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Abstract Satellite precipitation retrieval is inherently an underdetermined inverse problem where
additional physical constraints could substantially enhance accuracy. While previous studies have explored
static (pixel‐based/spatial‐context‐based) environmental variables at discrete satellite observation times, their
temporal dynamic information remains underutilized. Building on our earlier finding that retrieval errors depend
on storm progression (event stage), we propose a new, physically interpretable mechanism for improving
retrievals, namely, leveraging environmental variables' temporal dynamics as proxies for event stages. Using
IMERG satellite product and GV‐MRMS as ground‐truth over CONUS (2018–2020), we first demonstrate
robust coevolution patterns of environmental variables and satellite errors throughout events, and show that
these variables' temporal gradients reliably infer event stages. We then demonstrate that incorporating these
variables and their gradients into a machine‐learning post‐processing framework improves retrieval accuracy.
This work inspires and guides more thorough utilization of spatiotemporal atmospheric fields encoding rich
physical information within advanced machine‐learning frameworks for further algorithm improvement.

Plain Language Summary Satellite‐based precipitation estimates are crucial for weather
forecasting, hydrological monitoring, and climate research. However, as satellites estimate surface rainfall
indirectly from cloud radiometric signals, the estimation inevitably carries significant uncertainty, underscoring
the need for additional information sources. As precipitation initiates, develops, and dissipates within the
context of cloud microphysical and large‐scale environment, such information may provide valuable constraints
for retrievals. Yet, most retrieval algorithms use only “snapshots” of environmental variables at isolated
observation times, overlooking the rich information embedded in their temporal dynamics. Building on our
earlier findings that satellite errors systematically vary with storm progression, we propose a novel, physically
interpretable mechanism—harnessing environmental variables' temporal dynamics as proxies for event stages
to improve precipitation retrievals. Statistical analyses confirm that environmental variables and satellite errors
coevolve robustly and that these variables' temporal gradients can serve as reliable indicators of event stages. To
empirically test the accuracy gains in retrievals, we conduct a machine‐learning‐based bias‐correction of
IMERG incorporating these variables and their gradients, and demonstrate pronounced improvements in both
detection skill and intensity accuracy. This work is expected to guide future efforts to integrate spatiotemporal
evolution patterns of environmental variables within advanced deep learning frameworks for further satellite
retrieval improvement.

1. Introduction
Satellite‐based precipitation products provide high‐resolution, continuous observations crucial for hydrologic
modeling, water resources applications, and climate studies (Fassoni‐Andrade et al., 2021; Good et al., 2021;
Nearing et al., 2024). Over recent decades, advances in sensor technology and retrieval algorithms have
significantly improved product quality (Hou et al., 2014; Huffman et al., 2023), yet notable discrepancies persist
when benchmarked against ground observations (Guilloteau et al., 2021; Li et al., 2018, 2022). A principal reason
lies in the indirect estimation of surface precipitation from the radiometric signatures of hydrometeors, leading to
an inherently ill‐posed underconstrained inversion problem with significant uncertainty in the resulting estimates
(Guilloteau et al., 2021, 2023).

A salient manifestation of this ill‐posedness, as demonstrated in our previous work, is the varying performance of
satellite products throughout precipitation lifecycles (Li et al., 2021, 2025). As cloud microphysics evolve with
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storm development, both the radiative response to total hydrometeor content aloft and the efficiency with which
these hydrometeors convert into surface precipitation (i.e., precipitation efficiency) alter significantly (Bouniol
et al., 2016; Gupta et al., 2023). These changes collectively result in marked variations in the radiometric‐signal‐
to‐rain‐rate relationship during precipitation lifecycles (Guilloteau & Foufoula‐Georgiou, 2024), while the cur-
rent input parameters/algorithms do not account for such variations, lacking “stage‐awareness” as a necessary
constraint in the solution space, thereby substantially contributing to the retrieval uncertainty.

The fact that the “real” event stage cannot be accessible from satellite observations, drives us to seek alternative
sources of information that encapsulate or infer stages. A physically intuitive approach leverages the fact that
precipitation emerges from the synergy between cloud microphysics and the broader atmospheric environment
like moisture flux, atmospheric instability, and wind fields—a feedback loop in which the evolving environment
drives precipitation development while simultaneously receiving feedback from it (Gupta et al., 2023; Lee
et al., 2016). This ongoing interplay, or “coevolution”, implies that environmental variables may inherently
encode physical “signatures” of storm stages. For example, high upward vertical velocity, indicative of vigorous
convective updrafts signal storm initiation, while its subsequent decline/reversal marks maturation and dissi-
pation. By integrating these variables into satellite retrieval frameworks, we can theoretically bolster event‐stage
sensitivity, impose physically grounded constraints on the inversion process, and ultimately improve retrieval
accuracy.

While both the operational Global Precipitation Measurement (GPM) Passive Microwave (PMW) retrieval al-
gorithm, that is, the Goddard Profiling Algorithm (GPROF) (Passive Microwave Algorithm Team Facility, 2022),
and other algorithmic research have incorporated a few environmental variables in their retrieval frameworks
(Pfreundschuh et al., 2022; Upadhyaya et al., 2022), they predominantly utilize instantaneous pixel‐based/spatial‐
context‐based information at discrete satellite observation times, without exploring the role of their temporal
dynamics in a physically interpretable context. Motivated by the theoretical coevolution of environmental var-
iables and satellite performance during precipitation events, this study investigates whether the temporal context
in these variables can indeed function as a proxy for event stages and thereby improve retrieval accuracy. Through
statistical analysis and a Machine Learning (ML)‐based postprocessing experiment, we address three key
questions: (a) Do environmental variables from global reanalysis exhibit robust coevolution patterns with satellite
retrieval errors over an event's lifecycle? (b) Can these variables serve as robust probabilistic indicators of event
stages? (c) Does integrating these stage‐informative signals via a ML bias‐correction framework enhance satellite
precipitation estimates? To this end, the Integrated Multi‐satellite Retrievals for GPM (IMERG) and atmospheric
parameters from European Centre for Medium‐Range Weather Forecasts (ECMWF) Re‐Analysis V5 (ERA5) are
analyzed against the Ground Validation‐Multi‐Radar/Multi‐Sensor (GV‐MRMS) product over CONUS from
2018 to 2020.

2. Data and Methods
2.1. Data

IMERG V07B Final Run is GPM's level 3 multi‐satellite merged global precipitation product (Huffman
et al., 2023), which delivers 0.5‐hourly, 0.1° × 0.1° precipitation estimates by merging multiple PMW and
Infrared (IR) observations, calibrated with measurements from GPM Core Observatory and adjusted through
monthly gauge analyses. ECMWF Re‐Analysis V5 offers a comprehensive suite of atmospheric/land/oceanic
variables at 1 hr, 0.25° × 0.25° resolution (Hersbach et al., 2023a, 2023b), which are linearly interpolated to
0.5 hr, 0.1° × 0.1° to match IMERG. GV‐MRMS is a radar gauge blended Quantitative Precipitation Estima-
tion (QPE) based on National Oceanic Atmospheric Administration MRMS, post‐processed specifically for
satellite evaluation (Kirstetter et al., 2018). An accompanying Radar Quality Index (RQI; 0–100) is employed to
retain relatively high‐quality regions (RQI > 60) and is applied across all data types (Petersen et al., 2020). GV‐
MRMS is spatially aggregated from its native 0.01° × 0.01°, 0.5 hr resolution to IMERG's 0.1° × 0.1° gridbox.

2.2. Methods

2.2.1. Statistical Analysis

We first define a precipitation event as an uninterrupted sequence of half‐hourly timesteps with intensity
≥0.1 mm/hr at each 0.1° × 0.1° pixel in GV‐MRMS within an Eulerian framework and extract all events over
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CONUS during the study period of 2018–2020 (Li et al., 2023a). The basic information about events, that is, the
annual event count map and the distribution of event durations across CONUS, is shown in Figures 1a and 1b,
respectively. As the foundation and motivation for this study, Figure 1c presents a representative precipitation
time series, highlighting the divergent evolution patterns between GV‐MRMS and IMERG events, while
Figure 1d statistically demonstrates IMERG's varying systematic intensity bias during events across various
durations.

To analyze stage‐based performance across events of varying durations (≥1 hr), we segment each event into five
equal‐duration intervals—defined as “event stages” (S)—and linearly interpolate the associated variables at the
endpoints of these intervals. To place events in their environmental context, we extend the analysis time window
associated to each event forward and backward by the duration of the event, normalizing these windows similarly
into five stages each, forming a unified 15‐S framework: 5 Before‐event (B1–B5), 5 During‐event (D1–D5), and 5
After‐event (A1–A5) stages.

The statistical analysis of how environmental variables (V), mediated by event stage, are indicative of satellite
errors (E) is framed in a forward (diagnostic) and inverse (inferential) perspective. In the forward analysis, S is
assumed known from GV‐MRMS and conditional expectations E(V|S) and E(E|S) are computed to reveal if there
are any systematic coevolution patterns of environmental variables and satellite errors with event stage's pro-
gression. Seven environmental variables alongside two event‐based satellite performance metrics are used here,
as detailed in Figure 2. Specifically, the Detection Proportion quantifies rain/no‐rain classification accuracy,
representing false positive proportion outside events and true positive proportion inside events, respectively:

Detection Proportion (S) =
NIMERG (S)
NEvent

× 100%, (1)

Figure 1. Overview of precipitation event characteristics. (a) Spatial distribution of annual GV‐MRMS event counts, which
has been aggregated from raw 0.1° × 0.1°–1° × 1° for enhanced visualization, with a corresponding histogram in the panel's
bottom‐left corner, (b) histogram of GV‐MRMS event counts by duration, with durations >10 hr grouped and labeled as “+”,
(c) sample precipitation time series from GV‐MRMS (red) and IMERG (blue) at 122.65°W, 48.55°N (asterisk in (a)) during
February 2–5, 2018. Three major GV‐MRMS events are outlined, and (d) temporal evolution patterns of mean Intensity Bias
(IMERG—GV‐MRMS) for rainy hours (when both detect precipitation, i.e., “hits”) at half‐hour intervals during GV‐MRMS
events of varying durations (color‐coded for durations up to 10 hr), aligned to event centers. Panels (a), (b), and (d) are
calculated using all CONUS data (2018–2020).
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where NIMERG (S) is the number of IMERG rainy detections at GV‐MRMS stage S and NEvent is the total GV‐
MRMS event count. The Intensity Bias represents intensity quantification accuracy during concurrent de-
tections (i.e., “hit”):

Intensity Bias (S) = IIMERG (S) − IGV‐MRMS (S), (2)

where IIMERG (S) and IMRMS (S) are the mean intensities from IMERG and GV‐MRMS, respectively, at stage S.

In the inverse analysis, we assess the probabilistic discriminatory skill of environmental variables on the stage,
without reference to any satellite product. Drawing on the robust, quadratic‐like patterns observed in the diag-
nostic step, we hypothesize that the temporal gradients of these variables may better capture stages than absolute

Figure 2. Evolution of the mean values of environmental variables (from ECMWF Re‐Analysis V5) with event stage
(extracted from MRMS), plotted together with the evolution of IMERG performance (detection proportion and intensity
bias) to highlight their coevolution. A total of 15 stages, as defined in Methods, are presented: Before‐event (B1–B5, blue
shading), during‐event (D1–D5, red shading), and after‐event (A1–A5, green shading). Two satellite error metrics and seven
representative precipitation‐related variables are presented, as listed in the legend above. Color‐coded axes denote
corresponding variable/metric‐specific units and ranges. Only events without overlapping events in their before‐event/after‐
event periods are selected for presentation to avoid potential confounding effects. Results are separately calculated for
(a) short‐duration (≤5 hr), and (b) long‐duration (>5 hr) events, using all CONUS data (2018–2020), comprising a total of
10,321,875 and 433,242 events, respectively.
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values, with these gradients further normalized by the variables' magnitudes to mitigate regional/seasonal
background environment differences. We compute these gradients via central differences:

∆Vn,t =
Vt+1 − Vt− 1

2Vt
, (3)

and quantify ∆Vn's probabilistic inference power for each stage S. Specifically, all ∆Vn values over the study
period are first stratified into 10‐percentile bins. Within each ∆Vn bin, we compute the conditional probability P
(S∣∆Vn) for all 15 defined stages, and identify and display the three stages with the highest probabilities. This
ranking reveals whether different ∆Vn magnitudes exhibit distinct stage preferences (higher probability of co‐
occurrence), thereby reflecting their stage‐discriminative skill.

2.2.2. Machine Learning Postprocessing

Based on statistical insights, we apply a ML‐based postprocessing bias‐correction test to IMERG to assess
whether incorporating environmental variables and their temporal gradients practically improves IMERG's ac-
curacy. To explicitly evaluate the added value of temporal gradients, we employ a tabular‐data‐based model that
allows manual assessment of time‐related features—offering greater transparency and interpretability than deep
learning models, which typically require architectural modifications to isolate these effects. Specifically, we
adopt CatBoost—a Gradient Boosting Decision Tree (GBDT) model that excels in modeling complex nonlinear
relationships and feature interactions (Prokhorenkova et al., 2018). Its innovative mechanisms such as symmetric
trees and ordered target encoding, further reduce prediction bias and overfitting, making it a leading tree‐based
model.

Given the prevalence of zero precipitation values and the highly skewed precipitation distribution of non‐zero
values, a two‐step regression is employed: a classifier for rain/non‐rain identification; then a regressor predict-
ing intensity only for rainy cases, which has been demonstrated to outperform one‐step regression in both prior
studies and our experiments (Kossieris et al., 2024; Lei et al., 2022). Within this framework, our comparative tests
indicate that CatBoost outperforms other tree‐based models (e.g., Random Forest, XGBoost, LightGBM),
particularly in the classification stage, which in turn improves the regression and overall accuracy, and is therefore
selected.

To assess the added value of environmental variables (V) and their gradients (ΔV) in improving accuracy, we
design three postprocessing tests with progressively expanded input configurations: Test 1: IMERG only, Test 2:
IMERG + V, and Test 3: IMERG + V + ΔV, with GV‐MRMS as the target. Here we incorporate raw ΔV rather
than the normalized ∆Vn, as the variables' magnitude V is already explicitly added. Given the vast data volume
and diverse environmental/precipitation conditions year‐round across CONUS, which pose challenges for tree‐
based models lacking explicit spatiotemporal representations, we focus on the Northeastern US during winter
—a representative region where IMERG performance is notably degraded by snow/ice and complex terrain
(Li et al., 2023a). To further mitigate computational constraints and potential overfitting from dense spatio-
temporal sampling, one‐third of the samples are randomly selected and partitioned into 70%/30% training‐test
sets. The training set is further subdivided into a 56%/14% (4:1 ratio) for training/validation in hyperparameter
tuning. The final sample sizes for the training, validation, and test datasets are 4,842,467, 1,210,617, and
2,594,179, respectively.

We assess the overall improvement by the Heidke Skill Score (HSS) for classification (precipitation detection)
and the distribution of Absolute Error (AE) for regression (precipitation magnitude). Heidke Skill Score measures
detection skill relative to a random prediction, weighting misses/false alarms equally (Wang et al., 2025). Here we
extend the original HSS to various intensity thresholds (T ), defining a precipitation occurrence in labels/pre-
dictions only when its intensity exceeds T:

HSS =
2(Nh(T) ∗ Ncn(T) − Nf (T) ∗ Nm(T))

(Nh(T) + Nm(T)) ∗ (Nm(T) + Ncn(T)) + (Nf (T) + Ncn(T)) ∗ (Nh(T) + Nf (T))
, (4)
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where Nh(T), Nf (T), Nm(T), and Ncn(T) denote the numbers of hits, false alarms, misses, and correct negatives,
respectively, at a given T. Heidke Skill Score ranges from − ∞ to 1, where one signifies a perfect forecast, zero
implies no skill beyond random guessing, and negative values indicate worse‐than‐random performance.

Additionally, we leverage a widely used Explainable Artificial Intelligence (XAI) technique, SHapley Additive
exPlanations (SHAP), to reveal each input's relative contribution (Lundberg & Lee, 2017). This game‐theoretic
framework computes a feature's marginal contribution for each instance by comparing the model's prediction
against a baseline expectation across all feature coalitions. Here we aggregate these instance‐level contributions
into global SHAP values to elucidate overall feature importance, computing them separately for classification and
regression in Test 3# that incorporates all variables (see discussion in the next section).

3. Results
Figure 2 illustrates the coevolution of IMERG satellite errors—detection fraction and mean intensity bias—and
environmental variables across the 15 normalized event stages. Both short‐ and long‐duration precipitation events
exhibit quasi‐parabolic life‐cycle progression patterns of satellite errors and environmental variables, though with
disparities in phase and magnitude. For short‐duration events (≤5 hr, Figure 2a), which constitute the majority
(∼90%, Figure 1b), the detection fraction is relatively symmetric, rising steadily with proximity to the event
center. This smooth transition of IMERG detection proportion at events' edges (start/end times) actually reflects a
high number of false alarms immediately before/after events (B5/A1) and a high number of misses at their onsets/
cessations (D1/D5). This might be attributed to IMERG's timing/drizzle/interpolation issues (Li et al., 2023b).
The intensity bias exhibits a second‐order‐like variation as well, with positive biases at the beginning/end (D1/
D5) and negative biases in the intermediate stages (D2/D3/D4), and an asymmetric peak in the early‐to‐mid stage
(D2), which has been previously attributed to the combined effects of intensity and cloud microphysical changes
(Li et al., 2025), highlighting again the clear stage‐dependent satellite performance.

The environmental variables' behaviors are also physically explainable for short‐duration events (Figure 2a). For
example, both IWP and LWP follow a lifecycle pattern—gradually accumulating pre‐event, peaking during
precipitation, then dissipating—with IWP peaking earlier (D2) due to rapid updraft‐driven ice nucleation, and
LWP peaking slightly later (D3) owing to slower droplet coalescence (Braga & Vila, 2014). VV, closely linked to
convective strength, exhibits a marked parabolic pattern as well, remaining negative (upward) and peaking in the
early‐to‐mid stage (D2), aligning with the approximate intensity peak time (Figure S1a in Supporting Informa-
tion S1). WS exhibits relatively modest variation but still follows a “decrease‐then‐increase” pattern, likely driven
by initial momentum exchange from convective mixing, followed by precipitation‐induced evaporative cooling
that triggers downbursts and outflow boundaries at low levels, culminating in a WS peak at event onset (D1)
(Romanic et al., 2022).

CAPE accumulates well before precipitation onset (B1/B2), peaks just before precipitation (B3), then gradually
decreases as precipitation progresses due to unstable energy release. Driven by evapotranspiration and horizontal
moisture transport, TCWV increases toward the precipitation peak (D2), then decreases as condensation/depo-
sition remove water vapor. MD mirrors the evolution of WS, shifting from convergence to divergence after
precipitation onset (D1) due to a similar mechanism: rainfall‐induced outflow boundaries generating localized
divergence. On larger scales, MD also inversely acts as a driver of precipitation cessation by reducing moisture
supply (Tsuji et al., 2021). Conceptualizing MD partially as the time derivative of TCWV also helps explain why
its peak (B5) precedes that of TCWV (D2).

Long‐duration events (>5 hr) exhibit similar but less smooth patterns in both satellite errors and environmental
variables (Figure 2b). A more asymmetric detection profile and a less regular intensity‐bias curve are observed,
compared to short‐duration events. Quantitatively, the detection proportion is generally higher within/around
long‐duration events, with one important reason being their larger extent both in space and time, making them
more readily detectable by satellites and less vulnerable to spatiotemporal mismatches. Regarding intensity bias,
while for short‐duration events the bias is mostly negative (D1–D3, Figure 2a), for long‐duration events it is
mostly positive across the event duration (D1, D3–D5, Figure 2b), likely due to satellites' tendency to under-
estimate intense, short‐lived convective precipitation and to slightly overestimate weaker, longer‐lasting strati-
form precipitation (Li et al., 2025). Overall, despite differences in magnitude, environmental variables evolve
similarly to those in Figure 2a, with some distinctions attributable to extended timescales. For instance, well
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before event onsets (B1/B2), VV undergoes a more pronounced transition from near‐zero to negative, marking the
initiation of upward motion, while CAPE exhibits a clearer energy buildup phase. Conversely, well after an event
cessation (A3–A5), WS and MD exhibit secondary reductions once initial outflow boundary effects subside after
precipitation. Especially, wind shear exhibits greater variability over longer timescales than other variables, likely
due to its sensitivity to complex multi‐scale influences (Yang et al., 2023). Figure S1 in Supporting Informa-
tion S1 additionally shows the evolution of GV‐MRMS event intensity and environmental variables at their
original 30 min intervals for events of varying durations, revealing covariation patterns consistent with Figure 1.

Overall, across both short‐ and long‐duration GV‐MRMS events, environmental variables exhibit relatively
stable, physically interpretable temporal evolution patterns, to some extent highlighting the reliability of ERA5
variables. However, their evolution does not closely mirror that of satellite errors, suggesting that rather than
serving directly as error proxies, these environmental variables are better suited for identifying event stages,
which can then act as intermediaries for indicating satellite errors. Indeed, the roughly quadratic evolution
observed in most variables implies that their gradients may function as quasi‐monotonic “stage” indicators. An
additional test that classifies events based on their mean intensity on top of event duration reveals that the relative
evolution patterns of environmental variables remain largely consistent regardless of intensity level (Figure S2 in
Supporting Information S1), further supporting the potential of these variables to serve as indicators of event
stages.

Building on this insight, Figure 3 evaluates environmental variables' predictive capacity for event stages by
marking the top 3 highest conditional probabilities of stage P(S|ΔVn) across ΔVn quantiles. Notably, IWP, VV, and
MD exhibit near‐monotonic, stable ΔVn‐stage relationships (Figures 3a–3g). For example, IWP's high/middle/
low quantiles—roughly corresponding to positive/near‐zero/negative gradients—sequentially align with the pre‐/
during‐/post‐event stages (Figure 3a). This pattern is fully consistent with the rise‐plateau‐decline behavior of
IWP in Figure 2, with similar trends observed for VV and MD (Figures 3c and 3g). Although WS and TCWV lack
strict monotonicity, their distinct quantiles still show clear preferences for particular event stages (Figures 3d
and 3f). LWP and CAPE appear much noisier but likewise follow discernible patterns, with lower/middle/higher
quantiles generally mapping to before‐/mid‐/after‐event periods, respectively (Figures 3b and 3e). A similar trend
persists when isolating short‐duration events, as they comprise the majority (Figure S3 in Supporting Informa-
tion S1). However, with the extended timespan enhancing inter‐stage differentiation for long‐duration events, all
variables except WS exhibit even more monotonic ΔVn‐stage relationships (Figure S4 in Supporting Informa-
tion S1). Overall, these findings confirm that the normalized temporal gradients of environmental variables
encode valuable “event stage” information for potential algorithmic improvements, though further empirical
validation is warranted.

For this purpose, a ML‐based IMERG postprocessing bias‐correction experiment is conducted, with its workflow,
validation results, and model interpretation presented in Figure 4. As detailed in Methods, three sets of input
configurations were established by progressively incorporating environmental variables and their temporal
gradients (Figure 4a‐ ), applied to the northeastern U.S (Figure 4a‐ ). The two‐step CatBoost algorithm is
employed (Figure 4a‐ ), using a random 56%/14%/30% split for training, validation, and testing, respectively
(Figure 4a‐ ). For the validation using HSS and AE (Figures 4b and 4c), Test 1# (IMERG‐only) lowers HSS
relative to the raw IMERG (Figure 4b), indicating that complex nonlinear fitting alone cannot overcome IMERG's
intrinsic information limitations. In contrast, adding environmental variables (Test 2#) markedly improves both
HSS and AE, likely due to their role in indicating storm regime and partially storm stage. Further including
variables' temporal gradients (Test 3#) yields even stronger gains, as it provides more insight into storm internal
evolution. Quantitatively, for example, at the 0% threshold (≥0.1 mm/hr), HSS falls from 0.41 (raw IMERG) to
0.35 (− 14%) using only IMERG (Test 1#), but climbs to 0.51 (+24%) with V added (Test 2#) and 0.60 (+46%)
with ΔV further included (Test 3#) (Figure 4b). Meanwhile, the median AE drops from 0.66 (raw IMERG) to 0.60
(− 9%, Test 1#), 0.40 (− 39%, Test 2#), and 0.33 (− 49%, Test 3#), respectively (Figure 4c), clearly illustrating the
benefits of leveraging both environmental variables and their gradients. An additional correlation coefficient
analysis in Figure S5 in Supporting Information S1 yields a similar conclusion. Additionally, we re‐evaluate the
detection rate and intensity bias of different post‐processed results relative to raw IMERG (Figure S6 in Sup-
porting Information S1). Overall, Test3# exhibits both reduced absolute errors and asymmetry across events,
indicating the benefit of stage‐awareness.
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Finally, Figure 4d illustrates the global SHAP feature importance for both the classification (top) and regression
(bottom) in Test 3# that includes all variables. Notably, IMERG contributes minimally to classification, reflecting
its large uncertainties over ice‐/snow‐covered surfaces (You et al., 2017). In contrast, IWP emerges as a dominant
detection driver—even though it partially overlaps with IMERG's IR/PMW information and is affected by un-
certainties in ERA5's cloud parameterizations (Hersbach et al., 2020)—underscoring the value of physics‐based
representation. As expected, CAPE is also a major factor for rain detection. For regression, while IMERG remains
influential, LWP—which PMW struggles to detect—contributes significantly, underscoring its additional value.
MD also proves influential for intensity estimation. Though already included in GPROF (Passive Microwave
Algorithm Team Facility, 2022), TCWV remains contributory to both classification and regression, underscoring
ML's deeper variable exploitation over traditional statistical models, and the role of environmental variables in the
interpolated components of IMERG between the MW overpasses. The gradients generally contribute less, which
is unsurprising since absolute values establish the baseline, with gradients enhancing finer details. Even though,
ΔTCWV and ΔIWP still account for ∼10% and ∼5%, respectively, for both classification and regression, while
ΔCAPE contributes to another ∼5% in regression, collectively, these gradients account for 26%/20% for clas-
sification/regression predictions, respectively, indicating a substantial overall contribution.

Figure 3. Probabilistic inference power of normalized temporal gradients of environmental variables (∆Vn) for event stage
(S). We only mark the stages with the three highest conditional probabilities, P(S∣∆Vn), independently computed for each
percentile interval of the ΔVn distribution from the entire study period (see an example legend for panel (g)). Arrows to the
left of each panel indicate events' temporal progression through the 15 stages delineated in Figure 2. Results are calculated
using all CONUS data (2018–2020).
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Figure 4.
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4. Conclusions and Discussion
In this study, we explore the potential of leveraging the dynamic evolution of environmental variables to improve
satellite precipitation retrieval accuracy in a physically interpretable manner. Building on evidence that satellite
retrieval errors depend on precipitation‐event stages and that environmental conditions evolve significantly
throughout storm lifecycles, we hypothesize that the temporal dynamics of these variables could serve as proxies
for storm progression, thereby indicating stage‐dependent errors and boosting retrievals' overall accuracy. Our
statistical analysis shows that ERA5 environmental variables and IMERG errors coevolve robustly during events,
with the variables' temporal gradients reliably inferring event stages. A subsequent machine‐learning post-
processing test incorporating these variables and their gradients into IMERG effectively demonstrates accuracy
gains.

While our statistical analysis and machine‐learning experiment are based on IMERG, we note that the insights
derived are not product‐specific. This generality stems not only from the physical reality that environmental fields
intrinsically coevolve with the precipitation lifecycle (Figure 2), but also from our analysis in Figure 3, which
shows that the normalized temporal gradients of environmental variables exhibit robust inferential power for
identifying the “real” event stages, independent of any specific retrieval. In other words, these variables could
serve as effective proxies for event stages and potentially improve various satellite products' accuracy through this
mechanism, provided their errors exhibit stage dependence. In fact, Li et al. (2025) have demonstrated that the
stage‐dependent error is intrinsic to the single‐sensor microwave precipitation retrievals—the backbone of most
global satellite precipitation estimates. Therefore, the insights presented here are transferable to improving sat-
ellite products beyond IMERG.

Beyond reducing errors arising from the unresolved evolution of retrieval relationships during storm progression,
environmental variables' stage‐inference capability is also promising to help mitigate spatiotemporal mismatch
errors—particularly the temporal lag between cloud signatures and surface rainfall caused by hydrometeor fall
time (Guilloteau et al., 2018; You et al., 2019). For example, satellite‐derived event stage from temporally
continuous satellite products can be inferred and aligned with the “true” stage proxy from environmental cues to
estimate their phase offsets automatically. The phase‐offset‐specific correction magnitudes of satellite products
can then be learned directly, without resorting to ad hoc time‐shifting, which warrants future investigation. By
contrast, physically based environmental variables are likely less effective in addressing another non‐physical,
time‐dependent major error source in multi‐satellite merged products, namely abrupt transitions among data
sources of differing quality (e.g., PMW, IR, or interpolated data). Mitigating these artifacts will require alternative
strategies, such as embedding sensor‐specific characteristics within ML frameworks, which can be explored in
future work.

Although this study implements the insights derived from our statistical analysis in a postprocessing framework
for IMERG, the overarching insight—fully leveraging spatiotemporal atmospheric fields rich in physical
information—applies to a range of satellite precipitation tasks, including instantaneous retrieval, observation‐gap
filling, bias‐correction, downscaling, nowcasting, and multi‐source data fusion (Dai & Ushijima‐Mwe-
sigwa, 2025; Guilloteau et al., 2025; Rahimi et al., 2024). On the other hand, however, to generalize our methods/
insights to broader spatial domains, extensive testing across diverse regions remains essential, given the sub-
stantial variability in environmental conditions and satellite‐derived errors. This could ultimately lead either to
region‐specific models trained within comparatively uniform environmental settings, or to a single, large‐scale
global model that adapts to local precipitation regimes through geolocation‐/climate‐aware embeddings com-
bined with a pre‐training/fine‐tuning framework (e.g., Immorlano et al., 2025). Moreover, although the gradient‐
based contributions are moderate (∼20%–25%; Figure 4d), this aligns with expectations given our relatively
simple test model and limited temporal dynamics employed. Looking ahead, advanced deep‐learning approaches,

Figure 4. ML‐based bias‐correction tests for IMERG incorporating environmental variables (V) and their temporal gradients (ΔV). (a) Workflow: three tests with
progressively expanded input configurations over Northeastern U.S. (40°N–50°N, 90°W–65°W) in winter (December‐January‐February, DJF) using the two‐
step Catboost algorithm: (i) A binary classifier for rainy/non‐rainy discrimination; (ii) A regressor for identified rainy cases. Validation follows a random 70%:30%
training/test split, with the 70% training set further divided 2:8 (14% validation, 56% training) for hyperparameter tuning, (b) classification metric: Heidke Skill Score
for raw IMERG and each test under varying detection thresholds, defined as percentiles of the GV‐MRMS intensity distribution, (c) regression Metric: Boxplots of
Absolute Error for raw IMERG and each test, only showing the 25th, 50th, and 75th percentiles due to the highly skewed distributions, and (d) global SHAP feature
importances (%) of inputs for classification (top) and regression (bottom), separately in Test 3#, with SHAP values normalized for direct comparison between the two
modules.
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especially video‐based architectures (e.g., Srivastava et al., 2024), are poised to deliver larger gains by auto-
matically extracting more comprehensive spatiotemporal features, while our physically grounded analyses can, in
turn, guide model design (e.g., incorporating lag‐aware attention modules that capture delayed correlations
among environmental variables and precipitation intensities (e.g., Yang et al., 2024)).

Data Availability Statement
GV‐MRMS is available at NASA Global Hydrology Resource Center (GHRC) (Kirstetter et al., 2018); IMERG is
available at NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) (Huffman
et al., 2023); ERA5 is available at ECMWF Copernicus Climate Change (C3S) Service Climate Data Store (CDS)
(Hersbach et al., 2023a, 2023b).
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