observed in the
gauge observations, indicating improved physical realism.
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Fig. D14: Zero-shot enhancement for operational forecasts. Similar to Fig. 6, but
for other lead times with a comprehensive illustration.

41



le
ad
+2
7h

le
ad
+3
0h

le
ad
+3
3h

le
ad
+3
6h

le
ad
+3
9h

HRESf

g

h

i

j

𝑃∗ 𝑥 𝒪"#$%
members

∆CRPS
(w.r.t. HRES)

𝑃∗ 𝑥 𝒪"#$%
mean & std

Fig. D14: Continued from previous page.
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Fig. D15: Zero-shot enhancement for operational forecasts. Similar to Fig. 6, but
for precipitation time series at other representative gauge stations; gray envelope denotes
the spread across 100 ensemble members.
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