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Abstract— A generative diffusion model is used to produce
probabilistic ensembles of precipitation intensity maps at the 1-
h 5-km resolution. The generation is conditioned on infrared
and microwave radiometric measurements from the GOES and
DMSP satellites and is trained with merged ground radar and
gauge data over the southeastern United States. The generated
precipitation maps reproduce the spatial autocovariance and
other multiscale statistical properties of the gauge-radar ref-
erence fields on average. Conditioning the generation on the
satellite measurements allows us to constrain the magnitude and
location of each generated precipitation feature. The mean of
the 128-member ensemble shows high spatial coherence with
the reference fields with a 0.82 linear correlation between the
two. On average, the coherence between any two ensemble
members is approximately the same as the coherence between
any ensemble member and the ground reference, attesting that
the ensemble dispersion is a proper measure of the estimation
uncertainty. From the generated ensembles, we can easily derive
the probability of the precipitation intensity exceeding any given
intensity threshold, at the 5-km resolution of the generation,
or any desired aggregated resolution.

Index Terms— Deep learning, ensemble generation, gener-
ative diffusion models, infrared, microwaves, precipitation,
probabilistic estimation, satellite.

I. INTRODUCTION

THE estimation of precipitation intensity from spaceborne
passive radiometric measurements, either in the optical

infrared (IR) domain or in the microwave (MW) domain, has
been performed operationally for more than two decades [1],
[2], [3]. It is the backbone of a suite of global precipitation
mapping products [4], [5], [6], [7], which are widely used for
research and applications in hydrology, water management,
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weather and climate monitoring, impact studies, and risk
assessment. In recent years, there has been increasing interest
in applying deep learning methods to the problem of inverting
the radiometric measurements into precipitation intensity [8],
[9], [10], [11], [12]. One of the main advantages of the
deep learning framework is that it can easily accommodate
a large number of heterogeneous inputs (predictor variables
or conditioning variables) as constraints toward the output of
a predictive or a conditional generative model. One can thus
easily combine measurements from several different instru-
ments as inputs to a deep learning model, allowing researchers
to build relatively complex prediction models in a relatively
straightforward data-driven manner.

Importantly, deep neural networks are resilient to what is
commonly referred to as the “curse of dimensionality,” which
is the fact that the efficiency of classical estimation algorithms
tends to dramatically decrease if too many variables are added
as inputs [13], [14]. This “curse of dimensionality” can be
viewed as a manifestation of the overfitting phenomenon:
when empirically fitting an explicit statistical model with n
parameters (n degrees of freedom) to a dataset, the num-
ber of independent samples necessary to avoid overfitting
increases exponentially with n. However, in the deep learning
framework, there is a priori no contraindication to including
a large number of predictors or conditions as input of a
deep neural network for estimating precipitation intensity,
to reinforce the constraints and reduce the underdetermination.
For these reasons, deep learning approaches are increasingly
being applied to the problem of estimating precipitation
intensity from coincident radiometric measurements made by
sensors of different types and carried by different satellite
platforms.

While these new-generation algorithms have demonstrated
marked improvement in terms of retrieval accuracy and
computational efficiency when compared to older methods
such as lookup tables (LUTs) or k-nearest neighbor (KNN)
algorithms [15], the inversion of the measured radiances
into precipitation intensity remains a fundamentally undercon-
strained problem [16]. As a result, the precipitation intensities
estimated from the radiometric measurements are always
associated with some degree of uncertainty and should be
interpreted in a statistical or probabilistic sense [17]. Yet, many
operational precipitation products such as [4], [5], [6], and [7]
do not systematically provide a quantitative measure of the
uncertainty associated with each estimate.
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In the present study, we introduce a deep neural condi-
tional generative diffusion model for mapping precipitation
intensity at the hourly timescale from coincident MW and
IR satellite measurements. The MW radiances at the top of
the atmosphere are provided by a special sensor microwave
imager/sounder (SSMI/S) onboard the defense meteorological
satellite program (DMSP) satellite series and the IR cloud
brightness temperature at 10.3 µm is provided by the advanced
baseline imager (ABI) onboard the geostationary opera-
tional environmental satellite (GOES-R) series. Most existing
radiance-to-precipitation-intensity inversion algorithms focus
on estimating the “instantaneous” precipitation intensity at the
exact time of the radiometric measurement. Here, we estimate
the mean precipitation intensity for the one-hour period that
spans from 30 min before the time of the SSMI/S MW
radiometric measurement to 30 min after the time of the
SSMI/S measurement. The southeastern part of the continental
United States is selected as a testbed area for the development
and evaluation of the algorithm. Over this region, the ABI
imager onboard GOES-16 provides one radiometric image
every 5 min. For an SSMI/S observation occurring at time
t , corresponding to the overpass time of the DMPS-F17
satellite over the region of interest, we take the 10-channel
multispectral image produced by SSMI/S along with the 13 IR
10.3-µm images produced by ABI from t − 30 to t + 30 min
as inputs of the neural network. The neural network diffusion
model generates a map of the hourly precipitation intensity
from t − 30 to t + 30 min in the area covered by the SSMI/S
scan, for every overpass of the DMPS-F17 satellite. The target
spatial resolution is 5 km. For training and evaluating the
model, we rely on precipitation maps provided by the NOAA
multiradar multisensor (MRMS [18]) system which combines
ground radar and gauge measurements.

To account for the uncertainty in the generated fields
of precipitation intensity, which is inherent to the limited
information content of the passive radiometric measurements
and the underdetermination of the inversion, we use the
stochastic generation capabilities of the diffusion model to
produce a large ensemble of possible realizations (128 real-
izations in the retained setup) of the precipitation field for
each observed scene, instead of a unique “best guess.” All
realizations are considered equiprobable, and the ensemble
dispersion is treated as a measure of the retrieval uncertainty.
While, over a large number of scenes, the ensemble mean
shall be, on average, the closest estimate to the truth [in
terms of the mean squared error (mse)], each realization is
a “realistic” precipitation field in the sense that it preserves
the expected statistical properties of the true precipitation
field (in particular, the statistical distribution of the pixel-wise
intensities and the spatial correlation). The proposed technique
is designated as diffusion-based ensemble rainfall estimation
from satellite (DifERS).

The two principal novelties of DifERS thus are: 1) the han-
dling of the uncertainty through the generation of ensembles
of equiprobable realizations and 2) the use of coincident mea-
surements from different instruments and different platforms
at the radiance inversion level. We note that, for the current
operational multisensor/multiplatform satellite precipitation

products, the fusion between the sensors is not performed
at the inversion step, but is done in a subsequent step: the
radiometric measurements of each sensor are independently
inverted into precipitation intensity estimates, the different
intensity estimates are then merged together through weighted
averaging and dynamical interpolation [6], [19], [20]. Over
both land and oceans, estimates of instantaneous precipita-
tion intensity derived from passive MW measurements are
generally found to be significantly more accurate than those
derived from IR or multispectral optical imagery [3]; conse-
quently, more weight is given to MW estimates, on average,
in multisensor products such as [6]. We also note that, while
with existing algorithms, the radiometric measurements are
generally inverted into precipitation intensities as “instan-
taneous snapshots,” it is often assumed that this snapshot
is representative of the time-averaged intensity over periods
ranging from 30 min to several hours at the later steps when
the individual estimates are merged together [3], [21]. The
short-time variations of precipitation intensity are thus ignored.
Here, we specifically train DifERS to retrieve hourly accumu-
lated precipitation fields instead of instantaneous intensities
as we expect that the 5-min IR imagery can help reduce
the inaccuracy arising from variations of the instantaneous
precipitation intensity during the hour of interest.

The article is organized as follows. Section II presents the
data, Section III describes the architecture of the DifERS
model and its training process, Section IV presents the results
in terms of the fidelity of the generated precipitation fields,
measures of accuracy and uncertainty, and probabilistic inter-
pretation of the DifERS ensembles. Finally, conclusions and
future perspectives are presented in Section V.

II. DATA

A. Passive Multispectral Microwave Radiances From SSMI/S

The SSMI/S is a conically scanning passive microwave
imager carried by the DMSP satellite series since 2003 [22].
The 24 channels of SSMI/S measure polarized microwave
radiances at the top of the atmosphere between 19 and
183 GHz. Of the 24 channels, 11 are most relevant for
precipitation estimation: three vertical polarization and three
horizontal polarization channels at 19, 37, and 92 GHz,
a vertical polarization channel at 22 GHz, a horizontal
polarization channel at 155 GHz, and three double-sideband
vertical polarization channels at 183 ± 1, 183 ± 3, and
183 ± 7 GHz. The radiances measured by SSMI/S at the
top of the atmosphere are the product of the surface emission
combined with the absorption and emission signal of water
vapor and liquid rain drops in the atmosphere (predominant
below 40 GHz), plus the scattering effect of atmospheric ice
particles (predominant above 40 GHz). The conical scanning
pattern of SSMI/S from an altitude of about 830 km cov-
ers a 1700-km wide swath under the satellite track. Each
scan line consists of 180 overlapping fields of view and
the distance between two consecutive scan lines is 12.5 km.
While the local observation time is variable, a single SSMI/S
sensor revisits any point of the globe at least twice per day.
The current constellation of three functional SSMI/S sensors

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 20,2025 at 17:07:21 UTC from IEEE Xplore.  Restrictions apply. 



GUILLOTEAU et al.: GENERATIVE DIFFUSION MODEL FOR PROBABILISTIC ENSEMBLES 5402415

(onboard the F-16, F-17, and F-18 DMSP satellites), therefore,
allows for six observations per day at any location. For the
algorithmic demonstration of the present study, only data
provided by the SSMI/S sensor onboard DMSP F-17 is used.
We note that since April 2016, the data from the 37 V
channel of the DMSP F-17 SSMI/S sensor is no longer
available [23]. Therefore, only the 10 remaining channels are
used here. The DMSP F17 SSMI/S radiometric fields are
distributed by NASA as the GPM_1CF17SSMIS product (doi:
10.5067/GPM/SSMIS/F17/1C/07).

B. Cloud Brightness Temperature at 10.3 µm

The ABI onboard the GOES-R satellite series performs
optical imaging of the Earth from geostationary orbit in the
visible and IR domains. In the present study, we only consider
the thermal IR 10.3-µm channel. The brightness temperature at
10.3 µm is a fair indicator of the altitude of the cloud top [24].
Because optical wavelengths cannot penetrate optically thick
clouds, IR measurements provide only indirect information
about the precipitation processes. The utility of geostationary
optical imagery, compared to MW radiometry from low-Earth-
orbit, lies in its ability to produce images frequently and at
high spatial resolution. Over the continental United States,
the ABI imager onboard GOES-16 produces one image every
five minutes at 2-km resolution. This high temporal sampling
allows monitoring of the development and dynamics of cloud
systems. The dynamical information provided by the ABI
over a one-hour time window (from t − 30 to t + 30 min)
complements the snapshot information provided by SSMI/S
at time t . In [25], it was demonstrated, for example, that the
development stage of cloud systems can be estimated from
geostationary IR and provides useful information for reducing
systematic biases in passive MW estimates of precipitation
intensity. The ABI brightness temperature fields are distributed
by NOAA as the ABI level 2 cloud and moisture imagery
products (ABI-L2-CMIP).

C. Surface Precipitation Intensity From MRMS Ground
Radar and Gauge Measurements

The reference precipitation fields used for training and
evaluating DifERS are produced by the NOAA MRMS system.
The MRMS precipitation estimates are obtained from merged
ground radar and gauge data [18]. They are produced at a
1-km and 2-min resolution over the contiguous United States
and the southern part of Canada. The present study is focused
on the southeastern part of the United States, between latitudes
31 ◦N and 41 ◦N and longitudes 81 ◦W and 102 ◦W (Fig. 1),
where the radar coverage is spatially continuous and the gauge
density is high.

All the radiometric images from SSMI/S and ABI are
projected on a common regular 5 km by 5 km spatial grid
before being used as inputs in DifERS. These re-projections
are performed through simple bi-linear interpolation. The
MRMS precipitation fields are remapped on the same 5 km
grid through areal averaging and temporally aggregated at the
hourly resolution (with the center of each estimation hour
corresponding to the time of overpass of the DMSP-F17 over

the study area). The training and testing data for our study
is taken during the 2021–2023 period, for which the MRMS
data has been made publicly available.

III. MODEL DESCRIPTION

Diffusion models [26], [27] are a recently introduced class
of deep generative models that can sample from complex,
high-dimensional distributions through an iterative denoising
process. Intuitively, to generate a sample, the model starts from
pure Gaussian noise and iteratively removes a small amount of
noise for many iterations until a realistic sample is generated.
Due to their state-of-the-art performance in a wide range of
domains, including images [28], audio [29], and video [30],
diffusion models have become a popular tool for generative
modeling of complex data. While GANs have seen some
success in precipitation nowcasting [31], [32], they are often
difficult to train [33] and can suffer from mode collapse [34],
[35], limiting their use in obtaining well-calibrated uncertainty
estimates. Moreover, there is evidence that diffusion mod-
els can outperform GANs in perceptual quality on natural
images [36], further motivating the use of diffusion models
in precipitation retrieval.

In what follows, we provide an informal discussion of
the key ideas underpinning diffusion models. We refer to
Asperti et al. [37] for additional details regarding diffusion
models in the context of precipitation nowcasting and [38] for
an in-depth tutorial.

We first introduce some notation. We will use x0 to denote a
precipitation image from our training distribution, that is, a 64
× 64 pixel image representing the accumulated precipitation
at 5-km resolution as observed by MRMS over a 320 ×

320 km2 subset of the study region. The variable z represents
the corresponding 64 × 64 × D input vector, with D =

23 (10 SSMI/S channels + 13 single-band ABI images).
Together, the pair (x0, z) comprise a sample from the joint data
distribution p0(x0, z). Our goal is to construct a probabilistic
model pθ (x0|z) of the distribution of precipitation images x0
conditioned on the MW/IR information contained in z, where
θ represents the set of model parameters. After learning such
a model, we will be able to sample predictions x0 ∼ pθ (x0|z)
from this learned distribution for given covariates z.

A. Constructing a Diffusion Model

Diffusion models consist of two stochastic processes. The
first, often called the forward process, is a procedure that
gradually destroys the information contained in a precipitation
image x0 over many iterations. At the end of the forward
process, the image x0 is turned into an image whose pixels
are pure noise. The forward process is fixed before training
the model and involves no learning.

The second process, called the reverse process, is obtained
by running the chosen forward process backward in time. That
is, the reverse process starts from pure noise and gradually
adds more information into the image over many iterations,
eventually generating an image that resembles a realistic
precipitation image. However, the analytical form of the true

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on April 20,2025 at 17:07:21 UTC from IEEE Xplore.  Restrictions apply. 



5402415 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 63, 2025

Fig. 1. Passive MW and IR brightness temperatures measured at the top of the atmosphere on May 04, 2021, at 13:10 UTC over the study domain. (Top,
left) Brightness temperature at 92 GHz from SSMI/S onboard DMSP-F17. (Top, right) Stacked SSMI/S brightness temperature for all channels over a 320 by
320 km subset of the study domain. (Bottom, left) Brightness temperature at 10.3 µm from ABI onboard GOES-16 at 13:10 UTC (corresponding to the time
of overpass of the DMSP-F17 satellite). (Bottom, right) Time series of ABI brightness temperature fields at 10.3 µm from 12:40 to 13:40 UTC over a 320 by
320 km subset of the study domain. The green rectangle on the left panel delineates the study domain between latitudes 31 ◦N and 41 ◦N and longitudes
81 ◦W and 102 ◦W.

reverse process is intractable, and thus we will need to learn an
approximation of the reverse process using a neural network.

While many versions of diffusion models have been pro-
posed, we build upon the denoising diffusion probabilistic
model (DDPM) framework of Ho et al. [26]. To begin,
we describe our choice of forward process. First, we fix a
number of diffusion iterations K . This is typically large, and
in this work, we use K = 1000. Next, we define the forward
transition densities

p(xk|xk−1) = N
(

xk

∣∣∣√1 − βkxk−1, βkI
)

(1)

for k = 1, 2, . . . , K . Here, 0 < βk < 1 is a fixed scalar value
that controls the variance of the noise added to the image at
iteration k. The chosen values for β1, . . . , βK are typically
referred to as the noise schedule, and these are fixed before
training the model.

In essence, given an image xk−1 at iteration k−1, the image
at the subsequent iteration k is obtained via

xk =
√

1 − βkxk−1 +
√

βkϵk, ϵk ∼ N (ϵk|0, I). (2)

As 0 < βk < 1, we see that this has the effect of shrinking
every pixel value in xk−1 toward zero, while simultaneously

adding independent Gaussian noise with variance βk to each
pixel.

By applying the relationship in (2) once again, we see that

xk =
√

1 − βk

(√
1 − βk−1xk−2 +

√
βk−1ϵk−1

)
+

√
βkϵk

which, upon recursion, yields

xk =

√
αkx0 +

√
1 − αkϵ, ϵ ∼ N (ϵ|0, I) (3)

where we define the scalar constants αk, αk from the noise
schedule via

αk = 1 − βk αk =

k∏
j=1

α j . (4)

In other words, the noisy image xk can be obtained directly
from x0 without having to simulate the entire forward process
step by step. When the noise schedule (βk)

K
k=1 is chosen

appropriately, we will have that αK ≈ 0 at the terminal
iteration K , and thus (3) shows us that the distribution of xK
is approximately N (0, I). In practice, there are many viable
choices for the noise schedule, and we provide additional
details in the Appendix. Note that the forward process is
independent of the conditioning variables z.
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So far, we have described a procedure for iteratively turning
our images into noise. To obtain a generative model, we would
ideally like to know the reverse transition densities

p(xk−1|xk, z) =
p(xk|xk−1)p(xk−1|z)

p(xk|z)
. (5)

If we had access to these, we could start by sampling an
image whose pixels are pure noise xK ∼ N (xK|0, I) and
iteratively sample xk−1 ∼ p(xk−1|xk, z) until we obtain a
draw x0 ∼ p(x0|z) from our distribution of interest. Here,
we now condition the covariates z as we would like our model
to use this information when producing a sample. However,
we cannot directly compute these densities as the distributions
p(xk|z) are intractable, requiring a marginalization over the
unknown p(x0|z).

Thus, we require an approximation of the true reverse
densities, denoted by

pθ (xk−1|xk, z) ≈ p(xk−1|xk, z) (6)

where θ represents the weights of a neural network that will be
used to define this density. In practice, we choose a Gaussian
distribution of the form

pθ (xk−1|xk, z) = N (xk−1|µθ (k, xk, z), βkI). (7)

The form of this distribution is a heuristic that has been
found to work well in practice [26]. Here, a neural network
µθ (k, xk, z) takes in the iteration k, the noisy image xk, and
the conditioning information z and is tasked with predicting
the expected value of xk−1 given this information. In this way,
our neural network may be viewed as performing a denoising
operation.

To train the model, we would like to minimize the model’s
negative log-likelihood E[− log pθ (x0|z)], where this expec-
tation is taken over samples (x0, z) ∼ p0(x0, z) from the
data distribution. However, evaluating pθ (x0|z) is intractable
as this requires marginalizing over the intermediate diffusion
steps x1, . . . , xK. Instead, we take a variational approach and
minimize an upper bound on this likelihood. Although deriving
this variational upper bound is nontrivial, it can be shown [26],
[39] that it is given by

E

[
w(k)

∥∥∥∥ 1
√

αk

(
xk −

βk
√

1 − αk
ϵ

)
− µθ (k, xk, z)

∥∥∥∥2
]

(8)

where this expectation is taken over (x0, z) ∼ p0(x0, z),
ϵ ∼ N (0, I) and k ∼ Unif({1, 2, . . . , K }). Here, w(k) is a
scalar that corresponds to a different weighting of the loss at
each diffusion step. Observe that this loss is merely a mean-
squared error, where the target involves the noisy image xk,
the noise ϵ, and constants arising from the noise schedule.
Given that our target has this known structure, it is natural to
parameterize the model’s output µθ (k, xk, z) as

µθ (k, xk, z) =
1

√
αk

(
xk −

βk
√

1 − αk
ϵθ (k, xk, z)

)
(9)

where ϵθ (k, xk, z) is a neural network trained not to predict
the less-noisy xk−1, but rather to directly predicts the noise ϵ

added to xk−1 to produce xk. Note that this neural network
produces an image having the same dimensions as the input

xk. This parameterization has the benefit of incorporating
known information from the forward process into the model
parameterization; in other words, since the model has direct
access to xk, we may use this to directly parameterize the
mean µθ (k, xk, z) and only use the neural network to predict
the necessary missing information.

Under this parameterization, we may train the model by
minimizing the simplified loss [26], given by

L(θ) = Ex0,z,ϵ,k
[
||ϵ − ϵθ (k, xk, z)||2

]
. (10)

Note that we have set w(k) = 1, a standard heuristic in
diffusion modeling, as this weighting has been observed to
produce higher-quality samples. We note that other model
parameterizations are possible, and we discuss the details in
the Appendix. The expectation in the loss is estimated by
Monte Carlo sampling, allowing us to easily compute the
gradient of L(θ) via backpropagation for training.

B. Model Architecture

A key choice in obtaining high-quality results with diffusion
models is the choice of a model architecture for ϵθ (k, xk, z)
that is appropriate for modeling the spatial characteristics of
the problem at hand. In this work, we propose a two-stage
architecture, consisting of two distinct UNets [40]. The UNet
architecture is a type of convolutional neural network that
takes in an image (plus additional covariates) and produces
a new image having the same dimensions as the original
input, which is necessary for implementing a diffusion model
as described. This output image is produced by a series of
convolutions and rescaling operations, allowing the model to
incorporate information across various spatial scales.

In our model, the first UNet seeks to produce a coarse
deterministic field, which can be viewed intuitively as an
estimate of the conditional mean of x0 given xk and z.
However, simply predicting the conditional mean can result
in blurry, overly smooth images, as is known to be a common
failure case of MSE-based approaches [12], [41]. Thus, the
second UNet takes the output of the first UNet (along with
the noisy image xk and conditioning variables z) and predicts
a stochastic residual which seeks to add additional fine-grained
details. The generative process of our architecture is visualized
in Fig. 2. We note that similar residual diffusion architectures
have shown strong performance on precipitation downscaling
tasks [42], [43], further motivating our approach.

The model is trained using Adam [44], a standard stochastic
gradient descent-based method, on a set of 3617 scenes sam-
pled at the times SSMI/S overpasses over the study domain.
Our training data is normalized such that all pixel values lie
in the range [−1, 1]. We provide additional details on our
architecture and training procedure in the Appendix.

IV. RESULTS

A. Model Accuracy and Performance at Multiple Spatial
Scales

In this section, we compare the hourly precipitation fields
generated by DifERS to the MRMS reference fields. The
statistical resemblance of the individual ensemble members
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Fig. 2. Schematic representation of the DifERS architecture. The inputs are 64 × 64-pixel (320 × 320 km) brightness temperature fields, specifically, ten
fields corresponding to the ten channels of SSMI/S at time t , and 13 fields corresponding to ABI brightness temperature at 10.3 µm at times (t − 30, t − 25,
t − 20, . . . , t + 30 min). The outputs are 64 × 64-pixel hourly precipitation maps (precipitation height accumulated from t − 30 to t + 30 min). For each
observed scene, 128 precipitation maps are sampled from the model.

to the MRMS fields is verified in terms of the distribution
of precipitation intensities and of the multiscale variance and
spatial autocovariance through the Fourier power spectrum.
The ensemble mean is considered to be equivalent to a
Bayesian posterior mean estimate and is evaluated against the
MRMS “truth” in terms of mse and coefficient of linear corre-
lation. The Fourier spectral coherence between the ensemble
members and the MRMS truth is also analyzed to evaluate the
ability of DifERS to properly localize precipitation features.
The evaluation dataset, disjoint from the training dataset, com-
prises 486 precipitation scenes of dimensions 64 × 64 pixels
at 5-km resolution.

Coincident precipitation fields from two operational satellite
products, the MW-based SSMI/S-GPROF V7 product [45]
and the IR-based PERSIANN-CCS product [46], are also
evaluated against MRMS over the same set of precipita-
tion scenes. The PERSIANN-CSS and SSMI/S-GPROF fields
are both reprojected on the 5-km grid of the DifERS out-
puts for the evaluation, their original nominal resolutions
being, respectively, 4 and 38 km. The temporal resolution of
PERSIANN-CCS is one hour. However, it should be noted
that the PERSIANN-CCS estimates are temporal integrals
corresponding to calendar hours (from X:00 GMT to X + 1:00
GMT), and therefore do not perfectly match the one hour cen-
tered on the time t of the SSMI/S overpass. GPROF estimates
are per-design estimates of the instantaneous precipitation
intensity at time t ; they are, however, generally considered
to be fairly representative of the 20-min-to-1-h integrated
precipitation intensity [3], [21]. Including PERSIANN-CSS
and SSMI/S-GPROF in the evaluation allows us to define
baseline targets for the expected accuracy of DifERS. It should

be noted that, while in its present setup, DifERS is trained to
reproduce MRMS precipitation maps in the southeastern US
specifically, PERSIANN-CSS and GPROF are optimized for
global performance.

We first qualitatively evaluate the visual resemblance
between the DifERS and MRMS precipitation fields. Figs. 3
and 4 show the first four members of the DifERS ensemble
for two randomly selected scenes of the evaluation dataset;
the ensemble mean and ensemble dispersion (across all
128 ensemble members) are also shown along with the MRMS
“ground truth.” For both scenes, the ensemble members are
visually similar to the MRMS truth in terms of the approximate
location and magnitude of the precipitation features, and in
terms of the texture of the precipitation fields. The ensemble
mean is naturally smoother than the individual ensemble
members, with maximal values around 13 and 12 mm/h in
the Figs. 3 and 4 cases, respectively, against 23 and 16 mm/h
maximal values in the individual ensemble members or the
MRMS fields.

Across the whole evaluation dataset, the statistical distri-
bution of pixel precipitation intensities in the DifERS fields
closely matches that of the MRMS fields (Fig. 5), with only a
slight underestimation of the frequency of occurrence of pre-
cipitation rates above 30 mm/h. In comparison, for the GPROF
statistical distribution, the occurrence of all precipitation inten-
sities above 7 mm/h is dramatically underestimated. However,
it should be recalled that, while the GPROF fields are projected
on a 5-km grid in this study, the original resolution of SSMI/S-
GPROF is 38 km. For the PERSIANN-CCS distribution,
the occurrence of precipitation intensities between 10 and
33 mm/h is significantly underestimated, as well as that of
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Fig. 3. Precipitation fields generated by DifERS for the period ranging from 12:40 to 13:40 UTC on May 4, 2021. Four of the 128 generated ensemble
members are shown, along with the ensemble mean, ensemble dispersion (standard deviation), and the MRMS ground truth.

Fig. 4. Same as Fig. 3, over a different portion of the study domain, for the period ranging from 12:30 to 13:30 UTC on October 28, 2020.

precipitation rates above 35 mm/h. Notably, the distribution of
precipitation intensities in PERSIANN-CCS shows a peak at
35 mm/h. Regarding the DifERS ensemble mean, its smooth-
ness is apparent in the statistical distribution, as intensities
above 15 mm/h are “compressed” when the different members
of the ensemble are averaged together. In addition to the
visual evaluation of the distributions, to provide a quantitative
measure of the ability of DifERS to reproduce the statistical
distribution of MRMS precipitation intensities, we compute
the Kullback–Leibler divergence (KLD) between the DifERS
and MRMS discretized distributions (see Appendix A for the
formal definition of the KLD), using a 1-mm/h discretization

step over the 0 to 52-mm/h intensity range. The lower the
KLD, the more similar the two distributions. The computed
KLD of the DifERS distribution to the MRMS distribution is
2 × 10−4, which is several orders of magnitude lower than
the values computed for the GPROF and PERSIANN-CCS
products, reported in Table I. As expected, the KLD of the
DifERS ensemble mean distribution to the MRMS distribution
is much higher than for the individual members, at 35 × 10−4.

To verify that DifERS can reproduce the statistical distribu-
tion of precipitation intensities across multiple spatial scales,
and not only at the 5-km pixel scale, but we also look at
the second, third, and fourth moments of the distributions
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Fig. 5. Density histograms showing the statistical distribution of precipitation
intensities at 5 km and one-hour resolution in the DifERS fields, along with
the distributions for the DifERS ensemble mean (EM) field, for the MRMS
ground truth and the operational GPROF and PERSIANN-CCS products.

TABLE I
(LEFT COLUMN) KLD OF THE STATISTICAL DISTRIBUTION OF PIXEL PRE-

CIPITATION INTENSITIES AT THE 5-km RESOLUTION TO THE MRMS
DISTRIBUTION. (RIGHT COLUMN) KLD OF THE FOURIER POWER

SPECTRUM OF THE PRECIPITATION MAPS TO THE MRMS
POWER SPECTRUM

(variance, skewness, and kurtosis) at different resolutions
between 5 and 160 km (Fig. 6). How all three moments
vary with scale is consistent between DifERS and MRMS.
At resolutions finer than 40 km, the variance, skewness
coefficient, and kurtosis coefficient of the DifERS ensemble
mean are significantly lower than for the individual ensemble
members, once again illustrating the smoothing effect of
the ensemble averaging, leading to “compressed” statistical
distributions. Another way to assess the multiscale properties
of the precipitation maps is to analyze their Fourier power
spectra, which are directly related to the spatial autocorrelation
of the fields [47]. Fig. 7 shows that the DifERS spatial power
spectrum is highly consistent with the MRMS spectrum. As for
the statistical distributions, the (dis)similarity between two
power spectra can be measured through the KLD, given that
power spectra are formally equivalent to distributions. The
KLD of the power spectra of the different satellite precipitation
estimates to the MRMS power spectrum is reported in Table I.

In addition to verifying that the DifERS fields look realistic
and have adequate multiscale statistical properties, we verify
that DifERS properly localizes the precipitation features. For
this, we compute the Fourier spectral coherence between the
DifERS fields (individual realizations and ensemble mean) and
the MRMS fields (Fig. 8). In terms of the coherence with
MRMS, the DifERS ensemble mean shows higher values than
the individual ensemble members, which is expected as the
stochastically generated spatial variability in the individual
members inevitably reduces the coherence. For the ensemble

TABLE II
PERFORMANCE METRICS OF THE DIFERS ENSEMBLE MEAN,

PERSIANN-CSS, AND GPROF WHEN COMPARED WITH THE MRMS
GROUND TRUTH AT 5-km RESOLUTION. THE METRICS ARE THE

COEFFICIENT OF LINEAR CORRELATION (CC), THE MSE, THE
RELATIVE MEAN BIAS, AND THE EFFECTIVE

RESOLUTION (ER)

mean, the coherence with MRMS is higher than 0.7 down to
the 56-km wavelength. DifERS is, therefore, capable of accu-
rately resolving the spatial variability of precipitation down
to the 23-km scale (half of the shortest resolved wavelength
in accordance with the Nyquist–Shannon theorem), which is
approximately the instrumental resolution of SSMI/S. This
defines what we call the effective resolution of DifERS (the
0.7 spectral coherence threshold corresponds to a 1:1 spectral
signal-to-noise ratio [48]). The integral of the spectral coher-
ence across all wavenumbers determines the coefficient of
linear correlation between DifERS and MRMS. The coefficient
of linear correlation is a widely used metric to assess the over-
all consistency between two different estimates of a variable
in geophysical remote sensing; another widely used metric is
the mean squared difference (MSD). These metrics for the
DifERS ensemble mean (and for GPROF and PERSIANN-
CCS) against MRMS are reported in Table II, along with the
mean bias and the effective resolution. For all metrics, the
DifERS ensemble mean shows excellent performance, well
above the GPROF and PERSIANN-CCS baseline.

The performance metrics reported above are computed as
bulk statistics over the whole evaluation dataset. A spatial-
ized analysis of the DifERS retrieval accuracy suggests that
the retrieval performance is spatially homogeneous in the
testbed area (see Figs. S2–S4). This result, however, should
be interpreted with caution, given the small sample size of
the evaluation dataset, the evaluation dataset amounts to an
average of 6 rainy samples per 5-km pixel of the testbed area
(Fig. S1).

B. Probabilistic Interpretation of the Outputs and
Uncertainty Quantification

In this section, we show how the dispersion of the DifERS
ensemble can provide a measure of the estimation uncertainty
at any desired spatial scale. We also demonstrate how the
ensemble can be interpreted as a probabilistic estimation.
In Section IV-A, we showed that the individual members of the
DifERS ensemble are similar to the MRMS truth in terms of
their multiscale statistical properties. Therefore, if we were to
“hide” the MRMS truth among the DifERS ensemble mem-
bers, it would not stand out for being statistically different.
Fig. 9 shows the spatial Fourier coherence spectrum between
the DifERS ensemble members and the DifERS ensemble
mean, along with the coherence spectrum between the MRMS
and the DifERS ensemble mean. The two coherence spectra
are remarkably similar, being quasi on top of each other. This
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Fig. 6. Variance, skewness, and kurtosis coefficients of the statistical distribution of hourly precipitation intensities as a function of the spatial resolution,
for the DifERS fields, the DifERS ensemble mean (EM) fields, the GPROF fields, the PERSIANN-CCS fields, and the MRMS ground truth.

Fig. 7. Omnidirectional spatial Fourier power spectrum of the DifERS
precipitation intensity maps at 5 km and one-hour resolution, along with the
spectra of the DifERS ensemble mean (EM), of the MRMS ground truth and
the operational GPROF and PERSIANN-CCS products.

Fig. 8. Omnidirectional spatial Fourier coherence between DifERS precip-
itation intensity maps at 5 km and the MRMS ground truth. The coherence
with MRMS is also shown for the DifERS ensemble mean (EM) fields, the
GPROF fields, and the PERSIANN-CCS fields.

shows that, on average, the coherence between any ensemble
member and the ensemble mean is essentially the same as
the coherence between the ensemble mean and the MRMS
truth. Once again, the MRMS truth would not stand out if put
among the DifERS ensemble members; on average, in terms
of their relative coherence, any ensemble member is as similar

Fig. 9. Spatial Fourier coherence between the DifERS ensemble members
and the DifERS ensemble mean, compared to the coherence between the
MRMS and the DifERS ensemble mean.

to any other ensemble mean as is to the MRMS truth. This
demonstrates that the dispersion of the ensemble members can
be used as a measure of the retrieval uncertainty.

In Figs. 3 and 4, the DifERS ensemble dispersion was
represented as the standard deviation of the 128 ensemble
values in each 5-km pixel. To evaluate the meaningfulness of
this standard deviation measure for uncertainty quantification,
we group all the pixels of the evaluation datasets according
to their DifERS ensemble standard deviation into 50 bins
between 0 and 10 mm/h. For each bin, we then compute
the empirical standard deviation of the true retrieval error
RD.EM − RMRMS (where RD.EM is the DifERS ensemble mean
value and RMRMS is the MRMS value). As shown in Fig. 10
(left), the resulting curve remains close to the 1:1 line,
demonstrating that, for each bin, the standard deviation of the
error RD.EM − RMRMS is approximately equal to the DifERS
ensemble standard deviation value used to define the bin. Only
for values higher than 4 mm/h, the true standard deviation
of the error is slightly larger, on average, than the ensemble
standard deviation. This small difference between the true
standard deviation of the error and the ensemble standard
deviation can be attributed to the epistemic uncertainty, as the
DifERS ensemble generation only accounts for the aleatoric
uncertainty.
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Fig. 10. (Left, solid blue curve) Empirical standard deviation of the retrieval error RD.EM − RMRMS as a function of the standard deviation of the 128 DifERS
ensemble in 5-km pixels. (Right, solid blue curve) Empirical standard deviation of the retrieval error RD.EM − RMRMS as a function of the standard deviation
of the 128 DifERS ensemble in 20-km area-averaged pixels. To produce these curves, the pixels of the evaluation dataset are grouped into 50 bins according
to the standard deviation of the 128 DifERS ensemble, and the standard deviation of the retrieval error RD.EM − RMRMS is then computed in each bin. Each
bin contains at least 100 pixels. The orange dashed curve in the right panel is what we obtain if we ignore the spatial correlation of the stochastic variability
in the ensemble members and compute the ensemble variance at 20-km resolution (4 × 4 aggregated pixels) as the mean of the 5-km pixel variances divided
by 42.

The evaluation of the ensemble standard deviation is
repeated after coarsening the DifERS and MRMS fields at
the 20-km resolution through simple pixel area averaging
(Fig. 10, right). At the 20-km resolution also, the ensemble
standard deviation is found to be a good proxy of the retrieval
error standard deviation. This is because the stochastically
generated variability in each DifERS ensemble member is
spatially coherent, which allows us to account for the spatial
correlation of retrieval errors and to properly estimate the
retrieval uncertainty at any desired resolution between 5 and
320 km. This would not be possible if the stochastic variability
was generated in each pixel independently. If we were to
ignore the spatial correlation of retrieval errors and estimate
the error variance in aggregated pixels as the sum of the 5-
km pixel variances divided by the number of averaged pixels
squared, we would dramatically underestimate the uncertainty
at coarsened resolutions, as shown in Fig. 10 (right, orange
dashed curve). Beyond the standard deviation of the retrieval
error, interpreting the DifERS ensemble as a probabilistic
estimation, we can derive the probability of exceedance of
a given intensity value for any pixel, simply by computing the
fraction of the 128 ensemble members with intensity above
the chosen value in this pixel. This can be done at the 5-km
pixel resolution or any desired coarsened resolution. Fig. 11
shows the probability of exceeding the 1, 4, and 10 mm/h
intensity thresholds derived from the DifERS ensemble in each
5-km pixel for the scene shown in Fig. 3 (12:40 to 13:40
UTC on May 4, 2021). As we did with the ensemble standard
deviation, we regrouped the pixels of the evaluation dataset
in 50 bins according to the DifERS-derived probability of
exceeding the 1-mm/h intensity threshold; we then computed
for each bin the actual fraction of the corresponding MRMS
pixels with intensity above the threshold. This was repeated
for the 2-, 4-, and 8-mm/h thresholds; the results are shown
in Fig. 12 (top row). For all four tested thresholds, the
curve showing the MRMS fraction above the threshold against

the DifERS ensemble probability of exceedance closely fol-
lows the 1:1 line. This demonstrates that the DifERS-derived
probability of exceedance matches the MRMS exceedance
rate on average over the evaluation dataset. This was also
verified at the 20-km resolution (Fig. 12, bottom row), with
satisfactory results, the increased noisiness in the curves at
coarser resolution and higher thresholds is only due to the
smaller sample size (number of pixels per bin) available for
computing the MRMS exceedance rate.

To complete the evaluation of the DifERS ensemble as a
probabilistic estimate, we utilize the Brier score. The Brier
score is a strictly proper scoring rule for evaluating proba-
bilistic predictions of the occurrence of an event [49]. Here,
the event is the exceedance of a given intensity threshold in a
given pixel. The Brier score is computed as an average over
a set of multiple predictions as the MSD between the binary
truth (1 if the event occurs and 0 if it does not occur), and the
probabilistic prediction (continuous value between 0 and 1).
See Appendix A for the formal definition of the Brier score.
The lower the Brier score, the more skillful the prediction.
The Brier score BS of the DifERS-predicted probability of
exceedance at values ranging from 0.5 to 30 mm/h is computed
here, at the 5-, 20-, and 80-km resolutions (Fig. 13). One can
see that, at all resolutions, BS is lower at higher intensity
thresholds. This is naturally expected, as the true frequency of
exceedance Ftrue decreases when the threshold increases. For a
skillful predictor, BS shall be always lower than Ftrue. Indeed,
with a “no-skill” probabilistic prediction systematically pre-
dicting a 0% probability of occurrence, BS would be equal to
Ftrue. The right panel of Fig. 13 shows the Brier skill score
BSS = 1−BS/Ftrue, as a normalized measure of the skill of the
DifERS-estimated probability of exceedance. The best achiev-
able value is 1, and a 0 value (or a negative value) indicates
a no-skill prediction. At all resolutions, the BSS decreases
when the intensity threshold increases, revealing that the
occurrence of high-intensity precipitation is more challenging
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Fig. 11. Probability of exceedance of the 1-, 4-, and 10-mm/h intensity thresholds derived from the DifERS ensemble for the scene shown in Fig. 3 (12:40
to 13:40 UTC on May 4, 2021).

Fig. 12. Average MRMS exceedance rate at 1, 2, 4, and 8 mm/h as a function of the pixel DifERS-derived probability of exceedance at 5-km resolution
(top) and 20-km resolution (bottom). To produce these curves, the pixels of the evaluation dataset are grouped into 50 bins between 0 (0%) and 1 (100%),
according to the DifERS-derived probability of exceedance, and the corresponding MRMS exceedance rate is then computed in each bin.

Fig. 13. (Left) MRMS exceedance frequency Ftrue of precipitation intensity Rt as a function of Rt , at 5-, 20-, and 80-km resolutions. (Center) Brier score
BS of the DifERS-estimated probability of exceedance of precipitation intensity Rt , as a function of Rt , at 5-, 20-, and 80-km resolutions. (Right) Brier
skill score BSS = 1 − BS/Ftrue, of the DifERS-estimated probability of exceedance of precipitation intensity Rt , as a function of Rt , at 5-, 20-, and 80-km
resolutions. All statistics are computed over the 486 scenes of the evaluation dataset.

to estimate from passive satellite measurements than that of
low- and medium-intensity precipitation. The BSS, however,
remains positive for all intensity thresholds up to 30 mm/h
and shows values higher than 0.5 for intensity thresholds
between 0.5 and 6 mm/h. The probabilistic estimation skill
of DifERS increases when aggregating the outputs at coarser

resolutions, as the BSS is higher at the 20- and 80-km reso-
lutions than at the 5-km resolution (at least up to the 6-mm/h
intensity threshold). This attests that the ensemble dispersion
decreasing at coarser scales, as shown earlier (Fig. 6), truly
reflects an increase of the estimation accuracy with spatial
coarsening.
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V. CONCLUSION AND PERSPECTIVES

The results of the present article demonstrate the utility
of deep neural diffusion models for generating probabilistic
ensembles of precipitation maps conditioned on multisensor
satellite passive radiometric measurements in the MW and
IR domains. The experimental DifERS model was trained
to generate hourly precipitation maps at a 5-km resolution
over the southeastern US conditioned on SSMI/S and ABI
observations. Not only is the DifERS model capable of gen-
erating realistic-looking precipitation fields, consistent with
the “ground-truth” fields derived from the MRMS gauge-radar
network in terms of their multiscale statistical properties, but it
is also capable of utilizing the satellite information to generate
precipitation features with location and magnitude coinciding
with that of the ground truth.

The DifERS model was set to generate a 128-member
ensemble of possible precipitation maps for each observed
scene. This ensemble is interpreted as a probabilistic esti-
mation, with each ensemble member being an equiprobable
realization. Under these assumptions, the ensemble mean thus
corresponds to the Bayesian posterior mean, which is a mini-
mum MSE estimator. Over the validation dataset, the DifERS
ensemble mean shows high consistency with the MRMS
ground truth, with a 0.82 linear correlation between the two.
The coherence between the MRMS truth and any member of
the DifERS ensemble is found to be nearly the same as the
coherence between any two DifERS ensemble members on
average over the validation dataset. The statistical dispersion of
the DifERS ensemble members thus provides a measure of the
estimation uncertainty, at the original 5-km pixel scale or any
desired aggregated scale. The probability of exceedance of any
given precipitation intensity threshold can also be derived from
the DifERS ensemble, at any location and any desired spatial
resolution.

In addition to the utility of their stochastic generative
capabilities for probabilistic ensemble generation, deep neural
diffusion models allow one to easily combine information from
different sources as observational constraints. Here, IR and
MW observations were combined together to condition the
generation of the precipitation maps. It is worth noting that,
while DifERS produces precipitation maps at the 5-km reso-
lution, the footprint size of SSMI/S is of the order of 40 km.
The DifERS scheme can, therefore, be seen as both a retrieval
scheme and a downscaling scheme, utilizing high-resolution
IR information. A sensitivity analysis (not shown) revealed
that the multispectral MW information from SSMI/S provides
on average a stronger constraint than the IR information
from ABI in DifERS. Currently, the available constellation
of passive MW sensors (including all SSMI/S instruments
and other instruments with similar capabilities [3]) allows
for 8–12 overpasses per day at any point of the globe.
While IR-only algorithms like PERSIANN-CCS can provide
estimations every one hour (or even less) at any point of the
globe (excluding latitudes above 65◦ where geometrical distor-
tions make geostationary imagery hardly usable), precipitation
estimates relying on MW sensors need to be “propagated” or
dynamically interpolated through space and time to produce
continuous estimates through the day [6], [19], [20]. To fully

exploit ABI 5-min temporal resolution, an architecture similar
to that of DifERS could be used to temporally “interpolate”
precipitation maps at 5 min between two overpasses of an
MW sensor and use the IR images as a constraint to guide the
interpolation.

APPENDIX

A. Scoring Metrics

In the present article, we use the KLD to assess the
similarity between two discretized empirical distributions (his-
tograms). Let us consider a discretized density distribution
D(u), where u is the bin index, to be compared to a reference
distribution Dref(u). The KLD of D to Dref is defined as

KLD(D, Dref) =

∑
u

D(u) log
(

D(u)

Dref(u)

)
. (11)

Another metric used in this article is the Brier score.
The Brier score is designed to assess the performance of
a probabilistic estimation or prediction of a binary variable.
Let y(u) ∈ {0, 1} be the true state of the predicted variable
and y(u) ∈ [0, 1] a probabilistic estimate of y(u). The value
y(u) is the predicted fractional probability of y(u) taking the
1 value, and conversely 1 − y(u) is the predicted fractional
probability of y(u) taking the 0 value. The Brier score of the
probabilistic estimation is computed over N estimations as

BS =
1
N

N∑
u=1

(y(u) − y(u))2. (12)

B. Data Preprocessing

Our raw dataset consists of 2473 pairs of precipitation
images x0 and the corresponding MW/IR measurements z with
varying sizes. We preprocess this raw data by first creating a
training–test split with 70% of the pairs used for training and
validation, and 30% of the pairs used for testing.

After splitting the data, we patch these images, turning these
variable-size images into a dataset of images each having a
fixed size of 64 × 64 pixels. We do this by sliding a 64 ×

64 window across each image (stacking the (x0, z) pairs along
the channel dimension) with a stride of 32 pixels. That is,
we begin with the 64 × 64 pixel window in the top-left
of the image and iteratively move this window 32 pixels to
the right until any portion of the window would lie outside
of the original image. We then moved our window back to
the left-hand side of the image but moved down 32 pixels,
followed by iterating the process.

This allows for some overlap between the training images,
which can be seen as a form of data augmentation to increase
the size of our training dataset. We accept a patch if at least
20% of the pixels in the patch have a significant amount
of rainfall, where a pixel is considered significant if its
hourly accumulated rainfall exceeds 0.184 mm, corresponding
to the 25th percentile of all pixel values. We perform this
preprocessing step as the vast majority of our pixels have zero
rainfall, which we found to bias our model toward generating
too many zeros in preliminary experiments. However, we note
that these requirements for accepting a patch are fairly mild.
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We similarly patch the testing set, but use a stride of 64 to
ensure that there is no overlap in the test-set images. This
is done to ensure that our evaluation is not overly optimistic
and that we are not evaluating the same images more than
once. This patching procedure resulted in a total of 3617 64 ×

64 images for training and 486 64 × 64 images for testing.
After patching the data, we normalize the training data by

transforming each pixel into the range [−1, 1]. We do this
by computing the minimum and maximum value of each
channel across the training set (i.e., independently for the
accumulated rainfall and independently for each of the IR/MW
channels), followed by channel-wise centering and re-scaling
by these values. At testing time, the images from the model
are generated on this scale, followed by un-normalizing the
generated images back to their natural scale.

C. Training Details

As our dataset is relatively small, we perform additional data
augmentation at training time. When we sample a datapoint
(x0, z) from the training set, we potentially flip this image
around its vertical and/or horizontal axes. Both these flips
occur with an independent probability of 0.5. We note that data
augmentation is a standard technique in computer vision [50]
which is widely applied, especially in settings with limited
amounts of training data.

All models were trained using Adam [44] for a maximum of
750 epochs with early stopping, using the validation loss as a
stopping criterion. We train with a batch size of 64 and perform
a grid search to determine the learning rate and weight decay,
leaving all other optimizer values as their defaults suggested
by the original paper [44]. Our final model was trained with a
learning rate of 10−4 and weight decay of 0. All of our models
are trained on a single NVIDIA A5000 GPU with 24 GB
VRAM. On our hardware, each complete training run requires
roughly 6 h of wall-clock time. At testing time, sampling an
ensemble of 128 images for a given MW/IR image z required
roughly 2 min of wall-clock time.

D. Diffusion Details

We found in preliminary experiments that K = 1000 diffu-
sion steps provided a balance between sampling efficiency and
quality and left this value fixed throughout our model selection
process.

We performed a grid search over noise schedules, and our
final model uses the sigmoid noise scheduler proposed in [51].
Intuitively, this noise schedule has the appeal of slowing down
the diffusion process near the initial iterations, which are the
most crucial steps in the generative process. We refer to [51,
Algorithm 4] for a precise description.

In addition, our final model uses the v-parameterization
proposed by Salimans and Ho [39]. This is a model parameter-
ization which is an alternative to the ϵ-parameterization in (9)
that we found to give better results in preliminary experiments.
This parameterization is motivated by the desire to stabilize the
model predictions as the signal-to-noise ratio varies throughout
the diffusion process.

In some more detail, given noise ϵ and a clean image
x0, we may define vk = (αk)

1/2ϵ − (1 − αk)
1/2x0 as a

linear combination of the noise and clean image. Training a
model vθ (k, xk, z) on this objective amounts to minimizing the
expected MSE between the model’s output (given the noisy xk
and z) and the objective vk. That is, our loss function is simply

Ex0,z,ϵ,k
[
∥vk − vθ (k, xk, z)∥2] (13)

which is analogous to the loss shown in (10).
We emphasize that this is equivalent to the ϵ-prediction

setup, as one may recover ϵθ (k, xk, z) from vθ (k, xk, z) via

ϵθ (k, xk, z)

=
1√

α−1
k − 1

((
α−1

k −
√

αk
)
xk −

√
1 − αkvθ (k, xk, z)

)
.

We refer to [39] for additional details.

E. Architecture Details

Our architecture consists of two UNets [40] stacked in
sequence. We call the first UNet the predictive network, which
can intuitively be thought of as predicting a coarse estimate
of the conditional mean. The second UNet, which we call
the generative network, can be viewed as adding additional
fine-grained details to this prediction.

The full model takes in a noisy version of the rainfall
image xk along with the conditioning images z and timestep
k. We apply standard sinusoidal positional embeddings to
encode the diffusion iteration k as a 16-D vector [52], fol-
lowed by a small feed-forward network consisting of a linear
transformation to 64-D, a GELU activation [53], and a final
linear transformation to 64-D. This small network is not shared
across the predictive and generative UNets.

The UNet architecture for the predictive network is standard
and adapted from [54]. This architecture consists of several
residual blocks, followed by downsampling in the first half of
the network and upsampling in the second half of the network.
The time embedding is passed to each block of the network
and is used to produce a shift and scale factor for the
output feature map of each block via a SiLU activation and
a linear layer. The generative network generally follows the
same architecture, with the key differences described below.
No parameters are shared across these two UNets.

To perform a forward pass with our model, we first take
only the conditioning information z and diffusion step k and
pass these through the predictive UNet. Since this predictive
UNet does not take in the noisy version of the image xk,
we may see the output of this predictive UNet as a prediction
of the conditional mean. The output of the predictive UNet is a
64 × 64 single channel image. We also return the intermediate
feature maps from the predictive UNet which are later used
as inputs to the generative UNet.

Then, we compute a residual, which is the pixel-wise
difference between the noisy image xk and the output of the
predictive UNet. This residual, along with the output of the
predictive UNet and the conditioning images, are concatenated
channel-wise before being passed into the generative UNet
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along with the diffusion step k and intermediate feature maps
from the predictive UNet. In the forward pass of the generative
UNet, the corresponding intermediate feature maps from the
predictive UNet are channel-wise concatenated with the fea-
ture maps of the previous layer of the generative UNet. Lastly,
the output of the generative UNet is combined additively with
the output of the predictive UNet to produce the final output.
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