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Determining the key elements of interconnected infrastructure and complex systems is paramount
to ensure system functionality and integrity. This work quantifies the dominance of the networks’
nodes in their respective neighborhoods, introducing a novel centrality metric, DomiRank, that
integrates local and global topological information via a tunable parameter. We present an analytical
formula and an efficient parallelizable algorithm for DomiRank centrality, making it applicable to
massive networks. DomiRank systematically outperforms other centrality metrics in generating
targeted attacks that effectively compromise network structure and disrupt its functionality for
synthetic and real-world topologies. Moreover, we show that DomiRank-based attacks inflict more
enduring damage in the network, hindering its ability to rebound, and thus, impairing system
resilience. DomiRank centrality capitalizes on the competition mechanism embedded in its definition
to expose the fragility of networks, paving the way to design strategies to mitigate vulnerability and
enhance the resilience of critical infrastructures.

I. INTRODUCTION

Complex systems consist of many interacting compo-
nents, with dynamics and emergent behavior being sys-
tem properties. However, not all the constituents of such
systems are equivalently central to their structure and
dynamics, and in some systems, a few elements might be
critical to ensure the integrity of the complex system’s
structure or functionality [1–10]. Our capacity to accu-
rately and efficiently identify key elements of such com-
plex systems is at the core of actions as diverse as provid-
ing the most suitable website on an internet search [11],
defining a vaccination scheme to mitigate the spreading
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of a disease [12–15], or ensuring the integrity and func-
tionality of transportation networks and critical infras-
tructures [16–20].

Network theory, by abstracting complex systems as a
collection of nodes (system constituents) and links (in-
teractions), has been instrumental in providing a gen-
eral framework to assess different aspects of the rela-
tive importance of nodes in a network, yielding differ-
ent node centrality definitions depending on the eval-
uated aspects, ranging from considering only the num-
ber of links a node has (degree centrality), aggregating
the importance of a node’s neighborhood (e.g., eigenvec-
tor [21], Katz [22], and PageRank [11] centralities) to
considering the relative position of the node in the net-
work (e.g., closeness and betweenness [23] centralities) or
the role of the node in a dynamic process (e.g., current-
flow [24], entanglement[25], and random-walk [26] cen-
tralities). The performance of these centralities is of-
ten benchmarked against each other in evaluating their
capacity to generate targeted attacks to dismantle the
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network’s structure or disrupt its functionality. In fact,
centrality metrics have a pivotal role in designing miti-
gation strategies to enhance network robustness and re-
silience, critical emerging properties of utmost impor-
tance to maintain our day-to-day privileges and necessi-
ties, which heavily rely on interconnected infrastructures
such as the internet [1, 27, 28] or the power grid [29–31].

In this work, we propose a novel centrality, the ‘Domi-
Rank’ centrality. Intuitively, it quantifies the degree of
dominance of nodes in their respective neighborhoods.
Thus, high scores of DomiRank centrality are associated
with nodes surrounded by a large number of unimportant
(e.g., typically low-degree) nodes, which they dominate.
This new centrality gives importance to nodes based on
how locally dominant they are, where the extent of the
dominance effect can be modulated through a tuneable
parameter (σ). Contrary to other centralities such as
eigenvector or PageRank, and due to an implicit competi-
tion mechanism in the definition of DomiRank, connected
nodes tend to have more disparate scores in terms Domi-
Rank centrality. We demonstrate that the inherent prop-
erties of DomiRank make both synthetic and real-world
networks particularly fragile to the DomiRank centrality-
based attacks, outperforming all other centralities-based
attacks. Furthermore, we show that the DomiRank-
based attack outperforms most of the computationally
feasible iterative (recomputed after each node removal)
attack methods (i.e., degree, PageRank, eigenvector, and
Katz), and it causes more enduring damage than the ef-
ficient iterative betweenness attack. We provide both an
analytical formula and a computationally efficient itera-
tive algorithm for DomiRank, enabling it to be computed
on graphical processing units (GPUs) with a paralleliz-
able computational cost scaling with the number of links,
allowing the centrality to be computed for massive sparse
networks.

II. DEFINING DOMIRANK

We define DomiRank centrality, denoted Γ ∈ RN×1, as
the stationary solution of the following dynamical process

∂Γ(t)

∂t
= αA(θ1N×1 − Γ(t))− βΓ(t), (1)

where A ∈ RN×N is the adjacency matrix of the network
N and {α, β, θ ∈ R : limt→∞ Γ(t) = Γ ∈ RN×1}.

From a simple model perspective, Γ(t) can be inter-
preted as the evolving fitness of the individuals in a pop-
ulation subject to competition. Two different processes
can alter the fitness of each individual: (i) Natural re-
laxation - fitness naturally converges to zero at a rate
proportional to a constant β; (ii) Competition – Individ-
uals compete with each neighbor for a limited amount
of resources, with their fitness reflecting their capacity
to successfully maintain those resources. An individual’s
fitness tends to increase by being connected to neighbors

whose fitness are below the threshold for domination (θ),
and decreases otherwise. Thus, the fitness of each indi-
vidual changes proportionally to (

∑
i∈neighbors θ−Γi(t)),

where the proportionality constant is denoted by α and
represents the degree of competition between neighboring
individuals.

Notably, the fitness score of a given individual k is
a function of (i) its number of neighbors: the larger
the number of neighbors of k, the more resources at
stake, and therefore the larger the potential of k to in-
crease/decrease its fitness, and; (ii) its neighbors’ neigh-
borhood: having neighbors lacking dominance in their re-
spective neighborhoods (excluding individual k) due to
either the absence of neighbors or the presence of dom-
inant neighbors increases the fitness of individual k. In
other words, a given individual results in having a high
value of fitness via the dominance of its neighborhood, ei-
ther due to the direct dominance of its neighbors (quasi-
solitary individuals) or via collusion (joint dominance)
emerging from the synergetic action of several individ-
uals in suppressing the fitness of a common neighbor
while incrementing their respective fitness. The Domi-
Rank centrality is thus based on the concept of domi-
nance to provide scores to nodes that contextualize their
importance in their neighborhood.

From Eq. 1, we note that the centrality converges when
αA(θ1N×1 − Γ(t)) = βΓ(t), for which the analytical ex-
pression (see appendix for proof) of the DomiRank cen-
trality Γ ∈ RN×1 is given by:

Γ = θσ(σA+ IN×N )−1A1N×1, (2)

where {σ = α
β ∈ R : det(σA + IN×N ) 6= 0}. A con-

vergence interval can be defined for σ, such that it is
bounded as follows:

σ(N ) ∈
(

0,
−1

λN

)
, (3)

where λN represents the minimum (largest negative)
eigenvalue of A. Also note that the threshold for dom-
ination, θ, only plays a rescaling role on the resulting
DomiRank centrality, and therefore, we choose θ = 1
without loss of generality.

The DomiRank Centrality is thus modulated by the
ratio σ = α

β . To provide further insight into the effect

of this parameter on the scores of the centrality, we ex-
plore the DomiRank distribution values for varying val-
ues of σ computed for a very simple network (see Fig.
1). As σ → 0, the competition between the different
nodes vanishes, and the importance of the nodes reduces
to their degree (see Figure 1a,d and Eq. 2). Conversely,
as σ → −1

λN
, the competition is maximum, and each node

is either dominating its neighbors or dominated by one
of its neighbors (see Fig. 1c). Interestingly, at this end of
the spectrum, the number of neighbors still plays a role,
but the network structure is the key feature defining the
scores, where the synergistic competitive action of not
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FIG. 1. DomiRank for different levels of competition
(σ). DomiRank centrality displayed on the nodes of a simple
network with N = 15 nodes for (a) low, (b) medium, and (c)
large values of σ. Panel d shows the DomiRank centrality as
a function of σ, wherein each solid line represents a specific
node (color encoding node degree).

directly connected nodes might result in their joint dom-
inance in their respective neighborhoods. On that note,
Figure 1c,d shows how a node with a relatively high de-
gree (square node) results in the lowest value of Domi-
Rank centrality. This low value is the result of the joint
domination by its four neighbors, which despite having
the same or lower degree as the dominated node, are
able to increase their relative fitness by dominating their
respective non-overlapping unfit neighborhoods and, to-
gether, the mentioned node. Intermediate values of σ
(e.g., see Fig. 1b) represent different domination strate-
gies based on utilizing different balances of local node-
based (low σ) and global network-structure-based (high
σ) properties.

Beyond the interpretability of DomiRank and its ver-
satility via its parameter σ, one of the key advantages
of the proposed centrality is that it can be calculated ef-
ficiently through iteration in a parallelizable algorithm
(see Fig. 2),

Γ(t+ dt) = Γ(t) + β[σA(1N×1 − Γ(t))− Γ(t)]dt, (4)

with a computational cost C:

C(t, A) = t(m+ 5N), (5)

which scales with O(m), where m is the number of links,
and thus the DomiRank scales with O(N2) in the worst

Analytical Domirank
CPU: Rec. DomiRank
GPU: Rec. DomiRank
CPU: Rec. PageRank
GPU: Rec. PageRank

FIG. 2. Computational cost of DomiRank. Mean (30
samples) computational costs to compute DomiRank analyti-
cally (black solid line) and estimate it recursively on a multi-
threaded CPU and on the GPU, as a function of the net-
work size N . The mean DomiRank computational cost is
also compared with the mean computational cost for estimat-
ing PageRank on the same multi-threaded CPU and GPU.
The convergence criterion is evaluated using the L1 error be-
tween two consecutive iterations - i.e., ||Γ(t)−Γ(t+dt)||1 < ε,
with a threshold set to ε = 1 × 10−6 (note that for the cho-
sen convergence threshold, the Spearman correlation to the
analytic solution is > 0.9999999).

case (fully connected graph). Importantly, eq. 5 can be
distributed among κ cores given that κ ≤ m for sparse
matrices, which allows for parallel computation and ef-
ficient execution on GPUs. Fig. 2 shows the compu-
tational costs of calculating DomiRank (analytically and
recursively) and PageRank (recursively) for different net-
work sizes showing: (i) the high computational cost for
the analytic computation of DomiRank, as it requires
matrix inversion, (ii) the comparable computational cost
of the DomiRank to that of PageRank on both CPU and
GPU infrastructure, and (iii) that the latency of com-
puting DomiRank on the GPU is the computational bot-
tleneck unless the number of links is significantly larger
the number of GPU cores, i.e., m >> κ. Thus, Domi-
Rank centrality is computable even for massive (sparse)
networks, allowing computational time costs under one
second for networks consisting of millions of nodes.

III. EVALUATING DOMIRANK

In order to gain further insight into the capabilities of
DomiRank, and to benchmark its performance with re-
spect to the other most commonly used centralities, we
examine the efficacy of targeted attacks based on Domi-
Rank centrality for different network topologies, analyz-
ing its ability to dismantle the network structure and
functionality, and contrasting its performance with those
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of the attacks based on other centralities.

A. Structural Network robustness

In this section, we evaluate the structural robustness of
different networks, both synthetic and real-world topolo-
gies, under sequential node removal (attacks) based on
different centrality metrics, and compare the results with
those obtained based on DomiRank. To evaluate net-
work robustness, we use its most commonly used proxy,
the evolution of the relative size of the largest connected
component (LCC) [32–35], whilst the network is under-
going sequential node removal. We compare the robust-
ness of the different networks for the different attacks
by directly comparing the resulting LCC curves, and for
simplicity and enhanced comparability, we also use the
area under that curve as a summary indicator of robust-
ness (the larger the area, the more robust is the network
under that particular attack).

We start our analysis with synthetic toy networks, con-
sisting of a reduced number of nodes, but wherein their
graphical representation still allows us to visually iden-
tify patterns on the centrality distributions for differ-
ent topologies, gaining insight into the interpretation of
DomiRank and its performance when compared with dif-
ferent centralities. Particularly, we perform targeted at-
tacks based on DomiRank and nine other centralities for
three different topologies: 2D-regular lattice [36], Erdős-
Rényi [37], and a Barabasi-Albert [38] networks. Note
that for each topology, the range of σ was explored to de-
termine its optimal value to dismantle the network (i.e.,
minimize area under the LCC curve). Fig. 3a,b,c re-
veals that the DomiRank centrality-based attack disman-
tles these three networks more efficiently than all other
tested centrality-based attacks. More particularly, Domi-
Rank excels at dismantling regular networks (Fig. 3a). It
is not surprising that for this topology, DomiRank cen-
trality produces the most effective attack for large val-
ues of σ, wherein network structure is overweighed to
the detriment of local node properties. This value of σ
leads to a DomiRank distribution wherein if a node is im-
portant (dominating node), all of its adjacent nodes are
not important (dominated node), and vice-versa. Ap-
plying a similar DomiRank-based attack strategy to a
more heterogeneous network, such as Erdős-Rényi (see
Fig. 3b), still leads to the highest fragility of the net-
work, also capitalizing on the built-in competition mech-
anism of DomiRank (high value of σ) that penalizes con-
nections between nodes labeled as highly central, reduc-
ing those instances to situations wherein connected nodes
possess disjoint neighborhoods to exert their respective
dominance. For most of the other centrality metrics, in-
cluding Betweeness, Eigenvector, PageRank and Katz,
highly central nodes permeate their centrality to their di-
rect connections (see Fig. 3e). However, that by-contact
importance only reflects the centrality of their truly im-
portant neighbor, yielding attack sequences less efficient

than DomiRank. As the networks display more hub-
dominated topologies (e.g., scale-free), we expect that
the optimal value of σ for the most efficient attack de-
creases, emphasizing nodal properties (degree) with re-
spect to the neighborhood structure. In the toy example
for a network generated by a Barabasi-Albert model (see
Fig. 3c), DomiRank still outperforms other centrality-
based attacks in dismantling the network. In this case,
the improvement is incremental since the most relevant
information to destroy the network is local (node degree),
and most of the centralities converge to a similar nodal
ranking.

We further investigate the efficacy of the attack strate-
gies based on the DomiRank centrality by dismantling
larger synthetic networks (N = 1000) with varying de-
grees (2 < k̄ < 40) for numerous topologies. Particu-
larly, we analyze the robustness of Watts-Strogatz [39],
stochastic-block-model [40], Erdős-Rényi, random geo-
metric graph [41], and Barabasi-Albert networks, under
nine different targeted attack strategies based on different
centralities, including DomiRank, which revealed itself as
the most efficient at dismantling all synthetic networks
(Fig. 4a-f). As hinted from our previous analysis of the
toy networks, the margin by which the DomiRank-based
attack outperforms the other strategies relates to the
topological properties of the networks, which also dictate
the optimal value of σ. Thus, for the Barabasi-Albert
topology (hub-dominated) DomiRank offers only an in-
cremental improvement in the efficiency at dismantling
the network (see Fig. 4f). On the other hand, for net-
works with meso-to-macro scale structural features (e.g.,
regularity or modularity) that dominate over the local
node-based properties, DomiRank centrality significantly
outperforms all other centralities (Fig. 4d). This also oc-
curs for the Erdős-Rényi (Fig. 4b,e) and Watts-Strogatz
networks (Fig. 4a).

Real networks introduce several properties that are
hard to produce simultaneously using generative models.
Therefore for a more thorough and general benchmark
of DomiRank, we analyze various real networks topolo-
gies of various sizes: (g) hub-dominated transport net-
work (RyanAir connections) [42], (h) neural network (C-
elegans) [3, 43, 44], (i) spatial network (power-grid of the
Western States of the United States of America) [39], (j)
citation network (high-energy-physics arXiv) [45, 46], (k)
massive social network (LiveJournal users and their con-
nections) [46], and (l) massive spatial transport network
(Full US roads) [45]. Our results are consistent with the
results for synthetic networks, showing that the Domi-
Rank is able to dismantle the networks more efficiently
than all the other centrality-based attacks tested (see Fig.
4g-l). Another interesting phenomenon, also observed for
the synthetic networks, is that the DomiRank-based at-
tacks remove links more efficiently than previous methods
(see SM). This means that for many of these networks,
not only is the DomiRank better at reducing the size
of the largest cluster size, but it also more severely crip-
ples its connectivity, yielding not only to an overall faster
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FIG. 3. Comparing DomiRank with other centralities on toy networks. Evolution of the relative size of the largest
connected component (robustness) whilst undergoing sequential node removal according to their descending scores of DomiRank,
betweenness, closeness, and PageRank centralities for toy networks: (a) 2D regular lattice (N = 49), (c) Erdős-Rényi (ER;
N = 32), and (e) Barabasi-Albert (BA; N = 25). Panels d,e, and f show the graphical representation of the networks, where
the nodes are colored according to the value of their centralities.

but also a more thorough dismantling of the network.
However, we note that for the social network analyzed
(Fig 4k), the PageRank-based attack outperforms the one
based on DomiRank. We attribute this phenomenon to
the presence of structural heterogeneity in the network
topology (i.e., different structures in different subgraphs
of the network). This heterogeneity hinders the assess-
ment of node importance by DomiRank with a single
value of σ for the whole network. In the SM material,
we provide evidence showing that, indeed, heterogeneity
can lead DomiRank to underperform, hinting also po-
tential approaches to address the evaluation of networks
exhibiting heterogeneity.

Also note that the results shown in Fig. 4h,j,l corre-
spond to directed graphs. In the case of directed graphs,
the adjacency matrix used in the definition of DomiRank
(e.g., Eq. 2) should correspond to the reverse of the graph
relevant for the transfer of resources (e.g., information,
traffic, etc.) to be consistent with the underlying concept
of dominance.

The analysis of synthetic networks and real-world
topologies has demonstrated the capacity of DomiRank
to integrate local (node) and mesoscale information of
the network, which, together with the competition mech-

anism embedded in its definition, produces centrality
distributions that efficiently dismantle the networks by
avoiding redundant scores in neighboring nodes (impor-
tance by-contact). This apparent handicap for other
centralities could be addressed at the cost of recomput-
ing the centrality distributions after each node removal.
Note that this cost is prohibitive for distance-based or
process-based metrics such as closeness, betweenness, or
load centralities, even for networks of modest sizes as,
for instance, betweenness has a computational complex-
ity that scales with O(Nm) and O(Nm + N2 logN) for
unweighted and weighted graphs respectively [47]. De-
spite this limitation, and for the sake of completeness,
we also benchmark the DomiRank centrality distribution
(computed once before the beginning of the attack) with
the targeted attacks based on sequentially recomputed
centralities.

Fig. 5a-d displays the increase in performance of
various centrality-based attacks when recomputed itera-
tively, particularly for betweenness centrality. In fact, for
all the synthetic topologies tested, iterative betweenness
and load centralities lead to the most efficient attacks at
dismantling networks by a large margin. Notably, the at-
tacks based on pre-computed DomiRank centrality gener-
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FIG. 4. Centrality-based attacks on synthetic and real-world networks. Evolution of the relative size of the largest
connected component (robustness) whilst undergoing sequential node removal according to descending scores of various cen-
trality measures for different synthetic networks of size N = 1000: (a) Watts-Strogratz (WS; small-world, k̄ = 4), Erdős-Rényi
(ER) with (b) high (k̄ = 20) and (e) low link density (k̄ = 6), (c) random geometric graph (RGG; k̄ = 16), (d) stochastic block
model (SBM; k̄ = 7), and (f) Barabasi-Albert (BA; k̄ = 6). The performance of the attacks based on the different centrality
metrics is also shown for different real networks: (g) hub-dominated transport network (airline connections, k̄ = 16), (h) neural
network (worm, k̄ = 29), (i) spatial network (power-grid, k̄ = 3), (j) citation network (k̄ = 25), (k) massive social network
(k̄ = 19), and (l) massive spatial transport network (roads, k̄ = 5). Note that for panels j, k, and l, where massive networks
are shown, only a few attack strategies are displayed due to the impossibility of computation of the rest.
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FIG. 5. Assessing the effect of iterative centrality-based attacks and recovery mechanisms on network resilience.
Panels a-d show the evolution of the relative size of the largest connected component (robustness) of various synthetic networks
of size N = 500, namely; (a) Watts-Strogatz (WS; k̄ = 4), (b) Barabasi-Albert (BA; k̄ = 6), (c) Erdős-Rényi (ER; k̄ = 5),
and (d) random geometric graph (RGG; k̄ = 7), undergoing sequential node removal based on iterative attack strategies and
the pre-computed DomiRank. Panels e-h show the evolution of the relative size of the largest connected component for the
same networks undergoing sequential node removal based on pre-computed DomiRank (optimal and high σ) and iterative
betweenness, where a stochastic first-in-first-out node recovery (stack recovery implementation) process with a probability of
recovery p = 0.25 each time step is implemented.

ally outperform other attacks based on iterative centrali-
ties that are computationally feasible for medium, large,
and massive networks - i.e., iterative degree, PageRank,
eigenvector, Katz. Note that attacks based on iterative
DomiRank centrality perform worse than the ones ob-
tained from a single computation, which is actually ex-
pected as DomiRank leads to attack strategies aiming
to cause structural damage, which requires the joint re-
moval of several nodes. Therefore by recomputing Domi-
Rank every time step, no coherent strategy emerges as
the network structure becomes a moving target, i.e., the
structure is re-evaluated at a faster rate (every node re-
moval) than the time needed to remove the number of
nodes necessary to inflict the structural damage. At-
tacks based on iterative betweenness centrality excel at
destroying the LCC by finding bottle-neck nodes instru-
mental in mediating most of the shortest paths and, thus,
focusing on simply fragmenting the network. As a result
of these fundamental differences in the aim of the two
centralities, we expect that despite the DomiRank-based
attack being less efficient at dismantling the network than
those based on iterative betweenness, it causes more se-
vere and enduring damage, making it more difficult to re-
cover from when compared with the damage produced by
an iterative betweenness attack. The first indirect piece

of evidence supporting this hypothesis is that DomiRank-
based attacks remove links more efficiently than other at-
tack strategies (see SM). To test the hypothesis more di-
rectly, we implemented two simple recovery mechanisms
to evaluate from which of the attacks the network was less
prompt to recover. Both recovery mechanisms assign a
probability p to a given removed node to recover every
time step, wherein the first strategy selects the nodes in
the same order that they were removed (results shown
in Fig. 5e-h), while for the second strategy, nodes are
selected at random from the pool of removed nodes (see
results in SM). Our results show that for all the net-
works, except for the random geometric graph (probably
due to network modularity), when a recovery mechanism
is put in place, the attack based on a single computa-
tion of DomiRank centrality has a comparative disman-
tling ability than the attack based on iterative between-
ness, as shown by the deterioration trend of the LCC in
Fig. 5e-h. Moreover, for all the analyzed topologies, the
DomiRank-based attack causes longer-lasting effects, as
the recovery mechanism requires a larger fraction of rein-
stated nodes to obtain an equivalent recovery in terms of
LCC. The superior ability of the DomiRank strategy to
inflict more severe damage is grounded in its aim to dis-
mantle the inherent network structure via the dominance
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FIG. 6. Functional robustness of synthetic and real-world networks under centrality-based attacks. Average
rumor spread fraction (error-bars representing the standard deviation) of 1000 rumor spreading simulations as a function of
the subsequent network stage resulting of sequential node removal according to degree, PageRank, and DomiRank strategies,
for three synthetic networks: (a) 2D regular lattice (k̄ = 4), (b) stochastic-block-model (SBM; k̄ = 8), and (c) Watts-Strogatz
(WS; k̄ = 6), and three real networks: (d) a contact-tracing social network [48] (Hospital; k̄ = 30), (e) a survey based social
network [49] (Residence; k̄ = 16), and (f) a hub-dominated transport network [45] (US flights; k̄ = 4) .

mechanism. To further demonstrate this point, Fig. 5e-h
also displays a high-σ DomiRank-based attack (boosted
dominance), where the pace at which the networks re-
covered was increasingly impeded. Thus, the DomiRank
centrality provides a trade-off between the celerity and
the severity of the attack through modulation of σ, high-
lighting its applicability to design vaccination schemes
and other mitigation strategies.

B. DomiRank on functional robustness

Sequential node failure caused by random or targeted
attacks can compromise not only the structure but also
the dynamics taking place on the network, i.e., the func-
tional robustness of the network. In this section, we
benchmark the ability of DomiRank-based attacks to dis-
rupt a rumor-spreading dynamic [50] on different network
topologies. We implement an epidemic-like model for
spreading rumors, where each node represents an indi-
vidual, who can be in three potential states with respect
to the rumor: ignorant, active spreader, and stifler (have

heard the rumor but is no longer spreading it) [51]. More
specifically, the rumor-spreading dynamic takes four ar-
guments: (i) the network N , (ii) the origin of the rumor
(node), (iii) the probability of persuading someone of the
rumor (ρr), and (iv) the probability of becoming a stifler
(ρs). We implement this model on the subsequent net-
works originating from sequences of node removal accord-
ing to different centrality-based targeted attacks, choos-
ing the fraction of persons that believe the rumor at the
end of the process as the proxy for functional robustness.

Fig. 6 showcases the ability of the DomiRank cen-
trality to halt a rumor-spreading process in comparison
to degree and PageRank centralities. Our results high-
light that for real and particularly synthetic networks,
the DomiRank-based attacks are the most efficient at dis-
rupting network functionality. This is a result of the fact
that the DomiRank-based attacks aim to dismantle the
network by crippling the structure of the network with a
more significant deletion of links than most of the other
centrality-based attacks (see SM).

The ability of DomiRank to highlight the set of nodes
to effectively establish firewalls to mitigate the propa-
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gation of rumors is conceptually generalizable to other
dynamic processes, such as information transport or epi-
demic spreading, to name a few, prompting the idea that
the DomiRank could be used for establishing efficient
vaccination schemes.

IV. CONCLUDING REMARKS

This work presents a new centrality metric, called
DomiRank, which evaluates nodal importance by inte-
grating different aspects of the network’s topology ac-
cording to a single tunable parameter that controls the
trade-off between local (nodal) and mesoscale (struc-
tural) information considered. Thus, the competition
mechanism embedded in the definition of DomiRank of-
fers a novel perspective on identifying highly important
nodes for network functionality and integrity by con-
textualizing the relevance of nodes in their respective
neighborhoods, taking into account emergent synergies
between not directly connected nodes over overlapping
neighborhoods (i.e., joint dominance).

One key feature of DomiRank centrality is its low com-
putational cost and fast convergence. On this front, the
DomiRank centrality is competitive with the PageRank
centrality, whilst, being parallelizable, which allows for
efficient execution on GPU infrastructure, making it ap-
plicable on massive sparse networks.

We show the superior ability of DomiRank to gener-
ate effective targeted attacks to dismantle the network
structure and disrupt its functionality, offering an out-
standing trade-off between the celerity and the severity
of the attack and, therefore, significantly reducing net-
work resilience. DomiRank could be further customized
to account for localizing heterogeneity in the topology of
massive real-world networks, enhancing the assessment
of nodal importance in such systems. Also, we anticipate
that hybrid attack strategies, where DomiRank is recom-
puted at different stages of the attack process, might
also increase its performance. Moreover, analyzing the

robustness of networks in the light of the recently intro-
duced Idle Network (connectivity of the removed nodes
by an attack) [42, 52] could be particularly illuminating
as the DomiRank’s parameter exerts a direct control on
the fragmentation of the Idle network.

Finally, we want to highlight the broad applicability
of DomiRank centrality to different domains, as via its
versatile dominance mechanism, it is anticipated to be
instrumental for tasks as diverse as improving SPAM de-
tection, establishing effective vaccination schemes, or as-
sessing vulnerabilities in transportation networks, just to
name a few. Thus, DomiRank, by revealing fundamental
aspects of network fragility, can spur further research to
develop more effective mitigation strategies to improve
our overall understanding of complex systems resilience.

APPENDIX

Proof: We define the dominance centrality Γ as the
stationary solution of equation 1:

1

β

∂Γ(t)

∂t
= σA(θ1N×1 − Γ(t))− Γ(t), (6)

By definition, the centrality only exists if Γ(t) converges
to Γ, and thus;

lim
t→∞

∂Γ(t)

∂t
= 0, (7)

which implies,

lim
t→∞

[σA(θ1N×1 − Γ(t))− Γ(t)] = 0 (8)

thus, we can solve eq. 8 in the following manner;

σθA1N×1 − lim
t→∞

[(σA+ IN×N )Γ(t)] = 0, (9)

and therefore,

lim
t→∞

Γ(t) := Γ = σθ(σA+ IN×N )−1A1N×1, (10)
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I. LINK REMOVAL DURING ATTACKS

Our results have shown that attack strategies based on DomiRank centrality are more

efficient in deteriorating the connectivity of the network in terms of the largest connected

component than any other centrality-based attack. In this section (see Fig. 1), we also show

that DomiRank-based attacks are able to remove links more efficiently than other attacks

for synthetic and real-world networks, providing further evidence about the capacity of the

DomiRank to highlight the nodes structurally important for the integrity of the network’s

connectivity.

The efficiency of DomiRank-based attacks in deteriorating network structural connec-

tivity, both in terms of the largest connected component and sparsifying the number of

connections, underlies the also outstanding capacity of this attack to severely impair the

functionality of networks (see main text Fig. 6).

II. HETEROGENEOUS NETWORKS

Figure 4 in the main text shows the evolution of the largest connected component for

different synthetic and real-world networks as they are attacked based on various centrality

metrics. DomiRank-based attacks outperform all other attacks for all the networks analyzed

but in one case. That case corresponds to a massive social network (LiveJournal users and

their connections - see Figure 4k in the main text), where the DomiRank-based attack,

although very competitive, does not perform better than the PageRank-based attack.

In this section, we pose the hypothesis that the presence of heterogeneity (different struc-

tural properties) in different subgraphs of the network could lead to underperformance for

DomiRank-based attacks. The rationale behind this statement is straightforward in the light

of previous results. As shown in the analysis of synthetic networks in Fig. 3 and Fig 4 of

the main text, DomiRank excels in highlighting the important nodes with different values

of σ depending on the network structure. Thus, for hub-dominated networks, a relatively

low value of σ provides the most effective ordering of nodes for designing attack strategies.

On the other hand, more regular networks such as lattices or random graphs require large
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values of σ, which allow for a larger integration of the information in the network structure

for assessing the relative importance of each node. Consequently, if a network consists of

different subgraphs (e.g., communities) with different topological properties might require

different σ for each subgraph, since an average global value of σ would lead to suboptimal

results.

In order to address this issue, we could substitute the σ parameter in DomiRank definition

by a diagonal matrix (without additional computational cost), where the entries of σi,i

are corresponding to the optimal σ for the community that node i belongs to. We can

mathematically describe this new diagonal matrix σ as follows, given T communities Cj, j ∈
[1, T ];

(σ)i,i =
T∑

j=1

σj1i∈Cj
. (1)

Moreover, in order to guarantee the convergence of DomiRank, Eq. 1 takes the final form:

(σ)i,i = min

[
T∑

j=1

σj1i∈Cj
,
−1

λN

]
(2)

where λN is the minimum (largest negative) eigenvalue of the whole network.

To test this hypothesis, we generate synthetic networks consisting of two subgraphs,

each of them generated with a different model (e.g., Barabasi-Albert and random geometric

graph), establishing links between both subgraphs (10% of the nodes establish a connection

with a node in the other subgraph). Fig. 2 displays the results for the attacks based on the

previous centralities (including DomiRank), as well as the results obtained from a DomiRank

where nodes in different subgraphs are evaluated with different values of σ to account for

heterogeneity in networks. As expected, in the cases where the two merged networks are

characterized by disparate values of σ for optimal attack strategies (i.e., large heterogeneity),

we obtain a larger gain by considering the diagonal-matrix-based σ in the definition of

DomiRank. Thus, for instance, Fig. 2a shows a significant improvement in the performance

of the attack strategy when heterogeneity is considered in the definition of DomiRank for a

network consisting in the combination of a subgraph generated by a Barabasi-Albert model

with relatively low degree (k̄ = 4) and random-geometric-graph (k̄ = 5). Additionally, from

Fig. 2c we see that by combining two subgrphaps characterized by comparable optimal σ

values like the Erdős-Rényi and Watts Strogatz networks, the gain is just incremental. Note

that when the difference in the optimal value of σ does not significantly differ between the

3



two subgraphs (e.g., Erdos-Reyni and 2D-Lattice - See fig. 2 d), the traditional DomiRank

computed in the whole network might offer better performance than the community-based

version, as it accounts for the links connecting the two sub-graphs.

Consequently, massive networks, consisting of multiple communities with different prop-

erties, might require the adoption of the definition of DomiRank that account for that het-

erogeneity (i.e., using the diagonal-matrix-based σ) to design more efficient attack strategies

for dismantling the networks, as the traditional definition of DomiRank could underperform.

Thus, by combining the various algorithms to detect communities in massive networks,

and this newly defined σ could potentially lead to further gains in designing strategies to dis-

mantle networks’ structure and functionality without incurring unaffordable computational

costs.

III. NETWORKS UNDERGOING RANDOM-RECOVERY

Complementing the results shown in Figure 5 in the main text, we show how a different

recovery mechanism affects the evolution of the largest connected component under various

attacks. Particularly we implement a random recovery mechanism, for which at every time

step, a node is selected at random (with uniform probability) from the pool of the removed

nodes. This selected node is recovered with probability p. Note that, if a given node is

recovered cannot be subject to any further attack. Our results using a random recovery

mechanism are consistent with those shown in Figure 5 in the main text, where a sequential

recovery mechanism was implemented. Notably, the high-σ DomiRank-based attack (Fig.

3) inflicts more enduring damage (i.e., longer time to recover the same relative size of the

largest connected component) than the iterative betweenness when the network has a random

recovery process, despite the fact that the iterative betweenness-based-attacks are superior

in dismantling the structure of the network. Fig. 3a-d also showcases that when a network

has a random recovery process, a low-σ DomiRank-centrality-based attack can result in an

incrementally more rapid deterioration of the largest-connected-component than iterative

betweenness. This fundamentally shows a key property of DomiRank-based attacks, i.e.,

the inherent trade-off between the efficiency of network dismantling and the endurance of

the damage by modulating the parameter σ from low to high.
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FIG. 1. Link-removal on synthetic and real-world networks under centrality-based

attacks. Evolution of the remaining link fraction whilst undergoing sequential node removal

according to descending scores of various centrality measures for different synthetic networks of

size N = 1000: (a) Watts-Strogatz (WS; k̄ = 4), Erdős-Rényi (ER) with (b) high (k̄ = 20) and

(e) low link density (k̄ = 6), (c) random geometric graph (RGG; k̄ = 16), (d) stochastic block

model (SBM; k̄ = 7), and (f) Barabasi-Albert (BA; k̄ = 6). The performance of the attacks based

on the different centrality metrics is also shown for different real networks: (g) hub-dominated

transport network (airline connections, k̄ = 16), (h) neural network (worm, k̄ = 29), (i) spatial

network (power-grid, k̄ = 3) , (j) citation network (k̄ = 25), (k) massive social network (k̄ = 19),

and (l) massive spatial transport network (roads, k̄ = 5). Note that for panels j, k, and l, where

massive networks are shown, only a few attack strategies are displayed due to the impossibility of

computation of the rest. 5



Mod

�����������

��

��

��

��

��

��� ��� ��� ��� ��� ������ ��� ��� ��� ��� ��� ��� ��� ��� ��� ��� ���
���

���

���

���

���

���

���

���

���

���

���

���

��� ��� ��� ��� ��� ���

���������������
�	

��

��

��
��
��
��

��
��

�
��

��
��

	�
��

�
��������� ������� �����������

	��

��
��

��
��
�
��
�

FIG. 2. The effect of heterogeneity on the performance of centrality-based attacks

on synthetic networks. Panels a-d show the evolution of the relative size of the largest con-

nected component (robustness) and panels e-h show the evolution of the remaining link fraction

(connectivity), whilst undergoing sequential node removal according to descending scores of various

centrality measures for different coupled synthetic networks (heterogeneous) of size N = 1000: (a,e)

Barabasi-Albert (BA) and random geometric graph (RGG), (b,f) Erdős-Rényi (ER) and random

geometric graph (RGG), (c,g) Erdős-Rényi (ER) and Watts-Strogatz (WS), and (d,h) Erdős-Rényi

(ER) and a 2D-lattice. Here we have three different DomiRank-based-attacks corresponding to

two different σ (i) the optimal σ for the entire network (denoted in the legend as DomiRank), and

(ii) the capped optimal diagonal matrix σ as per eq. 2 (denoted in the legend as DomiRank Mod).

6
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FIG. 3. Evaluating the effect of random recovery during iterative betweenness-based

and DomiRank attacks. Evolution of the relative size of the largest connected component for

various synthetic networks of size N = 500, namely (a) Watts-Strogatz (WS; k̄ = 4), (b) Barabasi-

Albert (BA; k̄ = 6), (c) Erdős-Rényi (ER; k̄ = 5), and (d) random geometric graph (RGG; k̄ = 7),

undergoing sequential node removal based on pre-computed DomiRank (optimal, low (<), and high

(>) σ) and iterative betweenness, while a random node recovery process is ongoing; specifically, at

each time step there is a probability of 0.25 to recover a random (already removed) node.
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