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Introduction The Supporting Information for this manuscript includes a detailed de-

scription of the methods used for shoreline characterization, discussion on the use of the

curvature operator for mapping shorelines to 1-D spatial-series, assessment of the morpho-

metric classification sensitivity to the definition of the fine scale variance, and tabulated

values of the morphometrics and sediment flux data.
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Text S1. Extended Methodology

Shoreline Extraction

The Opening Angle Method (OAM; (Shaw et al., 2008)) was used to define the shorelines

of the deltas under study. The OAM and related methods (Geleynse et al., 2012) are used

in river mouth impacted coastlines where the traditional definition for a shoreline as the

land water interface is not meaningful as the interface can extend far upstream of the

actual river mouth.

To utilize the OAM, it is first necessary to generate a binary water mask of the subaerial

extent of the delta. Water masks were generated from the Landsat-derived Global Surface

Water (GSW) dataset, which provides 30-m spatial and monthly temporal resolution

water masks from 1984 to 2018 and is available via Google Earth Engine (Pekel et al.,

2016). An individual water mask was used for each delta. In order to account for missing

data due to cloud cover and seasonal heterogeneity in water cover, water masks were

generally obtained by thresholding the 1984 to 2018 occurrence product, which measures

the fraction of time a pixel was covered by water from 1984 to 2018. In deltas with

active shorelines e.g. the Danube or Wax Lake, the occurrence for a single representative

year was used (Table S1), i.e. maps which measure the fraction of time a pixel was

covered by water for a specific year. In the Arctic, snowmelt-driven floods from April to

June lead to significant seasonal variability in inundation and apparent subaerial delta

extent, therefore the June occurrence was used to identify maximum mouth extent (Vulis

et al., 2021). When necessary, masks were manually cleaned to edit or remove features

such as jetties or rice paddies, which are visible from contemporaneous satellite imagery

,
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and the GSW has difficulty accounting for at its 30-m spatial resolution. Lastly, the

OAM algorithm computes an opening angle on all water pixels that lie within the convex

hull of the land in the water mask, which leads to unnecessary computations in channel

sections upstream of the mouth which are entirely blocked by land. Therefore, these

upstream sections were manually marked as land which decreased OAM runtime, as has

been previously proposed (Baumgardner, 2016). The OAM was then run on the water

mask corresponding to each delta. We made computational improvements to the OAM

which significantly improved runtime, and have published this as an R package available

via GitHub (https://github.com/lvulis/ROAM). A critical angle θc of 45
◦ was then used

to define the shoreline as an ordered set of coordinates SR
45 : {(x, y)45}, although we found

that the emergent shoreline classification does not change when using a critical angle θc

of 50◦. The shoreline defined in SR
45 only extends over the subaerial extent of the delta

with start and end points of the shoreline defining the limits of the delta. The subaerial

delta was visually outlined and compared with geologic maps where the extent was not

clear from Landsat imagery. Note that in several deltas, non-depositional sections of the

coastline were included in SR
45, e.g. in valley confined systems such as the Dnieper and Don,

and these were removed. Also note that the Missisippi Head of Passes, the Atchafayla, and

Wax Lake deltas were all analyzed as separate systems due to their spatial independence

in line with other studies (Galloway, 1975; Geleynse et al., 2012; Konkol et al., 2022;

Knights et al., 2020).

Finally, to remove discretization artifacts on the shorelines which arise from being de-

fined at the 30-m pixel scale, the raw shoreline in SR
45 was first smoothed using a Nadaraya-

,
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Watson kernel smoother with a bandwidth of 180-meters (Strimas-Mackey, 2021) and then

resampled at a 60-meter interval, resulting in the shoreline S45 used in the geometric and

spectral analysis.

Macroscale – Shape

To measure the shape of the delta, a circle with parameters {(xc, yc), Rc} was fit to S45

using least squares (Jammalamadaka & Sengupta, 2001). The shoreline may correspond

only to a sector of a circle, which the least squares fit captures. The center of the circle

(xc, yc) corresponds to the center of curvature and Rc the radius of curvature. Deltas with

a center of curvature lying in the ocean are concave, while those with a center of curvature

lying over land are convex. When Rc is significantly larger than the arc length LC of the

circular sector corresponding to the shoreline, the shoreline is essentially flat. That is,

when the ratio Lc/Rc = φ, where φ is the angle of the sector, is smaller than a cutoff

φmin, the shoreline is flat. We found that a cutoff φmin = 2π/12 = 30◦ clearly separated

flat from concave and convex deltas, i.e. if the shoreline corresponds to a circular sector

with a radius at least 12 times its length, it is flat.

Mesoscale – Fraction of variance contributed by mouths

To measure the fraction of variance contributed by mouths (fM ), first sections of S45 cor-

responding to mouths were identified by denoting which points in SR
45 are not a part of S

R
90,

the shoreline corresponding to a critical angle of θc = 90◦, i.e. MR
45 = {(xi, yi)|(xi, yi) ∈ SR

45

and /∈ SR
90}. This is because OAM-defined shorelines using different critical angles do not

overlap within local concavities (e.g. mouths or embayments). This definition may include

embayments such as lagoons sheltered by spits, therefore MR
45 was manually inspected and

,
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cleaned to represent only mouths. Lastly, the same smoothing procedure used to trans-

form SR
45 to S45 was used to smooth MR

45 and produce M45, which identifies the set of

points in the smoothed shoreline as mouths.

Then to measure what fraction of variability in S45 is contributed byM45 we used wavelet

analysis to locally estimate the variance in shoreline structure at multiple scales (Kumar

& Foufoula-Georgiou, 1994). For the wavelet analysis a univariate series representing

the shoreline was produced as the distance dc from every point in S45 to the center of

curvature (xc, yc), defining a signal dc(l), where l is the distance along the shoreline. For

convex deltas, the mouths show up as minima, which can be seen in the Mahakam Delta

(Fig. 2). We found that this mapping of the shoreline to a univariate series is preferable

to approaches such as extracting the local curvature series, which is effectively a high-

pass filter removing large scale features and is sensitive to discretization, see Text S3.

Note that mouth widths are typically non-uniform within a delta, resulting in multiscale

variability in the dc(l) signal, supporting the use of localized analysis of variance in the

spatial domain. Then, the wavelet transform of dc(l) was computed using the Morlet

wavelet, which has optimal time-frequency localization, with a central frequency of 6

rad/s (Kumar & Foufoula-Georgiou, 1994). The wavelet coefficients are given by Ψk,l at

a wavenumber (spatial frequency) k and location l along the shoreline, and are used to

estimate the power, Ψ2
k,l (Fig. S2). Finally, the fM is defined as the ratio of the integrated

wavelet power for all scales over coefficients corresponding to the mouths, Ψk,l∈M over the

total power (i.e. variance) of the signal (Eqn. 1), where L is the length of the shoreline

and kmin and kmax are the minimum and maximum wavenumbers, respectively. Note

,
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that typically, wavelet coefficients inside the cone of influence (COI) are excluded from

the computation of the variance as they are impacted by edge effects. However, in some

deltas the mouths may contain very large features, sometimes spanning over one third of

the length of the signal, therefore for all deltas these coefficients were included for more

robust estimation of the relative energy in these locations.

fM =
∫ kmax

kmin

∫ L

0
Ψ2

k,l∈Mdldk/
∫ kmax

kmin

∫ L

0
Ψ2

k,ldldk. (1)

Microscale – Gini-Corrected Fine Scale Variance

Lastly the wavelet transform (Kumar & Foufoula-Georgiou, 1994) was used to estimate

the variance at fine scales, i.e. from 300 to 1000 meters (Eqn. 2). Note that here edge

effects from the COI can significantly influence the estimated amount of energy at the

scales of the features under study, therefore coefficients inside the COI are excluded and

the power at each wavenumber k is normalized by the number of points at that frequency,

Nk. The sensitivity of the lower bound of 1000 meters was evaluated and no significant

changes in the classification were found (Fig. S1).

FSV1000 =
1

Nk

∫ 1/300

1/1000

∫ L

0
Ψ2

k,ldldk. (2)

Although two systems may have the same variance at fine scales, one may lack structural

variability (i.e. correspond to white noise), while another may have peaks or increased

variability at distinct scales. To account for this structured variability, the power spectral

density (PSD) of the actual shoreline spatial series is compared to a white noise series with

equivalent variance. Specifically, a spectral Gini coefficient g, which measures the total

deviation of the cumulative PSD (cPSD) from the cPSD of white noise is computed over

,
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the fine scales, and used as a multiplier to the FSV1000, defining the gFSV = g ∗FSV1000.

This multiplier is low when shoreline variability is similar to white noise, and high when

shoreline variability has defined structures (i.e. peaks or higher energy at finer or coarser

scales), and helps to separate deltas with similar FSV1000 but distinct modes of variability

(see Text S2 for details).

All analyses were performed in R using open source geospatial, statistical, and spectral

analyses packages (Strimas-Mackey, 2021; Pebesma, 2018, 2021; Pau et al., 2010; Morgan-

Wall, 2021; Aybar, 2022; Gouhier et al., 2021).

Sediment Flux Data

Sediment fluxes for every delta were obtained from version 3 of the Nienhuis et al. (2020)

database, which used the WBMSed hydrologic model forced with 1981 to 2010 hydrocli-

mate and assuming no human intervention of landscape properties to estimate riverine

sediment fluxes, QR, (Cohen et al., 2013), angular wave climate data from WaveWatch

3.0 (Chawla et al., 2013) averaged from 1979 to 2009 to estimate wave sediment fluxes,

QW , and tidal constituents from TXPOv8 inverted from satellite altimetry measurements

from 1992 to 2006 (Egbert & Erofeeva, 2002) to estimate tidal sediment fluxes, QT . To

reduce uncertainty in tidal amplitude estimates associated with the delta outlet location

being located too far upstream of the coastline in the global delta database, for all deltas

tidal amplitudes from the TXPO grid were obtained at the OAM shoreline extracted at

a critical angle 90◦. This only resulted in a difference of more than 5 cm for 9 out of 54

deltas, all with significantly widened mouths.

,
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Sediment flux data represents a delta-wide value, see (Nienhuis et al., 2020) and refer-

ences therein for details. For every delta, the relative sediment flux rx, where x represents

either the river, wave, or tide component is defined as:

rx =
Qx

QR +QT +QW

. (3)

,
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Text S2. Spectral Gini Coefficient Definition In order to help separate wave-

influenced deltas which are smooth and lack distinct features in the fine scale ranges from

the river and tide influenced deltas which contain structure at fine scales, we adjusted

the finescale variance by a spectral gini coefficient. To define the spectral gini coefficient

and interpert this adjustment, first consider the wavelet-estimated power spectral density,

given by Eqn. 4,

PSD(k) =
1

Nk

∫ L

0
Ψ2

k,ldl, (4)

where l is the location and k the wavenumber (scale). The spectral variance SV for a

range of wavenumbers (scales) k0 to k1 is found by integrating with respect to k:

SV =
∫ k1

k0
PSD(k)dk. (5)

In general, two signals may have identical SV for a given range of scales but distinct

structure. For example, white noise, which by definition has a constant PSD, i.e.

PSDWN = P , and lacks any structural variability, may have the same SV as a sig-

nal with structured variability. To measure the deviation from white noise, consider the

normalized PSD, PSD∗(k), given in (Eqn. 6). PSD∗(k) is analogous to a probability

density function (PDF), where the integral over the support (i.e. from k0 to k1) is 1.

PSD∗(k) =
PSD(k)

SV
. (6)

White noise has a uniform spectrum (i.e. flat PSD), while the PSD of another signal

may be distributed heterogeneously over the range of wavenumbers (Fig. S2). We then

consider the normalized cumulative power spectral density, cPSD∗(k), where k can take

,
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on any value up to k1:

cPSD∗(k) =
∫ k

k0
PSD∗(u)du. (7)

White noise has a linear cPSD∗, while the shoreline cPSD∗ is skewed towards relatively

coarser scales for k0 = 1
1000

m−1 and k1 = 1
300

m−1 (Fig. S2). For these skewed distribu-

tions, a natural measure of the deviation from a uniform distribution is the Gini Coeffi-

cient, g, which measures the area between the cPSD∗(k) of white noise, cPSD∗
WN(k), and

the cPSD∗(k) of the shoreline, normalized by the area under the curve of cPSD∗
WN(k).

As these distribution functions represent spectra this is a spectral Gini Coefficient.

g =

∫ k1
k0

(cPSD∗
WN(k)− cPSD∗(k))dk∫ k1

k0
cPSD∗

WN(k)dk
. (8)

The coefficient g increases towards a maximum value of 1 as the PSD is more hetero-

geneous and approaches zero as the PSD approximates white noise. This coefficient is

used as a multiplier to the FSV, computed from k0 = 1
1000

m−1 to k1 = 1
300

m−1, of the

shoreline spectra, accounting for the heterogeneous distribution of variance among scales

indicative of distinct scale-dependent features (Fig. S2).

,
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Text S3. Unsuitability of curvature mapping for shoreline characterization

A common technique to quantitatively analyze meandering rivers is to map the 2D curve

corresponding to the channel centerline to a 1D spatial-series represented by its curvature,

e.g. (Schwenk et al., 2015), which could also be applied to delta shorelines to perform

wavelet analysis. However, for the problem of shoreline characterization we found that the

high-pass filter properties of the curvature operator make it unsuitable for extraction of

large scale patterns such as channel mouths using spectral analysis. A synthetic example

using sinusoids is given to demonstrate these high-pass filter properties. Consider two

sinusoids of differing wavenumber with random additive error, z1(s) = 5 sin (s) +N (0, .5)

and z2(s) = 20 sin ( s
2π
) +N (0, 2), along with their sum z3(s) = z2(s) + z1(s) (Fig. S3).

The sinusoids represent spatial-series with s being some distance along the shoreline, and

are sampled with spatial step ∆s = 1. To analyze the oscillations, the Fourier transform

ẑ(k) with wavenumber k is taken, with the power spectral density of each signal given in

the right panel of (Fig. S3). The additive signal z3 has clearly defined peaks at k = (2π)−1

and k = (2π)−2.

In the case where the functional relationship between z and s is not known, we may

want to map the set of coordinates of each {(s, z)i} to a univariate series to employ

spectral analysis to characterize the curve. One such common mapping is defining the

local curvature κ. For an ordered set of coordinates {(x, y)i} constituting a 2D planar

curve, a stable and smooth estimator of the local curvature κ = 1/R is given in (Schwenk

et al., 2015):

,
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R =
1

2

√
(a2

x + a2
y)(b

2
x + b2

y)(c
2
x + c2y)

(aybx − axby)
, (9)

where ax = xi−xi−1, bx = xi+1−xi−1,cx = xi+1−xi. This definition and related curvature

operators given in (Schwenk et al., 2015) clearly depend on the sampling resolution of the

2-D planar curve.

The curvature is computed for each curve given by the {(s, z)} coordinate pairs to

define a univariate series κ(l), where l is the distance along the curve (Fig. S4). The noise

present in the original signals is amplified by taking local differences and results in the

large variation seen in κ2 and κ3. The corresponding power spectral density shows that

for the high wavenumber series, κ1, the curvature mapping still captures the wavenumber

observed in z1, but κ2 and κ3 have no power near the real wavenumber of (2π)−2. This is

because taking finite differences to compute the curvature filters out the low wavenumber

signal.

The sensitivity or ability to capture the low wavenumber signal likely depends on the

ratio of the sampling wavenumber ks = ∆s−1 to the wavenumber of interest ku, ks/ku. By

the Nyquist theorem, this ratio must be at least 2 to resolve ku. When the ratio approaches

2 from a larger value, noise may not be amplified by the curvature transformation, but

when it is much larger than 2 noise is amplified. Some value sufficiently optimal to capture

ku using the curvature transformation may exist. However, mouth widths are not constant

on deltas and can vary at least by a factor of 2, therefore ku can vary significantly, so a

ks optimal for the narrowest mouth will amplify noise in the remaining, larger mouths.

Moreover, a sufficiently high ks to capture mouths would filter out information at low

,
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wavenumbers, e.g. large scale features such as deltaic lobes. For these reasons the mapping

of curvature is not suitable for the problem of shoreline characterization.
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Figure S1. Insensitivity of the emergent classes to the upper bound of the

finescale variance. There is almost no discernible difference in the deltas belonging

to each emergent morphotype when adjusting the upper wavelength of the Gini-corrected

Fine Scale Variance (gFSV ) between 800 m to 1100 m. Only the Selenga and Yana switch

from the river morphotype to river-wave morphotype for an upper wavelength of 1100 m,

but lay on the boundary of the two classes.
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(A) (B)

Figure S2. Cumulative Power Spectral Density (cPSD∗) of the shoreline

signals. (A) The cPSD∗ curves of the 54 analyzed delta shorelines, each normalized to

have a value of one over the fine scales. The straight black line is cPSD∗
WN and overlaps

for each delta due to the normalization to have unit power. (B) Example of the deviation

between an arbitrarily selected real shoreline and white noise with equivalent energy. The

Gini Coefficient (g) is the area between the two curves normalized by the area under the

white noise.
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Figure S3. Synthetic sinusoids and their corresponding power spectral den-

sity.

,



X - 20 VULIS ET AL.: DELTA MORPHOTYPES

0 50 150 250
−1.0
−0.5

0.0
0.5
1.0

κ1(l )

l

κ

0.0 0.1 0.2 0.3 0.4 0.5
0
4
8

12

κ1

k

P
S

D
(k

)

0 50 150 250
−1.0
−0.5

0.0
0.5
1.0

κ2(l )

l

κ

0.0 0.1 0.2 0.3 0.4 0.5
0.0
0.2
0.4
0.6
0.8

κ2

k

P
S

D
(k

)

0 50 150 250
−1.0
−0.5

0.0
0.5
1.0

κ3(l )

l

κ

0.0 0.1 0.2 0.3 0.4 0.5
0.0
0.5
1.0
1.5

κ3

k

P
S

D
(k

)

Figure S4. Result of the curvature operator on sinusoids. The sinusoids from

Fig. S3 transformed to curvature spatial-series using Equation (9). Note that κ2 and κ3

fail to capture the low frequency signal present in z2 and z3.
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