
1. Introduction
Recent decades have witnessed the rapid development of remote sensing of precipitation, which is nowadays 
providing indispensable regional and global data to advance research and applications in the hydrologic, atmos-
pheric, and climate sciences (AghaKouchak et  al.,  2015; Fassoni-Andrade et  al.,  2021; Foufoula-Georgiou 
et  al.,  2020). Nevertheless, due to its indirect measurement nature, satellite-derived precipitation is inevita-
bly subject to both random and systematic errors (Smith et  al.,  2006), prompting significant research toward 
understanding the error sources to guide algorithm improvements (Guilloteau et al., 2022; Kirstetter, Karbalaee, 
et al., 2018; Tian et al., 2009; Wright et al., 2017).

The discontinuous nature of precipitation, as contrasted to other variables such as temperature, humidity, etc., 
makes it necessary to decompose the estimation errors into, first, errors arising from misclassification of precipi-
tation occurrence (i.e., Miss/False Alarm), and subsequently, errors arising from inaccurately quantifying precip-
itation rates when precipitation occurrence is properly detected (i.e., Hit). Based on this categorization, one of the 
most popular error characterization methods for satellite precipitation products involves decomposing satellites' 
Total Bias over a given time period into three components: “Miss Bias” (negative bias introduced by “Misses”), 
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“False Bias” (positive bias introduced by “False Alarms”), and “Hit Bias” (negative/positive bias introduced by 
inaccurate precipitation rates of “Hits”) (Chen et al., 2021; Su et al., 2018; Tian et al., 2009). This decomposition 
approach extracts additional information as compared to only assessing satellites' mean errors, providing valuable 
insight into the nature and origins of errors. Recent studies have taken one step further by subdividing Hit Bias 
into Hit Positive Bias (when the satellite product overestimates rain rates) and Hit Negative Bias (when the satel-
lite product underestimates rain rates) (Chaudhary & Dhanya, 2020, 2021; Zhang et al., 2021).

However, the information gleaned from the three/four component error categories based solely on detection and 
intensity is still limited. Here we propose a more comprehensive error decomposition framework that incor-
porates a crucial, yet overlooked, aspect of precipitation—it essentially occurs as individual “events” with 
specific timing, duration, and intensity (Dunkerley,  2008; Hanel & Maca,  2014). Such an event-based error 
characterization approach can furnish additional useful information on satellite errors, especially at high tempo-
ral resolutions. Specifically, the Miss/False Bias can be further sub-categorized depending on their occurrence 
throughout a precipitation event: at the beginning (satellite-derived event starting too early/too late), or at the end 
(satellite-derived event ending too early/too late); or be attributed to the satellite's entirely overlooking a “real” 
event or inventing a nonexistent one. Furthermore, the event-based error information can be associated with 
more intrinsic factors, such as satellite performance fluctuations induced by changing cloud microphysics during 
precipitation processes (Bouniol et al., 2016), or spatial-temporal mismatches between satellite and ground obser-
vations (Li et al., 2023). Therefore, the proposed approach offers opportunities for deeper exploration and attri-
bution of error sources.

In what follows we describe the new event-based error decomposition scheme for satellite precipitation prod-
ucts by factoring errors due to inaccuracies in event occurrence, timing, and intensity. We apply this scheme to 
evaluate the high-resolution Integrated MultisatellitE Retrieval for Global Precipitation Measurement (GPM) 
(IMERG) at the half-hourly scale over the Continental United States (CONUS) from 2018 to 2020.

2. Data
IMERG is the primary multi-satellite merged precipitation product developed by the U.S. GPM Science Team 
with a spatial-temporal resolution of 0.1°, 0.5 hr and a global coverage (Huffman et al., 2019a). The version we 
use is IMERG V06B Final Run Half Hourly product (Huffman, Stocker, et al., 2019). This product integrates data 
from multiple passive microwave (PMW) and infrared (IR) sensors, ensuring consistency and accuracy through 
intercalibration with state-of-the-art precipitation measurement instruments onboard the GPM Core Observa-
tory, and is ultimately adjusted by the monthly gauge analysis. IMERG is recognized as one of the most accurate 
high-resolution satellite precipitation data sets available (Guilloteau et  al.,  2021; Pradhan et  al.,  2022; Tang 
et al., 2020), and has been widely employed in various applications (Nie & Sun, 2022; Orland et al., 2022; Zhang 
et al., 2023).

The Ground Validation-Multi-Radar/Multi-Sensor (GV-MRMS) data product is a high-quality ground-based 
radar-gauge merged quantitative precipitation estimation (QPE), which serves as the ground reference data here 
(Kirstetter, Petersen, & Gourley, 2018). It combines data from 180 ground-based radar and about 7,000 rain gauges, 
along with model analyses (Zhang et al., 2016). Designed for GPM ground validation, GV-MRMS is further 
quality-controlled, adjusted, and integrated to the IMERG's resolution (0.1°, 0.5 h) (Kirstetter et al., 2012, 2014), 
and has been extensively used in GPM validation studies (e.g., Derin & Kirstetter, 2022; Guilloteau et al., 2021; 
Tan et al., 2022). Additionally, the Radar Quality Index (ranging from 0 to 100 (best)) generated concurrently 
with GV-MRMS QPE, is employed here to filter out low-quality estimates (Petersen et al., 2020). This index 
characterizes the uncertainty in radar QPE by considering factors such as distance from the radar, beam blockage, 
and altitude of the freezing level. In this study, gridboxes with an average RQI < 60 during the study period were 
removed from the analysis.

3. Methods
In this study, a precipitation event is defined as an uninterrupted sequence of half-hourly time steps with non-zero 
precipitation (≥0.1 mm/hr) at any given pixel of IMERG or GV-MRMS (Li et al., 2023). By this definition, all 
precipitation within a certain period could be perceived as an assembly of individual events. Therefore, any 
half-hourly bias throughout this period can be attributed to the flawed representations of distinct event aspects, 
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which can be summarized as inaccuracies in event (a) occurrence (i.e., completely missed/falsely detected events), 
(b) timing (i.e., wrong start/end times of the detected events), and (c) intensity (i.e., incorrect precipitation rates 
during the events). Based on these event-related inaccuracies, the event-based error decomposition is proposed 
(Figure 1).

Figure 1a depicts two hypothetical precipitation time series from GV-MRMS and IMERG, respectively (Figure 1a, 
upper panel). The traditional and event-based error components are sequentially displayed, based on these two 
series (Figure 1a, middle and bottom panels). Depending on the detection scenarios, the IMERG-derived precip-
itation at each time step (here half-hour) may be a “Miss” (GV-MRMS: rainy, IMERG: dry), a “False Alarm” 
(GV-MRMS: dry, IMERG: rainy), or a “Hit” (GV-MRMS: rainy, IMERG: rainy) (Figure 1a, upper panel), which 
result in a “Miss Bias”, a “False Bias,” or a “Hit Bias” (when the rain rate is inaccurate), respectively (Figure 1a, 
middle panel). Referring to the original time series (Figure 1a, upper panel), despite the varying causes and timings 
of errors, they are all grouped into these three categories, thus providing only limited diagnostic information.

In contrast, by integrating event occurrence, timing, and intensity, satellite errors are further subdivided into 
10 categories, which are schematically represented within the time series (Figure 1a, lower panel). The corre-
sponding explanation of each error type is articulated more specifically in Figure 1b. From the perspective of 
total error breakdown, Figure 1c further elucidates the relationships among the total bias, the traditional error 
components, and the proposed event-based error components. As shown, the four “Miss-,” four “False-,” and two 
“Hit-” components in the event-based scheme provide more detailed diagnostics and dissect the “Miss Bias,” 
“False Bias” and “Hit Bias” aggregate errors of the traditional scheme, correspondingly. Further, the four “Miss-” 
components in combination with the “Hit-Negative” component comprise the total underestimation of IMERG, 
whereas the four “False-” components along with “Hit-Negative” bias make up the total overestimation. Ulti-
mately, the total underestimation and overestimation collectively form the total bias.

Here, we perform this error analysis over CONUS in different seasons to analyze the regional and seasonal 
error components and their respective contributions to the total errors in terms of both precipitation amount and 
frequency (i.e., bias in rainy hours). The intensity of each error component is also shown, calculated as the mean 
absolute half-hourly intensity difference (IMERG - MRMS) during the occurrence of each specific error type.

4. Results
Figure 2 shows the spatial patterns of total precipitation amount bias per year (the original values of IMERG 
and GV-MRMS are provided in Figure S1 in Supporting Information S1), as well as each error component from 
both the traditional and event-based error decomposition schemes. Compared to Total Bias (Figure 2a), all three 
error components from the traditional scheme exhibit distinct spatial patterns (Figures 2b–2d), which demon-
strates the additional error information provided by the decomposition. Consequently, the extended event-based 
scheme contributes to a deeper knowledge of error characteristics (Figures 2b1–2b4, 2c1–2c2, and 2d1–2d4). In 
particular, among the four subcomponents of Miss Bias (Figures 2b1–b4), the main contributors are the misses 
due to IMERG events ending too early (Miss-End) and the completely ignored events (Miss-Event) (Figures 2b2 
and 2b4). The Miss-End and Miss-Event error components are both noticeable in the northeast, which is proba-
bly owing to the less accurate retrieval of snow and coastal precipitation in these areas (Derin et al., 2021; You 
et al., 2017). Miss-Event is additionally notable near the Rocky Mountains (Figure 2b4), potentially attributable 
to satellites' oversight of certain orographic warm rain processes entirely (Figure S2b2 in Supporting Informa-
tion S1), an effect induced by the weak signatures on brightness temperatures for liquid hydrometeors aloft (Derin 
& Kirstetter, 2022). However, this pattern is not reflected in Miss Bias due to the compensatory effects from the 
smaller Miss-End error in this region (Figures 2b and b2), which primarily results from the lower precipitation 
intensity in this semi-arid area (Figure S3b2 in Supporting Information S1), highlighting the additional diagnos-
tics that the proposed error decomposition provides.

For the various “False-” components (Figures 2d1–2d4), the bias from completely invented events also plays a 
significant role (False-Event) (Figure 2d4). However, the other major contributor is the satellites' false alarms 
around the event beginnings, that is, False-Start (Figure 2d2). Combined with the pronounced Miss-End bias, 
it is easy to infer an error pattern: when IMERG detects an event, it tends to both start earlier (resulting in false 
alarms) and end earlier (resulting in misses), which is in accordance with Li et al. (2023). The distinct spatial 
patterns of False-Start and False-Event, evidenced by a spatial correlation coefficient of only 0.41, validate the 
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Figure 1. (a) A pair of hypothetical precipitation half-hourly time series from Integrated MultisatellitE Retrieval for Global Precipitation Measurement and GV-MRMS 
(considered as the reference product) (upper panel), as well as the traditional (middle panel) and event-based (lower panel) error components defined based on the 
differences of the two products. (b) A detailed descriptive explanation of each event-based error component. (c) The proposed event-based error decomposition scheme 
composed of 10 diagnostic error components and its relationship with the traditional scheme (left) and the total bias (right).
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Figure 2. Spatial patterns of (a) total precipitation amount bias per year; (b)–(c) three bias components from the traditional error decomposition scheme; (b1–b4, c1–c2, 
and d1–d4) 10 bias components from the proposed event-based error decomposition scheme; (e1–e2) total underestimation and overestimation, with the components 
contributing to each, consistent with Figure 1c. The values are computed from all the half-hourly data during the study period of 2018–2020 and displayed in 1° × 1° 
gridboxes.
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successful extraction of greater information content and diagnostics via the proposed decomposition (Figures 2d1 
and 2d4). In detail, False-Start is significantly high across the eastern U.S. (Figure 2d1), predominantly attributed 
to a higher frequency in the southeast and increased intensity in the Great Plains, respectively (Figures S2d1 and 
S3d1 in Supporting Information S1). However, False-Event hotspots are observed in the northwest, northeast, and 
southeast corners of the U.S., which are primarily coastal regions with inherent greater bias (Figure 2d4) (Derin 
et  al., 2021). The spatial pattern of the less significant False-End and False-Interevent bias also differs from 
the above two components, exhibiting higher values throughout the southeast (Figures 2d2–2d3). These results 
suggest that the overall False Bias has significant variations in its sources among different areas (Figure 2d).

Regarding Hit Bias, although both the U.S. central plains and southeast exhibit comparable magnitudes of nega-
tive errors (Figure 2c), further subdivision indicates the substantially more severe Hit-Negative and Hit-Positive 
bias in the southeast (Figures  2c1–2c2). This highlights again the role of error segmentation in uncovering 
additional insights. As a constituent of Total Underestimation (Figure 2e1), Hit-Negative bias exhibits a nearly 
inverse pattern in the eastern U.S. compared to the other four constituents (i.e., the four “Miss-” components) 
(Figures 2b1–2b4, and 2c1), partially due to a certain degree of opposite patterns between the missed precip-
itation and hit precipitation in these regions (i.e., more misses in the snowy northeastern mountain area may 
naturally lead to fewer hits, while more hits in the relatively warm southern plains could result in fewer misses). 
Consequently, the primary cause of the pronounced Total Underestimation in the eastern U.S. is the substantial 
misses in the northeast and the underestimated intensity of detected precipitation in the southeast, respectively 
(Figure 2e1). Total Overestimation exhibits a similar “higher-east, lower-west” pattern compared to Total Under-
estimation, as their sum corresponds to the relatively low Total Bias after gauge correction (Figure 2a) (Huffman 
et al., 2019a). However, the pronounced overestimation in the southeast is a collective outcome of the mistim-
ing (False-Start, False-End, and False-Interevent) and overestimated intensity (Hit-Positive), (Figures 2d1–2d3, 
and 2c2), whereas it is primarily engendered by the too-early event beginnings (False-Start) and entirely false 
events (False-Event) in the southwest (Figures 2d1 and 2d4).

Figure  3 further visualizes the relative importance of each error component by quantifying their fractional 
contributions to the total underestimation/overestimation of precipitation amount and frequency, which could 
inform prioritizing algorithm improvements. The mean intensity of each error component is also presented. 
As shown, the total precipitation amount underestimation is roughly equally split between the underestimated 
intensity of the detected precipitation (Hit-Negative) and various types of misses (Figure 3a1). Of the latter's 
50% contribution, about 30% comes from the wrong start/end time of the detected events (Miss-Start, Miss-End, 
and Miss-Intraevent), while the remaining 20% results from completely missed events (Miss-Event). A similar 
partition goes for the precipitation amount overestimation (Figure 3a2). Besides, the fractional contributions also 
clearly illustrate the asymmetric satellite errors in capturing precipitation events, with events ending-too-early 
(Miss-End) contributing to the total amount underestimation threefold more than events starting-too-late 
(Miss-Start), but events staring too early (False-End) contributing to the total amount overestimation fourfold 
than events ending-too-early (False-Start).

For the composition of precipitation frequency bias (Figures 3b1–3b2), the 0% contribution of the “Hit-” compo-
nents causes a natural expansion in other components' contributions. Consequently, satellites' disregarding partial 
detected events (Miss-Start, Miss-End, and Miss-Intraevent) causes about 50% frequency underestimation, while 
their ignoring the entire precipitation processes (Miss-Event) accounts for the other half. The asymmetry is 
also evident in the frequency graph, with Miss-End contributing about 2.5 times higher error than Miss-Start. 
In conjunction with the intensity (Figure 3c1), it is understandable that precipitation in the middle of events 
(Miss-Intraevent) with higher intensity has a lower chance of being missed, while the completely ignored events 
(Miss-Event) are those with relatively low mean intensity, as this pattern aligns with satellite detection ration-
ale  (Hou et al., 2018). However, the concurrently higher frequency and intensity of missed precipitation near 
the event ending times (Miss-End), as compared to the beginnings (Miss-Start), unexpectedly deviates from this 
“lower-intensity, higher-frequency” pattern of missed precipitation. This suggests that the primary mechanism 
for the pronounced Miss-End may not be the neglect of abundant weak precipitation stemming from reduced ice 
content in clouds during the event dissipation stage (Braga & Vila, 2014), but rather attributable to alternative 
factors. As suggested by Li et al. (2023), one possibility is that satellite-derived events are systematically earlier 
than the “actual” events, resulting in infrequent misses at the event beginnings and overlooking even intense 
precipitation at the ends. The delay between the detection of hydrometeor signals in clouds and the actual arrival 
of precipitation on the ground, together with the spatial mismatch stemming from the inclined angle of satellite 
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observations (i.e., parallax shift) that translates into a temporal difference, might be the possible underlying 
causes (Guilloteau et al., 2018). Undoubtedly, further investigation is warranted to substantiate this conjecture or 
identify more fundamental causes. Moreover, a similar pattern is manifested in the cases of precipitation overes-
timation (Figures 3b2 and 3c2).

We further analyze the error composition structure by different regions and seasons to understand the relative 
importance of different error components under varying conditions. Two regions and seasons with signifi-
cant contrasts are selected for illustration (Figure  4), with more comprehensive information in Supporting 
Information  S1 (Figures S4 and S5). Specifically, the predominant factor for SE is the inaccurate intensity 

Figure 3. The contribution of each event-based error component to the total (a1–a2) amount and (b1–b2) frequency underestimation/overestimation, as well as (c1–
c2) the mean intensity of each component. The values are calculated from all the data during the study period of 2018–2020 over CONUS. The annual mean total 
underestimation/overestimation and the original amount/frequency of GV-MRMS and Integrated MultisatellitE Retrieval for Global Precipitation Measurement are 
also shown for reference. It is noted that the total underestimation amount almost cancels the total overestimation amount, hiding error diagnostics and highlighting the 
importance of splitting the error to further components.
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(Hit-Negative/Hit-Positive) for both total underestimation and overestimation, while that for MW is all forms 
of “Miss-”/“False-” components (Figures 4b1–4b2). The primary cause for the latter is a significantly higher 
number of completely missed/false events in MW, which is approximately 2.5 times greater than those in SE. 

Figure 4. (a) The two primary focus subregions: MW: Mountain West and SE: Southeast (highlighted), alongside secondary subregions (semi-transparent, full results 
in Figure S4 in Supporting Information S1), following Cui et al. (2017). The contribution of each error component to the total amount underestimation/overestimation 
across the (b1–b2) two primary subregions (for the full year) (MW and SE) and (c1–c2) two primary seasons (for the full CONUS) (JJA and DJF). The corresponding 
annual/seasonal mean total underestimation/overestimation, and original amount of GV-MRMS and Integrated MultisatellitE Retrieval for Global Precipitation 
Measurement are displayed for reference.
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This demonstrates significant disparities in error composition between low-altitude, plain, humid regions with 
minimal snowfall, and high-altitude, mountainous, semi-arid areas.

For seasonal analysis, the underestimation in summer is primarily attributed to the intensity underestimation 
(Hit-Negative), whereas that in winter is predominantly due to the “Miss-” components (Figure 4c1). The former 
might be attributed to satellites' inherent under-representativeness of intense precipitation prevalent in summer 
due to the “regression-to-mean” tendency inherent in the Bayesian inversion, coupled with the “smoothing effect” 
of IMERG's “morphing” interpolation algorithm (Rajagopal et al., 2021; Tan et al., 2021). In contrast, the latter 
is related to the large uncertainties over ice/snow covers in winter, where less accurate IR retrievals are used 
instead of PMW observations (Huffman et al., 2019a; Passive Microwave Algorithm Team Facility, 2017). For 
the overestimation (Figure 4c2), the severity of the overestimated intensity (Hit-Positive) remains similar in both 
seasons. However, the summer exhibits significant errors due to too early event start times (False-Start), while 
the bias in winter is more prominently influenced by the totally invented events (False-Event). The former might 
be related to the enhanced lengthening effect of interpolation procedures in the merging algorithm for the more 
intense, early peaking summer events (Li et al., 2018, 2021), while the latter still relates to the ice/snow surfaces.

Besides, a similar attribution based on time of day is displayed but exhibiting less pronounced diurnal varia-
tions (Figure S6 in Supporting Information S1). The composition predicated on the sensor sources of IMERG 
reveals more information (Figure S7 in Supporting Information S1). For instance, Special Sensor Microwave 
Imager/Sounder (SSMIS) displays a more noticeable intensity underestimation, while for Sounder for Prob-
ing Vertical Profiles of Humidity (SAPHIR), Miss-Start surpasses Miss-End, diverging from all other sources 
(though SAPHIR's representation within IMERG is minimal). Additionally, the smoothing effect in generat-
ing “morph”/“moprh  +  IR” sources leads to a substantially greater intensity underestimation compared to 
PMW sources (Huffman et al., 2019a). Excluding interpolated sources, PMW retrievals mostly exhibit a more 
pronounced asymmetry in the temporal structure of their errors (i.e., the contrast between the “-Start” and the 
“-End” components) than that observed in IMERG overall. This occurs as the interpolation generally exerts a 
symmetric “smoothing effect” near both the start and end of events, thus reducing any asymmetry. Further-
more, the utilization of IR-only sources over snow/ice surfaces proportionally magnifies various “Miss-” bias, 
but uniquely triggers numerous False-Event among all “False-” components, making it a major contributor to 
the total underestimation (85.7%). The above observations could explain the error composition pattern in winter 
(Figures 4c1–4c2).

5. Conclusions and Discussion
In this study, we introduce a novel event-based error decomposition scheme for satellite precipitation products, 
which segments the total bias within a certain time period into 10 independent components. This scheme is 
founded on the understanding that viewing precipitation as event-based constructs, all fine scale (half-hourly 
here) satellite biases can be attributed to the inaccuracies in event occurrence (completely missed/falsely detected 
events), timing (wrong start/end times of the detected events), and intensity (inaccurate precipitation rates during 
the events). The scheme is applied over CONUS, with IMERG as the sample product for analysis and GV-MRMS 
as the reference. The attribution results show that about 20%, 30%, and 50% of the total national amount bias 
comes from the above three causes, respectively. The error composition exhibits significant asymmetry concern-
ing precipitation events. Specifically, missed precipitation from premature event end times in the satellite product 
is about threefold than that from delayed event start times, whereas false precipitation from premature event start 
times is about fourfold than that from delayed event end times. The dominant error components vary significantly 
among regions, seasons, and sensor sources.

Compared to our previous work (i.e., Li et al. (2023)) that evaluated various characteristics of precipitation events 
to assess the suitability and limitations of satellite precipitation products for hydrologic applications, this study 
instead approaches the problem from the perspective of error diagnosis and algorithm improvement, aiming at 
quantifying how the revealed inaccuracies in capturing precipitation event features are mapped onto satellite 
fine-scale (e.g., half-hourly/hourly) errors (as illustrated in Figures 1a and 1b), and whether we can gain a new 
understanding of satellite errors through the lens of precipitation events. By our event-based error decomposition, 
error components with distinct patterns are dissected. Each component might be linked to diverse underlying 
causes, thus providing additional insights into satellite error reduction and performance enhancement for tailored 
improvement strategies. For example, the decomposition allows for the extraction of completely missed and 
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false events, whose patterns suggest that they might be linked to the faint spectral signature of shallow nimbus 
clouds with low ice content (warm rain), and to the difficulty of distinguishing between the surface emission 
and the atmospheric component in satellited-measured radiances over frozen or snow-covered surfaces (Derin & 
Kirstetter, 2022; You et al., 2017), respectively. Such biases, from completely ignored or fabricated events, which 
account for about 20% of the total bias, might be particularly challenging to correct and require focused attention.

Regarding the errors stemming from incorrect event start/end times, the aforementioned analysis suggests that 
the underlying reason might be a prevalent early timing of satellite-derived events compared to the “real” events, 
as identified by Li et al. (2023). One possible explanation is the spatial-temporal mismatches arising from differ-
ences in observation methods, observation geometry and sampling between satellites and ground-based radars 
(e.g., parallax shift, or delay caused by hydrometeors' fall time) (Guilloteau et al., 2018). These findings corrob-
orate our previous assertion made in Li et  al.  (2023) that “numerous seemingly minor event time shifts may 
contribute significantly to the total bias,” as “premature event onset. alone accounts for about 20%/30% of total 
amount/frequency bias, respectively. Consequently, minor post-processing adjustments in event timing could 
potentially mitigate a substantial portion of the overall bias. Moreover, the asymmetric satellite performance 
at the beginning and end of events may still be related to the varying accuracy in satellite responses to the 
changing thermodynamic and microphysical properties of clouds during the precipitation life cycle (Anagnostou 
et al., 2013; Bouniol et al., 2016). For example, for mesoscale convective systems, robust convective precipitation 
at initial stages is more readily detected by satellites (corresponding to the low Miss-Start and high False-Start 
error components), whereas the dissipation stages primarily feature stratiform precipitation with reduced detect-
ability (corresponding to the high Miss-End and low False-End error components) (Anagnostou et al., 2013). 
This suggests the potential to enhance precipitation retrieval accuracy by incorporating additional ancillary infor-
mation indicative of event stages (e.g., cloud evolution, lightning activity, cloud liquid/ice water content, atmos-
pheric instability) (Petkovic & Kummerow, 2017; Tadesse & Anagnostou, 2009).

The central focus of this research lies in introducing a universal method for characterizing and diagnosing errors 
in high spatio-temporal resolution satellite precipitation products. It must be noted that the outcomes, such as 
the configuration of error components, may vary due to multiple factors like the spatial and temporal resolution 
of the products, the study period, the selection of precipitation occurrence thresholds, and the specific definition 
of “precipitation events” (e.g., whether short intermittent periods within events are allowed, as e.g., could be 
the case if events were defined on the basis of precipitation attributed to distinct meteorological systems (e.g., 
Restrepo-Posada & Eagleson, 1982)). Therefore, a more comprehensive experimental investigation is needed for 
product developers to accurately pinpoint the error components, thus facilitating product improvements.

In future work, it will also be necessary to disentangle the diverse potential factors affecting satellite errors within 
the context of events, such as interpolation procedures, sensor inhomogeneity, spatial-temporal displacement, and 
cloud property evolution, to identify the root causes of biases. In addition, a similar decomposition in the spatial 
domain can be pursued. For example, if knowing that estimates derived from passive satellite measurements tend 
to overestimate the frequency of occurrence of low-intensity precipitation (Tian et al., 2018), it is interesting to 
know whether it is primarily due to satellites' tendency to invent non-existent precipitation systems, or due to the 
overestimation of precipitating area associated with properly detected precipitating systems. These error diagnos-
tics are valuable for developing uncertainty prediction schemes, which is a longstanding challenge for the satellite 
precipitation community. Finally, the proposed method is applicable to various satellite precipitation products, 
as well as numerical weather and climate model outputs, offering additional insights into their respective errors.

Data Availability Statement
The GV-MRMS data can be accessed at NASA GHRC (Kirstetter, Petersen, & Gourley, 2018). The IMERG data 
are available at NASA GES DISC (Huffman et al., 2019b).
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