The Entropic Braiding Index (eBI): a robust metric to account for the diversity of channel scales in multi-thread rivers

Alejandro Tejedor¹,²,* Jon Schwenk³, Maarten Kleinhans⁴, Ajay B. Limaye⁵, Lawrence Vulis², Paul Carling⁶, Holger Kantz⁷, Efi Foufoula-Georgiou²,⁸

¹ Department of Science and Engineering, Sorbonne University Abu Dhabi, United Arab Emirates
² Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, California, USA
³ Los Alamos National Laboratory, Division of Earth and Environmental Sciences, Los Alamos, NM, USA
⁴ Faculty of Geosciences, Utrecht University, Utrecht, The Netherlands
⁵ Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
⁶ Geography and Environmental Science, University of Southampton, Southampton, UK
⁷ Max Planck Institute for the Physics of Complex Systems, Dresden, Germany
⁸ Department of Earth System Science, University of California, Irvine, Irvine, California, USA

*Correspondence to: alejt.tejedor@gmail.com
Abstract

The Braiding Index (BI), defined as the average count of intercepted channels per cross-section, is a widely used metric for characterizing multi-thread river systems. However, it does not account for the diversity of channels (e.g., in terms of discharge) within different cross-sections, omitting important information related to system complexity. Here we present a modification of BI (the Entropic Braiding Index, eBI) which augments the information content in BI by using Shannon Entropy to encode the diversity of channels in each cross section. eBI is interpreted as the number of “effective channels” per cross-section, allowing a direct comparison with the traditional BI. We demonstrate the superior capabilities of eBI via analysis of synthetic, numerical and field examples. In addition, we show that interrogating cross-sections via the ratio BI/eBI has the potential to quantify channel disparity, differentiate types of multi-thread systems, and inform about cross-section stability to forcing variability (e.g., seasonal flooding).
1. Introduction

Channels routing water and sediment across the Earth’s surface exhibit different configurations, ranging from single-thread (straight and meandering) to multi-thread (braided, anabanching and anastomosing) patterns (Eaton et al., 2010; Huang & Nanson, 2007; Leopold & Wolman, 1957). Our ever-increasing capacity to observe Earth’s surface via remote sensing allows us not only to characterize these patterns globally but also witness their dynamic nature by using the archive of nearly 50 years of satellite imagery (e.g., Landsat).

Braided rivers exhibit intricate and complex patterns while being highly dynamic, wherein their channel-bar complex can be substantially reconfigured including due to seasonal flooding. Although significant strides have been made to better characterize and understand the multi-scale dynamics of these complex systems, e.g. using space-time renormalization theory (e.g., Foufoula-Georgiou & Sapozhnikov, 2001; Sapozhnikov et al., 1998; Sapozhnikov & Foufoula-Georgiou, 1999) or network theory (e.g., Marra et al., 2014), the most commonly adopted indices to quantify the braiding intensity of a river (Egozi & Ashmore, 2008) focus on bar properties, channel count, or channel sinuosity. Particularly, as the defining characteristic of a braided river is its multiple channel threads, the most commonly applied metric of a braided river—the braiding index BI—captures this essential characteristic by counting the number of channel threads per river cross-section (e.g., Egozi & Ashmore, 2009; Fischer et al., 2015; Kleinhans & van den Berg, 2011; Limaye, 2017; Limaye et al., 2018; Meshkova & Carling, 2013; Nicholas, 2013).

However, despite its wide use, this index has important limitations: (1) It is a simple count – and is therefore insensitive to the differences in discharge and sediment flux between adjacent threads, which can vary by orders of magnitude (see Figure 1b for an example of channel heterogeneity in a cross-section). (2) It is sensitive to resolution – as the resolution is increased, smaller channels can be observed, varying the value of BI abruptly. This resolution dependence is problematic because advances in satellite imaging in recent years have created an historical archive of data that spans a wide range in resolution. (3) It is sensitive to water level – the channel count is highly sensitive to flow discharge and stage,
increasing the number of flooded channels in intermediate discharge but decreasing the number in extreme floods that submerges the bars. These limitations in this characteristic metric of braided rivers hinder our ability to understand the complexity of these systems relative to the underlying relevant physical variables, as well as to compare geometry across systems (Carling et al., 2014).

Here, we propose a new metric for braiding intensity called the Entropic Braiding Index, eBI, which addresses the crucial limitations noted above for BI. The eBI is more robust to changes in resolution and acknowledges the discharge heterogeneity of the channels co-existing in a given cross-section, while keeping some of the key properties of the traditional BI, i.e., its simplicity, interpretability, and relevance to the essential multithread nature of braided rivers. As we demonstrate in this work, eBI can be interpreted as the effective number of channels per cross-section. The definition of effective number of channels is rooted in a probabilistic Lagrangian view of transport, the uncertainty of which is characterized by Shannon Entropy (Shannon, 1948), resulting in a metric that suitably integrates the information of the channel count and the relative size of the channels (e.g., in terms of discharge) per cross-section.

In what follows, we first briefly introduce the concept of Shannon Entropy as a measure of uncertainty, which is the basis for defining the eBI. We continue with a comparison of BI and eBI through some illustrative examples, application to the characterization of a field case, and finally different numerically simulated braided rivers with varying sediment size and with and without vegetation. We conclude with a discussion of the potential of this new index to not only characterize multi-thread systems more robustly but also to indicate system stability.

2. Shannon Entropy

The cornerstone of information theory is Shannon Entropy, which quantifies the uncertainty in the outcome of a stochastic process (e.g., flipping a coin or rolling a die). In other words, Shannon Entropy
quantifies the amount of information needed to describe (on average) the resulting outcome of a stochastic process (Cover & Thomas, 2006). Uncertainty can be derived intuitively from the notions of probability and surprise. For a given discrete stochastic process \{x_i\}, such as rolling a die, with a specified probability distribution of outcomes, for example \{p_1 = 5/6; p_2 = 1/6\} for a six-sided die with five sides numbered with one and one side numbered with two. Intuitively, the occurrence of rolling a one is less surprising than rolling a two. Mathematically, the surprise associated with a given outcome \(x_i\) can be expressed as \(-\log (p_i)\), which matches our intuitive notion of surprise: the occurrence of outcome with probability one, \(p_i = 1\) (e.g., rolling a number smaller than three in the die described above), produces zero surprise since \(-\log(1) = 0\); while the occurrence of an impossible outcome, \(p_i = 0\) (e.g. rolling a three with the die described above), would produce an infinite surprise since \(-\log(0) = \infty\).

The uncertainty of a particular outcome, \(h_i\), is defined as the surprise that this outcome produces, \(-\log (p_i)\), times the probability of its occurrence \(p_i\). Therefore, the uncertainty associated with either a completely certain event \((p_i = 1)\) or an impossible one \((p_i = 0)\) is zero. The uncertainty, or Shannon Entropy \(H\), associated with a discrete stochastic process, with \(N\) possible outcomes with probabilities \(\{p_1, p_2, ..., p_i, ..., p_N\}\), is equal to the sum of the uncertainties introduced by each outcome \(x_i\):

\[
H = \sum_{i=1}^{N} h_i = -\sum_{i=1}^{N} p_i \log_2 p_i \quad (1)
\]

Note that traditionally the logarithm used is in base 2, which is reminiscent of the origin of Shannon Entropy within the field of signal processing, where the \(\log_2\) leads to the interpretation of its value in terms of bits of information. A different interpretation of the value of \(H\), when computed using the \(\log_2\), is the minimum number of yes/no questions that are needed to determine, on average, the outcome of the stochastic process.

\(H\) is maximal \((H_{\text{max}}(N))\) when all the \(N\) possible outcomes have the same probability of occurrence \(1/N\), for example rolling a fair six-faced die with a different number on each face and each having a probability
of occurrence 1/6 (Cover & Thomas, 2006). Note that $H_{\text{max}}(N)$ scales logarithmically with the number of possible outcomes N.

$$H_{\text{max}}(N) = \sum_{i=1}^{N} h_i = -\sum_{i=1}^{N} \frac{1}{N} \log_2 \frac{1}{N} = -N \left(\frac{1}{N} \log_2 \frac{1}{N}\right) = \log_2 N \quad (2)$$

3. Defining the entropic braiding index, eBI

In this section we utilize a series of examples to illustrate the applicability of Shannon entropy to characterize multi-thread rivers, introducing the concept of the entropic braiding index, eBI, and pointing out some of the advantages of the new metric when compared with the traditional BI. Particularly, Fig 1a shows a synthetic example of six river cross-sections, each of them containing four channel threads, and therefore characterized by $BI = 4$. This example highlights the fact that the characterization of a multi-thread river via BI is quite coarse because the simple channel count ignores the relative size of the co-existing channels (e.g., in terms of discharge) at the cross-section.

We propose using Shannon entropy as a more robust and meaningful characterization of the cross-sectional properties of multi-thread rivers. In this case, the problem may be reformulated from the point of view of probabilistic Lagrangian transport. A tracer injected upstream of the multi-thread channel has a certain probability to eventually go through each of the different channel threads at a given cross-section. Each cross-section of the full river can be abstracted as a stochastic process with a number of outcomes equal to the number of channel threads observed at that cross-section (i.e., four for all the cases shown in Fig 1a), and each outcome with probability given by the relative flow of the corresponding channel thread with respect to the total flow conveyed by all channels at that cross-section. Thus, the Shannon entropy associated to each cross-section, H, can be computed as follows

$$H = \sum_{i=1}^{N} h_i = -\sum_{i=1}^{N} \frac{q_i}{Q} \log_2 \frac{q_i}{Q} \quad (3)$$
where q_i is the flow going through channel i in that cross-section, and $Q = \sum q_i$ is the total discharge going through that cross-section (Fig 1a shows the ratio $\frac{q_i}{Q}$, which can be interpreted as probability, to the left of each band). The value of H is the highest (given a channel count) for systems consisting of channel threads carrying equal flow (i.e., leftmost column in Fig 1a) because this case maximizes the uncertainty for the path of a tracer particle. In contrast, systems dominated by a single channel are characterized by low values of H due to low path uncertainty (i.e., rightmost column in Fig 1a). Figure 1c also shows the robustness of this metric under different resolutions. In particular, Fig 1c presents a synthetic scenario wherein, by increasing the resolution, an apparently singular channel thread in Fig 1a is resolved as two different channels at the finer resolution (the example uses the two endmembers from Fig 1a – the left- and rightmost columns – where the top channel is resolved as two different channels in Fig 1c under higher resolution). While the traditional BI jumps from 4 to 5 under the increasing resolution scenario, the change in the value of H (from 2 to 2.06) reflects more suitably the addition of a very narrow channel with minimal flow.

Although H is a suitable metric to directly characterize multi-thread systems, unlike the traditional braiding index, its value is not directly interpretable in terms of a geomorphic feature. More importantly, it is not straightforward to compare H with more widely used metrics such as BI. To overcome these issues, we propose to define the entropic Braiding Index, eBI, as

$$eBI = 2^H \quad (4)$$

eBI is an increasing function of H, and according to equation 2, can be interpreted as the equivalent number of channels that a multi-thread system consisting of identical (in terms of discharge) channels would have. Thus, eBI is interpreted here as an effective channel count that integrates the information relative to the number of channels together with the relative importance of those channels in terms of discharge. Note that for a system where all the channels exhibit equal discharge, i.e., $q_i = Q/N \ \forall i$, then eBI achieves the same value as the traditional BI. As shown in Fig 1, eBI captures important information elusive to BI, while offering an interpretable value that intuitively reflects the number of effective
channels occur per cross-section. Finally, Figure 1c shows that, under an increase in resolution, eBI is much more robust than the traditional BI.

4. **eBI in action**

In the first part of this section, we present a field case comparison of the traditional BI and the new eBI. We further discuss the properties of eBI by characterizing the braiding intensity of different multi-thread rivers in numerical simulations, where several variables such as water discharge, vegetation, or sediment size were controlled. Channel width has been argued to be a good proxy for estimating water discharge in braided systems (Ashmore, 2007; Fahnestock, 1963; Gaurav et al., 2015). Note that for consistency and simplicity in our analysis, we have used channel width as a proxy for the water discharge partition both for the field case and the numerically simulated systems, but the framework is applicable for any system-specific nonlinear function of discharge and width. Thus, the definition of the Shannon entropy for each cross-section is

\[H = \sum_{i=1}^{N} h_i = -\sum_{i=1}^{N} \frac{w_i}{W} \log_2 \frac{w_i}{W} \]

where for each cross-section: \(N \) is the number of channels, \(w_i \) is the width of its \(i^{th} \) channel, and \(W = \sum_{i=1}^{N} w_i \) is the total wet width (note the ratio \(\frac{w_i}{W} \) can be interpreted as a probability). Using this definition of \(H \), eBI is computed as \(2^H \).

4.1. **Insight from the Indus River**

We analyzed a braided section of the Indus River at mean annual discharge. We used a 30-m spatial resolution mask from the Global River Widths from Landsat database (Allen & Pavelsky, 2018) with the
Python package RivGraph (Schwenk et al., 2020; Schwenk & Hariharan, 2021) to automatically obtain channel counts and widths, generate transects, and compute BI and eBI across each transect.

Figure 2a shows the locations of several cross sections whose corresponding measurements of braiding intensity are shown in Figure 2b. This comparison showcases the key properties of eBI with regard to the traditional BI: (1) eBI is more informative and robust – eBI provides information about the changes in the planform geometry of the multi-thread system in terms of distribution of discharge among the active channels, while BI is insensitive to these properties. For example, Fig 2c shows a transect at which the traditional BI is more than double the eBI due to the presence of very small channels (relative to the widest one). At the same time, eBI is more robust to changes in resolution, as illustrated with the schematic in Fig 1c. (2) BI is an upper bound for eBI – We note that by definition, eBI is equal to BI when all the channels co-existing in a given cross-section have equal probability of receiving fluxes from upstream (i.e., in this analysis in terms of width). Any other configuration results in a value of eBI lower than BI. Moreover, note that it is possible that two cross-sections with a different BI could be characterized by the same (or very similar) number of effective channels as defined by eBI. (3) BI/eBI quantifies channel heterogeneity – From the mathematical point of view, the value of eBI accounts both for the number of channels and their relative size (in terms of discharge or width), while BI solely accounts for the channel count. Consequently, BI/eBI (red curve in Fig 2b), far for being random, i.e., BI and eBI are not completely independent variables, is key in the characterization of the system, because it is related to the heterogeneity in the channels present in the different cross-sections (the more variable the channels are in terms of width, the higher the ratio of the two indices).

The eBI features discussed above significantly improve the characterization of multi-thread systems in contrast to BI as they provide additional valuable information about the whole system, while being simple to compute from local (cross-sectional) information only, as opposed to other whole-network metrics based on graph theory (e.g., Marra et al., 2014; Tejedor et al., 2015a, 2015b, 2016, 2017, 2018).
Furthermore, some interesting questions emerge from the comparison between BI and eBI, and particularly from the ratio BI/eBI. For example: (1) how different are these two indices at different levels of discharge, or for different types of multi-thread systems? (2) Does this difference shed light on the dynamics of the cross-sections? Or in other words, are cross-sections characterized by a large value of BI/eBI (heterogeneous cross-section in terms of channel thread discharge) more prone to be reconfigured by flooding? We utilized numerical simulations as a preliminary analysis on these questions.

4.2. Using eBI for insight into multi-thread river types and dynamics

In the interest of characterizing systems under different hydrologic conditions but in a controlled environment and for long time spans, we present here the results corresponding to the analysis of different multi-thread systems obtained from numerical simulations. Particularly, we utilized some of the model outputs presented by Kleinhans et al., (2018) for the River Allier (France), which were obtained using the depth-averaged version of Delft3D, with the vegetation module developed by (van Oorschot et al., 2017). Sediment transport was modeled in the same manner as in Braat et al., (2017). From all the runs presented in Kleinhans et al., (2018), we chose five runs (see Fig 3b for a table containing the key parameters) that offered a broad range of variability from the geomorphologic point of view, ranging from an anastomosing system with more stable banks to very active braided systems.

Each of the numerical experiments analyzed in this section was set up with the boundary conditions corresponding to the River Allier and were initialized with a set of symmetrical bends (for more details see (Kleinhans et al., 2018)). For each run, the system was forced by a 300-year (except for Run 5 with a 150-year) time series of discharge between 50 and 400 m3/s, randomly sampled from five typical flood hydrographs.

For each run, we extracted two water masks (low and high flow) per year of the simulation by simply thresholding on water depth. Each of those water masks was analyzed using RivGraph to obtain the
channel count and channel widths per cross-section (here as in the case of observational data, we use channel width as a proxy for discharge for consistency). In our analysis, we discarded the first 75 years for each simulation to avoid the effects of initial conditions. For similar reasons, 30% of the spatial domain (15% from the upstream and 15% from the downstream boundaries) was discarded to avoid spurious effects introduced by the upstream and downstream boundary conditions.

For each run, multi-thread patterns of different complexity and degree of dynamism emerged (See Fig 3a for an instance of one of the simulations for illustration purposes). The analysis of these systems according to the eBI, as well as its comparison with the traditional BI, yields the following important remarks as revealed within Fig 3c: (1) Regarding low vs. high flow conditions: As expected, the eBI for low flow conditions is significantly lower than for those corresponding to high flow conditions. This expected result is also reflected in the analysis of the system via the BI, which documents the activation of fewer channels during the low flow conditions when compared with the higher discharge. However, some key information is revealed by the eBI when compared with BI - channels co-existing in the different cross-sections at the low discharge regime are more uniform in terms of widths as captured by the small value of BI/eBI, while at higher discharge levels the width disparity among channels increases as a consequence of the activation of small channels, which can be an order of magnitude smaller than the dominant channels conveying most of the water and sediment. (2) Braided vs Anastomosing systems: From all the model runs analyzed, run 5 corresponds to an anastomosing system, while the other four runs could be classified as braided systems. From our analysis, we can conclude that the anastomosing system develops channels less diverse in width compared with braided river systems even at high flow regimes, as is evident from the significantly smaller values of BI/eBI for the anastomosing system (run 5), in comparison with the braided rivers (runs 1-4).

Given the interest in identifying possible emergent behavior of these complex systems in response to perturbations or future forcing, we posed the following question: does channel heterogeneity provide information about the potential (in)stability in terms of maintaining the number of threads of a
specific cross section? Or, in other words, are cross-sections characterized by a higher channel-width
disparity less stable to perturbations than those cross-sections of more uniform channels in terms of
widths? To shed light on this question, we performed the following analysis. For each model run, we
monitored the temporal evolution of each cross-section, in which we discretized the spatial domain (74
cross-sections). Specifically, we analyzed the system evolution retrospectively, documenting every time
that a cross-section was reconfigured in terms of experiencing a change in its number of co-existing
channels. For those reconfigurations, we recorded the time, the cross-section location, the new number of
co-existing channels, and their persistence, i.e., the number of years (in model time) for which the new
number of channels was sustained in that cross-section. Thus, we define a “k-year, n-channel stable cross-
section” as a cross-section that was able to maintain n-channels for a period of k years or more. Given
this definition, the question that we want to address is whether k-year, n-channel stable cross-sections are
characterized by a different degree of channel similarity (in terms of width) than that corresponding to k-
year n-channel unstable cross-sections. In other words, are systems with less diverse channels exhibiting
more or less stability (persistence) in maintaining those channels over long time periods? Note that
because in our analysis we were controlling the number of channels per cross-section, n, channel
similarity is directly quantified by the number of effective channels, eBI (the more homogeneous are the
channels in terms of width the closer the number of effective channels is to n). Given the spatiotemporal
domain offered by the model runs as well as the characteristics of the model parameters, we present our
analysis only for k-year 2-channel (un-)stable cross-sections (for $k=5,10,15$ and 20 years) as for $n>2$ the
number of occurrences is too limited to show statistically robust results. Particularly, for each model run
and threshold of temporal stability ($k=5,10$, 15 and 20 years), we computed the difference, Δ, between the
mean eBI for unstable and stable cross-sections:

$$\Delta = \langle eBI \rangle_{k\text{-year}, 2\text{-channel stable cross-section}} - \langle eBI \rangle_{k\text{-year}, 2\text{-channel unstable cross-section}} \quad (7)$$

where a system characterized by $\Delta > 0$ exhibits stable cross-sections with a higher number of effective
channels, i.e., stable cross-sections are on average more homogeneous in terms of channel widths; while
\[\Delta < 0 \] corresponds to systems for which stable cross-sections on average exhibit a higher channel width disparity (heterogeneous cross-sections), and therefore, smaller \(eBI \).

The results of our analysis (see Fig 3d) show three different scenarios: (a) \textit{Runs 1, 2, and 3}: Stable cross-sections are characterized by more uniform channels than unstable cross-sections. The three runs showing this behavior have in common different mechanisms of channel stability (sediment cohesion and/or vegetation). In those cases, co-existing channels of similar size are able to create channel structures in the floodplain that are more stable given variations in discharge, while co-existing relatively smaller channels are less likely to generate positive feedbacks with vegetation and/or establish stable banks (cohesive sediment) maintaining their structure and geometry during more extended periods of time. (b) \textit{Run 4 – Only Sand}: Cross-section stability is characterized by a larger channel disparity in comparison with the unstable counterparts. The higher channel mobility in unstable systems allows the co-existence of channels of different sizes, although with large variability in the nature of the co-existing channels in terms of their relative discharge, as shown by negative values of \(\Delta \). (c) \textit{Run 5 - Anastomosing system}: In this case, it appears that channel width disparity is not a good explanatory variable of cross-section stability, because both stable and unstable cross-sections yield values of \(\Delta \) close to zero. We attribute this outcome to the fact that the channels present in anastomosing systems are consistently more uniform across the spatio-temporal domain of the run, as shown and discussed before (see Fig 2c) and therefore distinguishing between stable and unstable cross-sections might require a more detailed study.

Although the previous analysis is by no means a systematic analysis of cross-section channel stability, it nevertheless presents evidence of the potential of the new metric introduced here, \(eBI \), to not only characterize the static patterns of multi-thread systems but also to serve as a tool for studying system response to forcing in terms of the dynamic behavior and stability of channels.
5. Conclusions and perspectives

Multi-thread fluvial systems are some of the most astonishing and intricate patterns observed on the Earth’s surface. Their complexity and dynamic nature hinder their characterization and our predictive ability related to their evolution and response to future forcings. Many metrics have been proposed to characterize those systems (e.g., channel count, channel link length, island geometry, etc.) but the Braiding Index (BI) has been widely used as it is a simple measure of the number of channels intercepted at a section, averaged over several cross sections of the system. By definition, BI does not account for channel heterogeneity, i.e., all channels are counted equally no matter how different they are in terms of water discharge, width, etc., and precisely because of this, the BI is very sensitive to changes in the resolution at which the system is analyzed; higher resolution images would reveal finer-scale channels and thus higher BI. Despite these significant limitations, BI is widely used partly due to its simplicity in computation and interpretation.

We propose a modification of the BI which accounts not only for the count but also for the heterogeneity of channels in multi-thread river systems. We augmented the information content of each cross section using an entropy metric that quantifies the diversity of channels (in terms of flow, channel width or any other relevant property) in each cross section. We defined an entropic BI (eBI) and interpret it as the number of effective channels per cross-section, allowing a direct comparison with the traditional BI, and the gain of insightful information from the difference of the two indices.

We showed via analysis of synthetic examples and field and numerical cases that eBI contains much more information about the system complexity than BI, being at the same time a more robust metric than BI as incorporating significantly narrower channels (e.g., due to increasing observational resolution) does not dramatically change eBI statistics. In addition, we proposed that interrogating cross-sections in terms of the value BI/eBI has the potential to: (1) quantify channel disparity (e.g., in terms of width, discharge or sediment transport capacity) per cross-section (ii) differentiate braided and anastomosing systems; and (iii) provide information about cross-section stability to forcing (e.g., seasonal flooding).
Acknowledgements

E.F.G., L.V. and A.T. received partial support from NSF Grants EAR-1811909, DMS-1839336, and the UK Research and Innovation Global Challenges Research Fund Living Deltas Hub Grant NES008926. Moreover, L.Vulis was supported under the NASA Earth and Space Science Fellowship Program Grant 0NSSC18K1409 and the UC-National Lab In-Residence Graduate Fellowship Grant L21GF3569. JS was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number 20170668PRD1.

References

Fig 1. Illustration of the difference between braiding index (BI) and entropic braiding index (eBI). (a) Channel heterogeneity. The illustration shows a schematic of 6 river cross-sections (columns), each containing 4 channels represented by blue bands. The width of each band is considered here as a proxy for the relative discharge for each channel (indicated by the number to the left of each band). While BI is 4 for all the six configurations, the values of Shannon entropy (H) decrease from left (maximum value for 4 channels) to right. The eBI computed as 2^H is also displayed for each configuration. eBI can be interpreted as the equivalent number of equally sized channels characterized by the same value of H. The value of eBI matches our intuition as an integrative measure of the channel count while accounting the heterogeneity in channel scale. (b) Field Example. Section of the Indus River illustrating the diversity of channels (in terms of width) which co-exist in river cross-sections. (c) Effect of resolution. It displays two synthetic scenarios wherein we illustrate the change in BI and eBI when resolution is increased, and as a result the number of channels visualized changes. Particularly the left (right) cross-section in (c) corresponds to the most left (most right) cross-section from (a), where under an increased resolution scenario, the top channel (top blue band in a) is resolved into two channels (to red bands in c). The new resolution scenario changes the value of BI from 4 to 5 for both configurations, while eBI changes from 4 to 4.17 for the left cross-section and from 1.18 to 1.32 for the right cross-section, indicating a more robust and relevant behavior of eBI in comparison with BI.
Fig 2. **Indus River**. (a) The Indus River (see panel f for reference) channel structure was extracted using RivGraph on the Global River Widths from Landsat product (Allen & Pavelsky, 2018). The cross-sections used for our analysis are marked with segments colored according to the value of the ratio BI/eBI. (b-c) **Channel heterogeneity.** Three different cross-sections are depicted in detail showing the channel network structure. These panels provide evidence of the variability in width of the co-existing channels per cross-section. (e) **Braiding intensity.** The values of BI (light gray), eBI (dark gray) are shown for each of the transects shown in a. The ratio BI/eBI is also displayed in pink, providing a quantitative measure of the diversity of channel widths along the river.
Fig 3. Numerically simulated multi-threaded channel. (a) *Model output.* Illustration of model output in terms of water depth field. (b) *Model runs.* Table containing the key parameters of the different model runs selected from Kleinhans et al., 2018. (c) *Braiding Intensity.* Comparison of the range of the values of BI (blue) eBI (green) and BI/eBI for each model run and for low and high levels of discharge. For each box plot, the lower and upper limit of the box represent the first (Q1) and third (Q3) quartiles respectively, while the horizontal line within the box (red) corresponds to the median. The whiskers extent 1.5 times the interquartile range (Q3-Q1) capped to the maximum/minimum value of the dataset. (d) *Cross-section stability.* Δ, i.e., mean difference of eBI for k-year 2-channel stable and k-year 2-channel unstable cross-sections ($k=5, 10, 15$ and 20 years) for each model run. Positive (negative) values of Δ indicate that stable (unstable) cross-sections exhibit more homogeneous cross-sections in terms of channel widths than unstable (stable) cross-sections, and therefore a larger number of effective channels. Our analysis shows that stable cross-sections consist of more homogeneous channels in the presence of vegetation and/or cohesive sediment, while channel disparity characterizes stable cross-sections for the run that have a sandy sediment supply and lack vegetation.