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A B S T R A C T

Satellite precipitation products are not free of errors. These errors may show specific temporal patterns related to 
the life cycle of precipitation events. Understanding such patterns is key to uncertainty quantification, product 
improvements, and hydrologic applications. Here we investigate satellite error patterns during the life cycle of 
precipitation events over the contiguous United States (CONUS), using the Global Precipitation Measurement 
(GPM) Integrated Multi-satellite Retrievals for GPM (IMERG) as the satellite product and the Ground Validation 
Multi-Radar/Multi-Sensor (GV-MRMS) as reference to define “events” in a Eulerian perspective, both at the 30 
min and 0.1◦×0.1◦ native resolution of IMERG. We reveal significant variation in IMERG’s biases (both 
detectability and intensity bias) before/during/after the events, with a marked temporal asymmetry with respect 
to the mid-point of the event duration. Overall, the miss/false proportions of precipitation occurrence peak near 
the event temporal boundaries, with miss proportion higher near event ends, and false detection proportion 
higher near event beginnings. Precipitation intensity tends to be overestimated near the boundaries as well, 
while it is underestimated during the early- to mid-stages of the event. Diagnostic analysis controlling for data 
source inhomogeneity in IMERG and intensity variations throughout events traces back this stage-dependent 
performance to the Passive Microwave (PMW) retrieval algorithm, possibly due to the variation in cloud 
physical properties during event life cycles. Further investigations over different seasons/regions/times of day 
reveal distinct event-stage-dependent error patterns, which are likely linked to the different convective precip
itation proportions. Consequently, a conditional analysis of error patterns on storm-type-related environmental 
variables, i.e., Convective Available Potential Energy (CAPE) and dewpoint is performed revealing significant 
relationships that underscore their prognostic value for characterizing the stage-dependent error curves. This 
study underscores the robust dependency of satellite errors on event stages and conversely, indicates the possible 
accuracy improvement of satellite precipitation products by integrating event stage information, as well as 
comprehensively leveraging environmental variables in future algorithms.

1. Introduction

The deployment of specialized precipitation monitoring satellites, 
exemplified by the Tropical Rainfall Measuring Mission (TRMM) and 
Global Precipitation Measurement (GPM) missions, coupled with ad
vances in retrieval and multi-sensor fusion techniques, has facilitated 
the development of global high-resolution precipitation products 
(Huffman et al., 2023b; Kubota et al., 2020; Sadeghi et al., 2021; Xie 

et al., 2017). Such high-resolution products are especially valuable 
given the inherent high spatiotemporal variability of precipitation, e.g., 
aiding in understanding the dynamics of short-duration intense storms 
and their impacts on critical regions (steep terrains, urban areas, etc.). 
Nevertheless, satellite products exhibit non-negligible biases and un
certainties, underscoring the need for a comprehensive understanding of 
their error patterns across all scales. However, existing error charac
terizations mostly focus on relatively coarse scales such as seasonal and 
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regional, or lump all the sub-daily/hourly precipitation data together to 
calculate time-independent statistical performance indicators (Loew 
et al., 2017; Maggioni et al., 2016; Pradhan et al., 2022), such as mean 
detection rate/rain rate bias, implicitly assuming stationarity and ho
moscedasticity at fine scales and ignoring possible dependence on the 
stage of precipitation events (Kirstetter et al., 2020; Guilloteau and 
Foufoula-Georgiou, 2024). Thorough investigation into the fine-scale 
error patterns of satellite products thus remains insufficient. Such a 
gap can be attributed not only to the still limited availability of high- 
resolution ground reference data across the globe (Kidd et al., 2017), 
but also to the challenge of discerning coherent patterns at these scales, 
which could appear as random without in-depth analysis (Derin and 
Kirstetter, 2022; Derin et al., 2022; Derin et al., 2021).

In this study, we aim to further elucidate the errors of satellite pre
cipitation products at fine time scales, i.e., 30 min, important for hy
drologic, atmospheric, and other applications. We note that the 
occurrence of precipitation is discrete in nature, essentially comprising 
individual “events” with certain durations and evolution patterns in 
time at a given location (Li et al., 2021). Precipitation events are thus 
considered as the structuring element of our temporal pattern analysis. 
The microphysics and thermodynamic properties of precipitating clouds 
are known to undergo significant changes during the course of a pre
cipitation event (Bouniol et al., 2016; Imaoka and Nakamura, 2012). 
The sensor signal-to-rainfall rate relationship is sensitive to these 
physical variations (Petkovic and Kummerow, 2017), inevitably leading 
to varying retrieval accuracy throughout the events’ life cycle (O and 
Kirstetter, 2018; Yamamoto et al., 2008; Guilloteau and Foufoula- 
Georgiou, 2024). Analyzing this variability is expected to help under
stand the causes of the seemingly random fine-scale error patterns in 
satellite precipitation time series.

Previously, event-based evaluations of satellite precipitation prod
ucts have mostly focused on evaluating event-integrated characteristics 
(e.g., event count, duration, total depth, timing) (Freitas et al., 2020; Li 
et al., 2023a; Sutton et al., 2024), without detailed scrutiny of the error 
evolution during the events. Alternatively, Li et al. (2021) preliminary 
demonstrated a dependency of satellite precipitation product perfor
mance on the event stages during the warm season in China by using 
gauge data at the national scale. The present study builds on this analysis 
to further our understanding and comprehensively investigate event- 
based error evolution patterns under various conditions, provide a 
diagnostic evaluation of their underlying causes, and examine their 
connection with the storm environment in the contiguous United States 
(CONUS). Specifically, we want to further understand: (1) What is the 
general pattern of satellite errors during precipitation events over 
CONUS and how significant and robust is the stage-dependency of the 
errors? (2) Is the stage-dependency of the errors intrinsic to the Passive 
Microwave (PMW) retrieval or a reflection of the evolving rain rate/data 
sources of the multi-satellite product during the events? (3) Do the stage- 
dependent error patterns vary across diverse conditions (i.e., regions, 
seasons, and times of day), and can storm-related environmental vari
ables serve as unified prognostic indicators for these variations? The 
Integrated Multi-satellite Retrievals for GPM (IMERG) version 7 is 
evaluated against the Ground Validation-Multi-Radar/Multi-Sensor 
(GV-MRMS) product over CONUS (Kirstetter et al., 2014; Kirstetter 
et al., 2012). The physical variables characterizing the storm environ
ment are obtained from the European Centre for Medium Range 
Weather Forecasts (ECMWF) Re-Analysis version 5 (ERA5).

2. Data and methods

2.1. Data

IMERG is the principal level-3 gridded global multi-satellite merged 
precipitation product from NASA’s GPM project (Huffman et al., 2023b). 
It integrates all available PMW data from the GPM constellation, with 
interpolated PMW and Infrared (IR) data filling in any gaps to form a 

globally seamless product. All the data sources used in IMERG are 
intercalibrated by the high-accuracy instruments onboard the GPM Core 
Observatory (i.e., GPM Microwave Radiometer (GMI) and Dual- 
frequency Precipitation Radar (DPR)) to ensure maximum consistency 
across space and time. Additionally, IMERG is adjusted by the monthly 
GPCC gauge analysis, which further enhances its reliability. These fea
tures have positioned IMERG as one of the most popular high-resolution 
precipitation products for various atmospheric and hydrologic applica
tions (Bai and Schumacher, 2022; Kukulies et al., 2021; Zhang et al., 
2023), drawing at the same time considerable attention on its evaluation 
and improvement (Derin et al., 2022; Derin et al., 2021; Gebregiorgis 
et al., 2018; Guilloteau et al., 2021; Li et al., 2022). Here we use the 
IMERG V07A Final Run product which has a resolution of 0.1◦×0.1◦ and 
0.5 h (Huffman et al., 2023a).

GV-MRMS is a high-accuracy ground radar-gauge blended quanti
tative precipitation estimation (QPE), which is tailored specifically for 
GPM product validation and used as the ground reference data here 
(Kirstetter et al., 2020). It is built upon the NOAA MRMS that integrates 
multi-source ground-based radars, rain gauges, and forecast model data 
(Zhang et al., 2016), and then undergoes substantial post-processing for 
adaptation to satellite evaluation (Kirstetter et al., 2014; Kirstetter et al., 
2012). GV-MRMS is widely acknowledged as a high-fidelity ground 
validation dataset over CONUS and has been frequently applied in 
verification tasks (e.g., Derin et al., 2022; Milani et al., 2021; Upadhyaya 
et al., 2020; Guilloteau et al., 2021). The spatiotemporal resolution of 
GV-MRMS is 0.01◦×0.01◦ and 0.5 h, therefore we aggregate it spatially 
to IMERG’s 0.1◦×0.1◦ resolution. The production of GV-MRMS also 
generates a Radar Quality Index (RQI), which represents the quality of 
radar observations on a 0–100 scale (Petersen et al., 2020). To conduct 
quality control, only data scoring no less than 60 are retained for the 
analysis (Li et al., 2023a). In the following text, “GV-MRMS” is abbre
viated for simplicity to “MRMS”.

The atmospheric environmental variables are sourced from ERA5 
(Hersbach et al., 2020). ERA5 is a cutting-edge global atmospheric 
reanalysis dataset with hourly 0.25◦ resolution and 137 vertical layers, 
spanning 1940 to the present. ERA5 assimilates a vast range of obser
vational data into the ECMWF Integrated Forecasting System (IFS) 
model outputs, yielding a comprehensive and consistent record of global 
atmospheric, land, and oceanic variables, and has been widely used in 
weather and climate studies (Bi et al., 2023; Ham et al., 2023; Yuan 
et al., 2023). Here ERA5 is used to acquire environmental conditions 
related to precipitation events, and to examine their relationship with 
the error evolution during the events. It is worth noting that while 
regional ground-based or radiosonde observations, as well as regional 
reanalysis data, might offer more accurate environmental variables, our 
ultimate goal is to provide insights for improving global satellite pre
cipitation retrievals, rather than establishing precise physical relation
ships. Therefore, we chose to use the globally available ERA5 data to 
explore its potential in indicating satellites’ event-based errors. To 
match IMERG’s resolution, raw ERA5 data are interpolated to a finer 
scale of 0.1◦, half an hour prior to the onset of each precipitation event 
analyzed. The study period is 2018–2020.

2.2. Methods

A precipitation event at every pixel of 0.10x0.10is defined using 
MRMS data as “an uninterrupted series of half-hourly time steps with 
non-zero precipitation intensity (≥ 0.1 mm/h)” (Li et al., 2023a). Based 
on this definition, we first extract all the precipitation events from 
MRMS over CONUS and throughout the study period. The spatial dis
tribution of basic characteristics of the extracted precipitation events (i. 
e., number of events, event duration, event depth, mean event precipi
tation rate) is shown in Fig. S1. Events with identical durations are then 
grouped together, with error statistics computed at every half-hour 
timestep for each group.

Our focus is on calculating error evolution patterns throughout the 
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event life cycles, which are conducted from two aspects: detectability of 
precipitation occurrence (classification error) and rain rate bias (quan
titative error). For the detectability, two metrics, Miss Proportion (%) 
and False Proportion (%), are defined. According to our event definition, 
misses in IMERG occur only inside the events, while false alarms happen 
only outside the events. Therefore, we also incorporate a short period 
before/after the event into our analysis to examine false alarms poten
tially associated with the target event. We set this examination period to 
5 h, as it would encompass most event-related misdetection causes (e.g., 
inappropriate precipitation detection thresholds, temporal lags between 
hydrometeors and surface precipitation, and spatial displacement due to 
satellite viewing geometry) (Li et al., 2023a; Guilloteau et al., 2018). 
Specifically, the Miss Proportion and False Proportion at the t-th half-hour 
(referred to as “event stages”) during/before/after the d-hour MRMS 
events are calculated as: 

MissProportion(d, t) =
Nmiss(d, t)
Nrainy(d, t)

× 100%, (1) 

FalseProportion(d, t) =
Nfalse(d, t)

Nnon− rainy(d, t)
× 100%, (2) 

where Nmiss(d, t) and Nfalse(d, t) are the numbers of miss and false cases 
under specific d and t, respectively, while Nrainy(d, t) and Nnon− rainy(d, t)
are the numbers of rainy (≥0.1 mm/h) and non-rainy (<0.1 mm/h) 
cases in terms of MRMS also under specific d and t. Therefore, these two 
metrics indicate the proportion of instances during the events that 
should be rainy but are mistakenly identified by IMERG as non-rainy, 
and the proportion of instances immediately before or after the events 
that should be non-rainy but are erroneously identified as rainy, which 
can be understood as the “False Negative Rate” and “False Positive Rate” 
in the general classification model, respectively. While statistics 
computed in the 5-hour window before/after the event of interest can 
certainly be affected by other nearby-in-time events on a case-by-case 
basis, on average, the pre- and post-event statistics show robust and 
interpretable temporal patterns. Excluding cases with nearby-in-time 
events would not only dramatically reduce our sample size, but it 
would also bias our analysis with the overrepresentation of isolated 
events.

Besides, the Intensity Bias is defined as the mean intensity difference 
(IMERG − MRMS) during their concurrent precipitation detection (i.e., 
“hit”). Specifically, the Intensity Bias at the t-th half-hour during the d- 
hour events is calculated as: 

IntensityBias(d, t) = IIMERG(d, t) − IMRMS(d, t), (3) 

where IIMERG(d, t) and IMRMS(d, t) are the mean intensity of IMERG and 
MRMS when they “hit” under specific d and t. Based on the above 
equations, the continuous error evolution curves before/during/after 
the events of different durations can be computed. Additionally, we 
divide the event duration in three equal intervals rounded to the nearest 
half hour and refer to them for brevity as the “beginning”, “middle”, and 
“end” of events.

To determine whether the event-stage dependent error pattern is an 
intrinsic property of the precipitation retrieval algorithm, rather than 
reflection of other factors, we conduct additional control experiments 
for diagnostic analysis. Two factors are highlighted here: the temporal 
inhomogeneity of IMERG data sources and the intensity variations 
during the events, both known to significantly affect error magnitudes 
(Gao and Liu, 2013; Li et al., 2018). Concerning data source in
homogeneity, we recalculate the error in equations (1)-(3) using only 
GMI-sourced IMERG data and compare these to the full-IMERG-derived 
results, assessing if the errors fundamentally stem from PMW retrievals 
rather than the multi-source merging in IMERG. The specific approach is 
to add a sensor source constraint when extracting each of the right-hand 
side terms of Equations (1)-(3), (e.g., MissProportion(d, t, s) =

Nmiss(d,t,s)
Nrainy(d,t,s) × 100%, where s denotes a specific data source, similar for the 
other two formulae). This enables us to construct complete sensor- 
specific error evolution curves, despite individual sensors’ inability to 
capture the entire life cycle of precipitation events. Regarding intensity 
variations during the events, we compare the IMERG and MRMS prod
ucts conditional on event stages to examine whether intensity alone 
explains the error curves, or whether errors stem from the changing 
radiometric-signal-to-rain-rate relationships.

Analysis of the annual average error patterns at the national scale 
demonstrates a robust dependence on the event stage, prompting further 
examination on how these patterns may vary under different conditions, 
i.e., seasons, regions, and times of day. Acknowledging that the potential 
varying error patterns across these different conditions could somewhat 
stem from the differences in storm types, which, in turn, could be 
indicated by the storm environment to some extent (Heuscher et al., 
2022; Zhang and Villarini, 2019), we further explore the potential 
relationship between the error curves and the storm environment. The 
event-associated environment is represented by a number of environ
mental variables 30-min before the event onset to minimize the influ
ence of possible feedback from the precipitation processes (Petkovic and 
Kummerow, 2017; Song et al., 2019). We collect various environmental 
variables (e.g., wind shear, moisture divergence, vertical velocity) from 
ERA5 and test the relationships between their values and the error 
evolution curve shapes during the events. Considering the distinctive
ness of the derived patterns and relatively more direct dependence with 
convective precipitation, Convective Available Potential Energy (CAPE), 
denoting atmospheric instability, and Dewpoint, reflecting moisture 
availability, are selected as representatives. For a quantitative compar
ison, two parameters that describe the shapes and magnitudes of the 
error curves are introduced: the Event-wide Average of miss proportion/ 
false proportion/rain rate bias across all duration events, and the 
Asymmetry Index in the error curves, defined as the difference between 
the average miss proportion/false proportion/rain rate bias of the latter 
halves and the former halves of all events.

3. Results

3.1. Nationwide annual quantification

We start by presenting national, annual mean statistics (Figs. 1 and 
2). Fig. 1 first displays the half-hourly detectability of precipitation 
occurrence as a function of duration and time step (half-hourly) of 
MRMS-derived events. It is evident that the miss proportion significantly 
depends on both the stage and duration of events (Fig. 1a), consistent 
with findings from Li et al. (2021). Specifically, longer events tend to 
have a lower miss proportion than shorter ones, while the beginning and 
end of events show a higher miss proportion than their middle parts. In 
addition, most of the curves display pronounced asymmetry, with pre
cipitation being more likely missed near the ends than the beginnings of 
events. Such asymmetry is more evident in prolonged events, as evi
denced by a disparity of up to 14 % between the initial (45 %) and final 
(59 %) timesteps for the 10 h events. Additionally, upon observing the 
original intensity patterns of MRMS events (Fig. S2), we find that the 
variation in miss proportion is somewhat linked to the intensity evolu
tion (i.e., the higher intensity is, the lower miss proportion is). However, 
the persistent significant variations in missed precipitation intensity 
further suggest that intensity evolution is at least not the only factor 
dominating the error variations during the events (otherwise, the missed 
precipitation would consistently remain of low intensity over time) 
(Fig. S3a), but there must be more fundamental causes at play, which 
will be further discussed later.

Similarly, the false proportions calculated within the 5-hour window 
before/after the events also reveal a clear correlation with event dura
tion and proximity to the event starting/ending times (Fig. 1b). Longer 
events typically have higher false proportions than shorter ones, and the 
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proportions are elevated before the event starts than after it ends. These 
patterns are both contrary to those of miss proportion (Fig. 1a), which 
aligns with the expected inherent trade-off between false positives (false 
proportion) and false negatives (miss proportion) in classification 
models. For the asymmetry, the greatest disparity could reach up to 12 
% between the half-hour before the starts (43 %) and after the ends (31 
%) of the 10-hour events. False proportions peak around event bound
aries and decrease with increasing temporal distance from the events. 
This pattern is intuitively expected, as the moments closer to the events 
are inevitably more susceptible to being misclassified as part of the 
events themselves. However, we observe that the false proportion still 
remains at moderately high level (~10 %) at times further away from 
the target event (~5 h). This can be mainly attributed to the impacts of 
the potential nearby events in both space and time. It should be noted 
that our statistical analysis focuses only on periods of time where an 
MRMS event has occurred, and thus the probability of another event 
occurring nearby in space and time would naturally be higher than in a 
randomly selected environment, leading to the higher-than-expected 
false proportion near the events.

The intensity bias variation during MRMS-derived events is subse
quently analyzed when IMERG correctly identifies precipitation occur
rences (i.e., ‘hit’), also under nationwide and annual average conditions 
(Fig. 2). The mean rain rates of both MRMS and IMERG are also pre
sented for reference (Fig. 2a and b). A notable disparity is observed in 
the temporal profiles of mean intensity between MRMS and IMERG, 
with IMERG mostly failing to capture the earlier, more intense peak of 
the MRMS events, yet exhibiting higher precipitation rates near the 
start/end of events. These differences in event development profiles 
naturally give rise to robust stage-dependent bias patterns, with over
estimation near the start/end and underestimation in the early to middle 
stages (Fig. 2c). In summary, both the detectability and rain rate bias 
results, as illustrated in Figs. 1 and 2, underscore the event stage- and 
duration-dependent nature of satellite errors. This, combined with 
similar findings in China (Li et al., 2021), emphasizes the universality of 
such error patterns across different major geographic regions, laying the 

groundwork for the following analysis.

3.2. Diagnosis of the stage-dependent bias

As described in the Methods Section, it cannot yet be excluded that 
the error variations observed during the events are merely a reflection of 
other co-evolving factors, rather than an intrinsic property of the 
inversion relationship in the precipitation retrieval algorithm, which 
highlights the need for additional diagnostic analyses. Given the well- 
known temporal inhomogeneity of IMERG data sources, we first con
ducted diagnostics controlling for the data sources (Fig. 3), primarily 
focusing on the comparison between results from solely GMI and the full 
IMERG. While the main focus is on the comparison between results from 
solely GMI and the full IMERG, average results from all PMW observa
tions and the interpolated data (called “morph” in IMERG) are also 
presented for reference. Overall, results from different data sources 
generally exhibit similar event stage-dependent and asymmetric fea
tures, suggesting that the multi-source integration does not make an 
essential contribution to satellites’ varying performance during the 
events. When focusing on GMI-sourced results, they exhibit higher ac
curacy across all metrics (Fig. 3a1, a2, and b3), which is expected given 
GMI’s superior accuracy among all IMERG’s data sources. However, 
their temporal patterns mirror those of IMERG, with even more pro
nounced asymmetries (which is likely due to the smoothing effect of 
interpolation in IMERG, which tends to suppress any asymmetries (Li 
et al., 2023a)). Such a pattern thus indicates an inherent stage- 
dependent error in PMW retrievals that propagates to IMERG. Addi
tionally, the results, in turn, suggest that using temporally continuous 
IMERG data to study event-related error characteristics can provide 
generally reliable insights for PMW retrievals (which is the core of 
precipitation inversion).

Another factor evolving significantly during the duration of an event 
is precipitation intensity, which is clearly established to have a non- 
negligible impact on the error (Kirstetter et al., 2014; Kirstetter et al., 
2012). To demonstrate that error variations during events are not solely 

Fig. 1. (a) Miss Proportion of rainy hours at each half-hour during the MRMS-derived events of different durations (color-coded curves), aligned in the event centers 
(defined as the midpoints of the event durations). (b) False Proportion of rainy hours at each half-hour reported for 5-hour before the start and after the end of an event 
(events shown with the shaded bar). These biases are reported for events of duration up to 10 h, resulting in miss proportion curves with time axes spanning − 4.75 to 
+ 4.75 h (the centers of the half-hour first and last time increments of the event duration). The values are calculated from all the data across CONUS from 2018 
to 2020.
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driven by intensity changes, Fig. 4 illustrates the intensity correspon
dence between IMERG and MRMS at different event stages (specifically, 
the first/middle/last half-hours of the events here). The graph reveals 
that controlling intensity somewhat mitigates the bias asymmetry, as 
indicated by the similarity between the curves for the initial and final 
half-hours. However, there remains a significant disparity between the 
curves for the middle half-hour and those for the beginning and end, 
suggesting notable differences in the IMERG-to-MRMS intensity corre
spondence at various event stages, which fundamentally reflects shifts in 
the signal-to-rain-rate relationship during events. This pattern persists 
whether employing the full IMERG or solely GMI (Fig. 4a and b). Thus, 
the analysis further demonstrates the presence of inherent event-stage- 
dependency that modulates the long-known intensity-dependence, 
which is also supported by a similar analysis for the miss proportion 
(Fig. S4).

After isolating important influencing factors such as inhomogeneity 
in data sources and intensity, the results suggest that more fundamental 
factors are at play that affect the inversion relationship. This, linking 
with our Eulerian-based event approach, could involve the complex 
temporal evolution of cloud properties during the event life cycle 
(Bouniol et al., 2016; Samanta et al., 2021), as well as the intricate 
spatial structure of the storm system mapped onto the temporal 
dimension during the storm movement (Houze, 1997; Rickenbach et al., 

2008), among other factors.

3.3. Comparative analysis across regions, seasons, and times of day

We next explore potential differences in these patterns across various 
conditions characterized by different precipitation regimes, i.e., regions, 
seasons, and times of day (Figs. 5 and 6). For conciseness, two con
trasting seasons/regions/time periods of day are selectively presented 
here, with the complete results provided in the supplementary material
(Figs. S5-S11). Overall, despite the still clear dependency of the error 
metrics on event stage and duration across various scenarios, the specific 
shape and magnitude of the error curves vary significantly (Figs. 5 and 
6).

For example, notable differences are present between summer and 
winter in terms of miss/false proportion (Fig. 5a1-a2 and b1-b2), with a 
lower miss proportion but higher false proportion in summer (JJA), and 
vice versa in winter (DJF). This aligns with the long-recognized error 
patterns of satellite precipitation retrievals: summer’s prevalent deep 
convection generally accompanies lower cloud top temperatures and 
denser ice crystal concentrations that facilitate easier detection (and 
reduce false alarms) (AghaKouchak et al., 2012; Zhang et al., 2022). This 
knowledge is also reflected in the generally high average intensity of 
MRMS events during the summer (Figs. S12a1-a2). In contrast, winter’s 

Fig. 2. Mean (a) MRMS intensity, (b) IMERG intensity, and (c) Intensity Bias in rainy hours (IMERG – MRMS, when both IMERG and MRMS detect precipitation 
occurrence, i.e., “hit”) at each half-hour during the MRMS-derived events of different durations (color-coded curves), aligned in the event centers. The MRMS/IMERG 
intensities and their bias are reported for events of duration up to 10 h, resulting in their curves with time axes spanning − 4.75 to + 4.75 h. The values are calculated 
from all the data across CONUS from 2018 to 2020.
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snow/ice surface and shallow large-scale precipitation could contribute 
to the increasing likelihood of misses (Tian et al., 2009; Wang et al., 
2021). Besides, the asymmetry in the miss/false proportion curves is 
more evident in winter compared to summer, which might be partially 
attributed to the longer fall time of snow relative to rainfall, leading to a 
temporal delay between the ground-level precipitation and the retrieved 
precipitation inferred from the cloud properties aloft (You et al., 2019). 
Such a discrepancy consequently results in the higher false proportion/ 
lower miss proportion near the event starts and vice versa near the ends, 

depicted in Fig. 5a1-a2 and b1-b2.
The differences in error curves between the Northeastern (NE) and 

Southeastern (SE) U.S. can also be partly explained by the seasonal 
differences discussed above (Fig. 5a3-a4 and b3-b4), although the 
complex terrain in the Northeast characterized by mountainous snow
caps, high spatial variability in precipitation, and warm cloud precipi
tation could also contribute to the higher miss proportion/lower false 
proportion in this region (Derin and Kirstetter, 2022). In comparison, 
the aforementioned factors (i.e., rain versus snow, convective versus 

Fig. 3. Similar to Fig. 1 and Fig. 2, but showing the (a1-a2) detectability and (b1-b3) rain rate bias obtained from different data sources of IMERG, separately. 
Specifically, “Full IMERG” represents results calculated from full IMERG data, serving as the reference. “GMI” represents the results exclusively from the GMI sensor, 
while “PMW” indicates the results derived from any arbitrary PMW sensor and “morph” indicates the results from the interpolation sources in the absence of direct 
PMW observations. For clarity and conciseness, only results for 5-hour (solid lines) and 10-hour (dash lines) events are shown as representatives. The values are 
calculated from all the data across CONUS from 2018 to 2020.
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large-scale precipitation, etc.) do not introduce a significant difference 
between late afternoon (15–20 LST) and early morning (3–8 LST) pre
cipitation, with the detection discrepancy in the two diurnal periods less 
pronounced than in the previous two groups (Fig. 5a5-a6 and b5-b6). 
From the perspective of storm types, large-scale synoptic dynamics- 
driven precipitation may not have an evident response to the diurnal 
cycle of radiative forcing (Wang et al., 2022), while for convective 
precipitation, local convective precipitation induced by surface heating 
in the afternoon, as well as the Mesoscale Convective Systems (MCSs) 
typically peaking at night over CONUS (Feng et al., 2019), can both 

develop deep enough to allow satellites a comparable detectability for 
them. Notably, a slightly stronger asymmetry is observed in the morning 
curves, for which one potential reason could be the natural asymmetric 
spatial structures of MCSs that map onto the time dimension when 
considering a Eulerian scheme of reference (Houze, 2004).

From the “hit” and the overall intensity of MRMS events (Fig. 6a1-a6 
and S11a1-a6), the summer, low latitudes, and late afternoon exhibit 
earlier peaks and higher average and peak intensities, compared to the 
winter, high latitudes, and early morning, respectively, which aligns 
with our knowledge of stronger convective activity in the first three 

Fig. 4. Mean intensity correspondence curves (solid lines) between MRMS and IMERG during the initial (red), middle (green), and final (blue) half-hours of MRMS 
events. These curves are derived by calculating the mean IMERG intensity when the corresponding MRMS precipitation falls within each 1 mm/h bin (i.e., (0,1], 
(1,2], …, (9,10] mm/h). Curves representing the 25th and 75th percentile of IMERG intensities (dash lines) within each bin, along with the distribution range 
(shading areas) formed between these two lines, are also presented for reference. To obtain the middle timestep, results are derived from events with odd-numbered 
durations (i.e., 2.5, 3.5, …, 18.5, 19.5 h, 0.5-/1.5-hour events are not selected due to the blurred boundaries across different stages). The midpoint of each bin is set as 
the x-value (i.e., 0.5, 1.5, …, 9.5). The values are calculated from all the data across CONUS from 2018 to 2020.

Fig. 5. Similar to Fig. 1, but illustrating the contrasts between two typical (a1-a2 and b1-b2) seasons (JJA and DJF), (a3-a4 and b3-b4) regions (NE (90◦-65◦W, 40◦- 
49◦N) and SE (90◦-75◦W, 25◦-40◦N)), and (a5-a6 and b5-b6) time periods of day (15–20 and 3–8 Local Solar Time (LST)). The diurnal timing of events is determined 
based on their peak times. Detailed analysis for other regions, seasons, and times of day is provided in the supplementary material (Figs. S6-S8).
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scenarios. Notably, a closer examination indicates more intense long- 
duration events at night but more intense short-duration events during 
the day (Fig. 6a5-a6 and S11a5-a6), echoing the presence of prolonged 
nocturnal MCSs and brief diurnal isolated convection (Yu et al., 2007), 
as discussed earlier. Regarding the hit intensity bias, IMERG tends to 
have a greater underestimation for MRMS events with higher average 
and peak intensities (Fig. 6c1-c6 and S11a1-a6), in line with previous 
research (Adhikari et al., 2019; Kirstetter et al., 2020; Petkovic and 
Kummerow, 2017). This relationship, combined with the earlier analysis 
(Fig. 5), results in the obvious pattern across various scenarios where the 
lower the miss proportion, the higher the false proportion is, and the 
greater the intensity bias.

From the perspective of asymmetry, the miss/false proportion with 
larger asymmetry typically corresponds to the intensity bias with 
smaller asymmetry (Figs. 6 and 7). Combined with Fig. S12, a possible 
explanation is that, for events with relatively symmetric intensity tem
poral profiles (e.g., Fig. 6 a2 and S11a2), the miss/false proportion is 
inherently asymmetric (typically with higher false proportion/lower 
miss proportion near the event beginnings) due to factors like the 
advanced timing of IMERG events (e.g., Fig. 5a2 and b2) (Li et al., 
2023b). In contrast, when event intensity profiles are asymmetric 
(typically with greater intensity in the first half) (e.g., Fig. 6a1 and 
S12a1), it results in decreases (increases) of the miss (false) proportion at 
the initial stages, counterbalancing the effects of premature event 
initiation and resulting in the symmetric detectability (e.g., Fig. 5a1 and 
b1). Additionally, the similarity in error curve shapes (for the overall 
intensity, hit intensity, and missed intensity) of MRMS events across 
scenarios indicates that IMERG misses the precipitation of various in
tensities in a somewhat proportional manner (Fig. 5, S1, and S12). This 
again suggests that intensity is not the sole dominant driver behind 
varying detectability during the events, pointing instead to more 
fundamental underlying causes (e.g., shift in the inversion relationship).

3.4. Indicative role of the event-associated environment

The results of our analysis and the physical insights gained by 
comparing the error patterns in different precipitation systems, leads us 
to the hypothesis that these patterns might relate to cloud microphysical 
processes, which differ significantly between convective (rapid, asym
metric) and large-scale (stable, uniform) precipitation over their life 
cycles (Morrison et al., 2020). To test this hypothesis, we explore 
possible relationships between the error patterns and environmental 
variables indicative of storm type (particularly convective 
precipitation).

We first examine the statistical distribution of pre-event CAPE and 
dewpoint values from ERA5 across seasons, regions, and time periods of 
day described in Figs. 5 and 6 (Fig. 7). It is observed that the atmospheric 
instability (CAPE) and moisture availability (dewpoint) display large 
variability but are higher for summer, the southeast, and late afternoon, 
compared to winter, the northeast, and early morning, correspondingly. 
Although the magnitude of these variables does not absolutely charac
terize event types, it is generally true that strong convective weather, 
compared to large-scale-lifting-induced precipitation, tends to occur 
under conditions of high atmospheric instability and humidity level, 
which jointly provide essential energy and moisture support necessary 
for the initiation and development of deep moist convection (Dong et al., 
2019; Yang et al., 2019). Hence, the results obtained from Fig. 7 are 
consistent with the commonly held understanding that convective pre
cipitation proportions are greater for summer, the southeast, and late 
afternoon. This echoes well our conjecture in the analysis of Figs. 5 and 6
that “the similar error patterns across these three scenarios may corre
spond to stronger convective precipitation”. Therefore, it can be 
concluded that the shape and magnitude of the error curves under 
various scenarios can indeed be linked to environmental conditions, 
with the proportion of convective precipitation serving as the key factor 
connecting them.

Fig. 6. Similar to Fig. 2, but illustrating the contrasts of error variation during events across between two typical (a1-a2, b1-b2, and c1-c2) seasons, (JJA and DJF), (a3- 
a4, b3-b4, and c3-c4) regions (NE and SE), and (a5-a6, b5-b6, and c5-c6) time periods of day (15–20 and 3–8 LST). The diurnal timing of events is determined based on 
their peak times. Detailed analysis for other regions, seasons, and times of day is provided in the supplementary material (Figs. S9-S11).
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Building on the above analysis, we directly investigate the relation
ship between the magnitude of the environmental variables and the 
shape of the error curves to explore the potential explanatory power of 
the former on the latter (Fig. 8). After extracting the CAPE and dewpoint 
for all events, we isolate events with their CAPE/dewpoint values falling 
within the top 30 % and bottom 30 % of the overall distributions of these 
values, respectively, and calculate their detectability and rain rate bias, 
as in Figs. 1 and 2. It is readily apparent from Fig. 8 that the error curves 
of events corresponding to the top and bottom 30 % of CAPE/dewpoint 
values exhibit significant disparities. Specifically, for larger CAPE/ 
dewpoint we see a lower average miss proportion, higher false propor
tion, and greater intensity bias, as well as more symmetric false/miss 
curves and more asymmetric intensity bias curves. These results clearly 
demonstrate that these two environmental variables can play an indic
ative role in the error curves during the events, with their manifestations 
corresponding to the analytical results depicted in Figs. 5, 6, and 7.

The contrast in the error temporal patterns between the top 30 % and 
the bottom 30 % scenarios (Fig. 8) is even more pronounced than that 
between summer and winter, the northeast and the southeast, or after
noon and morning (Figs. 5 and 6), underscoring that environmental 
variables have larger explanatory power and are potentially better 
predictors of error patterns than season, region, and time of day. 
Moreover, environmental variables offer quantifiable, continuous, and 
practicable measures for delineating error curve shapes during the 
events. This is further evidenced by the progressively varying error 
curves calculated within successive percentiles (i.e., 0–10 %, 10–20 %, 
…, 90 %-100 %) of environmental variables (Figs. S14-S19). 

Additionally, the intensity correspondence curves at different event 
stages (similar to Fig. 4) under diverse environmental conditions (i.e., 
bottom/top 30 % of CAPE/dewpoint values) depicted in Fig. S20, not 
only again highlight the marked differences in the MRMS-to-IMERG 
intensity relationship across various stages but confirm that the extent 
of these differences varies with environmental conditions as well, of
fering the potential of using these variables for improving retrieval 
algorithms.

We further use two quantitative descriptors of the error curve shapes 
(whose spatial distributions are shown in Fig. S21 for reference), spe
cifically the event-wide average and the asymmetry index as outlined in 
the Methods Section, to more distinctly quantify the variations in the 
error curve shape across each percentile interval of the CAPE/dewpoint 
values (Fig. 9). For the event-wide average values of miss proportion/ 
false proportion/intensity bias (Fig. 9a1-c1), both variables exhibit a 
near-monotonic relationship with them. Consistent with the earlier 
analysis, higher CAPE/dewpoint values basically correspond to the 
lower miss proportion, higher false proportion, and lower intensity bias. 
Regarding the asymmetry index of the three error metrics (Fig. 9a2-c2), 
although the values across ten percentile intervals exhibit non- 
monotonic patterns, they still maintain a discernible and robust rela
tionship with the environmental variables. For the miss proportion 
(Fig. 9a2), the predominance of positive asymmetry index values in
dicates a tendency for the miss curves to skew towards their latter half in 
most instances. Specifically, a shift from increasing to decreasing 
asymmetry index is observed at around the median CAPE/dewpoint 
value, with a transition asymmetry index at a high CAPE/dewpoint 
value (around 80 % quantile). The false proportion basically exhibits the 
opposite trend (Fig. 9b2), while the intensity bias follows a similar trend 
but with less variability within the first 50 % range, where its error 
curves primarily display a symmetric pattern (Fig. 9ac). A latter-stage 
skewness emerges only when exceeding 60 %, which corresponds to 
the maximum underestimation in the first halves of the intensity bias 
curves (Figs. S18 a7-a10 and S19 a7-a10). These results quantitatively 
demonstrate the complex interplay between precipitation and the storm 
environment, which manifests itself in non-linear relationships between 
the error characteristics and the environmental variables. However, the 
relationships between the examined environmental variables and the 
error characteristics are still well-defined, demonstrating the potential 
of such variables to improve retrieval algorithms, despite the need for 
further efforts to understand and parameterize them.

4. Discussion

In this study, our goal was to understand and quantify the temporal 
error patterns of satellite precipitation products at fine time scales and 
gain quantitative insight into the relation of these patterns to physical 
attributes of the storm environment. We followed a Eulerian approach, 
in which the temporal evolution of “precipitation events” (defined as 
uninterrupted half-hour intervals of > 0.01 mm/hr precipitation) was 
tracked at fixed locations using MRMS as the reference. Tracking “real” 
precipitation systems under a Lagrangian framework (i.e., follow the 
storm in space and time) using ground observations is quite challenging 
due to limited radar coverage especially over complex terrain (e.g., the 
Rocky Mountains) (Petersen et al., 2020; Zhang et al., 2016), the 
absence of radar observations over oceans where many storms originate 
(e.g., atmospheric rivers, hurricanes, Nor’easters) (Elsner, 2003; Rutz 
et al., 2019), and the complex splitting and merging behavior of pre
cipitation systems that create ambiguities in determining their life cycle 
stages (Müller et al., 2022; Prein et al., 2024). These challenges also 
explain why very few studies have tracked precipitation systems with 
radar networks and used them to evaluate satellite products (Ayat et al., 
2021). In contrast, the Eulerian event analysis is much simpler and 
easier to implement, which can be conducted wherever ground-based 
observations (whether from radar or gauges) are available.

The results of our study demonstrated a distinct time-dependence of 

Fig. 7. Boxplots of the environmental conditions, specifically (a) CAPE and (b) 
Dewpoint of events across the two seasons, regions, and time periods of days 
depicted in Figs. 5 and 6. The environmental conditions of events are defined 
based on values recorded half an hour prior to events’ onsets. The 25th (Q1), 
50th (Q2), and 75th (Q3) percentiles, along with the whiskers (Q1 − 1.5IQR 
and Q3 + 1.5IQR; IQR (Interquartile range) = Q3 − Q1) are displayed in 
the boxplots.
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Fig. 8. Evolution of half-hourly (a1-a4 and b1-b4) miss/false proportion (similar to Fig. 1) and (c1-c4, d1-d4, and e1-e4) intensity bias (similar to Fig. 2) before/during/ 
after the events under different environmental conditions (specifically CAPE (the upper orange panel) and Dewpoint (the lower purple panel) here). The environ
mental conditions of events are defined based on values recorded half an hour prior to the events’ onset. Results computed from events with their environmental 
condition values falling within the bottom and top 30% of the overall distribution of these values are displayed for comparison. The values are calculated from all the 
data across CONUS from 2018 to 2020.
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the error curves during the event evolution and explored the potential of 
event-associated environmental variables (exemplified by CAPE and 
dewpoint) to provide unified quantitative indicators for the shapes of 
the error curves, towards their possible incorporation in the retrieval 
algorithms to reduce systematic biases. Considering that the operational 
Goddard Profiling Algorithm (GPROF) PMW retrieval already in
corporates some environmental variables (two-meter surface Tempera
ture (T2m), Total Column Water Vapor (TCWV), etc.) at the time of 
inversion (Passive Microwave Algorithm Team Facility, 2022), our re
sults additionally demonstrate the predictive role of environmental 
variables on the overall satellite error evolution patterns during the 
events, emphasizing the importance of further exploration and utiliza
tion of a broader array of environmental variables to improve retrieval 
algorithms (Upadhyaya et al., 2022). Considering the complex rela
tionship between precipitation and the environment (Berg et al., 2006; 
Liu et al., 2020), extensively integrating various model output envi
ronmental variables into traditional PMW retrieval algorithms for 
improvement is challenging and has thus been seldomly addressed in 
previous research. This approach, however, shows unprecedented 
promise within increasingly advanced deep learning frameworks (for 
example, Google’s pure AI-driven weather forecasting model, Graph
Cast, successfully utilizes current and 6-hour earlier precipitation, along 

with basic environmental variables (temperature, wind, humidity, 
pressure, etc.) to autoregressively predict future precipitation up to 10 
days ahead (Lam et al., 2023)), and is expected to play a critical role in 
future retrieval algorithms.

Based on our analysis, the proposed idealized guidance for satellite 
algorithm improvement is to use the pre-event environmental condi
tions to indicate the overall shape and magnitude of the error evolution 
curves during the events, and then, through the event-stage-dependent 
nature of errors, to leverage the stage information to further pinpoint 
the specific satellite error magnitudes. Yet, a practical challenge 
emerges as the actual precipitation event stage is not readily available in 
the absence of a ground-truth; it is thus necessary to seek alternative 
proxies of the “real” event stages. A potentially viable approach is to 
utilize not only the pre-event environmental conditions as we did here, 
but also the continuous temporal evolution patterns of environmental 
and cloud microphysics variables by identifying specific patterns related 
to the occurrence and distinct development stages of precipitation 
events. (Bouniol et al., 2016). This concept is theoretically grounded in 
cloud physics’ natural evolution during precipitation processes (e.g., 
changes in the ice water content) (Braga and Vila, 2014), the effect of the 
environment on precipitation development and maintenance (e.g., the 
persistence of moisture transport) (Lee et al., 2016), the feedback of 

Fig. 9. (a1-c1) Event-wide averages and (a2-cc) the asymmetry indices of Miss Proportion/False Proportion/Intensity Bias curves under different pre-event CAPE 
(blue line) and Dewpoint (red line) conditions, which are classified based on the percentile intervals (i.e., 0%-10%, 10%-20%, …, 90%-100%) of the distribution of 
their values extracted from the entire event set. Data points are plotted at the midpoints of these intervals (i.e., 5%, 15%, …, 95%). Corresponding CAPE and 
dewpoint values for each percentile are also depicted for reference. The values are calculated from all the data across CONUS from 2018 to 2020.
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precipitation itself on the environment (e.g., downburst-induced wind 
field alteration) (Romanic et al., 2022), and so on. Another imple
mentable approach might be using the satellite-derived events’ stage 
information as the proxy of the “real” stages, feeding it back into the 
products for iterative improvement. Fig. S22 performs such an analysis, 
similar to Figs. 1 and 2 but using IMERG-extracted events as reference. 
As demonstrated, the errors still show a clear dependency on the stages 
of the IMERG events, suggesting the potential of this method. Addi
tionally, the cloud life cycle, easily obtained from IR sensors on geo
stationary satellites, could also be tried as an approximation for the 
precipitation life cycle, which has been explored in some studies 
(Guilloteau and Foufoula-Georgiou, 2024; Tadesse and Anagnostou, 
2009).

5. Conclusions

Understanding the error patterns of satellite precipitation products at 
fine time scales (i.e., half-hourly) is crucial for their hydrologic, atmo
spheric, and other applications. Acknowledging that precipitation oc
curs discretely over time as “precipitation events” with specific start/ 
end times and durations, this study explores the error evolution char
acteristics during the life cycle of the events and their relation to the 
storm environment. Using GV-MRMS as the reference product, IMERG is 
evaluated at its native resolution of 0.1◦×0.1◦ and 30mins over CONUS. 
The main conclusions are as follows: 

(1) The nationwide annual average results reveal significant varia
tions in both detectability and rain rate bias of IMERG before/ 
during/after the events. Specifically, both miss and false pro
portions peak near event margins. An asymmetry is observed in 
detectability, with higher miss proportion near event ends than 
the beginnings, and vice versa for the false proportion. IMERG 
and MRMS show diverse mean intensity profiles during the 
events, leading to an intensity bias pattern where IMERG over
estimates near event beginnings/ends but underestimates in the 
early- to mid-stages. These findings underscore a pronounced 
dependency of IMERG errors on the stages of precipitation 
events.

(2) Error diagnoses performed using solely GMI-sourced data reveal 
similar error patterns during the events as observed with full 
IMERG data, indicating the inherent event-stage-dependent error 
patterns in PMW retrievals. Further investigation reveals evident 
variation in the MRMS-to-IMERG intensity correspondence 
curves across different event stages, which implies substantial 
shifts in the satellite-signal-to-rain-rate relationship throughout 
the events and suggests that the stage-dependent error pattern is 
not a simple temporal projection of intensity dependence. These 
diagnostic results indicate the inherent nature of satellite errors’ 
dependency on event stages, whose more essential causes might 
be the cloud microphysics variations during the event life cycles.

(3) The analysis over different seasons, regions, and times of day 
reveals distinct event-stage-dependent error patterns, with sig
nificant differences between winter/the northeast/early morning 
and summer/the southeast/late afternoon. Specifically, the latter 
exhibits a larger more symmetric miss proportion, smaller more 
symmetric false proportion, and greater more asymmetric nega
tive intensity, most likely associated with the increased presence 
of convective precipitation. Observed higher pre-event CAPE/ 
dewpoint values under these situations additionally corroborate 
this point. Further comparison of error curves, calculated from 
events ranked within the top and bottom 30 % of the environ
mental conditions, demonstrates the indicative role of environ
mental variables in the shape error curves during the events. Two 
metrics that describe the shape and magnitude of the error curves 
further quantify the clear error dependence of the error patterns 
on the CAPE/dewpoint quantile.

In summary, this paper provides guidance and insights into the fine- 
scale error patterns of satellite precipitation products through the 
analysis of the error evolution during precipitation events. It highlights 
the limitations of current retrieval algorithms in fully resolving the 
inversion relationship which changes throughout the precipitation event 
life cycles due to changes in cloud microphysics, and conversely em
phasizes the potential benefits of incorporating event stage information 
into future algorithms for enhanced accuracy. Moreover, the research 
demonstrates that storm environmental variables could serve as in
dicators not only of the retrievals at specific times (partially used in the 
current operational retrieval algorithms), but also for the error patterns 
throughout the entire event sequence. This highlights the necessity of 
more effectively utilizing various environmental variables (including 
CAPE/dewpoint and beyond) in future algorithms, although specific 
implementation strategies require further investigation. Future efforts 
should aim to integrate the insights from this study to practically explore 
and test the enhancement in the satellite precipitation product accuracy 
under deep learning frameworks.
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