
1 
 

This is a preprint. The final version of this article is published in Journal of Hydrometeorology: 

https://doi.org/10.1175/JHM-D-23-0185.1 

 

Life Cycle of Precipitating Cloud Systems from Synergistic Satellite Observations: Evolution of 

Macrophysical Properties and Precipitation Statistics from Geostationary Cloud Tracking and 

GPM Active and Passive Microwave Measurements  

 

Clément Guilloteau1,* and Efi Foufoula-Georgiou1,2 

1 Department of civil and environmental engineering, University of California Irvine 

2 Department of Earth system science, University of California Irvine 

* corresponding author, cguillot@uci.edu 

 

Abstract 

 Observations of clouds and precipitation in the microwave domain from the active radar (DPR) 

and the passive imager (GMI) onboard the GPM Core Observatory satellite are used in synergy with cloud 

tracking information derived from infrared imagery from the GOES-13 and Meteosat-7 geostationary 

satellites for analysis of the life cycle of precipitating cloud systems, in terms of temporal evolution of 

their macro-physical characteristics, in several oceanic and continental regions of the Tropics. The life 

cycle of each one of the several hundred thousand cloud systems tracked during the two-year (2015-2016) 

analysis period is divided into five equal-duration stages between initiation and dissipation. The average 

cloud size, precipitation intensity, precipitation top height, and convective and stratiform precipitating 

fractions are documented at each stage of the life cycle for different cloud categories (based upon lifetime 

duration). The average life cycle dynamics is found remarkably homogeneous across the different regions 

and is consistent with previous studies: systems peak in size around mid-life; precipitation intensity and 

convective fraction tend to decrease continuously from the initiation stage to the dissipation. Over the 

three continental regions, Amazonia, Central Africa and Sahel, at the early stages of clouds’ life cycle, 

precipitation estimates from the passive GMI instrument are systematically found to be 15 to 40% lower 

than active radar estimates. By highlighting stage-dependent biases in state-of-the-art passive microwave 

precipitation estimates over land we demonstrate the potential usefulness of cloud tracking information 

for improving retrievals, and suggest new directions for the synergistic use of geostationary and low-

Earth-orbit satellite observations. 
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1) Introduction 

 The observation of clouds from satellites has a relatively long history. The first meteorological 

satellite, Vanguard-2, carrying a cloud optical scanner [Hanel et al. 1960], was launched by the United 

States in 1959, less than two years after the first-ever artificial satellite, Sputnik-1, was put into orbit by 

the USSR. Since then, satellite radiometric measurements of atmospheric water, as vapor, or in condensed 

phase as hydrometeors (liquid drops or ice particles, suspended in clouds or falling as precipitation), have 

gone a long way. These radiometric measurements are either made in the optical domain (visible and 

infrared) or in the microwave domain.  

Optical imagery can operate from geostationary orbit (GEO, 36 000 km altitude). The GEO orbit 

allows one single instrument to cover continuously a wide section of the globe (half of it in theory); the 

most recent GEO optical imagers being able to perform a full-disk scan every 10 minutes. In practice, 

considering the geometrical distortions arising from projecting a spherical surface on a plane, a minimum 

of four GEO satellites is necessary to cover the whole globe (and the polar regions of the Earth are in fact 

not covered by GEO imagery). In contrast, in the microwave domain, physical measurement constraints 

impose that the remote sensing of atmospheric water is performed from a closer distance, from low Earth 

orbit (LEO, typically between 400 and 2 000 km altitude). Passive microwave radiometers on LEO have 

a scan swath width of 1700 km at most and complete between 15 and 20 orbits around the Earth every 

day. A minimum of about 8 passive microwave radiometers in LEO is therefore necessary to cover the 

whole globe every 3 hours, and more than a hundred instruments on synchronized orbits would be 

necessary to match the 10 min temporal sampling of GEO optical imagery. 

While frequent sampling and global coverage is more easily achievable with GEO optical imagers 

than with LEO microwave radiometers, microwave radiometry provides more direct information than 

optical imagery regarding the clouds’ water content and the precipitation process (as visible and infrared 

frequencies cannot penetrate optically thick clouds). Nowadays, the most accurate satellite global 

quantitative precipitation estimation (QPE) products rely essentially on LEO passive microwave 

measurements, GEO infrared measurements being used to “fill the gaps” between overpasses of passive 

microwave radiometers [Kidd et al. 2021]. A few attempts have been made to supplement passive 

microwave brightness temperature information with GEO infrared brightness temperature information to 

improve the accuracy of instantaneous estimates of precipitation intensity at the times of passive 

microwave overpasses [Gorooh et al. 2022]. However, it is generally found that adding only the collocated 

infrared brightness temperature at the time of the microwave observation leads to very little improvement 

as compared to using the microwave observations alone. 

Yet, the ability of GEO imagery to continuously monitor the life cycle of cloud systems, from their 

initiation to their dissipation, is not matched by LEO microwave radiometry. The operational algorithms 

retrieving atmospheric hydrometeor profiles and atmospheric water content from microwave spectral 

signatures operate in an “instantaneous snapshot” framework, and do not exploit the temporal information 

in the observations. We assert here that the complementarity between GEO and LEO observations is not 
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fully exploited by the current operational QPE algorithms. The present study suggests new directions 

toward efficiently using together these different types of satellite observations to improve global QPE 

products.       

 Even when observations are available at regular time intervals and with high-frequency sampling, 

as is the case with the 10-min GEO imagery, exploiting temporal information and analyzing the temporal 

dynamics of clouds is rendered non-trivial by the clouds’ motion. Indeed, as clouds can travel over 

thousands of kilometers, one cannot fully comprehend their life cycle by analyzing the temporal variability 

of the observed atmospheric signal at a fixed location (Eulerian approach). To follow the evolution of 

clouds over time, one must be able to track their displacements (Lagrangian approach). Over the years, 

various cloud-tracking algorithms have been developed to automatically detect and track clouds systems 

in sequences of GEO infrared satellite images [Smith and Phillips 1972, Wolf et al. 1977, Escrig et al. 

2013, Ai et al. 2016, Feng et al. 2021, 2023]. In the present article we utilize the outputs of the TOOCAN 

cloud tracking algorithm [Fiolleau and Roca 2013-A] to analyze the life cycle of cloud systems in the 

tropics over South America, Africa and the Atlantic Ocean. The TOOCAN information is cross analyzed 

with passive and active microwave observations from the Global Precipitation Measurement (GPM) Core 

Observatory satellite. The first objective of our analysis is to establish a climatology of cloud systems 

focusing on their macro-physical characteristics, including, size, life duration, precipitation intensity, 

precipitation top height, convective and stratiform fractions. The cloud tracking information allows us to 

derive a dynamical climatology by statistically characterizing the quantities of interest and their inter-

relationships at every stage of the life cycle of cloud systems. The second objective of our analysis is to 

assess the consistency between the estimates of precipitation intensity derived respectively from the active 

radar (DPR) and passive radiometer (GMI) onboard the GPM Core Observatory satellite, at the different 

stages of the clouds’ life cycle. As part of this second objective, we analyze in particular the biases and 

errors in the operational NASA Goddard PROFfiling (GPROF) algorithm, which derives precipitation 

intensity from passive microwave spectral signatures, and which is the basis of the global satellite mapping 

of precipitation operated through the international GPM constellation (Hou et al. 204, Kidd et al. 2021). 

We eventually aim at demonstrating the potential of GEO cloud tracking information for improving global 

satellite precipitation mapping products, in particular their representation of the life cycle of precipitating 

cloud systems. 

 The article is organized as follows: Section 2 presents the study areas, the data and the analysis 

methods; Section 3 presents the results, in terms of climatology of cloud systems, and in terms of 

evaluation of precipitation intensity estimates derived from GPM passive microwave measurements 

against estimates derived from active measurements; Section 4 presents a discussion of the results and 

perspectives for improved global cloud and precipitation products.  
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2) Study regions, data, and method 

2.1 Study regions: Amazonia, Central Africa, Sahel, Gulf of Guinea and Central Atlantic Ocean 

 Five tropical regions are selected for the analysis (see Figure 1): Amazonia (land between latitudes 

8°N and 20°S and longitudes 43°W and 65°W), Central Africa (land between latitudes 8°N and 10°S and 

longitudes 8°E and 35°E), Sahel (land between latitudes 25°N and 8°N and longitudes 18°W and 30°E), 

Gulf of Guinea (ocean between latitudes 7°N and 20°S and longitudes 20°W and 14°E), and Central 

Atlantic Ocean (ocean between latitudes 30°N and 0° and longitudes 55°W and 15°W). Each of these 

regions is selected to have a spatially homogeneous climate. Amazonia and Central Africa have a tropical 

humid climate [Marengo and Nobre 2001, Garreaud et al. 2009, Farnsworth et al. 2011]. Sahel has a hot 

semi-arid climate with more than 90% of the annual precipitation amount occurring during the wet season 

(June to September) [Nicholson 2018, Biasutti 2019]. The selected regions of the Atlantic Ocean are both 

part of the tropical belt with strong influence of the intertropical convergence zone [Biasutti et al. 2004, 

Gu and Adler 2006]. Sea surface temperature warm pools regularly occurring in the Gulf of Guinea lead 

to the formation of a high number of oceanic mesoscale convective cloud systems in this region [Gu and 

Adler 2004].  

2.2 TOOCAN tracking data, DPR and GMI data 

 The present study relies on the conjoint analysis of the TOOCAN cloud tracking data derived from 

GEO infrared imagery with estimates of precipitation type (convective or stratiform) and intensity, as well 

as precipitation top height, derived from active and passive microwave radiances measured by the GMI 

and DPR instruments onboard the GPM Core observatory satellite. 

The Tracking Of Organized Convection Algorithm through a 3-D segmentatioN (TOOCAN) 

[Fiolleau and Roca 2013-A] detects cloud systems and tracks them over time in series of GEO infrared 

images produced by the imagers onboard the GOES (operated by NOAA), Meteosat (operated by 

EUMetSat) and Himawari (operated by JMA) satellite series. TOOCAN operates at the 30 min and 4 km 

resolution, which corresponds to the coarsest instrumental resolution among the different imagers it relies 

on. (It is however worth noting that the newest generations of GEO meteorological satellites, such as 

GOES-R, MTG, and Himawari-8/9, offer capabilities to perform the cloud tracking at a finer resolution 

of 10 min and about 1 km). For the areas and period of our study, the input images of TOOCAN come 

from the GOES-13 imager and the SEVIRI imager onboard Meteosat-10. The TOOCAN algorithm 

attributes a unique ID to each individual cloud system it detects, and defines its coverage area in each 

individual GEO infrared image, every 30 min. The algorithm relies on image thresholding, object 

detection (segmentation) and object dilation procedures, and on the computation of overlapping ratios 

between the objects detected in successive images [Fiolleau and Roca 2013-A].            

 The GPM core observatory satellite carries the active Dual-frequency Precipitation Radar (DPR) 

as well as the passive GPM Microwave Imager (GMI) [Hou et al. 2014]. The Combined Radar-Radiometer 

Algorithm (CORRA) derives precipitation intensity in three dimensions within the swath of the DPR 
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(which is embedded within the larger swath of GMI) with a 5 km horizonal resolution and a 250 m vertical 

resolution [Grecu et al 2016]. The Goddard PROFfiling algorithm (GPROF) [Randel et al. 2020, 

Pfreundschuh et al. 2023] provides estimates of near-surface precipitation intensity from the GMI passive 

radiometric measurements alone, with a 13 km by 5 km horizontal resolution. For both CORRA and GMI-

GPROF, the product version 7 is used in the present study. While the DPR has a swath width of 250 km 

and is currently the only scanning precipitation radar in space whose data is made available to the research 

community, GMI has a swath width of 885 km, and moreover, several other passive microwave imagers 

similar to GMI, such has AMSR-2 and the SSMI/S series, orbit the Earth. Consequently, at any point of 

the Earth, passive microwave measurements are more than ten times more frequent than active 

measurements from the DPR, hence the interest in providing as accurate as possible quantitative 

precipitation estimates from passive microwave measurements alone. The less frequent active radar 

reflectivity measurements provide direct observation of the 3D structure of clouds and precipitation, 

allowing accurate estimation of the hydrometeor content of the atmosphere, and ultimately of the 

precipitation rate at the surface. The CORRA estimates therefore serve as a global reference for the 

calibration and training of passive microwave precipitation retrieval algorithms. The GPROF algorithm 

in particular relies on an a-priori database made of a large set of passive microwave spectral signatures 

associated with coincident estimates of surface precipitation intensity from the CORRA algorithm. 

GPROF is thus designed to reproduce CORRA estimates as accurately as possible. For this reason, in the 

present study, the CORRA precipitation estimates are considered as the reference for the evaluation of 

GPROF. In addition to estimates of precipitation intensity we also utilize estimates of precipitation type 

(i.e. stratiform or convective precipitation) and of precipitation top height derived from the DPR, to assess 

the dependance of GPROF’s retrieval accuracy on these quantities. 

 It is worth noting that, in the present study, we use “level-2” GPM estimation products, which rely 

on direct radiometric observations, without interpolation or dynamical physical simulations involved 

[NASA 2021]. The level-2 estimation products are sparse in the sense that they are orbit-based and only 

provide estimations at the locations and times of the satellite overpasses. Other studies have performed 

similar analyses relying on higher-level products [e.g., Roca et al. 2014, Berthet et al. 2017, Roca and 

Fiolleau 2020, Cui et al. 2020, Feng et al. 2021], such as the IMERG multisatellite QPE product, which 

provide precipitation estimates projected on a regular spatiotemporal grid, by dynamically integrating 

radiometric measurements from several satellite platforms, referred as level-3 and level-4 products 

[NASA 2021]. While level-3 and  level-4 gridded products can potentially provide a much larger sample 

size, they are subject to larger state-dependent biases and inaccuracies than level-2 products, the 

interpolation and data-merging procedures leading to level-3 and level-4 products are also prone to alter 

the temporal dynamics of the precipitation signal [Guilloteau et al. 2021, 2022, Li et al. 2023].      

2.3 Data collocation   

 In each one of the five study regions, for each GPM overpass over the 2015-2016 study period, 

GMI-GPROF precipitation estimates falling within the swath of the DPR are collocated with CORRA 
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estimates and mapped on the CORRA 5-km grid using a simple nearest-neighbor interpolation. Each 

CORRA pixel and its corresponding re-mapped GPROF pixel are then associated to the closest TOOCAN 

system (if any within a 4 km radius). Because the DPR and GMI are onboard the same platform, their 

coincident observations are only a few seconds apart. Given the 30-minute temporal sampling of the 

TOOCAN product, the maximum temporal delay between any DPR measurement and its collocated 

TOOCAN cloud system is 15 minutes. Figure 2 shows an illustrative example of a cloud system tracked 

by TOOCAN over southwestern Brazil for 12.5 hours (from 2015-11-13 14:00 UTC to 2015-11-14 02:30 

UTC), and sampled once by GPM, on 2015-11-13 at 19:30 UTC. 

Over the three land areas, Amazonia, Central Africa and Sahel, respectively, 110 000, 115 000 and 

48 000 unique systems have been tracked by the TOOCAN algorithm for the 2015-2016 period. Regarding 

the oceanic regions, 88 000 cloud systems have been tracked over the Central Atlantic Ocean and 47 000 

over the Gulf of Guinea. Because of the sparsity of GPM direct observations, only a fraction of these 

systems has been sampled by both GMI and the DPR. However, the two-year length of the analysis period 

and the size of the chosen study areas (all five areas greater than 4 million km2) ensure that, in each region, 

the number of unique systems sampled is of several thousands (9500, 9900, 5100, 8000 and 4500 over 

Amazonia, Central Africa, Sahel, Central Atlantic Ocean and Gulf of Guinea respectively). Because 

individual cloud systems are rarely sampled by GPM more than once during their lifetime, all the statistics 

describing the evolution of GPM-observed quantities during the life cycle of cloud systems in the present 

study are computed as composites over thousands of cloud systems.   

2.4 System’s life stage 

 For each TOOCAN system that could be tracked continuously from its initiation to its dissipation, 

we segment its life cycle into five equal-duration development stages. The development stage at time t is 

defined as: 

𝑆(𝑡) = 𝑐𝑒𝑖𝑙(5 ×
𝑡−𝑡𝑖

𝐷
 ) 

with: 𝐷 = 𝑡𝑑 − 𝑡𝑖 

where 𝑐𝑒𝑖𝑙(. ) designates the “ceiling” function which, to a real x, associates the smaller integer 𝐼𝑥 such as 

𝐼𝑥 > 𝑥; 𝑡𝑖 designates the initiation time of the system and 𝑡𝑑 its dissipation time, D therefore being the 

total life duration of the system. For our study, the five-stage segmentation is applied to all systems with 

3 ℎ < 𝐷 < 48 ℎ. Systems with a life duration less than 3 hours are excluded because of the limiting 30-

min temporal resolution of TOOCAN. In our analysis, systems are separated into three duration categories: 

short-lived systems (3 to 6 hours), medium-lived systems (6 to 12 hours), and long-lived systems (12 to 

48 hours). The 48-hour upper duration limit for long-lived systems excludes hurricanes, for which we 

assessed that two years of GPM observations were insufficient to accurately resolve the average life cycle. 

Because of the relative rarity of hurricanes, combined with DPR’s narrow swath and its several-day revisit 

time, only a few dozens of DPR overpasses per year over hurricanes are available for analysis. 
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It is important to note that the initiation and dissipation times of each system are defined only from 

the outputs of TOOCAN. The TOOCAN algorithm is designed for tracking the trajectory of organized 

cloud systems rather than for detecting areas of initiating convection. The very early stages of the 

development of clouds, before they meet the conditions for being identified as an organized system by 

TOOCAN, are therefore not accounted for in this study, although precipitation may occur during this 

earlier phase. Detecting and tracking clouds at their earliest development stages, when they are still 

scattered and not yet organized as compact objects, would likely require a different method than 

TOOCAN.  

 

 

Figure 1: Map of the five tropical areas retained for the study, which are, Amazonia (AMZ), Central Africa 

(CAF), Sahel (SAH), Gulf of Guinea (GG) and Central Atlantic Ocean (CAO). In those regions, respectively, 

110 000, 115 000, 48 000, 47 000, 88 000 unique systems have been tracked by the TOOCAN algorithm 

for the 2015-2016 period, out of which, 9500, 9900, 5100, 4500 and 8000 respectively have been 

sampled by both the GMI and DPR instruments. 
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Figure 2: Illustration a of cloud system tracked by TOOCAN over southwestern Brazil from 2015-11-13 

14:00 UTC to 2015-11-14 02:30 UTC, and sampled by GPM on 2015-11-13 at 19:30 UTC. The ID number 

attributed to this system by TOOCAN is 12895354. (a) Track of the system’s barycenter derived from 

TOOCAN. (b) Precipitation fields from the CORRA and GPROF algorithms at the time of the GPM overpass. 

The precipitation statistics computed at the time of the GPM overpass are: cloud precipitation fraction 

(CPF), cloud mean conditional precipitation intensity (CMCPI), cloud mean areal precipitation intensity 

(CMAPI), mean precipitation top height (MPTH) relative to the freezing level, stratiform precipitation 

fraction (SPF), convective precipitation fraction (CPF) and undetermined type precipitation fraction (UPF). 

(c) Samples of the TOOCAN cloud mask at the five stages of the cloud life cycle. While TOOCAN’s temporal 

sampling is 30 minutes, only one sample per stage is shown here. (d) Size of the cloud system derived 

from TOOCAN as a function of time. As individual cloud systems are rarely sampled by GPM more than 

once during their lifetime, the evolution of the different statistics during the life cycle of cloud systems 

(figures 4, 5, 6, 7, 8, 10, 11) are computed as composites over thousands of cloud systems.   
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3) Results 

3.1 Climatology of cloud’s morphology and dynamics from GEO tracking 

 In this section, only the outputs of the TOOCAN tracking algorithm are considered, to extract 

statistics regarding the life duration of cloud systems and the variation of cloud system’s size (i.e. their 

horizontal extent) during the different stages of cloud’s life cycle. 

Figure 3 shows the frequency distribution of TOOCAN cloud systems’ duration in the five regions 

of interest. To compute these distributions, for each climatic region, the life duration of every system that 

passed through is computed. This means in particular that systems that moved from one region to another, 

(e.g. systems that initiated over the Sahel and moved over the Central Atlantic Ocean) are included in the 

statistical distribution for both regions. For these systems that entered or exited a given region through 

their lifetime, the life duration is still computed from initiation to dissipation. The computed life duration 

of a given system therefore potentially includes the amount of time the system lived outside of the climatic 

region of interest. The distributions of systems’ duration are very similar across Amazonia, Central Africa 

and Sahel with, respectively, 58%, 55% and 56% of the systems lasting less than 6 hours, and, 7%, 8% 

and 9% lasting more than 12 hours. The distributions of system duration are quasi-identical between the 

two oceanic areas, with 53% of systems lasting less than 6 hours and 10% lasting more than 12 hours.  

Figure 4 shows the distribution of TOOCAN cloud system’s size as a function of the life stage for 

short-lived (3 to 6 hours), medium-lived (6 to 12 hours) and long-lived (12 to 48 hours) systems, in each 

one of the five tropical areas. The most striking element is the symmetry in the temporal evolution of the 

size of cloud systems. In all areas and for all system durations the mean system size reaches its maximum 

during the stage 3 (middle stage) of the life cycle. These results are consistent with those of Roca et al. 

(2017), whose analysis also relied on the outputs of the TOOCAN algorithm. Our analysis shows that the 

average temporal dynamics of cloud systems is extremely consistent across all areas, including between 

land and ocean, and across systems’ duration. The most noticeable difference across the regions is that, at 

every stage of the cloud life cycle, the mean system size is greater over land than over ocean, and greater 

over Sahel than over Central Africa and Amazonia.  
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Figure 3: Frequency distribution of the duration of the TOOCAN cloud systems for each one of the five 

tropical areas. The percentage of short-/medium-/long- lived systems is 58%/35%/7% over Amazonia, 

55%/37%/8%, over Central Africa, 56%/35%/9% over Sahel, and 53%/37%/10% over both Gulf of Guinea 

and Central Atlantic Ocean.   
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Figure 4: Distribution of TOOCAN cloud system’s size as a function of the life stage for short-lived (3 to 6 

hours), medium-lived (6 to 12 hours) and long-lived (12 to 48 hours systems), in each one of the five 

tropical areas. The thick black line indicates the mean of the distribution, the colored dashed lines 

indicate the 10 to 90 percentiles (every 10 percentile). 
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3.2 Precipitation and vertical structure of clouds from GPM observations as a function of cloud’s life stage 

  In this section, observations from the GPM Core Observatory satellite, collocated with the 

TOOCAN data are analyzed. Figure 5 shows the average precipitating fraction within the TOOCAN-

delimited cloud area as a function of the cloud life stage, according to CORRA and GMI-GPROF. The 

precipitating fraction is defined as the fraction of pixels (at the 5-km native resolution of CORRA) with 

precipitation intensity above 0.2 mm/h. One can immediately notice that the precipitating fraction in 

GPROF is always higher than that in CORRA, especially over the Amazon and Central Africa regions. As 

a Bayesian algorithm, GPROF tends to artificially generate a large number of pixels with very low 

precipitation intensity. Indeed, because the inversion of passive microwave radiances into precipitation 

intensity is an underconstrained problem, the GPROF estimation is probabilistic: the estimated value given 

by GPROF is the mean of the a-posteriori probabilistic distribution of precipitation intensity given the 

observed radiances. In the frequent cases when the a-posteriori distribution contains both zero and non-

zero values, those are averaged together, inducing a low value of the estimated intensity. This is the reason 

why a 0.2 mm/h threshold is used here to define precipitating fraction instead of counting all pixels above 

0.0 mm/h. Indeed, with a 0.0 mm/h threshold, the cloud precipitating fraction in GPROF is found nearly 

constant at 100%.  Beyond the fact that GPROF mean precipitating fraction at 0.2 mm/h is always higher 

than that of CORRA, one can see that the two estimates are consistent with each other in terms of the 

temporal evolution of the mean precipitating fraction during the life cycle of cloud systems. For short-

lived systems, in all the studied regions, the precipitating fraction decreases monotonically as the systems 

mature. For long-lived systems the precipitating fraction is relatively constant during the first half of the 

life cycle and decreases during the second half. It must be noted that the  average cloud precipitating 

fraction is lower and varies less in the Sahelian region as compared to the other regions. 

Besides the temporal evolution of the cloud precipitating fraction, we are interested in the 

evolution of precipitation intensity during clouds’ life cycle. Figure 6 shows the mean conditional 

precipitation intensity, which is computed as the mean intensity for pixels above 0.2 mm/h, as a function 

of clouds’ life stage. The counterpart of the systematically higher precipitating fraction  in GPROF is a 

systematically higher conditional intensity in CORRA. This can be seen as a compensation mechanism, 

as GPROF estimates are designed to preserve the mean value of CORRA. It must be noted that, in 

Bayesian minimum mean square error estimation methods, the mean is the only moment of the statistical 

distribution of the target variable that is strictly preserved in theory. Additionally, the statistical distribution 

of the estimates is generally biased toward the mean, leading to compressed dynamical range, reduced 

statistical variance, and underrepresentation of the extremes on both sides of the distributions [Guilloteau 

et al. 2023]. We note that, from a statistical point of view, for precipitation rates, zero is an extreme value, 

as it is the absolute minimal possible value (even if zeros are very frequent). This explains why the 

statistical distribution of precipitation rates in GPROF is so different from that of CORRA. GPROF 

estimates are always “smoother”, with a higher number of low-intensity pixels and lower high extreme 

values than CORRA. Another element contributing to the differences between GMI-GPROF and CORRA 

in terms of statistical distribution of precipitation rates is their different native resolution, and, in a more 
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extensive way, their different “effective resolution”. As mentioned in the data collocation section (2.3) the 

nominal resolution of GMI-GPROF estimates is 13 km by 5 km. For this study, GPROF estimates are 

interpolated on the 5 km by 5 km grid of CORRA using a nearest neighbor interpolation (which preserves 

the statistical distribution of the interpolated variable). Because GPROF uses information from different 

microwave channels with different footprint sizes, its actual resolution is not trivial to define. Published 

studies have shown that over land, GMI-GPROF can only resolve precipitation features at scales down to 

about 40 km at best [Guilloteau et al. 2017, Pfreundschuh et al. 2023], we therefore stipulate that the 

“effective resolution” of GMI-GPROF over land is approximately 40 km.      

Despite their differences, GPROF and CORRA both show the mean conditional precipitation 

intensity generally decreasing monotonically as systems mature over both ocean and land (Figure 6). We 

can however notice that for long-lived systems over oceans the mean conditional precipitation intensity 

remains quasi constant from stage 1 to stage 2.  Figure 7 shows the evolution of the mean areal cloud 

precipitation intensity, which is computed over all pixels, including non-precipitating pixels. In contrast 

to what is shown in Figure 4 for the cloud horizontal extent, what is striking in the figures 5, 6 and 7 for 

the precipitation occurrence and precipitation intensity is the temporal asymmetry, with precipitation 

occurrence and intensity generally decreasing with aging cloud systems. For short-lived systems the 

curves of cloud mean areal precipitation intensity against time (Figure 7) are rather convex, with a stronger 

decrease rate at the beginning of the event. In contrast, the curves are rather concave for long-lived events 

with a weak decrease rate at the beginning. For medium-lived events the curve is more linear with a nearly 

constant decrease rate.  

As expected, the differences between GPROF and CORRA in terms of precipitating fraction and 

conditional intensity tend to compensate each other; significant stage-dependent biases however persist 

over land (Figure 7). Over the two oceanic areas, GPROF and CORRA estimates of the cloud mean areal 

precipitation intensity as a function of cloud’s life stage are highly consistent, both in terms of absolute 

magnitude and in terms of dynamics (shape of the curve). Over Amazonia, Central Africa and Sahel, 

GPROF is found to significantly underestimate precipitation intensity as compared to CORRA at the 

stages 1 and 2 of the life cycle, for all short-, medium- and long-lived systems. This underestimation 

pattern is remarkably consistent across the three land regions and the different system life durations. 

Altogether GPROF overestimates the mean precipitation intensity inside TOOCAN-identified-systems’ 

areas by about 4% over the two oceanic regions, and underestimates it by about 16% over the three land 

regions. From Figure 7 we also notice that the standard deviation of the GPROF error (grey dashed line), 

computed as the standard deviation of the pixel-wise differences between GPROF and CORRA at the 5-

km resolution, is higher at the early stages of cloud life cycle, when the mean precipitation intensity is the 

highest. 

Figure 8 also shows the comparison between GPROF and CORRA during the five stages of clouds’ 

life cycle, but in terms of the distribution of the total rain volume instead of precipitation intensity, i.e. 

taking into account both the mean areal intensity and the system’s size. One can see that the stage-
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dependent intensity biases of GPROF over land induce a shift of the center of mass of the precipitation 

volume toward the later stages of the cloud life cycle as compared to the distribution derived from 

CORRA. For medium- and long-lived systems over land, while the intensity is the highest and the intensity 

bias is the strongest at the stage 1 (Figure 7), this stage only moderately contributes to the total 

precipitation volume and to the volume bias (because of the relatively small size of the systems at this 

stage, as shown in Figure 4). One shall note however that, even if they only marginally contribute to the 

global precipitation amount, high intensity precipitation rates concentrated over small areas can result in 

extreme impacts (e.g. flash floods and landslides); hence the importance of accurately retrieving them, 

and properly identifying their associated retrieval biases if any.     

 Figure 9 shows the cumulative fractional contribution of systems of increasing life duration to the 

total rainfall amount in the different regions, as estimated from the CORRA and GPROF products, 

collocated with the TOOCAN information. In each region, the curve derived from the CORRA data nearly 

perfectly matches the curve derived from the GPROF data; the curves are in fact barely visually 

distinguishable on the figure. This demonstrates that the life-stage-dependent biases of GPROF do not 

induce a duration-dependent bias, i.e., that the relative bias of GPROF against CORRA, when integrated 

over the whole life cycle, is identical for all system durations. The cumulative distributions shown in 

Figure 9 reveal the importance of long-lived systems (above 12-hour duration), which, while they account 

for only 7 to 10% of all systems, contribute to 50 to 60% of the precipitation amount over the land regions 

and around 70% over the oceanic regions. We shall here give attention to the fact that only the CORRA 

and GPROF pixels that could be associated to a TOOCAN system are accounted for in this study (see 

section 2.3). Precipitating pixels that are not within 4 km of a TOOCAN system account for 25% and 32% 

of the total precipitation volume in CORRA and GPROF respectively over the analyzed areas and period. 

Part of this unaccounted precipitation comes from precipitating systems other than the MCSs tracked by 

TOOCAN. Part of it may be due to precipitation occurring before the start of TOOCAN’s tracking. It 

appears from our analysis that, when TOOCAN starts tracking a cloud system, most of the time, it has 

already entered a precipitating phase.  

To better understand the temporal patterns of the bias of GPROF against CORRA and try to relate 

them to cloud’s physical properties, we analyze the evolution of precipitation top altitude relatively to the 

altitude of the freezing level (Figure 10) and precipitation type (Figure 11) along the life cycle of the 

clouds. Precipitation top height is found to generally decrease from stage 2 to stage 5. During the first two 

stages, the average precipitation top height is relatively constant; this contrasts with the mean precipitation 

intensity (Figure 7), which was found to significantly decrease from stage 1 to stage 2, particularly for 

short-lived systems. From the quantile curves in Figure 10 we can also see that the dispersion in the 

statistical distribution of precipitation top height decreases as the system matures, revealing a stronger 

variability of the vertical structure of precipitation across different systems (and within systems) at the 

earlier stages of clouds’ life cycle. This higher variability of precipitation top height at the early stages 

coincides with higher standard deviation of the error (against the CORRA reference) in GPROF estimates 

of precipitation intensity (Figure 7, grey dashed curves). Figure 11 shows that the average convective 
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fraction of clouds significantly decreases from stage 1 to stage 3. In short-lived systems, the decrease of 

the convective fraction over time coincides with increasing rate of “undetermined” precipitation type, i.e. 

DPR reflectivity profiles that could not unambiguously be labeled as convective or stratiform by the 

classifier algorithm. In long-lived systems the rate of undetermined precipitation type is relatively constant 

and the decrease of the convective fraction over time coincides with increasing stratiform fraction. It is 

worth noting that, over the land regions, the magnitude of both the systematic bias and the random errors 

(Figure 7) of GPROF against CORRA scale positively with the convective fraction but seem to be 

relatively unaffected by the rate of “undetermined” reflectivity profiles.       

The general pattern of GPROF’s biases over land as a function of clouds’ life stage is consistent 

with the already-known pattern of systematic underestimation of high-intensity convective precipitation 

[Henderson et al. 2017, Petković et al. 2019, Pfreundschuh et al. 2023]. This intensity-dependent bias can 

again be partially attributed to the Bayesian minimum mean squared error estimation process of GPROF, 

which, by design, produces smooth estimates with compressed dynamical range and reduced temporal 

variability. The excessively smooth dynamics of GPROF over land indicates that the algorithm has 

difficulty differentiating clouds in their growing phase, with intense active convection and high 

precipitation intensity, from more mature clouds, with less intense or decaying convection. Over land, as 

the emission signal by liquid raindrops is hardly distinguishable from the background surface emission 

signal in the microwave domain, the GPROF algorithm essentially exploits the signal resulting from the 

scattering effect of ice particles in the upper levels of the clouds. While the ice scattering signal is certainly 

a strong indicator of atmospheric convection, the maximum intensity of the ice scattering is likely delayed 

in time as compared to the maximum of convective activity. Indeed, when convection is active, ice 

particles are expected to progressively accumulate in the upper cloud levels. Later, in the dissipating 

phases of the clouds’ life cycle, even if the convective activity decreases rapidly, the ice particles may 

remain suspended in the upper cloud levels for several tens of minutes and up to a few hours. 

Supplementing the inputs of the GPROF algorithm with information on the temporal dynamics of clouds 

could therefore help improve the estimation of the instantaneous precipitation intensity.   
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Figure 5: Mean cloud precipitating fraction as a function of TOOCAN cloud system’s life stage according 

to the CORRA (blue line) and GMI-GPROF (black line) estimates. The precipitating fraction is defined as 

the fraction of the cloud area with precipitation intensity above 0.2 mm/h.  
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Figure 6: Mean conditional precipitation intensity as a function of TOOCAN cloud system’s life stage 

according to the CORRA (blue line) and GMI-GPROF (black line) estimates. The conditional  mean 

precipitation intensity is defined as the mean intensity computed over precipitating pixels only (i.e. pixels 

with intensity above 0.2 mm/h).  
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Figure 7: Mean areal precipitation intensity as a function of TOOCAN cloud system’s life stage according 

to the CORRA (blue line) and GMI-GPROF (black line) estimates. The grey dashed line shows the standard 

deviation of the difference GPROF-CORRA as a function of cloud system’s life stage.  
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Figure 8: Contribution to the total rainfall volume of the five life stages according to the CORRA (grey) 

and GMI-GPROF (black) estimates. For each life stage, the fractional contribution is computed relatively 

to the total CORRA rainfall volume across all stages. Stage-dependent intensity biases of GPROF over land 

induce a shift of the center of mass of the precipitation volume toward the later stages of the cloud life 

cycle as compared to the distribution derived from CORRA. 
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Figure 9: Cumulative contribution to the total rainfall volume as a function of cloud systems’ duration. 

The solid lines are derived from the CORRA precipitation estimates collocated with the TOOCAN data. 

The dashed lines are derived from the GMI-GPROF precipitation estimates collocated with the TOOCAN 

data. The dashed and solid lines are nearly indistinguishable because they are on top of each other, 

showing the high consistency between CORRA and GPROF when it comes to the relationship between 

precipitation volume and system duration.   
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Figure 10: Distribution of GPM DPR precipitation top height relative to the altitude of the freezing level 

(0°C isotherm) as a function of TOOCAN cloud system’s life stage. The thick black line indicates the mean 

of the distribution, the colored dashed lines indicate the 10 to 90 percentiles (every 10 percentile).  
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Figure 11: Stratiform, convective and undetermined type precipitation fractions as a function of cloud 

system’s life stage according to the DPR precipitation type classification. The precipitation type fractions 

are computed as fractions of precipitating pixels within the cloud systems (non-precipitating pixels are 

not accounted for in the computation of the fractions).    
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4) Discussion, conclusion, and perspectives 

4.1 Climatology of cloud systems 

 The collocation of GPM active and passive microwave measurements with the TOOCAN data 

allowed us to statistically characterize several properties of cloud systems at different stages of their life, 

including size, precipitation intensity, precipitation type and precipitation top height. The average 

temporal evolution of systems’ properties is remarkably homogeneous across the different analyzed 

regions and across systems of different life duration.  

The most salient aspect of the temporal evolution of the horizontal size of cloud systems is its time 

symmetry. On average, systems peak in size halfway through their lifetime. On the contrary, precipitation-

related characteristics are strongly asymmetrical, the average convective fraction and precipitation 

intensity decrease continuously as systems mature. The average precipitation top height is relatively 

constant in the first third of the clouds’ life cycle and decreases continuously in the second and third thirds 

of the life cycle. In addition to being highly consistent across different climatical regions and across 

systems of different life duration, the statistics presented here are consistent with those of previous 

regional or pan-tropical studies [Fiolleau and Roca 2013-B, Bouniol et al. 2016, Roca et al 2017, Elsaesser 

et al. 2022], which tend to indicate that the general features of the life cycle of tropical mesoscale 

convective systems are relatively universal. 

4.2 Systematic underestimation of precipitation intensity in GMI passive microwave retrievals in the 

early stages of clouds’ life cycle 

 The most salient and consistent result of the study in terms of comparison of the passive GMI-

GPROF estimates of near surface precipitation rate against the active-passive CORRA estimates is the 

strong systematic underestimation of the mean precipitation intensity in the early stages of the cloud’s life 

cycle (stages 1 and 2) over lands in the tropics (Amazonia, Central Africa and Sahel), independently of 

the total life duration of the system (between 3 and 48 hours). We note that the early stages of the life 

cycle are also the stages for which the average convective precipitation fraction is the highest according 

to the DPR precipitation type classification. Past studies have consistently shown the tendency of 

precipitation retrievals from passive radiometric measurements to underestimate precipitation intensity in 

convective areas over land [Henderson et al. 2017, Petković et al. 2019, Pfreundschuh et al. 2023]. The 

underestimation of precipitation intensity at the early stages of the life cycle of convective systems, i.e. 

their growing stages, when the convective activity is at its maximum, is therefore unsurprising. While this 

bias tendency is expected to generalize to most of the convective systems over land globally, its relative 

magnitude likely locally depends on the specific nature of convection, and may vary with regions, seasons 

and synoptic climate and weather conditions [Houze et al. 2015, Sullivan et al. 2019, Schumacher and 

Funk 2023].   

Over ocean (Central Atlantic and Gulf of Guinea) the biases of GMI-GPROF against CORRA are 

much smaller than over land, the main noticeable pattern being a slight negative bias for short-lived 



24 
 

systems and a slight positive bias for long-lived systems. It must be noted that the GPROF algorithm is 

trained differently over different surface types. The GPROF training process has indeed been repeated for 

each one of the 14 surface classes accounted for by the algorithm, with a unique a-priori database used for 

each class [Randel et al. 2020]. Over ocean, the low-frequency radiances (below 30 GHz) measured by 

passive microwave imagers closely relate to the emission by liquid rain drops in the lower atmospheric 

levels, and are therefore good predictors of near-surface precipitation intensity, allowing accurate 

estimation with low biases from passive measurements. Over land the low-frequency microwave 

atmospheric signal is entangled with the spatially and temporally variable emission signal from the 

surface, making the interpretation of radiances measured at the top of the atmosphere much more 

ambiguous [Turk et al. 2021].    

 While only estimates from GMI are compared to CORRA retrievals in the present study, one may 

expect that passive microwave retrievals from similar instruments, such as the AMSR-2 and SSMI-S 

radiometers, show similar systematic biases. Unfortunately, coincident observations of the DPR with these 

other passive microwave radiometers are too sparse to perform such a detailed bias analysis with required 

statistical robustness (unlike for GMI and DPR which are onboard the same platform). Ultimately, the 

biases of the level-2 passive microwave retrievals are likely to propagate into level-3 products such as 

IMERG.              

4.3 Including GEO-tracking information in future passive microwave retrievals of precipitation for 

improved accuracy 

 With the present study we assessed the potential information provided by the GEO infrared 

regarding the “history” of individual cloud systems, through cloud tracking. The results presented here 

demonstrate that the information derived from the GEO infrared cloud tracking algorithm TOOCAN can 

to a certain degree be used to predict the biases and errors of passive microwave precipitation retrievals. 

Indeed, we show that the development stage of a convective cloud system is a strong statistical indicator 

of the intensity of convection, which itself strongly influences the sign and magnitude of biases and errors 

in passive precipitation estimates. While estimates of the convective fraction of cloud systems generally 

rely on the availability of radar observation, the cloud development stage can be computed anytime and 

anywhere using global GEO cloud tracking. Allowing precipitation retrieval algorithms to utilize this 

information has the potential to improve the accuracy of passive satellite precipitation retrievals. In its 

future versions (8 and beyond), the GPROF algorithm will migrate toward a deep convolutional neural 

network retrieval approach instead of the current Bayesian k-nearest neighbor algorithm [Pfreundschuh et 

al., 2022, 2023]. The deep learning framework offers the possibility to add any number of ancillary 

variables as predictors (without having to rely on a-priori classification, or segment the training database, 

or perform multiple training/parameter regression under different environmental conditions). The results 

of the present study advocate for including information derived from GEO cloud-tracking, such as cloud 

systems’ age or development stage, as inputs of deep learning algorithms for the remote sensing of 

precipitation. Our results also advocate for continuing the development of GEO cloud tracking algorithms 
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toward operational real-time / short-latency algorithms and products. The high homogeneity of all the 

computed stage-dependent statistics across the different land regions on one side, and across the two 

oceanic regions on the other side, and across systems of different life duration, is also a positive indicator 

regarding the potential global predictive power of the cloud-tracking information.    

The cloud development stage, besides being a good statistical predictor of systematic biases in 

passive microwave retrievals (and thus being potentially usable for bias correction), is also a good 

predictor of the average magnitude (in absolute value) of the random errors. The cloud development stage 

information could therefore also be utilized for uncertainty quantification, for the purpose of 

systematically providing a measure of uncertainty/accuracy along with each estimated value in satellite 

QPE products [Guilloteau et al. 2022].        
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