
1. Introduction
About half of the Earth’s land area is drought prone (Kogan, 1997) and an average of 55 million people 
around the world are affected by drought every year (Vatter et al., 2019). During 1900–2011, more than 
11 million people lost their lives and two billion people were affected by drought (Spinoni et al., 2014). 
Droughts may further trigger other calamities such as wildfires and heatwaves (LeComte, 2011; Sivaku-
mar, 2005). Unlike other disasters, such as floods or earthquakes, drought is a slowly developing phenom-
enon and often shows persistent consequences even after the drought has ended (Vogt et al., 2011). Fur-
thermore, due to climate change and rising temperatures, droughts are expected to increase in terms of 

Abstract As droughts have widespread social and ecological impacts, it is critical to develop long-
term adaptation and mitigation strategies to reduce drought vulnerability. Climate models are important 
in quantifying drought changes. Here, we assess the ability of 285 CMIP6 historical simulations, from 17 
models, to reproduce drought duration and severity in three observational data sets using the Standardized 
Precipitation Index (SPI). We used summary statistics beyond the mean and standard deviation, and 
devised a novel probabilistic framework, based on the Hellinger distance, to quantify the difference 
between observed and simulated drought characteristics. Results show that many simulations have less 
than  10%E  error in reproducing the observed drought summary statistics. The hypothesis that simulations 
and observations are described by the same distribution cannot be rejected for more than 80%E  of the grids 
based on our E H distance framework. No single model stood out as demonstrating consistently better 
performance over large regions of the globe. The variance in drought statistics among the simulations is 
higher in the tropics compared to other latitudinal zones. Though the models capture the characteristics 
of dry spells well, there is considerable bias in low precipitation values. Good model performance in terms 
of SPI does not imply good performance in simulating low precipitation. Our study emphasizes the need 
to probabilistically evaluate climate model simulations in order to both pinpoint model weaknesses and 
identify a subset of best-performing models that are useful for impact assessments.

Plain Language Summary Droughts have widespread social and ecological impacts and 
thus it is critical to develop long-term adaptation and mitigation strategies to reduce drought vulnerability. 
Climate models are important in quantifying potential drought changes, yet their simulations are often 
biased. In this study, we assess the ability of climate models to reproduce observed drought characteristics 
at the global scale based on a probabilistic framework. Results show that many simulations reproduce 
well the properties of observed droughts. In most regions the probability distributions describing 
drought duration and severity in observations and simulations are similar. Though the models capture 
the characteristics of dry spells well, a considerable bias in low precipitation values is evident. No single 
model can be considered as the “best” over the globe. The variance in drought statistics among the 
simulations is higher in the tropics compared to other geographical zones. The study emphasizes the need 
to rigorously evaluate climate models and identify those that agree with observations.
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both frequency and duration (Markonis et al., 2021; Spinoni et al., 2014; Trenberth et al., 2014; M. Zhang 
et al., 2013). Given the severity of impacts on agriculture, health, and ecosystems, it is important to under-
stand drought characteristics under a changing climate.

The Coupled Model Intercomparison Project (CMIP) models simulate the spatiotemporal evolution of 
ocean, land, and atmospheric processes in order to understand climate variability and change (Eyring 
et al., 2016, 2019). In particular, these models are used extensively to understand hydroclimatic changes at 
regional and global scales (e.g., Janssen et al., 2016; Knutti & Sedláček, 2013; Navarro-Racines et al., 2020; 
Rajczak & Schär, 2017; Toreti & Naveau, 2015). Although there is a general agreement on the wet and dry 
spells between observations and climate model simulations, considerable differences are noted in the pre-
cipitation extremes (Abdelmoaty et al., 2021; Chou et al., 2013; Kharin et al., 2013; H. Zhang et al., 2013). 
Moreover, it is challenging for climate models to represent variability in observed precipitation at sub-sea-
sonal, seasonal, decadal, and multi-decadal time scales (Ault et al., 2012; Gaetani & Mohino, 2013; Joshi 
& Kucharski, 2017; Mann et al., 2020). More generally, precipitation characteristics (frequency, intensity, 
duration, type, and amount) are not well replicated in climate models (e.g., Trenberth et al., 2017). At daily 
and sub-daily time scales, it is common for model-derived precipitation to occur far too often at low rates 
and not enough at intense rates.

Previous versions of CMIP have been extensively used to study droughts for both historical and future cli-
mate at regional and global scales (Dai, 2013; Jiang et al., 2015; Lee et al., 2016; McCabe & Wolock, 2015; 
Naumann et al., 2018; Polade et al., 2014; Rhee & Cho, 2015; Trenberth et al., 2014; Ukkola et al., 2018). 
At global scales, the multi-model ensemble mean pattern of dry days was in agreement with observations, 
while at regional scales considerable differences were noted (Polade et al., 2014). Additionally, some studies 
indicated that CMIP5 models overestimate the areas under extreme drought (Nasrollahi et al., 2015), and 
also underestimate low precipitation events in some regions such as central and western North America 
(Wuebbles et al., 2013). These simulations have also been used in drought risk management and mitiga-
tion strategy planning (Schleussner et al., 2016; Zhang & Wang, 2019). However, their efficacy depends on 
how accurately these models represent droughts and their characteristics. Here, we use the newly released 
CMIP6 historical simulations to investigate the ability of models to reproduce drought duration and severity 
as quantified by the Standardized Precipitation Index (SPI).

The latest phase, CMIP6, simulations have been recently used to understand the variations in drought pro-
jections (Cook et al., 2020; Wang et al., 2021; Zhai et al., 2020). Other studies attempted to identify evidence 
of anthropogenic factors on droughts (Chiang et al., 2021; Kam et al., 2021) and associated sea-surface tem-
perature anomalies (Zhang & Wu, 2021). Also, when assessing the ability of climate model simulations to 
reproduce observed drought characteristics, many studies only consider a single simulation for each climate 
model (Abatzoglou & Rupp, 2017; Deser et al., 2014; Nasrollahi et al., 2015; Ukkola et al., 2018; Wehner 
et al., 2011). However, this can obscure the actual uncertainty as simulations from a given model can vary 
markedly even for historical simulations. This variation within ensemble members from a single climate 
model is mainly due to internal variability (Deser et al., 2014; Fischer et al., 2014). In this work, all available 
simulations are considered from each CMIP6 model to account for both inter- and intra-model variability 
in reproducing drought characteristics.

Several drought indices are defined in the literature (Mishra & Singh, 2010); here we use the SPI which is 
used to track meteorological drought. The key idea of the SPI is transforming raw precipitation data into 
standard normal variates and examining the dry spells (droughts) where time-averaged SPI values are be-
low a specific threshold. However, SPI has several limitations. In particular, the SPI does not consider evap-
otranspiration; this limits its applicability in quantifying future drought changes since evapotranspiration 
is expected to increase in the future. Finally, when comparing model simulations with observations the SPI 
does not account for the actual differences in the statistical properties of precipitation, that is, two time se-
ries might notably differ but could result in very similar SPI values. Despite these limitations, the SPI is the 
most popular drought index as it is simple to calculate using only precipitation data, and effective in ana-
lyzing wet/dry periods (Adarsh & Reddy, 2019; Hayes et al., 2011; Kumar et al., 2009; WMO & GWP, 2016). 
Moreover, the SPI is more comparable across different regions than other popular drought indices such as 
the Palmer Drought Severity Index.



Earth’s Future

PAPALEXIOU ET AL.

10.1029/2021EF002150

3 of 18

The specific objectives of this study are: (a) to understand the variability of observed drought duration and 
severity globally, (b) to compare CMIP6 simulations’ drought duration and severity with observations, (c) 
to employ an easy-to-use measure for quantifying differences between observed and simulated drought 
duration distributions, and (d) identify the models that best reproduce drought characteristic in each geo-
graphical region.

2. Data and Methods
2.1. CMIP6 and Observations

Historical simulations of monthly precipitation are obtained from the World Climate Research Program 
(WCRP) CMIP6 data archive. The historical experiment, covering the period 1850–2014, provides simula-
tions based on observed natural and anthropogenic forcings (Eyring et al., 2016). To include the uncertainty 
due to both different model physics and internal variability, we select simulations from 17 modeling groups 
each with more than five ensemble members, summing to a total of 285 runs (see Tables 1 and S1). Note 
that we use the terms “simulation” and “run” interchangeably referring to an individual ensemble member 
from a specific model. The spatial resolution of the models varies from 0.5 to 2.5°, therefore for consistency 
all simulations were regridded to a common resolution of   2 2E  using the first-order conservative method 
(Jones, 1999). This resolution was selected as it is close to the average resolution of all products (approxi-
mately 1.78E  ), and is also in accordance with many other CMIP studies (Chou et al., 2013; Hao et al., 2013; 
Nguyen et al., 2017; H. Zhang et al., 2013). Clearly, the statistical properties of precipitation vary across 
different spatiotemporal scales (see e.g., Trenberth & Zhang, 2018) and regridding might affect the results. 
Yet without a common spatiotemporal resolution it is not feasible to compare models and observations.

CMIP6 model Institute
No. of 
runs

No. of grids 
(lat × lon) Reference

CESM2 National Center for Atmospheric Research, Boulder, USA 11 192 × 288 Danabasoglu (2019)

CNRM-CM6-1 Center National de Recherches M´et´eorologiques (CNRM); Center Europ´een de 
Recherches et de Formation vanc´eeen Calcul Scientifique

28 128 × 256 Voldoire et al. (2019)

CNRM-ESM2-1 9 128 × 256 Seferian (2018)

CanESM5 Canadian Center for Climate Modeling and Analysis, Environment and Climate Change 
Canada, BC, Canada

50 64 × 128 Swart et al. (2019)

E3SM-1-0 Lawrence Livermore National Laboratory, Livermore, USA 5 180 × 360 Bader et al. (2019)

EC-Earth3 Consortium of various institutions from Spain, Italy, Denmark, Finland, Germany, 
Ireland, Portugal, Netherlands, Norway, UK, Belgium, and Sweden

8 256 × 512 EC Earth (2019)

GISS-E2-1-G NASA Goddard Institute for Space Studies, New York, USA 23 90 × 144 NASA/GISS (2018a)

GISS-E2-1-H 21 90 × 144 NASA/GISS (2018b)

INM-CM5-0 Institute for Numerical Mathematics, Russian Academy of Science, Moscow, Russia 10 120 × 180 Volodin et al. (2019)

IPSL-CM6A-LR Institut Pierre Simon Laplace, Paris, France 32 143 × 144 Boucher et al. (2018)

MIROC6 Japan Agency for Marine-Earth Science and Technology, Atmosphere and Ocean 
Research Institute, National Institute for Environmental Studies, and RIKEN Center 
for Computational Science, Japan

10 128 × 256 Tatebe and 
Watanabe (2018)

MPI-ESM1-2-HR Max Planck Institute for Meteorology, Germany 10 192 × 384 Jungclaus et al. (2019)

MPI-ESM1-2-LR 10 96 × 192 Wieners et al. (2019)

MRI-ESM2-0 Meteorological Research Institute, Tsukuba, Japan 6 160 × 320 Yukimoto et al. (2019)

NESM3 Nanjing University of Information Science and Technology, Nanjing, China 5 96 × 192 Cao and Wang (2019)

NorCPM1 NorESM Climate modeling Consortium, Norway 30 96 × 144 Bethke et al. (2019)

UKESM1-0-LL Met Office Hadley Center 17 144 × 192 Y. Tang et al. (2019)

Note. Models with more than five simulations available at the time of the analysis are selected.

Table 1 
CMIP6 Models Used in This Study
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Three observational data sets are used to consider uncertainty in observations: (a) the Climate Research 
Unit (CRU) TS4.03 data set, calculated from daily or sub-daily data, is derived from meteorological stations 
(Harris & Jones, 2017; Harris et al., 2014). The station data are gridded using the angular-distance weighting 
(ADW) interpolation. Monthly precipitation over land areas, excluding Antarctica, for the period 1901–
2018, at   0.5 0.5E  degree is available. (b) The Global Precipitation Climatology Center (GPCC) version 
2018 data set is spatially interpolated from station data (from ∼6,000 before 1,900 to more than 50,000 sta-
tions in 2018) by using a modified version of the robust empirical interpolation method (Becker et al., 2013; 
Schneider et al., 2011). The GPCC has the highest temporal coverage from 1891 to 2016 and is one of the 
largest land-based monthly precipitation data sets. (c) The University of Delaware (UDel) v5.01 data set, 
interpolated from various observational network stations including GHCN (Global Historical Climatology 
Network), uses climatologically aided interpolation to estimate monthly total precipitation fields (Willmott 
& Matsuura, 2001; Willmott & Robeson, 1995); UDel is available from 1900 to 2017. We stress that the actual 
observational uncertainty cannot be fully quantified even if all available data sets were used since most of 
them rely on the same raw data (e.g., stations) or combine data from different sources and products (see 
e.g., G. Tang et al., 2020, 2021). Trenberth et al. (2014) evaluated several observational data sets and noted 
the dependence on the number of stations, so that results could be quite different. Although the data are 
available for over a century, we noted irregularities (e.g., artificial cyclicity, large number of missing values, 
etc.) in precipitation in some grids for the earlier part of the record, mostly in Africa, South America, and 
some parts of Asia. Therefore, we considered the recent half century (1963–2014) when reliable data are 
available and warming trends have been shown to impact precipitation and temperature extremes (see e.g., 
Papalexiou & Montanari, 2019; Papalexiou et al., 2018).

2.2. Methods

The SPI is one of the most widely used indices to characterize meteorological drought (McKee et al., 1993) 
by identifying periods of precipitation deficit or excess. The precipitation monthly time series (Figure 1a) 
are typically aggregated with a pre-defined moving window (e.g., 6 months) and transformed to a standard 
normal variate. This is the basic concept in calculating the SPI, and parametric and non-parametric vari-
ations exist (Farahmand & AghaKouchak, 2015; Mishra & Singh, 2010; Vicente-Serrano et al., 2012). The 

Figure 1. Calculating drought duration and severity using SPI-6 for a sample precipitation time series. Plots show (a) monthly precipitation time series, (b) 
SPI-6 time series highlighting the drought periods, (c) the probability distribution of drought duration, and (d) the probability distribution of drought severity.
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parametric method fits a suitable probability distribution, while the non-parametric method calculates the 
empirical probabilities using a plotting position formula (typically the Weibull or Gringorten). The proba-
bilities are then transformed to E Z scores (standard normal variate), with negative values (i.e., SPI) indicating 
dry periods (Figure 1b). Here we use the parametric approach by fitting a Gamma ( E  ) distribution to the 
monthly precipitation at each grid. Although alternative distributions could have been used the Gamma 
distribution is the most widely used for SPI calculations (Zhang & Li, 2020). The Gamma cumulative distri-
bution function is given by

F x t t t
x

 ( )
( )

( )   1
0

1

 
   exp / d (1)

where (·)E  is the gamma function, and E  and E  are the scale and shape parameters, respectively. In the case 
of precipitation time series with zeros (which would map to  E  SPI), the unconditional probabilities are 
calculated as    0 0( ) (1 ) ( )E G x p p F x  , where 0E p  is the probability of zero precipitation. Thus, the SPI is 
calculated by   1SPI( )E x  ( ( )E G x  ), where  1E  is the quantile function of the standard normal distribution.

We selected the SPI-6 (6-month SPI) to assess global drought severity and duration, as the medium-term 
accumulation period of 6 months is more suitable to describe meteorological and agricultural (soil mois-
ture) drought conditions. On the other hand, SPI-12 and SPI-24 are more suitable to reveal how stream-
flow, reservoirs, and groundwater respond to longer-term precipitation anomalies (WMO, 2012). Note that 
SPI does not consider evapotranspiration but quantifies periods of low or high precipitation, thus, winter 
precipitation deficit may not lead in adverse drought effects due to low evapotranspiration. Following Mc-
Kee et al. (1993), drought starts when the SPI falls below a threshold and ends when the threshold is ex-
ceeded. A common threshold for defining moderate drought is the 6-month  SPI 1E  (McKee et al., 1993; 
WMO, 2012). The duration of a drought event is then defined as the number of months between the start 
and end of drought, and severity is calculated as the integral between the SPI line and the threshold line for 
each event (Figure 1b). From the identified drought events we can form probability distributions describing 
drought duration (Figure 1c) and severity (Figure 1d). The probability distribution of drought duration is 
discrete, while the one for severity is continuous with an upper bound at  1E  when droughts are identified 
by  SPI 1E  .

SPI was calculated using a mixed-type distribution approach which correctly accounted for zero precipita-
tion values. However, by definition    1

0 0SPI ( (1 ) ( ))E p p F x  , thus, if a time series has zeros, the SPI 
has a minimum at     1

min 0SPI ( )E p  . For example, if a time series has 0 2.8%E p  or 0 15.8%E p  then SPI 
values will always be larger than  2E  and  1E  , respectively, making it impossible to identify drought at those 
thresholds. We selected  2E  as the threshold as it typically designates severe droughts. Therefore, we did not 
study grids having  0 2.8%E p  , which occurred mostly in the desert regions of Africa.

Our objective was to assess the agreement of CMIP6 simulated drought duration and severity, in terms of 
SPI, against benchmark observational data sets. Note that SPI agreement between models and observations 
does not imply good performance of models in simulating low precipitation values, since there are strong 
model biases in low precipitation (see Section 3.4). Here, we compared observed and simulated summary 
statistics, including the mean, coefficient of variation, skewness, and maximum of duration and severity as 
they summarize the properties of their distributions. Given three observational products, there is a range of 
values for each statistic. One option is to consider the observational range in the three products as the max-
imum minus the minimum values of the statistic. Then one could assume that a simulation would agree 
if its computed summary statistic falls within the observational range. Yet a concern with this approach 
is that any large disagreement among the observational products could lead to artificially high agreement 
of simulations (since the range will be large). For example, in the desert parts of Africa, northern parts of 
Russia and Canada, we note a high observational range which results in all runs agreeing with observations. 
This stems from the disagreement among the observations and not the agreement of models with observa-
tions. Therefore, we chose a relative error threshold of 10% to designate agreement between summary sta-
tistics of the CMIP6 simulations and each observational product separately. Although any error threshold 
selection is subjective, a value of 10% is arguably a compromise of strictness and meaningful results. For 
example, if the mean drought duration predicted by a CMIP6 simulation has a relative error of less than 
10%, when compared with the observational data set mean duration then that simulation run is considered 
in agreement. For each data set we have calculated the percentage of runs that lie within the 10% range, 
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and finally obtained the average percentage from the three data sets. For duration, we considered all four 
statistics whereas for severity we examined only the coefficient of variation and skewness. Mean severity is 
theoretically constant for any SPI time series for a given threshold; any fluctuations noted in observations or 
simulations are due to sample variation.

An additional approach to evaluate the differences between probability distributions is through information 
measures such as the Kullback-Leibler (KL) divergence (e.g., Nasrollahi et al., 2015; Rajsekhar et al., 2015) 
or the Hellinger ( E H ) distance. Here we used the E H distance (Hellinger, 1909), which conveniently ranges 
from 0 to 1 making it more intuitive than the KL divergence. If E d is the drought duration (in months) and 

( )E p d  and ( )E q d  are two discrete probability distributions describing the drought duration in two samples, then 
the E H distance is given by

 


  
max 22

1

1( , ) ( ) ( )
2

d

d
H p q p d q d (2)

where maxE d  is the maximum duration observed in any of the two samples. For two continuous distributions 
( )E p x  and ( )E q x  the E H distance is given by

 


 
22 1( , ) ( ) ( )

2 x
H p q p x q x


 (3)

where E   is the continuous sample space. The E H distance satisfies the property  0 1E H  . If E H distance is 
0E  then the distributions in question are practically identical; the larger the E H distance (tending to 1) the 
larger the difference between the distributions. Here, we compare the duration and severity probability 
distributions between observations and CMIP6 simulations. For duration and severity, we used the discrete 
(Equation 2) and continuous (Equation 3) forms, respectively.

Nevertheless, specific values of E H are not easy to interpret. For example, if the E H distance is 0.3 then the 
question that naturally arises is whether this value indicates sufficient similarity between the two distribu-
tions or not. In other words, a specific E H threshold needs to be identified below which we can assume that 
distributions match. In order to make the Hellinger distance interpretable and estimate this threshold, we 
devise a new framework based on Monte Carlo simulations. Particularly,

1.  For a given observational product, the mean and standard deviation of duration values is estimated at 
each grid.

2.  A flexible discrete distribution, that is, the Pólya-Aeppli distribution (also known as geometric Poisson) 
is fitted to the data reproducing the observed mean and standard deviation.

3.  Two random samples are generated from the fitted distribution having the same sample size as the ob-
served one and the E H distance is estimated. Note that although these samples are generated from the 
same distribution, due to sample variations the E H value is always larger than zero. This depends on the 
sample size (the larger the sample the closer E H is to zero) and the distribution parameters.

4.  The previous step is repeated 1,000 times to study how the E H distance varies given that the samples are 
generated from the same distribution. Then these 1,000 E H values are used to define a 90-th percentile 
threshold 0.9E H  . This implies that 90% of the generated samples have  0.9E H H  .

5.  The interpretation is that if the E H distance in this specific grid between the probability distributions com-
puted from observations and the simulation is smaller than 0.9E H  then the hypothesis that the simulated 
and observed samples come from the same distribution cannot be rejected.

Note that this is a laborious process, as the E H threshold must be identified for each grid and each observa-
tional product. Once the E H threshold is defined, the percentage of climate model simulations (285 in total) 
with  0.9E H H  correspond to the agreement of the simulations with each observational product. The average 
agreement can then be estimated from the three agreement values. For drought severity, the same process 
can be applied by using continuous distributions; however, we skipped the previous detailed approach since 
the severity distributions are expected to not differ strongly since the mean severity is theoretically fixed (as 
the mean of a truncated standard normal distribution and approximately equal to E  1.53). Moreover, it is 
technically far more laborious to compute E H given the required numerical integration.
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3. Results and Discussion
3.1. Observed Drought Duration

A relatively clear pattern of mean drought duration is evident for moderate droughts (Figure 2a for CRU, 
Figures S1 and S2 for GPCC and UDel, respectively) for the three observation data sets. Yet differences are 
observed, for example, in parts north of Canada and Russia. This could be due to deficiencies in data sources 
and errors in measuring precipitation at high altitudes such as wind undercatch of solid precipitation and 
recording of trace events (Rajulapati et al., 2020). High mean durations (>4 months) are observed in areas 
near the equator such as parts of Amazonia, Southwestern and eastern Africa, Indonesia and Philippines. 
Low mean duration (<2.7  months) is observed in India, eastern parts of Asia, northern parts of Africa 
and Australia, and southern parts of South America. The spatial patterns of coefficient of variation V( )E C  
and skewness S( )E C  are similar to each other in all data sets (Figures 2b, 2c, S1, and S2), with high values  
( V 0.9E C  and S 1.8E C  ) observed in parts of India, mainly in Western Africa, eastern parts of Asia, northern 
parts of Australia and Brazil. In general, many regions exhibit an inverse relationship between the mean 
and coefficient of variation (i.e., grids with high mean values have low skewness and VE C  ). The maximum 
duration varies from 1 to 61 months (Figure 2d) with spots of high durations observed for example in Am-
azonia. Note, that we have included Greenland where values exist, these results are not reliable, and they 
should be discounted.

3.2. CMIP Agreement With Observed Drought Duration

We compared the 285 CMIP6 runs with the observed drought duration statistics of the three observational 
data sets and calculated the percentage of runs within  10%E  error for each statistic (see Figures S3–S5 for 
the agreement of drought duration statistics between CMIP6 runs and CRU, GPCC, and UDel, respectively). 

Figure 2. Spatial variation of observed (a) mean, (b) coefficient of variation, (c) skewness, and (d) maximum drought duration for the moderate   SPI 1E  case 
during 1963–2014 for CRU (see Figures S1 and S2 for GPCC and UDel, respectively).
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In general, there is no clear spatial pattern of agreement in the four statistics examined, that is, large regions 
with consistently high (or low) agreement are not observed. Yet these “noisy” patterns match fairly well 
among the three data sets except at a few locations. The average percentage of runs within  10%E  error for 
each statistic shows a strong spatial variation (Figure 3). In general, there is a large percentage of runs for 
most grids that agree with the observed mean drought duration; 50% of grids have more than 36% agree-
ment (Figure 3a). For the variation (Figure 3b) the agreement is also high with 50% of grids having more 
than 40% agreement. For the skewness and maximum duration, the agreement is lower (50% of grids have 
more than 16% and 33% average agreement; Figures 3c and 3d), yet this is anticipated as the sample varia-
bility of the skewness and maximum is large.

The analysis reveals that the average value of a statistic is reproduced well by the ensemble, including 
the skewness and maximum duration. However, grids with low or high values of the statistic have low 
agreement; this indicates that only a few CMIP6 runs reproduce extreme values of the observed summary 
statistics of drought duration. For example, the agreement in grids with low (  2.47E  months corresponding 
to the 10-th percentile) and high (  3.77E  months; 90-th percentile) mean duration is on average 16% and 
5% respectively; in contrast, grids with values ranging from 2.6 to 3.3 months, corresponding to the central 
50% of values (interquartile range), have on average 50% agreement. Similarly, in the other statistics the 

Figure 3. Average agreement for drought duration statistics between CMIP6 runs and the three observational data sets (CRU, GPCC and UDel) for 1963–2014. 
(a–d) Spatial variation of average agreement in four statistics, (e–h) agreement versus observed statistics’ values.
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highest agreement is observed around their mean, for example the agreement for values ranging within the 
interquartile range is 42%, 40%, and 39% for the variation, skewness, and maximum, respectively. This is 
apparent in the scatterplots showing the agreement vs. the statistics' values (Figures 3e–3h). The peak agree-
ment occurs within a narrow range (dark red region in Figures 3e–3h) showing that most runs are good in 
simulating the common statistical values in the observations.

We also examined the variability of drought characteristics among climate models at different latitudes. 
At each grid we estimate the standard deviation of each statistic among the 285 models for four latitudinal 
zones, that is, north polar   (90 66.5 N)E  , north temperate   (66.5 23.5 N)E  , tropical   (23.5 N 23.5 S)E  , and 
south temperate   (23.5 66.5 S)E  . Violin plots (Figure 4) formed from the standard deviations of the grids 
in each zone (584, 1,956, 1,074, and 259 grids for north polar, north temperate, tropics and south temperate 
zones, respectively) show that the tropical grids have a much larger spread compared to the other regions. 
Specifically, the north polar region has low variability among the climate models. However, for observa-
tions, this variability is almost the same in all zones (Figure S6).

Apart from investigating individual statistics we used the Hellinger distance as an overall measure to quan-
tify the similarity between the simulated and observed drought duration probability distributions. Here we 
estimated the E H distance using the three observation data sets for each simulation and at each grid (Fig-
ure S7). Then, the percentage of simulations that agree with an observation data set is calculated by consid-
ering the E H values of simulations that are below the threshold ( 0.9E H  ) obtained from the Monte Carlo simu-
lations. Finally, the average percentage of agreement at each grid is calculated using the agreement obtained 
from the three observational data sets (Figure 5a). There is at least one simulation that agrees (  0.9E H H  ) 
with the observations in all the grids. One could assume that the models are simulating the drought dura-
tion distribution correctly as we cannot reject the hypothesis that the distributions are similar based on the 

E H distance. Such a conclusion might be misleading due to inference limitations stemming from the small 
sample sizes. In essence, it is statistically hard to assess if the distributions between two small-size samples 
match or not. The ±10% error analysis (Figure 3) shows a much smaller agreement compared to the H-dis-
tance agreement (Figure 5) as the ±10% error is a stricter measure.

The average E H distance of the 285 simulations with the three observation sets ( 3 285E H values averaged) 
(Figure  5b; for individual observation data sets see Figures  S8–S10) has similar spatial patterns among 
the three observations. Clusters of high E H distance (  0.4E  ) are spotted in the Alaska, northern Russia and 
Canada, southern South America and southeastern Australia. High E H values are also observed in tropical 
regions, indicating that models have a considerable difference with observations. Globally, among the runs, 

Figure 4. The standard deviation (SD) of a statistic among the 285 simulations is estimated in each grid; then all 
estimated SDs in each latitudinal zone are depicted as violin plots: (a) mean, (b) coefficient of variation, (c) skewness, 
and (d) maximum of drought durations.
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there is no huge variability of the E H distance; yet we noted a considerable variation in the tropical zone  
(   23.5 N 23.5 S;E  whiskers in Figure 5c) compared to the north temperate zone (   66.5 23.5 N;E  Figure 5d).

The spatial distribution of the best performing models does not show any discernible pattern (Figure 6a). 
For each grid, the best performing model was identified as the one with the minimum average E H distance 
for one of its runs. It appears that all models have grids where their runs perform best, with the number of 
grids that a model was considered best following an almost linear relationship with the number of runs in 
each model (Figure 6b). For example, the CanESM5 has the highest number of runs (50) and the highest 
percentage (17%) of grids that perform best. There is no single simulation among the 50 CanESM5 simula-
tions that is markedly better; the highest percentage is 3.33% for the simulation r19i1p1f1 (see Figure S11 for 
the percentage of grids with best CanESM5 model spread among the 50 runs). This suggests that is difficult 
to assess which model is better, as the dependence on the number of runs obfuscates the skill of the model 
itself.

3.3. Drought Severity

Drought severity expresses the deficit below the threshold for the duration of a drought event and is im-
portant for interpreting how intense the drought is during the event. We computed the standard deviation 

Figure 5. Percentage agreement between simulated and observed drought statistics based on Hellinger ( E H ) distance and average H-distances over the globe 
and different latitudinal zones. (a) The average percentage agreement of CMIP6 simulations with the three observations (CRU, GPCC, and UDel) based on 

E H distance for the moderate drought duration, (b) spatial variability of average distance globally, (c and d) E H distance for the tropical    23.5 N 23.5 SE  and 
north temperate 66 5 23 5. .   N  zones respectively; Lines represent 50% central E H distance values. For individual data set (CRU, GPCC, and UDel) results see 
Figures S7–S9.
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(SD) and skewness of severity, as the mean severity is theoretically constant according to the definition of 
the SPI. Quantifying differences in these two statistics between observations and simulations is also crucial 
as they reveal the probabilistic profile of severity indicating how large variations should be expected from 
the mean behavior. This, for example, shows the tendency of extreme severity in the CMIP6 runs compared 
to the observations. The variability of SD and skewness for the CRU shows coherent spatial patterns (Fig-
ure 7; see Figures S12 and S13 for GPCC and UDel, respectively). We noted a relatively high SD in CRU 
compared to UDel and GPCC. Spatially, the patterns are similar for the observational data sets. The SD of se-
verity in observations (Figure 8a) is lower compared to CMIP6 simulations. Spatially, high SD (>0.38 mm/
month; 90-th percentile) is observed in equatorial and southern Africa, northern India, eastern grids of 
South America, northern parts of US and Canada and eastern Australia. Low SD (<0.25 mm/month; 10-
th percentile) is found mostly in the desert parts of Africa, middle east countries, rangelands of Australia, 
most parts of Alaska and north western coast of South America. Interestingly, the observed patterns of SD 
and skewness (Figure 8b) are in general contrasting, with regions having high SD indicating low skewness 
and vice versa (cross correlation is  0.44, 0.39E  , and  0.42E  for CRU, GPCC, and UDel, respectively). The 
CMIP6 simulations also reproduce this behavior very well as the cross-correlation ranges from  0.33E  to 
 0.59E  , with an average value equal to  0.45E  .

Figure 6. (a) Spatial variability of CMIP6 models corresponding to the best performing run according to the minimum 
average Hellinger ( E H ) distance; the H distance for all three data sets is averaged; (b) relationship between the number 
of CMIP6 runs per model and the average percentage of grids where runs of the model perform best.
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The percentage of simulations within  10%E  error of the observed SD and skewness for the three observa-
tional data sets and the average percentage (Figure 8; for CRU, GPCC, and UDel see Figures S14–S16) fea-
ture high agreement in SD compared to skewness (yet as aforementioned this is anticipated as the skewness 
has higher variability); about 30% and 11% agreement is noted in the SD and skewness respectively for 50% 
of grids. We did not observe any spatial coherence in the agreement between the statistics examined. Similar 
to the duration, runs simulate well values varying close to the observed mean of the statistic, in contrast to 
low and high values (Figures 8c and 8d). The agreement in grids having low, high and values ranging within 
the interquartile range of the SD is on average 17%, 9% and 44%, respectively. For low (  S 1.45E C  ; 10-th 
percentile), high (  S 0.56E C  ; 90-th percentile), and the central 50% (    S1.19 0.73E C  ) of the skewness 
the average agreement is 13%, 19%, and 39%, respectively.

Figure 7. Spatial variability of (a) observed standard deviation, (b) observed skewness of drought severity for the CRU data set (see Figures S11 and S12 for 
GPCC and UDEL, respectively).

Figure 8. Average percentage agreement of CMIP6 simulations with the observed (a) Standard Deviation (SD) and (b) skewness of drought severity. The 
percentage agreement for each data set SD and skewness is averaged. Scatter plots between the average percentage agreement of CMIP6 simulations and 
average observed (c) SD (d) skewness of severity over all land areas for moderate droughts.
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Note that among the 3,873 grids, for SD, zero agreement is observed only for 84, 77, and 53 grids for the 
CRU, GPCC, and UDel, respectively (for skewness zero agreement is observed in 87, 104 and 97 grids). This 
implies that for the most grids and regions there is at least one CMIP6 run that reproduces very well the 
severity properties.

The mean E H distance for severity is 0.161, 0.157 and 0.16 (Figure S16), respectively, for the CRU, GPCC, 
and UDel data sets. More than 85% of simulations have an E H value less than 0.25 globally. This is expected 
as, by definition, the mean value of severity is theoretically the same. On the other hand, if one considers 
total severity, considerable differences among the simulations and observations could be noted with high E H 
distances. However, since the total severity is related to the duration, the differences noted in the duration 
are expected to be observed in the total severity as well.

3.4. Biases in Low Precipitation

As previously mentioned, good model performance in terms of SPI does not imply good model performance 
in simulating low precipitation values. For example, two time series can have the same SPI values while 
completely differ in their magnitudes (e.g., a time series and any rescaled version of it). A detailed bias eval-
uation of precipitation is outside of the study’s scope; however, to make the previous point clear and avoid 
any misinterpretation of the SPI results we show the bias in low monthly precipitation.

We assess the model bias in monthly precipitation that corresponds to the 15E  -th percentile; this percentile 
is representative of low precipitation (see e.g., Ukkola et al., 2020). Note that fixing an absolute value as a 
drought threshold is not practical for a global analysis. For example, the 15-th percentile of CRU values in all 
grids is approximately 4 mm/month. If such a fixed threshold is used globally, then 23% of the grids do not 
have values below this threshold, 50% of girds have less than 20 values, and in contrast, this threshold corre-
sponds to a value above the median for 10% of grids (and thus this cannot be considered low precipitation). 
In each grid the 15-th percentile precipitation is estimated in observations (Figure S18) and simulations and 
the bias is calculated as the difference between the observed and simulated value (Figure S19). Note, that no 
major difference is noted in the low precipitation among the three data sets (except in Greenland where data 
are not reliable enough to draw conclusions; Figure S18). Given the similarity in low precipitation among 
the three data sets, we have considered only the CRU data set for further analysis. Considerable biases are 
noted in the ensemble mean of each model with the CRU values (Figure S19). Particularly in some grids 
(e.g., in eastern Asia) models simulate values higher by more than 600 mm/month while in other regions 
(e.g., in Amazonia) models simulate values up to 300 mm/month less.

We further assessed the model performance by comparing the distribution of low precipitation from all 
values below the 15-th percentile in simulations and observations. We calculated the E H distance between 
these empirical distributions and show the average E H for each model compared to the CRU observations 
(Figure 9). High values are observed in Amazonia, desert regions of Africa, middle east, Tibetan plateau, 
Alaska, Mexico, Australia, and western US indicating poor model performance. In contrast, locations with 
low E H values are found in Europe, eastern US, and equatorial regions of Africa and Asia (Figure 9). This 
analysis clearly shows that models have considerable bias in low precipitation values and the distribution of 
low precipitation disagree in many locations.

4. Conclusions
Global warming is expected to alter the hydrological cycle (e.g., AghaKouchak et  al.,  2020; Allen & In-
gram, 2002; Bindoff et al., 2014; Zhang et al., 2007). Specifically, drought characteristics are expected to 
vary considerably over different parts of the world (Andreadis & Lettenmaier, 2006; Sheffield et al., 2009; 
Trenberth, 2011). It is important to understand such changes for developing adaptation strategies.

Though climate models are useful tools in assessing future changes, apparent biases exist in simulating 
precipitation. Thus, it is important to evaluate the potential of the models to realistically represent observed 
extremes; we have more confidence in model projections of future change in models that have a credible 
representation of historical variability. In this study, we investigated how well the latest climate model 
simulations from CMIP6 reproduce historical drought characteristics, such as duration and severity. A total 
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of 285 simulations from 17 modeling groups were used to characterize moderate to extreme drought condi-
tions using the 6-month SPI.

We used three observational global precipitation products, that is, the CRU, GPCC, and UDel, to benchmark 
simulations. Comparisons were performed with each benchmark product and summarized by combining 
the results of the three data sets (average performance). Particularly, we estimated the drought duration 
and severity time series for each grid in observations (three products) and simulations (285 simulations). 
Basic attributes such as the mean, standard deviation, skewness, and maximum of drought duration were 
compared, as well as, standard deviation and skewness of drought severity. We devised a novel framework 
that couples the Hellinger ( E H ) distance with Monte Carlo simulations to quantify the difference between 
observed and simulated duration probability distributions.

Figure 9. Model performance in reproducing the distribution of low monthly precipitation values defined by the 15% 
of lowest monthly values. Average Hellinger ( E H ) distance between CRU observations and all runs of each model. Low 
monthly precipitation distributions of simulations and observations are practically identical as E H tends to zero, and as 
the E H distance increases (tending to one) difference between the distributions increases.
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The analysis indicates:

1.  Attributes of droughts that appear frequently in observations (close to the mean of drought statistics 
such as mean, standard deviation, etc.) are well simulated by the models; many climate models show 
simulated statistical characteristics within  10%E  error from observations. Yet infrequent observed char-
acteristics such as low or high values are poorly simulated. In particular, the agreement of simulations 
with  10%E  error in the observed mean, coefficient of variation, skewness and maximum drought du-
ration is 36%, 40%, 16%, and 18%, respectively. For severity, the agreement of runs within this error for 
standard deviation and skewness is 30% and 11%, respectively.

2.  The hypothesis that simulations and observations of monthly precipitation are described by the same 
distribution cannot be rejected for more than 80%E  of the grids based on our E H distance framework. It 
should be clear yet that this does not imply acceptance of the hypothesis. We stress that agreement re-
sults are affected by the large uncertainty due to small samples, whereas the  10%E  error agreement is a 
stricter measure compared to the E H distance approach.

3.  No model was clearly better than any other. A spatial pattern of the “best” model (assessed by E H dis-
tance) is not observed.

4.  The variation in drought statistics is higher in the tropics among the 285 simulations compared to other 
latitudinal zones. This implies that climate models need improvement in capturing patterns causing 
drought in tropics.

5.  Considerable bias in the low precipitation and high E H distances reveal dissimilarity in low precipitation 
(defined as all values below the 15-th percentile) distribution between observations and simulations. 
Thus, good model performance in terms of SPI does not imply that low precipitation values are well 
simulated by the climate models, that is, a systematic bias (shift) in modeled precipitation would be 
missed by SPI.

Several uncertainties abound in climate model simulations both due to forced and internal variability (Des-
er et al., 2012; Thompson et al., 2015). Improved knowledge on the range of uncertainties in climate model 
simulations is important to consider while developing adaptation and mitigation strategies. One key aspect 
of implicitly incorporating these uncertainties when trying to understand how droughts are projected to 
change could be the probabilistic model evaluation presented here. By comprehensively examining the 
statistical agreement of the distributions derived from the models and the observations we can better char-
acterize the agreement or disagreement and potentially pinpoint the model approximations that are causing 
the latter. Based on such a framework, end users could identify scenarios where simulations are in good 
agreement with observations. Similarly, climate scientists could develop model usage techniques based on 
their efficacy to reproduce observations such as weighing schemes not just based on mean and standard 
deviation (Knutti et al., 2017; Papalexiou et al., 2020).

Data Availability Statement
All CMIP6 model simulations and observed data are available at https://esgf-node.llnl.gov/projects/cmip6, 
https://crudata.uea.ac.uk/cru/data/hrg/, https://opendata.dwd.de/climate_environment/GPCC/html/
download_gate.html, and https://psl.noaa.gov/data/gridded/data.UDel_AirT_Precip.html.
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