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A B S T R A C T   

Precipitation occurs in the form of discrete “events” and the event characteristics (event duration, depth, peak 
intensity, start/end time) significantly influence the hydrologic response of a basin. Despite this importance, 
event-based performance of satellite precipitation products has still not been fully investigated to assess limi
tations in the retrieval algorithms, guide future improvements, and inform hydrologic applications. In this study, 
we evaluate the precipitation event performance of the GPM IMERG product using as reference the high- 
resolution ground gauge–radar dataset (GV-MRMS) in the Continental United States (CONUS) at the native 
IMERG resolution (0.1◦×0.1◦, 0.5 h), with a primary focus on the detectability and timing of events. Our results 
show that IMERG generally overestimates the event duration but underestimates the mean event precipitation 
intensity in the summer, while the opposite is true for winter. This discrepancy is mostly attributed to the under- 
representation of short-duration intense events in the summer and long-duration moderate events in the winter 
in IMERG. In terms of the detection of individual events, about 50% of the reference events are properly detected 
by IMERG, and conversely, 50% of IMERG events do not match a reference event. However, nearly 40% of the 
missed or false events result from temporal mismatching of less than 3 h between the retrieved and the reference 
event. The remaining 60% comes from IMERG not detecting an existing event or inventing a nonexistent event. 
When IMERG successfully detects an event, the average temporal overlap with the reference event is about 70% 
of its total duration, which mostly stems from the mistiming of IMERG-derived events. IMERG events tend to 
start, peak, and end earlier than GV-MRMS events, with national mean shifts of − 26 min, − 17 min, and − 7min, 
respectively. For about only 20% of all situations the starting time of the event is correctly reproduced by IMERG, 
and the same applies to the peak time and end time. Our results provide guidance for applications of IMERG at 
sub-daily scales, as well as new insights for the improvement of satellite retrieval algorithms.   

1. Introduction 

Our ability to comprehend and monitor precipitation and its global 
variability is essential to water resource management, food security, and 
ecological sustainability, with important economic, social and political 
implications (Hsiang et al., 2013; Kotz et al., 2022; Lobell et al., 2011; 
Siepielski et al., 2017; Sinha et al., 2017). An important feature that 
makes precipitation different from most other environmental variables 
(e.g., temperature, soil moisture, humidity) is that it occurs discretely in 
space and time in the form of coherent and continuous objects which we 
call “events” (Haile et al., 2011; Hanel and Maca, 2014; Lochbihler et al., 
2017). The occurrence and characteristics of precipitation events are 

directly linked to multi-scale, multi-type dynamic, thermodynamic, and 
microphysical atmospheric processes (Berg et al., 2013; Lamjiri et al., 
2017; Lochbihler et al., 2017; Wasko et al., 2015) and depending on the 
characteristics of these events, land surface processes like runoff, infil
tration, and soil erosion are affected (Dunkerley, 2017; Dunkerley, 
2021; Dunkerley, 2019; Guan et al., 2016). Therefore, studying the 
properties of precipitation events is important for deepening our un
derstanding of precipitation physics and accurately modeling 
precipitation-driven processes. 

High-resolution multi-satellite precipitation products have become 
indispensable in recent decades for providing quantitative precipitation 
estimates globally (McCabe et al., 2017; Skofronick-Jackson et al., 
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2017). Consequently, knowing how well they capture the characteristics 
of precipitation events is crucial to assess their reliability for hydro
logical applications and provide insight for future improvement of 
precipitation retrieval algorithms (Freitas et al., 2020; Tadesse and 
Anagnostou, 2009). However, most published studies assess satellite 
precipitation products by lumping together all hourly or daily data and 
computing statistical indicators (Asong et al., 2017; Huang et al., 2016; 
Smith et al., 2006; Tang et al., 2016), an approach that largely erases the 
crucial information in the properties of individual precipitation events 
(Li et al., 2021). Conversely, the existing event-based evaluations are 
still limited (Freitas et al., 2020; Li et al., 2021; Maranan et al., 2020), 
resulting in an insufficient understanding of the event-related perfor
mance of satellite precipitation products. 

A series of works by Nikolopoulos et al. (2013), Mei et al. (2014), and 
Mei et al. (2016) assessed the event-based performance of satellite 
products at the basin scale in Europe. Since they aimed to assess the 
satellites’ ability to simulate flood events, they focused on basin-average 
statistics. More recently, Maranan et al. (2020) compared IMERG- 
derived events with gauge-derived events in Africa, concentrating on 
event duration differences. To the authors’ knowledge, Freitas et al. 
(2020) and Li et al. (2021) are the only evaluation studies that analyzed 
in detail not only event duration, but also further event characteristics 
such as depth, mean rate, etc. These studies still did not cover all the 
facets of precipitation events, and many other aspects of satellite- 
derived precipitation events remain to be investigated. For example, 
precipitation event characteristics are closely related to the type of 
precipitation systems which significantly varies among different seasons 
(Mao et al., 2022), but the seasonal factor has not been analyzed in 
previous studies (Freitas et al., 2020; Li et al., 2021). Additionally, the 
potential timing errors in the start, peak, and end time of satellite- 
derived events have not been investigated, despite the fact that such 
inaccuracies can result in significant biases in flood event simulations 
(Dunkerley, 2012; Mei et al., 2016). Assessing event’s timing in satellite 
products can also provide quantitative insight for improving retrieval 
algorithms (Guilloteau et al., 2018). Previous event-based evaluations 
have used gauge observations (Freitas et al., 2020; Li et al., 2021; Mei 
et al., 2014; Mei et al., 2016; Nikolopoulos et al., 2013) as ground 
reference. However, the fundamental difference between point mea
surements by gauges and the area-integrated satellite estimates makes 
the comparison between the two equivocal (unless each satellite pixel is 
homogeneously covered by several gauges, which is rarely the case). In 
contrast, the sampling geometry of ground-based weather radars is more 
consistent with that of satellite estimates, making radars generally more 
suitable for the evaluation of satellite products, provided that the radars 
are properly calibrated and bias-corrected with gauge data. 

In this study, we present an event-based evaluation of the state-of- 
the-art Integrated MultisatellitE Retrieval for Global Precipitation 
Measurement (GPM) (IMERG) product over the Continental United 
States (CONUS), using as reference the Ground Validation-Multi-Radar/ 
Multi-Sensor (GV-MRMS) product which combines ground radar and 
gauge measurements. We focus on assessing the performance of IMERG 
in retrieving the following three progressive event attributes: (1) the 
spatial variability and statistical distribution of event characteristics 
(depth, duration, mean event precipitation rate, peak intensity, etc.), (2) 
the detection rate (and false detection rate) of precipitation events, and 
(3) the timing (start, peak, and end time) of the detected events. Thanks 
to the dense ground radar network in the U.S., this study is not only the 
first systematic event-based evaluation in the U.S., but also the first 
event-based evaluation with the ground radar-based data as reference. 
Our analysis reveals seasonal and regional differences in the perfor
mance of IMERG and points out to systematic biases that could be 
addressed in future algorithm developments. 

2. Data and methods 

2.1. Data 

2.1.1. IMERG precipitation dataset 
IMERG is the level-3 research-quality gridded global multi-satellite 

merged precipitation product developed by the U.S. GPM team (Hou 
et al., 2014; Huffman et al., 2020). The version we use is IMERG V06B 
Final Run at a resolution of 0.1◦, 30 min (Huffman et al., 2019b). The 
V06 of IMERG is available both in the TRMM era (June 2000–May 2014) 
and the GPM era (June 2014-present). IMERG integrates multiple sensor 
sources, including all available passive microwave (PMW) sensors in the 
GPM constellation of low-Earth-orbit satellites and infrared (IR) sensors 
on geostationary orbits. Among them, all PMW estimates are globally 
calibrated against the Combined Radar-Radiometer Algorithm (CORRA) 
product, which relies on the combined measurements of the Dual- 
frequency Precipitation Radar (DPR) and the GPM Microwave Radi
ometer (GMI), both onboard the GPM Core Observatory. All IR estimates 
are then calibrated by the PMW sensors (Huffman et al., 2020). Such 
intercalibrations efficiently enforce the uniformity of the multi-source 
merged IMERG product across space and time. 

For constructing continuous gridded estimates, the calibrated PMW 
estimates and the IR estimates produced by PERSIANN-CCS (Precipita
tion Estimation from Remotely Sensed Information using Artificial 
Neural Networks-Cloud Classification System) are interpolated using a 
quasi-Lagrangian time interpolation scheme similar to that of the 
Climate Prediction Center (CPC) Morphing-Kalman Filter (CMORPH- 
KF) algorithm (Huffman et al., 2019a). Finally, the gridded estimates are 
calibrated by the Global Precipitation Climatology Centre (GPCC) gauge 
monthly analysis. IMERG is among the most accurate state-of-the-art 
high-resolution satellite precipitation datasets (Guilloteau et al., 2021; 
Pradhan et al., 2022; Tang et al., 2020), and has been used in a wide 
range of applications (Orland et al., 2022; Yin et al., 2022; Zhang and 
Wang, 2023). 

2.1.2. GV-MRMS gauge–radar data 
The high-quality MRMS quantitative precipitation estimation (QPE) 

is used here as the ground reference dataset. It integrates precipitation 
observations from 180 Weather Surveillance Radar 88 Doppler (WSR- 
88D) and Canadian C-band radar data and approximately 7,000 hourly 
rain gauges, and also incorporates model analyses as ancillary data 
(Zhang et al., 2016). Based on MRMS, the further quality-controlled and 
adjusted GV-MRMS product forms a standardized reference for GPM 
ground validation (Kirstetter et al., 2014; Kirstetter et al., 2012; Kirst
etter et al., 2018). The gridded GV-MRMS QPE used in this study 
matches the IMERG resolution of 0.1◦ and 30-minutes and a spatial 
domain from 20◦ to 55◦ N and 60◦ to 130◦ W. A Radar Quality Index 
(RQI, 0–100), which accounts for the distance to the radar, beam 
blockage and environmental parameters such as the altitude of the 
freezing level, is applied to filter out lower-quality estimates (RQI less 
than 60) (Petersen et al., 2020). The gridboxes with an average RQI less 
than 60 during the study period were entirely eliminated from our an
alyses. The study period is 2018–2020. 

2.2. Methods 

2.2.1. Precipitation event definition 
In this study, the definition of a precipitation event is based on an 

Eulerian approach, that is, at each pixel in space, events are defined as 
continuous periods of half-hourly rain rates of no less than 0.1 mm/h (Li 
et al., 2021). This simple definition allows an easy-to-implement anal
ysis (as compared with the Lagrangian approach which requires tracking 
the space–time evolution of precipitation features) that can reveal 
important information relevant to the hydrologic response of a basin 
(Ignaccolo and De Michele, 2010). Moreover, the revealed biases in the 
retrieval could be more directly linked to the local surface type, climate 
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zone, and latitude, which could be helpful in attributing errors and 
improving retrieval algorithms. 

2.2.2. Event properties 
Following Li et al. (2021), for each event, we depict a set of event 

properties, namely, event duration (T, h), event depth (D, mm) and mean 
event precipitation rate (R, mm/h), relative peak position (P), and peak-to- 
mean intensity ratio (O). Specifically, P is the relative position of the peak 
time of an event, which is expressed as (see Li et al. (2021) for details): 

P =
tp − 0.5
T − 0.5

(1)  

where tp (h) is the time to peak. Note that here “0.5” replaces “1” in the 
accordant formula in Li et al. (2021), considering the temporal resolu
tion of 0.5 h used in this study. O is the ratio of peak precipitation rate 
(rp, mm/h) to the mean event precipitation rate R: 

O =
rp

R
(2) 

In this work, we analyze the number of events (N, events/year or 
events/season) and the statistical distributions of the above-mentioned 
event properties and their spatial and seasonal variability, as 
compared between GV-MRMS and IMERG. 

2.2.3. Event detectability 
Even if IMERG has the same number of events with GV-MRMS, it 

would not be guaranteed that every IMERG-derived event temporally 
matches with a reference event. To assess this, we introduce the metrics 
of event detectability, which describe the hit, false, and miss events. 
Based on the temporal overlap (or non-overlap), and eventually on the 
temporal delays between the events across the two datasets, we classify 
all the events into three categories, which are diagramed in Fig. 1. The 
first category is the “hit event”, which represents an event in a dataset 
that overlaps with at least one time step (here 0.5 h) with an event in the 

Fig. 1. Diagram of the three categories of events from 
IMERG and GV-MRMS based on their relative tem
poral positions. (a) hit events (overlap with an event in 
the other dataset with at least one time step), (b) the 
mismatched events (do not overlap with any event in 
the other dataset, but there is at least one event in the 
other dataset occurring within 3 h of their start or end 
times), and (c-d) the isolated events (do not overlap 
with any event in the other dataset, and there is also 
no event in the other dataset occurring within 3 h of 
their start or end times).   
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other dataset. This situation indicates that IMERG successfully detects a 
reference event, and the overlapped events in GV-MRMS and IMERG are 
named as Hit-MRMS event and Hit-IMERG event, respectively. The second 
category is the “mismatched event”, which is defined as an event in a 
dataset that does not overlap with any event in the other dataset, but 
there is at least one event in the other dataset occurring within 3 h of its 
start or end time. This situation indicates that IMERG actually senses the 
existence of an event but narrowly misses it, and the two adjacent but 
non-overlapping events in GV-MRMS and IMERG are termed as “Miss- 
mismatched event” and “False-mismatched event”, respectively. The third 
category is the “isolated event”, which represents an event in a dataset 
that does not overlap with any event in the other dataset, and there is 
also no event in the other dataset occurring within 3 h of its start or end 
time. This situation indicates that IMERG is completely unaware of the 
existence of an event or makes up an utterly nonexistent event. 
Accordingly, such events are named respectively as “Miss-isolated events” 
and “False-isolated events”. The “3-hour” threshold is chosen because we 
consider that timing errors (due in particular to the vertical variability of 
the precipitation process and to the dynamical interpolation based on 
motion vectors in IMERG) are unlikely to be more than 3 h in magnitude 
(Guilloteau et al., 2018; Utsumi et al., 2019; You et al., 2019). 

We apply the traditional detectability error metrics, namely Proba
bility of Detection (POD) and False Alarm Ratio (FAR) to the event 
detectability of the satellite product (Ebert et al., 2007), and define Event 
Probability of Detection (EPOD) and Event False Alarm Ratio (EFAR). 

Specifically, 

EPOD =
NhM

NhM + Nmm + Nmi
(3)  

EFAR =
Nfm + Nfi

NhI + Nfm + Nfi
(4) 

where NhM, Nmm, and Nmi are the number of hit-MRMS, miss-mis
matched, and miss-isolated events from GV-MRMS, respectively, and NhI, 
Nfm, and Nfi are the numbers of hit-IMERG, false-mismatched, and false- 
isolated events from IMERG, respectively. 

2.2.4. Timing of the detected events 
Moreover, even if IMERG correctly detects an event present in the 

GV-MRMS dataset, this pair of hit events is still likely not to match 
perfectly in terms of the starting time, ending time and peak-intensity 
time. To assess this, we take the hit-MRMS events as the reference, and 
investigate the start time shift (dts), peak time shift (dtp), and end time shift 
(dte) of the corresponding hit-IMERG events. 

3. Results 

3.1. Event properties 

We analyze the statistical distribution of event properties in each 

Fig. 2. The spatial patterns of (a1–3) number 
of events (events/year), as well as the mean 
values of (b1–3) event duration (h), (c1–3) 
event depth (mm), (d1–3) mean event precipi
tation rate (mm/h), (e1–3) relative peak posi
tion (time to peak divided by duration), and 
(f1–3) peak-mean ratio (peak intensity divided 
by mean event precipitation rate) during the 
study period of 2018–2020 from GV-MRMS 
and IMERG data and their differences 
(IMERG - GV-MRMS) for 1◦ × 1◦ gridboxes 
in the U.S. The histogram of each variable 
over CONUS is shown in the left bottom of 
each panel.   
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pixel for GV-MRMS and IMERG. Fig. 2 shows maps of the number of 
events per year along with maps of the mean value for each one of the 
event properties. To reduce sampling noise, the metrics are exhibited as 
the average values over 1◦ × 1◦ gridboxes. From this map, regional 
differences in the event properties between IMERG and GV-MRMS are 
salient. In terms of the number of events, event depth, and peak-mean- 
ratio, a spatial consistency between GV-MRMS and IMERG is observed, 
with cross correlation coefficients of 0.88, 0.93, and 0.87, respectively 
(Figs. 2a1-2, d1-2, and f1-2), although there are still biases in their 
quantitative values (Fig. 2a3, d3, and f3). For example, IMERG over
estimates the number of events in most regions of CONUS where the 
mean event duration revealed by GV-MRMS is also relatively high 
(Fig. 2a3 and b1). This may be due to IMERG intermittently missing 
precipitation during the events, which causes long-duration events to be 
split into several parts. The exception is over the Rocky Mountains, 
where the lower number of events in IMERG as compared to GV-MRMS 
might be related to the documented low detection rate of satellites for 
orography-induced rainfall and over arid/semiarid areas with hot 
background surfaces (Derin and Kirstetter, 2022; Derin and Yilmaz, 
2014; Dinku et al., 2010; Maggioni et al., 2016). In contrast to the 
duration, the mean event depth showed a nationwide underestimation 
by IMERG (Fig. 2d3), which might also be owing to the event split 
mentioned above. Considering that the average event depth multiplied 
by the number of events in a year is the total annual precipitation, which 
is constrained by the GPCC annual values (Huffman et al. 2019a), an 
overestimated number of events is almost certainly accompanied by an 
underestimated event depth as a compensation. 

The spatial distribution of the mean event duration of IMERG is 
significantly different compared to that of GV-MRMS (Fig. 2b1-3). For 
GV-MRMS, events last longer in all the Midwest and the Northeast U.S. 
but are shorter in the Rocky Mountain, Gulf Coast, and Florida 
(Fig. 2b1), while the duration of IMERG-derived events inversely in
creases from the North to the South (Fig. 2b2). Attributing a cause to 
such a difference in the patterns is not easy when simply examining 
these two distribution maps. We note, however, that the bias shows an 
evident regularity, with an apparent meridional gradient pattern from 
negative in the North to positive in the South (Fig. 2b3). This pattern 
might be related to the gradually reduced frequency of PMW overpasses 
as the latitude decreases, eventually leading to the increased influence of 
the morphing scheme in IMERG (Tan et al., 2021), which tends to in
crease the event duration (Ayat et al., 2021). For the relative peak po
sition, the peaks of the reference events are skewed to the early part of 
the event and have a clearer regional variation than IMERG-derived 
events, while the relative peak position of the IMERG-derived events 
is closer to the event center with less regional differences (Fig. 2e1-2). 
Such bias may arise from the interpolation procedures in IMERG that 
weaken the asymmetry (Li et al., 2021). For the mean event precipita
tion rate, IMERG generally reproduces the spatial pattern shown by GV- 
MRMS with higher values in the Southeast U.S. compared to other re
gions. However, such contrast between different regions is not as strong 
as that in GV-MRMS (Fig. 2d1-2), leading to a clearly underestimated 
mean event precipitation rate in the Southeast U.S. (Fig. 2d3). Since the 
mean event precipitation rate is the result of event depth divided by 
event duration, such a pattern is explainable considering the over
estimated duration and underestimated depth in the South U.S. 
(Fig. 2b3). As a result, IMERG tends to have more long-duration, light to 
moderate events in the South U.S., more short-duration, heavy events in 
the Northeast U.S., Rocky Mountain, and West Coast, but more short- 
duration, light to moderate events in the Great Plain. 

Since different types of precipitation systems dominate in different 
seasons, further analysis by season is necessary for bias attribution 
(Fig. 3 and Fig. S1). For example, the overestimation of event duration is 
most severe in winter when the long-duration frontal precipitation 
dominates (Fig. 3b4 and Fig. S1b7). During the cold season, the inter
pretation of the passive microwave signal is more ambiguous as frozen 
or snow-covered land surfaces can have spectral signatures similar to 

those of ice clouds (Ferraro et al., 1998). To counterbalance this, during 
the cold season, the IMERG algorithm relies more on the IR information 
(Huffman et al., 2020), which is generally less accurate in terms of 
precipitation detection (Derin et al., 2021; Tan et al., 2016). Such 
deficiency tends to split the long-lasting events, causing the over
estimated number of events but underestimated duration (Fig. 3a4 and 
b4). The missed precipitation, which is more likely to occur for low- 
intensity precipitation, further elevates the mean event precipitation 
rate (Fig. 3d4). 

In contrast, the short duration but still overestimated number of 
events in the summer indicates the existence of false events in IMERG 
(Fig. 3a2, Fig. S1b3). Such phenomenon could also be owing to the fact 
that the deep convective precipitation, predominant in the summer, is 
reasonably well detected by passive space-borne instruments (Chen 
et al., 2011; Young et al., 2014). Exceptionally, the more pronounced 
underestimation of the number of events around the Rocky Mountains, 
relative to the annual counterpart (Fig. 2a3), can presumably be 
attributed to the elevated air temperature favoring the generation of 
warm rain, coupled uytwith the increased surface temperature 
neutralizing the cold signals of hydrometeors (Derin and Kirstetter, 
2022; Dinku et al., 2010; Maggioni et al., 2016). Indeed, intermittent 
satellite observations missing the short-duration precipitation prevalent 
in the summer could be another important contributor. Due to the 
interpolation procedures in IMERG, a PMW estimate, usually with a high 
precipitation rate in the summer, is likely to fill their adjacent dry gaps 
with non-zero values, thus prolonging the duration but consequently 
reducing the mean precipitation rate (Fig. 3b2, d2, and S1d3). Besides, 
the relative peak position has a delaying bias, not least in summer when 
afternoon convective precipitation dominates (Fig. 3e2 and S2e3). This 
type of precipitation generally has an early peak since the evaporative 
cooling suppresses the surface heating shortly after the rainfall starts 
(Dunkerley, 2021), but this feature fails to be reproduced by IMERG due 
to the weakening of rainfall asymmetry induced by the interpolation 
procedures in the merging algorithms. 

To go further than analyzing the mean values of the different event 
properties, Fig. 4 depicts the joint distribution of the annual and sea
sonal total precipitation amount contributed by events with different 
durations and mean event precipitation rates, from which we can see 
more detail about the event-related performance of the satellites. As 
shown, IMERG and GV-MRMS display dissimilar patterns at all times. 
Specifically, the distributions for GV-MRMS are more dispersed, while 
those for IMERG are more concentrated around the diagonals (Fig. 4a1- 
a5 and b1-b5). In other words, IMERG underestimates the occurrence of 
short-duration, high-intensity events and long-duration, low-intensity 
precipitation events but overestimates the occurrence of the medium- 
duration, moderate-intensity events as compensation (Fig. 4c1-c5). 
Such bias is evident in the summer and winter (Fig. 4a3-c3 and a5-c5), 
when brief strong thunderstorms and long-lasting, steady frontal pre
cipitation are known to occur, respectively. As analyzed above, the 
smoothing effect of the interpolation leads to IMERG’s underestimation 
of the occurrence of short-duration heavy events, while the IR-only 
sources with high missing rates that frequently occur in late autumn, 
winter, and early spring make IMERG hard to reflect long-lasting events. 
Especially for the high-impact, short-duration extreme events that might 
cause flash floods and debris flows, their underrepresentation could 
largely affect the prediction or retrospective attribution of these natural 
hazards when employing the IMERG data. 

3.2. Event detectability 

After analyzing the difference in the mean event properties, events 
from GV-MRMS and IMERG are further matched in time to investigate 
whether IMERG can successfully capture the reference events depicted 
by GV-MRMS. As stated in the Methods section, events in GV-MRMS and 
IMERG are classified into three categories: hit events, mismatched events, 
and isolated events, whose proportions are displayed by their durations 

R. Li et al.                                                                                                                                                                                                                                        



Journal of Hydrology 620 (2023) 129563

6

(Fig. 5). For the events with all durations, the two datasets possess a 
similar composition, with the hit events, mismatched events, and isolated 
events making up 49%, 20%, and 31% in GV-MRMS and 45%, 19%, and 
36% in IMERG. The proportion of hit events in each dataset gradually 
increases with the lengthening of event duration, from below 25% to 

above 95%. Such a phenomenon is understandable since a longer- 
duration event has a higher chance of being overlapped with any 
other event in the other dataset. 

We further apply the Event Probability of Detection (EPOD) and Event 
False Alarm Ratio (EFAR) to quantify IMERG’s detectability of 

Fig. 3. The spatial patterns of the differences (IMERG - GV-MRMS) of the metrics listed in Fig. 2 for four seasons for 1◦ × 1◦ gridboxes in the U.S.  

Fig. 4. Joint distribution of the national mean annual and mean seasonal precipitation amount contributed by events with different durations and mean event 
precipitation rates from (a1-5) GV-MRMS and (b1-5) IMERG data and (c1-5) their difference (IMERG - GV-MRMS) for the full year and for each of the four seasons. 
Precipitation events with durations of more than 20 h or mean rates of more than 10 mm/h are counted together and marked with a “+”. 
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precipitation events (Fig. 6). Overall, IMERG does not have a high level 
of detectability. The mean EPOD equals 0.49 and EFAR equals 0.55 
across the CONUS and at the annual time scale (Fig. 6a1 and b1), which 
might be largely contributed by the misdetection of short-lived events 
(lasting 0.5–3 h) as analyzed above (Fig. 5). The EPOD and EFAR show 
differential spatial patterns compared to the bias of the annual and 
seasonal average number of events (Figs. 62a, and 3a1-a4), which in
dicates that the similarity in the number of events between IMERG and 
GV-MRMS does not necessarily demonstrate IMERG’s good event 
detectability, further bearing out the necessity of the comparison based 
on event matching. For example, although IMERG-derived events have a 
consistent overestimation in the number of events in both the Northeast 
and Southeast U.S. at the annual time scale (Fig. 2a3), the Southeast 
exhibits a relatively high EPOD and low EFAR while the opposite is true 
for the Northeast (Fig. 6a1 and b1). More missed and false events in the 
Northeast at the same time cancel out each other and lead to a compa
rable performance in the number of events compared with that in the 
Southeast. Additionally, the summer exhibits the best detectability 
among all seasons, with EPOD over 0.7 and EFAR below 0.3 in some 
regions (Fig. 6a3 and b3); while the winter performs worst, and the 
EPOD and EFAR could be below 0.2 and above 0.8, respectively 
(Fig. 6a5 and b5). 

As analyzed above, the miss-isolated and false-isolated events not only 
comprise a significant proportion of the bias but are also not easy to 
address in the retrieval, thus worthy of further investigation. Fig. 7 looks 
in more detail into the characteristics of these events, involving the 
contributions to the total number of events, total amount, and total 
frequency, as well as their mean duration and intensity. Overall, the 
regions with severe miss- or false-isolated events are still in the Western 
U.S., where arid/semiarid and mountainous areas characterized by 
generally poor satellite performance dominate (Derin and Kirstetter, 
2022; Dinku et al., 2010; Maggioni et al., 2016). The isolated events 
account for a large proportion of events both in GV-MRMS and IMERG, 
with their national mean values equaling 31% and 36%, respectively 
(Fig. 7a1 and a2). However, their contributions to the total frequency 
are smaller (19% for GV-MRMS and 18% for IMERG nationally, Fig. 7b1 

and b2). Compared with the miss-isolated events, those false-isolated 
events are marked by a larger number but shorter durations (Fig. 7a1- 
a2 and d1-d2). Although their contribution to the total amount during 
the study period is even less (7% for both GV-MRMS and IMERG na
tionally) than to the total frequency, the percentages in the total amount 
could still exceed 20% in the Mountain West areas (Fig. 7c1 and c2). In 
terms of intensity, the miss-isolated events are comparatively high in the 
South U.S. but progressively decrease with higher latitude, while the 
false-isolated events are higher, especially in the Northeast and North
west U.S. The fundamental causes for these biases need to be further 
investigated for possible improvements in the retrieval algorithms. 

3.3. Timing of the detected events 

Even if IMERG successfully detects a precipitation event, it does not 
warrant that IMERG can exactly reproduce the whole event in terms of 
its timing, duration, and depth. That is, the retrieved events may 
mistime the beginning and end, preventing them from wholly matching 
the reference events. Fig. 8 displays the matching percentage of the hit 
events from IMERG and GV-MRMS in terms of duration and depth as a 
function of event duration. Results show that the pairs of hit events from 
the two datasets can only match about 70% of the total durations on 
average, but the percentages can rise up to about 80% on average for the 
total depth due to the relatively small intensity of the unmatched rainy 
hours. Besides, it is easily explainable that the matching percentage of 
the 0.5 h-events always equals 100%, and the values naturally drop with 
the longer duration for the brief events (<3h). However, the percentages 
of GV-MRMS-derived events keep decreasing (e.g., from 70% to 60% for 
the matching percentages of event duration), but those of IMERG- 
derived events inversely increase with longer duration (e.g., from 60% 
to 80% for the matching percentages of event duration). Such a phe
nomenon indicates that the hit-IMERG events tend to have fewer false 
time steps but more miss time steps with increasing event duration. This 
further implies IMERG’s more significant underestimation of the event 
duration for longer “actual” events. These results are consistent with 
those revealed in Figs. 1-3. 

Fig. 5. Proportions of number of events 
(bars, left y-axis) and mean half-hourly in
tensity (lines, right y-axis) of the hit events, 
the mismatched events, and the isolated events 
diagramed in Fig. 1 from (a) GV-MRMS and 
(b) IMERG by their durations. The pro
portions are calculated from all the data 
during the study period of 2018–2020 over 
CONUS. The label “+” denotes durations 
above 20 h and “All” means all durations. 
The intensities are displayed only if the 
number of events in the sample is above 50.   
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Fig. 9 further looks into the start, peak, and end time shifts of the hit- 
IMERG events compared with their corresponding hit-MRMS events in 
the form of the Probability Density Functions (PDFs). From the graphs, 
all three PDFs are negatively skewed, which means that IMERG tends to 
start, peak, and end all earlier than the reference events. Among the 
three event properties, the time shift is most severe for the start time, 
with an average of − 0.44 h (26 min), which is followed by peak time and 
end time with averages of − 0.29 h (17 min) and − 0.12 h (7 min). Such a 
difference is also reflected in the cumulative probabilities, with the 
contrast between the percent of total events with advances (time shift ≥
0.5 h) and delays (time shift ≤ − 0.5 h) at 57% versus 19%, respectively, 
for the start time but 44% versus 38% for the end time. Events with 
unbiased start, peak, and end times (time shifts of 0 h) only account for 
about 20% in each PDF, and the chance of a − 0.5 h shift even exceeds 
that of no shift for the peak and end times (Fig. 9b and c). Such results 
further demonstrate the systematic time shifts of the IMERG-derived 
events. 

Fig. 10 further examines the consistency of the revealed mistiming 
issue of IMERG-derived events over CONUS in the form of mean time 
shifts. Among the three properties (start, peak, and end time), the peak 
time shift is most consistent with an advanced shift among almost all the 
regions and seasons (Fig. 10a2-e2). IMERG-derived events have 
advanced start times in most areas for spring, summer, and winter 
(Fig. 10b1-d3), while the time shifts in the event ending time could be 
both positive and negative for the same periods (Fig. 10b3-d3). Such 
facts align with the more negatively skewed PDF for the start time than 
the end time (Fig. 9a and c), further indicating the satellites’ asymmetric 
performance during the events (Li et al. 2021). However, significantly 
different patterns are shown in the winter for both the start and end time 
shifts (Fig. 10e1 and e3). While the moderate shifts displayed in the 
South U.S. are in agreement with those in the other seasons, the North 
suffers from substantially delayed start times and advanced end times at 
the same time (Fig. 10e1 and e3). The mean delays in the North in the 
winter could exceed 1 h while the advances could be even more severe 

Fig. 6. The spatial patterns of Event Probability of Detection (EPOD) and Event False Alarm Ratio (EFAR) for (a1 and b1) the full year and (a2-a5 and b2-b5) four seasons.  
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and surpass 2 h, which may well be due to the inaccurate IR sources in 
the retrieval process, as discussed before. 

Next, we further examine the time shifts of IMERG when detecting 
the events of different durations. As shown in Fig. 11, the curves of the 
start, peak, and end time shifts all exhibit smooth and monotonic vari
ations with increasing duration, which indicates the significant de
pendency of the mistiming on the event duration. Specifically, IMERG- 
derived events tend to start earlier for short-duration events but later 
for long-duration events, while they end later for short-duration events 
but earlier for long-duration events. However, the tipping point of the 
start time shift is “8h” while that of the end time shift is “2h”, which 
suggests a negatively skewed tendency of the timing of IMERG-derived 

events in accordance with the results in Fig. 9. Such patterns indicate 
that the causes of mistiming might involve both symmetric and asym
metric factors that contribute to the biases in the retrieval. The curve of 
the peak time shifts further confirms this inference, as its values keep 
being negative and decreasing with longer durations, but the shape of 
the curve highly dovetails with that of the mean value of the start and 
end time shifts. This means that the start and end time shifts of IMERG- 
derived events might be attributed to a symmetric extension or 
contraction centered around the event peak time, as well as an overall 
systematic advance of the events. The former might result from the 
inherent deficiencies of the data sources, e.g., the lengthening effects of 
“morphing” sources and the high missing rate of IR sources which 

Fig. 7. The spatial patterns of the contributions of the miss-isolated and false-isolated events to the total (a1–a2) number, (b1–b2) frequency, (c1–c2) amount during the 
study period, as well as their (d1–d2) mean duration and (e1–e2) mean intensity from GV-MRMS and IMERG during the study period of 2018–2020 for 1◦ × 1◦

gridboxes in the U.S. 
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generally exert a comparable impact on the event start and end times 
(Tan et al., 2021). The latter might be caused by a consistent time dif
ference between the satellite receiving the ice scattering signal from the 
sky and the precipitation falling on the ground due to instrumental ef
fects, such as the incidence angle (Guilloteau et al., 2018). The actual 
situation might be more complex, also influenced by the different 
retrieval capabilities in response to the inherent asymmetry of the cloud 
physical properties during the storm evolution (Imaoka and Nakamura, 
2012). 

4. Discussion 

Compared with the traditional evaluation methods of satellite pre
cipitation products that treat precipitation values at each time step as 
independent and calculate the mean error statistics (e.g., Mean Absolute 
Error, Root Mean Square Error) (Amjad et al., 2020; Beck et al., 2019; 
Beck et al., 2017), our study examines the inherent temporal informa
tion of precipitation, that is, properties of individual events. The event- 
based evaluation is expected to provide additional insight into the use of 
satellite products for hydrological applications and also lead to targeted 
improvements in the retrieval algorithms. Moreover, in contrast to the 
previous few event-based evaluations (Freitas et al., 2020; Li et al., 
2021), we go one step further to investigate the mismatching and 

mistiming issues of satellite-derived events, in addition to the compar
ison of the mean event properties. Several insights are gained through 
these analyses as discussed below. 

For example, Fig. 11 shows an advanced start time and a slightly 
delayed peak time for the short-duration events but a delayed start time 
and a more strongly delayed peak time for the longer-duration events in 
IMERG compared with those in GV-MRMS. This indicates that the time 
from the start to the peak is overestimated in IMERG for short-duration 
events but underestimated for long-duration events. Previous studies 
have found that an event with a later peak could generate substantially 
more runoff than an event with an earlier peak (Dunkerley, 2012; 
Dunkerley, 2017), mostly because the later-peak events tend to wet the 
dry soil before the arrival of the most intense precipitation, thus 
reducing infiltration and generating more surface runoff (Dunkerley, 
2021). Therefore, such systematic bias could influence the results of 
hydrological models when using IMERG as the input (Wu et al., 2012; 
Wu et al., 2014). Added to that, although the comparisons of the mean 
annual event properties calculated from the events of IMERG and the 
reference data separately in this study and in a previous studies indicate 
a later relative peak position of the satellites (Fig. 2e1-e3) (Li et al., 
2021), further results from matching the events from the two datasets 
show that the absolute peak times of IMERG-derived events tend to be 
earlier than the real events (Fig. 9b). This result highlights the 

Fig. 8. Matching percentages, i.e., the proportion of the overlapping parts in the whole event duration and depth of the hit events from GV-MRMS and IMERG as a 
function of event duration. The percentages are calculated from all the data during the study period of 2018–2020 over CONUS. 

Fig. 9. Probability density function of the (a) start, (b) peak, and (c) end time shifts of the hit-IMERG events compared with the corresponding hit-MRMS events 
(IMERG-MRMS). The PDFs are calculated from all the data during the study period of 2018–2020 over CONUS. The negatives indicate advances in timings (IMERG 
starts, peaks, or ends earlier than GV-MRMS) while the positives indicate delays. 
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Fig. 10. The spatial patterns of the mean event (a1-e1) start, (a2-e2) peak, and (a3-e3) end time shift of the hit-IMERG events compared with the corresponding hit- 
MRMS events (IMERG - GV-MRMS) for the full year and for the four seasons for 1◦ × 1◦ gridboxes in the U.S. The negatives indicate the advances in timings (IMERG 
starts, peaks, or ends earlier than GV-MRMS) while the positives indicate delays. 

Fig. 11. The mean event start, peak, and end time shift of the hit-IMERG events compared with the corresponding hit-MRMS events (IMERG - GV-MRMS) as a 
function of the duration of hit-MRMS events. The values are calculated from all the data during the study period of 2018–2020 over CONUS. The negatives indicate 
the advances in timings (IMERG starts, peaks and ends earlier than GV-MRMS) while the positives indicate delays. 
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importance of the one-to-one comparison between the GV-MRMS- and 
IMERG-derived events, which has not been performed before (Li et al., 
2021). In terms of intensity, IMERG underestimates the mean event 
precipitation rate of short, intense events, which is of high impact, 
notably in the summer (Fig. 4). An underestimated peak-to-mean ratio is 
simultaneously revealed for the summer short-duration events 
(Figure S2e3). This characteristic could also influence the hydrological 
applications of IMERG, e.g., underestimating the surface influence of 
heavy flash events. Such findings could not be easily drawn from the 
traditional evaluations without considering the event-based 
characteristics. 

Although our results show that the mean start and end time shifts are 
less than 0.5 h (Fig. 9), the PDFs tell us that there are only 20% of the 
start and end times of the real events that are accurately reflected by 
IMERG. In comparison, the time shifts with absolute values no less than 
2 h could also account for over 20%, which is nonnegligible for fine- 
scale hydrological applications like flood predictions (Wu et al., 2012; 
Wu et al., 2014). Seasonal spatial distribution analysis further suggests 
that such bias could be worse in specific regions and seasons (Fig. 10). 
Moreover, from the error perspective, even if IMERG duplicates an event 
profile identical to the real case but has an overall 1-h advance, the 
intensities during the event could be biased in all time steps. On top of 
that, if a large proportion of events all have a “small shift”, they could 
altogether contribute significantly to the total absolute error. This is the 
case in our results, where about 60% of the IMERG-derived events have 
an advanced start time (Fig. 9a). These findings imply that the mistiming 
issue of precipitation events detected in the satellite product should be 
given focused attention in future algorithm development. 

As mentioned above, although the lengthening effect of the inter
polation procedures in the merging algorithm on event duration could 
contribute to the start and end time shifts, they theoretically exert 
symmetric influences on both the start and end sides of the events. 
Therefore, other reasons should be responsible for the generally 
advanced event time shifts of IMERG. For example, the precipitation 
might fall on the ground tens of minutes after the ice-scattering signal 
aloft is captured by the satellites (Guilloteau et al., 2018), thus leading to 
the advanced timing of events. The possible mislocation of precipitation 
systems caused by the uncorrected parallax shifts of PMW and geosta
tionary sensors is likely to cause a skewing in the event timing as well (Li 
et al., 2022). If these conjectures are further substantiated in future 
work, the mistiming issue might be substantially mitigated by additional 
adjustment procedures. Moreover, precipitating clouds could undergo 
substantial thermodynamical and microphysical changes in their life
time, which might give rise to different levels of fidelity in the course of 
events (Petkovic and Kummerow, 2017). Future analysis should be 
made by combining the variation of cloud properties and environmental 
variables to further understand the asymmetric performance of satellite 
products during the events. On the other hand, the inhomogeneity of the 
sensor sources could bring about irregular event time shifts (Li et al., 
2018), which needs to be further investigated in future work. 

In addition, the bias of event duration shows significant latitude- 
dependent values (Fig. 3b1), which is suspected to be related to the 
data source composition in IMERG that is also latitude-dependent 
(Passive Microwave Algorithm Team Facility, 2017; Gebregiorgis 
et al., 2017). To verify this conjuncture, Fig. S4 compares the curves of 
zonal mean event duration bias and the morph source proportions as a 
function of latitude. The basically monotonically increasing trend of the 
two curves as the latitude decreases, as well as their high correlation 
coefficients (>0.85 for all situations), bears out their strong connection. 
The polar-orbit and low-orbit satellites revolve around the earth with 
the same swath width at different latitudes. This always leads to the 
undersampling of high-quality PMW observations at low latitudes 
(Passive Microwave Algorithm Team Facility, 2017). Complementarily, 
as shown, the proportion of the morph sources increases to fill the gap, 
spanning from 45% to 75% across CONUS (Fig. S4a). 

The PMW sources are suggested to miss light precipitation, likely to 

occur both near the beginning and end of the events, thus shortening the 
event duration (Ayat et al., 2021). As the replacement of PMW in the 
ice/snow surfaces, IR sources with a high missing rate could exert a 
more substantial shortening effect on the duration (Tan et al., 2016). In 
contrast, the morph data inversely tend to prolong the event duration 
due to the high chance of assigning non-zero values to dry grids through 
the interpolation process (Li et al., 2022). At the same time, the 
lengthening and shortening of the duration could result in a decrease 
and increase of the mean event precipitation rate, respectively, which is 
also reflected in our results, although the intensity bias is affected by 
more factors (Fig. 2d3 and 2d1-d4). The underestimation of long, 
moderate events at high latitudes but the underestimation of short, 
intense events at low latitudes will be further propagated into hydro
logical models when using IMERG as the inputs. In sum, the uneven 
sampling density of the polar- and low-orbits naturally exerts a region- 
dependent bias, which is distinguished from the regional differences 
stemming from different surface types or cloud regimes (Ferraro et al., 
2013; Tan et al., 2022). Therefore, efforts to improve and unify satellite 
retrieval capability under different climate conditions might never 
minimize the impact of PMW sensor sampling density that results in 
regional-dependent bias. A path forward is the improvement of geo
stationary precipitation estimates (Kirstetter et al., 2012; Upadhyaya 
et al., 2022). Also, this fact further emphasizes that fundamental 
improvement for the multi-satellite merged precipitation products will 
rely on increasing the spatial–temporal coverage of high-quality obser
vations by adding more PMW sensors in the GPM constellation (Kidd 
et al., 2021), although the ability of PMW sensors to detect light rain 
needs to be further improved. 

In this study, we define a precipitation event as a continuous tem
poral half-hourly rainy (≥0.1 mm/h) series. Compared with the 
commonly used minimum interevent time (MIT) criterion for event 
definition, our definition is equivalent to “MIT = 0.5 h” because of the 
temporal resolution of our data (0.5 h). Due to the complexity of pre
cipitation processes, there is no unified and standard MIT values for 
event definition. Since the event properties are apparently sensitive to 
the chosen MIT, it is necessary to know the robustness of the inferred 
satellite bias on the selection of MIT. Therefore, we have repeated our 
analysis using MIT = 3 h (the main text is for MIT = 0.5 h) and the results 
are shown in Figures S5 and S6. Although the details are unavoidably 
altered, the main bias patterns remain similar. These results also coin
cide with the previous event-based evaluations, where robust perfor
mance is found under different MIT values (Freitas et al., 2020; Li et al., 
2021). 

5. Conclusions 

Precipitation naturally occurs in the form of discrete “events”. Ac
curate depiction of precipitation events advances our understanding of 
the multi-scale atmospheric dynamic processes and our assessment of 
the land surface hydrological response to precipitation. While satellite 
precipitation products have been widely evaluated and applied since 
their inception, knowledge about their performance in terms of repro
ducing precipitation event characteristics and timing remains insuffi
cient. In this study, we use 3-year GV-MRMS data to conduct an event- 
based evaluation of the IMERG product over CONUS from three pro
gressive levels: (1) the spatial variability and statistical distribution of 
event characteristics (depth, duration, mean event precipitation rate, 
peak intensity, etc.), (2) the detection rate (and false detection rate) of 
precipitation events, and (3) the ability to accurately capture the timing 
(start, peak, and end time) of the detected events. The main conclusions 
are as follows:  

1) The spatial distribution of the number of events, event depth, and 
peak-to-mean intensity ratio is well reproduced by IMERG as inferred 
by comparison to GV-MRMS over CONUS. However, in terms of the 
spatial pattern of event duration, mean event precipitation rate, and 
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relative peak position, significant discrepancies are found between 
IMERG and GV-MRMS. The event duration bias shows a latitude- 
dependent pattern from negative (IMERG underestimating mean 
event duration) in the North to positive in the South. IMERG un
derestimates the occurrence frequency of short-duration, high-in
tensity events, especially in the summer, but overestimates the 
occurrence frequency of long-duration, moderate-intensity events, 
especially in the winter.  

2) On average over CONUS, only about 50% of the GV-MRMS events 
overlap (for at least 30 min) with an IMERG event, and vice versa 
(which are defined as the “hit events”). However, nearly half of the 
missed and false events result from wrong timing of events (mostly 
short events). The other half corresponds to isolated missed or false 
events, when IMERG simply does not detect any event (miss-isolated 
events) or invents a nonexistent event (false-isolated events). The 
event detectability rises with the longer event duration. The winter 
season suffers from the poorest performance in detecting events with 
EPOD below 0.2, and contrasting EFAR above 0.8 in the North 
Central U.S.  

3) When IMERG successfully detects a GV-MRMS event, the temporal 
overlap between the two is about 70% on average, which reflects the 
imperfect timing of IMERG-derived events as compared to GV-MRMS 
events. Specifically, IMERG events tend to start, peak, and end all 
earlier than GV-MRMS events, with national mean shifts of − 0.44 h 
(26 min), − 0.29 h (17 min), and − 0.12 h (7 min), respectively. For 
about only 20% of all situations the starting time of the event is 
correctly reproduced by IMERG, and the same applies to the peak 
time and end time. IMERG-derived events suffer from the most se
vere mistiming in the northern U.S. in winter, with their mean start 
time 1.5-hour earlier and end time 2-hour later than the real events. 
Duration-dependent time shifts are revealed. The event start time 
transits from advanced to delayed with the longer duration, while 
the opposite is true for the event end time. 

Compared with the previous event-based evaluations of satellite 
precipitation products that mainly focused on the mean event property 
differences (Freitas et al., 2020; Li et al., 2021), this study goes one step 
further to investigate satellite-derived event’ mismatching and mistim
ing issues, providing more detailed knowledge and insight on their ap
plications and improvements. Moreover, the seasonal analyses also 
disentangle the markedly different features and error sources in summer 
and winter. These contrasting seasonal errors largely canceled out each 
other in the annual results presented in previous studies, thus hiding 
crucial information. In addition, this study is also the first systematic 
event-based evaluation of satellite precipitation products in the U.S. and 
the first to use the comparable gauge-radar merged reference dataset for 
comparison. 

Many points encountered during the present analysis could be 
further explored in future works. For example, based on the mis
matching and mistiming issues of satellite-derived events revealed in the 
study, future studies should further quantify their impact on the total 
precipitation amount and frequency bias to make targeted improve
ments in retrieval. Since the temporal mismatches between GV-MRMS 
and IMERG are likely to relate to the spatial inconsistency of precipi
tation features (e.g., size, location, and propagation speed and direc
tion), further analysis of the spatial–temporal evolution characteristics 
of precipitation events is promising and expected to provide more 
insight into the cause of this error (Li et al., 2020). Besides, while the 
detected events with mistiming issues might be ameliorated with addi
tional adjustments, the completely missed or false events, which have 
been suggested to make up a nonnegligible proportion of the total error, 
could not be tackled easily in this way. Therefore, more effort should be 
made to understand how these entirely ignored or fabricated events 
come into being. For the asymmetric satellite performances in the course 
of events, analysis that combines additional environmental variables 
and thermodynamical and microphysical factors is expected to provide 

insight into the underlying mechanisms and reveal approaches to 
improve the retrieval. Last but not least, the method proposed here could 
be applied to other satellite precipitation products or even to an event- 
based evaluation of the outputs of weather and climate models. 
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