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ABSTRACT 
 

Alternative metrics to the mean squared error (MSE) are 
assessed as optimization criteria for geophysical remote 
sensing applications. While the MSE promotes smooth 
solutions with compressed dynamical range, optimization 
criteria focusing on the preservation of the statistical 
properties of the target geospatial fields can be used to 
compensate this effect. These different optimization criteria 
are included as distance metrics within the objective function 
during the training of a deep learning algorithm for retrieval 
and mapping of precipitation rates from space-borne passive 
radiometric measurements. It is shown than imposing a 
constraint on the statistical distribution of the target variable 
at the “pixel” level only is insufficient, and that a multi-scale 
constraint (applied here through a discrete wavelet transform) 
is necessary to preserve the statistical properties of the target 
and the extremes across all scales.    
 

Index Terms— Remote sensing, deep learning, 
convolutional neural network, optimization, precipitation, 
satellite, microwave 
 

1. INTRODUCTION 
 

In the global monitoring of precipitation, extreme high 
values, even if relatively infrequent, are of particular interest 
to the research community, because of their strong 
hydrological and climatological impact and their impact on 
human activities. Moreover, the uncertainty regarding their 
evolution under a changing climate reinforces the necessity 
to have accurate measurements and records of precipitation 
extremes all around the globe. Global satellite quantitative 
precipitation estimates (QPEs) have been produced and used 
by the research community for several decades and are now 
available at sub-hourly and sub-degree theoretical 
resolutions. However, regarding precipitation extremes, 
strong discrepancies still exist across the many available 
global datasets (which include observational products from 
remotely sensed information or gauges and reanalyzes) in 
particular at the finest spatial and temporal scales [1, 2]. The 
limited accuracy of satellite QPEs derives not only from the 
limited sampling and instrumental resolution provided by the 
multiple orbiting sensors, but also from the limited 

information content of the measured radiances, which makes 
the retrieval of precipitation from space a fundamentally 
underconstrained problem [3, 4, 5]. Numerous studies 
presenting evaluations of satellite QPEs against locally 
available high-accuracy ground measurements have revealed 
that, at sub-daily sub-degree resolutions, it is not uncommon, 
even the best-performing state-of-the art satellite QPEs, to 
have errors of order of magnitude similar to that of the 
precipitation signal itself [6, 7].  

Satellite QPE products are generally designed and 
optimized to have the lowest possible mean squared error 
(MSE) at the pixel resolution. It is however well known that, 
when the residual errors cannot be reduced to a negligible 
quantity, MSE-optimal estimation algorithms tend to favor 
smooth solutions and to compress the dynamical range of the 
retrieved variable [8, 9]; the preservation of statistical 
extremes is generally “sacrificed” to the uncertainty. For 
satellite QPEs, the compressing effect of MSE minimization 
is scale-dependent: the variability at the finer spatial and 
temporal scales, which is generally associated larger 
uncertainty, is smoothed to a higher degree. This naturally 
impairs the preservation of extremes, particularly at fine 
scales. In the present study we assess the use of alternative 
metrics to the MSE as optimization criteria for satellite QPEs, 
focusing in particular on the statistical preservation of 
precipitation extremes, not only at the pixel scale, but also for 
spatially aggregated estimates, at all possible spatial scales.    

In the recent years, the field of precipitation estimation 
from space has been massively migrating toward deep-
learning algorithms, which in many cases have already 
demonstrated superior performance as compared to older 
techniques [10, 11, 12]. Beyond its already-demonstrated 
performance gain, an appealing aspect of the deep-learning 
framework is the fact that the criterion defining the optimal 
solution of a given deep neural network is not a-priori 
restricted by the data or by the network architecture, it is 
solely defined by the objective function chosen for the 
training. 

In the present study, we use a mixed-scale dense 
convolutional neural network (MSDNet) [13] to perform the 
retrieval of instantaneous surface precipitation rates over 
oceans, from the brightness temperature measured by the 
passive GPM Microwave Imager (GMI) onboard the Global 
Precipitation Measurement (GPM) Core Observatory 
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satellite. The MSDNet is first trained using the MSE as the 
objective function to minimize. Then, keeping all other 
parameters identical, the training is run with different 
objective functions, which include constraints on the 
statistical distribution of precipitation rates, as well as 
multiscale constraints through the spatial wavelet power 
spectrum. 

 
2. DISTANCE METRICS AND OBJECTIVE 

FUNCTION 
 

2.1. Definitions 
 

The MSE is the most commonly used optimization 
criterion in remote sensing, and is often used “by default” as 
the objective function to minimize in deep learning. Let us 
consider a target tensor T and its prediction P. The prediction 
MSE, designated here as the distance metric 𝐷𝐷1, is the mean 
squared difference between P and T: 

𝐷𝐷1(𝐏𝐏,𝐓𝐓) = 1
𝑛𝑛

 ∑ (𝑝𝑝𝑖𝑖 − 𝑡𝑡𝑖𝑖)2𝑛𝑛
𝑖𝑖=1      (1) 

where n is the number of elements in the N-dimensional 
tensors P and T, 𝑝𝑝𝑖𝑖  is the 𝑖𝑖𝑡𝑡ℎ element of the tensor P and 𝑡𝑡𝑖𝑖 is 
the 𝑖𝑖𝑡𝑡ℎ element of the tensor T. The MSE can be decomposed 
as: 
𝐷𝐷1(𝐏𝐏,𝐓𝐓) = (𝜇𝜇𝑃𝑃 − 𝜇𝜇𝑇𝑇)2 + 𝜎𝜎𝑇𝑇2 + 𝜎𝜎𝑃𝑃2 − 2 𝐶𝐶𝐶𝐶𝐶𝐶(𝑷𝑷,𝑻𝑻)     (2) 

here 𝜇𝜇𝑇𝑇, 𝜇𝜇𝑃𝑃 , 𝜎𝜎𝑇𝑇2 and 𝜎𝜎𝑃𝑃2 are respectively the mean and variance 
of P and T and 𝐶𝐶𝐶𝐶𝐶𝐶(𝐏𝐏,𝐓𝐓) denotes the covariance between P 
and T. A condition for 𝐷𝐷1 to be minimized is that 𝜎𝜎𝑃𝑃2 =
𝐶𝐶𝐶𝐶𝐶𝐶(𝑷𝑷,𝑻𝑻) ≤ 𝜎𝜎𝑇𝑇2 (otherwise, there exists a linear 
transformation of P with smaller MSE). Hence the 
“compressing” effect of MSE-optimal estimators, with the 
variance of the prediction being lower than the variance of 
the target. 

To avoid this compressing effect, we define an alternative 
distance metric between P and T as: 
𝐷𝐷2(𝐏𝐏,𝐓𝐓) = (𝜇𝜇𝑃𝑃 − 𝜇𝜇𝑇𝑇)2 + |𝜎𝜎𝑇𝑇2 − 𝜎𝜎𝑃𝑃2| + 𝜎𝜎𝑇𝑇2(1 − 𝐶𝐶𝐶𝐶(𝑷𝑷,𝑻𝑻))   

(3) 
where 𝐶𝐶𝐶𝐶(𝐏𝐏,𝐓𝐓) denotes the linear Pearson correlation 
coefficient between P and T. This distance is minimized 
under the condition that 𝜎𝜎𝑇𝑇2 = 𝜎𝜎𝑃𝑃2. 

To preserve the statistical properties of the target variable 
it is useful to consider distances between the respective 
statistical distributions of P and T.  Because our focus is on 
high extremes values, to represent the statistical distribution 
of a non-negative variable X, rather than the probability 
density functions (PDF) or the cumulative distribution 
functions (CDF), we use the cumulative contribution function 
(CCF), which is a modified CDF, defined as: 

Φ𝑋𝑋(𝐶𝐶) = 1
𝐸𝐸[𝑋𝑋]∫ 𝑢𝑢 × 𝑓𝑓𝑥𝑥(𝑢𝑢)𝑑𝑑𝑢𝑢𝑣𝑣

0      (4) 
where fx is the PDF of X and  E[X] is the expected value of 
X. We measure distance between the CCFs of the target T 
and prediction P tensors through the standard continuous L1 
distance and define: 

𝐷𝐷3(𝐏𝐏,𝐓𝐓) = ∫ |Φ𝑃𝑃(𝐶𝐶) −Φ𝑇𝑇(𝐶𝐶)| 𝑑𝑑𝐶𝐶∞
0      (5) 

Finally, to characterize the multiscale structure of the 
target variable, we utilize the discrete Haar wavelet 
transform. Let 𝑆𝑆𝑋𝑋(𝜆𝜆,𝜔𝜔) be the Haar wavelet power of the N-
dimensional variable X at the scale 𝜆𝜆 and in the direction 𝜔𝜔. 
We measure the distance between the discrete wavelet power 
spectra of the tensors P and T through the standard discrete 
L1 distance: 
𝐷𝐷4(𝐏𝐏,𝐓𝐓) =  ∑ ∑ |𝑆𝑆𝑃𝑃(𝜆𝜆𝑖𝑖 ,𝜔𝜔𝑘𝑘) − 𝑆𝑆𝑇𝑇(𝜆𝜆𝑖𝑖 ,𝜔𝜔𝑘𝑘)|𝑀𝑀

𝑘𝑘=1
𝐽𝐽
𝑖𝑖=1      (6) 

where 𝜆𝜆𝑖𝑖 and 𝜔𝜔𝑘𝑘 are respectively the discrete scales and 
directions of a N-dimensional discrete wavelet transform of 
depth J. In N dimensions, the number of directions of a 
discrete wavelet transform is 𝑀𝑀 = 2𝑁𝑁 − 1. In the present 
study, we apply the wavelet transform on 2-dimensional 
precipitation fields (𝑁𝑁 = 2,𝑀𝑀 = 3), and with 𝐽𝐽 = 5. 

  
2.2. Sensitivity of the distance metrics to different types of 
error 
 

In this section we “corrupt” precipitation fields with 
different types of error, namely, multiplicative white noise, 
random spatial displacement (translation of the field) and 
Gaussian blurring. We then compare the corrupted fields to 
the original ones through the 𝐷𝐷1, 𝐷𝐷2, 𝐷𝐷3 and 𝐷𝐷4 metrics, to 
evaluate the response of each metric to the different types of 
error, and to the varying magnitude of the error. The original 
fields are radar-observed precipitation fields at 5 km 
resolution and are equated to the “truth”. 

The results of this evaluation of the error metrics with 
synthetic errors are presented in Figure 1. It can be seen that 
𝐷𝐷1 and 𝐷𝐷2 have relatively similar responses to multiplicative 
white noise. The 𝐷𝐷2 metric is however less sensitive to spatial 
displacement than 𝐷𝐷1, but more sensitive to Gaussian 
blurring. The 𝐷𝐷3 and 𝐷𝐷4 metrics are by design insensitive to 
spatial displacement, they show a relatively low sensitivity to 
multiplicative noise but high sensitivity to Gaussian blurring. 
For many applications, small displacement errors are 
arguably tolerable, while the statistical biases introduced by 

 

 
Fig. 1. Evolution of the computed distances the 𝐷𝐷1, 𝐷𝐷2, 𝐷𝐷3 and 𝐷𝐷4  between 
the original and “corrupted” precipitation fields as a function of the 
magnitude of the errors for different types of synthetic errors. The original 
precipitation fields comprise 1000 radar-observed precipitation scenes of 
dimension 245 km × 245 km at 5 km resolution. Distance metrics are 
averaged over all 1000 scenes. 
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Gaussian blurring and other similar smoothing effects may be 
much more problematic. 

From this, we can foresee that the 𝐷𝐷1 metric (MSE) tends 
to promote smooth solutions when used as an optimization 
criterion. It is particularly intolerant to displacement errors, 
even of small magnitude. When the MSE is used as objective 
function in deep learning, the neural network is therefore 
likely to apply spatial smoothing (blurring) to mitigate the 
effect of high-frequency noise and/or spatial displacement 
errors. Including one or several other metrics (such as 𝐷𝐷2, 𝐷𝐷3 
and 𝐷𝐷4) in the objective function can however impede this 
effect.    

   
3. DEEP LEARNING APPLICATION FOR 

SATELLITE PRECIPITATION ESTIMATION 
 

3.1. Data and neural network architecture 
 

 The application chosen here to evaluate the different 
objective functions is the retrieval of instantaneous surface 
precipitation rates from the GMI instrument onboard the 
GPM satellite. GMI is a passive conical-scanning microwave 
imager, measuring brightness temperatures at the top of the 
atmosphere with vertical and horizontal polarizations at 7 
frequencies between 10 and 183 GHz. These brightness 
temperatures are the product of the surface emission, 
emission and absorption by water vapor and liquid rain drops, 
and scattering by ice particles in the atmosphere. The middle 
of the 885-km wide GMI swath overlaps with the 245-km 
wide swath of the active Dual-frequency Precipitation Radar 
(DPR). Inside the DPR swath, estimates of the surface 
precipitation rate at 5 km horizontal resolution are provided 
by the NASA GPM Combined Radar-Radiometer Algorithm 
(CORRA [14]). We use these high-accuracy estimates to train 
the MSDNet to perform the retrieval of surface precipitation 
at 5 km resolution, from GMI only, over its full swath. 7000 
unique precipitation scenes of dimension 245 km × 245 km 

randomly sampled over global oceans serve as training data 
and 1000 other scenes are used for the testing. The MSDNet 
comprises 70 densely connected convolution layers (see [15] 
for more details about the data and the MSDNet architecture).  
 
3.2. Results 
 

The MSDNet is first trained using the MSE as objective 
function to minimize: 

𝑂𝑂1 = 𝐷𝐷1(𝑷𝑷,𝑻𝑻) 
As expected, this leads to spatially smooth estimates, with 
compression of the extremes (figures 2 and 3). The training 
is then run with an objective function 𝑂𝑂2, which combines the 
𝐷𝐷2 and 𝐷𝐷3 metrics: 

𝑂𝑂2 = 𝐷𝐷2(𝑷𝑷,𝑻𝑻) + 𝛾𝛾3𝐷𝐷3(𝑷𝑷,𝑻𝑻) 
Finally, a third training run is performed with an objective 
function 𝑂𝑂3, which adds constraint on the wavelet power 
spectrum through the 𝐷𝐷4 metric: 

𝑂𝑂3 = 𝐷𝐷2(𝑷𝑷,𝑻𝑻) + 𝛾𝛾3𝐷𝐷3(𝑷𝑷,𝑻𝑻) + 𝛾𝛾4𝐷𝐷4(𝑷𝑷,𝑻𝑻) 
𝛾𝛾3 and 𝛾𝛾4 are weights used to balance the different terms of 
the objective functions, they are et to 3 and 1 respectively.   

Only with this last training function the general texture of 
the CORRA precipitation fields, which includes sharp spatial 
gradients and numerous small-scale features, is well 
reproduced by the MSDNet (Figure 2). Figure 3 shows the 
probability of exceedance of precipitation rates between 0 
and 100 mm/h computed over the testing dataset for the 
CORRA reference and for the 3 MSDNet predictions with the 
3 different objective functions, at the 5 km pixel resolution, 
and at the 20 km aggregated resolution. The MSE-optimal 
prediction (𝑂𝑂1) dramatically underestimates the probability 
of exceeding rain rates higher than 10 mm/h, at both the 5 km 
and 20 km resolutions. The prediction 𝑂𝑂2 better preserves the 
probability of exceedance at the 5 km resolution, but 
significantly overestimates the occurrence of precipitation 
rates above 5 mm/h at the 20 km resolution. The prediction 
𝑂𝑂3 reproduces quasi-perfectly the probability of exceedance 
of the CORRA reference fields at both the 5 km and 20 km 
resolutions. 

While, as expected, the 𝑂𝑂1 prediction has the lowest MSE 
when compared with the CORRA reference with a value of 
12.8 mm2h2, the MSE values for the 𝑂𝑂2 and 𝑂𝑂3 predictions 

 
Fig. 2. One precipitation scene of the testing dataset as retrieved by the 
CORRA algorithm (target), and as predicted by the MSDNet from GMI 
brightness temperature only, trained with the different objective functions 𝑂𝑂1, 
𝑂𝑂2 and 𝑂𝑂3.  
 

 
Fig. 3. Probability of exceedance (PoE) of the precipitation rates predicted 
by the three MSDNets trained with the 𝑂𝑂1, 𝑂𝑂2 and 𝑂𝑂3 objective functions, 
along with the PoE for the CORRA algorithm (target), at 5 km resolution, 
and aggregated at 20 km resolution. All PoEs are computed over the 1000 
scenes of the testing dataset. 
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are only slightly higher at 14.3 and 14.8 mm2h2  respectively. 
In terms of coefficient of linear correlation with the CORRA 
reference, the three predictions are equivalent with values of 
0.77, 0.77 and 0.76 for 𝑂𝑂1, 𝑂𝑂2 and 𝑂𝑂3  respectively.  
 

4. CONCLUSION 
 

The present study demonstrates the limits of the MSE as 
an “all-purpose” optimization criterion (objective function) 
for remote sensing applications of deep learning, with the 
particular case of estimation of precipitation rates from 
passive satellite radiometric measurements. When the 
retrieval problem is underconstrained and the error cannot be 
reduced to a negligible value, the MSE-optimal solution tends 
to be smooth, with reduced variance, and compression of the 
extreme values as compared to the “truth”. We show that, 
including a multiscale constraint in the objective function 
through the discrete spatial Haar wavelet power spectrum of 
the fields, combined with a constraint on the statistical 
distribution of precipitation rates, allows to statistically 
preserve the extremes across all scales, at the cost of a 
marginally degraded MSE.     
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