
1.  Introduction
The Madden-Julian Oscillation (MJO) is the dominant mode of intraseasonal (1–3  months) variabili-
ty in the tropical atmosphere, characterized by an eastward-moving band of rain clouds (Madden & Ju-
lian, 1971, 1972). The MJO interacts with a wide range of tropical weather and climate phenomena, includ-
ing monsoonal systems (Lorenz & Hartmann, 2006; Taraphdar et al., 2018), tropical cyclone activity (Bessafi 
& Wheeler,  2006; Klotzbach,  2010; Maloney & Hartmann,  2000), and the El Niño-Southern Oscillation 
(ENSO) (Hendon et al., 2007; Lau & Waliser, 2012; Lee et al., 2019). As a strong tropical heating source, the 
MJO also exhibits teleconnections to the extratropics affecting regional hydroclimate (Jones et al., 2004; 
Roxy et  al.,  2019). Given the planetary-scale climatic impacts of the MJO, the ability of state-of-the-art 
coupled general circulation models (CGCMs) to accurately capture its magnitude, location, and dynamics 
is of vital importance for subseasonal-to-seasonal prediction (Robertson et al., 2015; Woolnough, 2019) and 
assessment of future global climate (Meehl, Stocker, et al., 2007).

A number of efforts have focused on assessing CGCMs, primarily those participating in the Coupled Model 
Intercomparison Projects (CMIP) (Lambert & Boer, 2001; Meehl, Covey, et al., 2007; Taylor et al., 2012) in 
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terms of their ability to properly capture organized spatio-temporal modes across scales. Despite much pro-
gress in climate modeling, considerable shortcomings in simulating intraseasonal oscillations (ISOs) and 
other major modes of climate variability remain, persisting from one model generation to the next (Eyring, 
Cox, et al., 2019). For instance, previous generation CGCMs typically exhibit poor representation of MJO 
dynamics both in amplitude and the eastward propagating pattern (Ahn, Kim, Kim, et  al.,  2017; Hung 
et al., 2013; Jiang, Waliser, et al., 2015; Lin et al., 2006; Zhang et al., 2006). The primary factors hypothesized 
to affect MJO simulations in CGCMs include model resolution and physics, especially the air-sea coupling 
across multiple spatial scales (Jiang, Adames, et al., 2020; Zhang, 2005).

The CMIP6 set of models (Eyring, Bony, et al., 2016) will be the foundation for the IPCC’s AR6. Featuring 
substantial improvements in the physical parameterizations and inclusion of additional Earth system pro-
cesses, the CMIP6 is expected to provide a rich opportunity to evaluate the aforementioned shortcomings 
in simulating MJO. Thus far, very few studies have investigated the performance of CMIP6 models in cap-
turing the MJO. Recently, Orbe et al. (2020) analyzed six U.S. climate models participating in CMIP6 and 
reported improvements in the amplitudes of the MJO-related winds and precipitation compared to the 
CMIP5. By analyzing 34 models, Ahn, Kim, Kang, et al. (2020) showed that the propagation of MJO over 
the Maritime Continent in CMIP6 models is more realistic than in the CMIP5. Nevertheless, there is still a 
general lack of understanding of the MJO representation in the state-of-the-art climate models.

To extract the MJO signal from high-dimensional data sets, we use here the wavelet-based spectral principal 
component analysis (wsPCA) (Guilloteau et al., 2020). The wsPCA, as other spectral empirical orthogonal 
function (EOF) analysis methods (Hannachi et al., 2007; Schmidt et al., 2019), relies on the eigen-decom-
position of the cross-spectral matrix (CSM) in a desired frequency band. In wsPCA, the CSM is howev-
er computed through a complex continuous wavelet transform (CWT), which allows robust spectral and 
cross-spectral estimation with optimal time-frequency localization while seamlessly removing trends in 
the data. The wsPCA is designed specifically to extract periodic propagative modes from large spatio-tem-
poral data sets and is therefore suitable for capturing the propagating dynamics of MJO (and other ISOs). 
The phase (argument) information provided by the complex CWT allows to capture and characterize each 
propagative mode with a single (complex) eigenvector and associated (complex) PC. The wavelet principal 
component (wPC) time series resulting from the wsPCA are characterized by their instantaneous magni-
tude and phase, which are useful quantities to describe the temporal evolution of dynamical climate modes.

In this study, we analyze global precipitation (PPT) and outgoing longwave radiation (OLR) daily time series 
to assess MJO variability in observations, reanalysis, and as simulated by 20 CMIP6 models under historical 
forcing. Particularly, we first demonstrate the use of the wsPCA to robustly extract the spatio-temporal pat-
terns of the MJO. We then evaluate the dynamics of MJO simulated in CMIP6 models by comparing them 
to those inferred by the observations. Finally, we evaluate MJO-related precipitation variability as simulated 
by CMIP6 models in the Amazonia, Southwest Africa, and Maritime Continent. The rest of this paper is or-
ganized as follows. Section 2 describes the data and methodology used. Section 3 presents the main results 
of this study followed by a summary in Section 4.

2.  Materials and Methods
2.1.  Data

2.1.1.  CMIP6 Models

Daily averaged outputs, including PPT and OLR, from historical simulations of 20 CMIP6 models (Table S1) 
during the period 1983–2014 are examined. Model output is taken only from the first ensemble member 
(r1i1p1f1) of each model. All model outputs are bilinearly interpolated to a common equal-area scalable 
earth (EASE) grid of ∼220 km resolution (Brodzik et al., 2014). Anomaly time series of each field are ob-
tained by removing the average of the 15-day period centered on each day of the year from the raw data.

2.1.2.  Observations and Reanalysis

For observations, we employ the daily global interpolated OLR obtained from the NCAR. Daily PPT 
is obtained from the PERSIANN-CDR database (Ashouri et  al.,  2015). For reanalysis, daily averaged 
fields of the above variables are obtained from the ERA5 data sets (Hersbach et al., 2020). Observations 
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and reanalysis data sets are obtained over the same period (1983–2014) and interpolated onto the same 
EASE grid as CMIP6 models for comparison. Moreover, daily observed precipitation obtained from oth-
er data sets (TRMM, IMERG, GPCP, and CMORPH) is used for comparison with the PERSIANN-CDR 
(Table S2).

2.2.  Methodology

We use the wsPCA (Guilloteau et al., 2020) to identify organized spatio-temporal modes of variability with-
in the intraseasonal timescales. Consider a data set consisting of L time-ordered snapshots of a variable 
at N  gridded locations,  1 2( , ,.., )T N L

NX x x x  . The ith row of X , that is   , ,1( , , ) ,T L
i i t i tLx xx   

represents the time series at the ith location. Meanwhile, the jth column  1, ,( , , )T N
t N tj jx x   represents 

the vectorized snapshot at time .jt  The Morlet CWT of ix  is defined as     


 
  

1( , ) ( ) ( ) ,i iw t x t d  

where  
 

  
 

( ) Ψ tt ; the symbol ′ denotes complex conjugate; Ψ is the Morlet “mother” wavelet defined in 

simplified form as   
221/4 /20Ψ( ) i f t tt e e ;   is the scale parameter; and 0f  is the central frequency of the 

Morlet mother wavelet (Addison, 2002). We choose  0 1 / 2 ln 2f , often used in practice when accurate 
time localization of the wavelet transform is sought. The scale   is uniquely related to the Fourier frequency 


 0 ,ff  which is the central frequency of the “daughter” wavelet  . The CWT at frequency f  of all ix  can 

be arranged into a matrix of wavelet coefficients:

   

   


 
 

  
 
  


  



1 1 1

1

, ,

, ,

L
N L

f

N N L

w f t w f t

w f t w f t
W � (1)

The empirical CSM at frequency f  is then computed as   

1

1
N N

f f fL
S W W   and its eigen-decompo-

sition constitutes the wsPCA:

f f f fΛS U U� (2)

where  N N
fΛ   is the diagonal matrix of the eigenvalues    2

,( , 1, , )i f i N  and  N N
fU   is the 

matrix of column eigenvectors   ,( , 1, , )N
i f i Nu   of ,fS  respectively. We note that ( ) ( )f ftr trΛ S . 

As the CSM is defined at each frequency, the eigen-decomposition can be performed independently for 
each frequency. However, if the sought modes span a desired frequency band, fS  can be integrated over 
that frequency band before performing the eigen-decomposition. Here we define the ISO band-integrated 

 (4 12 cpy)f  CSM as:

 
12

ISO
4

f N Ndf
f
S

S � (3)

The diagonal matrix of eigenvalues and the matrix of column eigenvector of ISOS  are 
 

    2
ISO ,ISOdiag( , 1, , ) N N

i i NΛ    and     ISO ,ISO( , 1, , )N N N
i i NU u   , respectively. For 

unique solution of the eigen-decomposition, we impose unit L2-norm for each eigenvector and a zero argu-
ment to the scalar element with the largest modulus in each eigenvector. The wPC series of wavelet coeffi-
cients associated with ,ISOiu  at frequency f  is calculated as:

 , i,ISO
L

i f fκ W u � (4)

and the ISO band-integrated complex wPC series is then defined as:
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 
12

,
,ISO

4

i f L
i df

f
κ

κ � (5)

Here, the eigenvectors are represented as maps of complex loading coefficients whose argument charac-
terizes the relative phase shift (i.e., time delays) of the wPC time series between different geographical 
locations. For the scope of this study, we focus only on the leading mode (first eigenvector and associated 
PC) which is found to represent the pattern and dynamics of MJO. Yet, we note that our methodology 
has the potential to extract and analyze other intraseasonal modes (e.g., the boreal summer ISO, Kikuchi 
et al., 2012) using higher-order PCs.

2.3.  MJO Diagnostics

2.3.1.  Spectral Energy Within the ISO Frequency Band

The energy distribution of the analyzed signal across frequencies is described by the wavelet power spectral 
density (PSD):

     
 

   



20 0

1 1

1( ) ,
1

N L f
n l

n l

trf fPSD f w f t
f f NN L

S
� (6)

and the energy contained within the ISO frequency band is given by:

PSD PSD f df
f tr

N
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ISO






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
1

12 4 12 4
4

12

0
( )

S
� (7)

The fraction of spectral power contributed by wPC1 at frequency f  is:

   



2
1,

1
f

f
FSP f

tr Λ
� (8)

and over the ISO frequency band is:

FSP
tr

1
1

2

,
,

ISO
ISO

ISO

  



� (9)

By comparing PSD f PSD FSP f   , , ,ISO 1
 and FSP1,ISO computed from observations and CMIP6 model out-

puts, an assessment can be made of the ability of CMIP6 models to reproduce the total variance within 
intraseasonal timescales and to model the MJO mode with the right contribution to the total intraseasonal 
variance.

2.3.2.  Patterns and Propagation Speed of MJO

Unlike classical PCA for which two eigenvectors and corresponding PCs are needed to capture the MJO (M. 
C. Wheeler & Hendon, 2004), for wsPCA only the complex eigenvector 1,ISOu  and complex wPC series 1,ISOκ  
are needed. Specifically, the maps of 1,ISOu  and 1,ISOarg( )u  capture the magnitude and phase, respectively, 
of the MJO pattern. To compare MJO patterns between observations and models, the complex correlation 
coefficient is calculated as:







 



mod
1,ISO 1,ISO1,ISO

mod
1,ISO 1,ISO2 2

obs

obs
u u u

u u
� (10)

where | |
2
 denotes the L2-norm.

The wPC1 series 1,ISOκ  is used to quantitatively diagnose the magnitude and propagation dynamics of MJO. 
In the two-dimensional complex space defined by the real and imaginary parts of 1,ISO,κ  we form a wsPCA 

LE ET AL.

10.1029/2020GL092244

4 of 13



Geophysical Research Letters

MJO index akin to the previous indices (Kiladis, Dias, et al., 2014; M. C. Wheeler & Hendon, 2004). Based on 
the variable used (i.e., OLR or PPT), we designate this index as the wsPCA-based OLR MJO index (wOMI) 
or the wsPCA-based PPT MJO index (wPMI), respectively. To allow comparison between models and obser-
vations, the wPC1 series 1,ISO( )κ  of each model are normalized by the standard deviation of that obtained 
from observations. Specifically, we work with:


 1,ISO

1,ISO obs
1,ISO

ˆ
/ 2

Lκ
κ � (11)

Note here that          
   

 obs
1,ISO obs obs

1,ISO 1,ISO
2 2 .

κ κ
 At any time t, the modulus and argument of 1,ISO( )ˆ t  

define the instantaneous intensity and phase of the MJO, respectively. Since  1,ISOarg( ( )) [0, 2 ]ˆ t , the eight 
traditional phases of MJO correspond to angular sectors each spanning over  / 4 radians in the complex 
plane. The angular frequency  1,ISO 1,ISO( ) Δarg( )ˆ ( ) / Δt t t represents the instantaneous propagation speed 
of MJO. In the rest of the paper, we only discuss wOMI as the primary MJO index as we will show later that 
the MJO pattern is reproduced more accurately by models using OLR than PPT.

In order to compare models to observations in term of their ability to capture both the magnitude and in-
stantaneous propagating speed of MJO, we form the bivariate probability density function (PDF) of 1,ISO( )ˆ t  
and 1,ISO( )t  for models and observations and compare them using a distance metric. We choose the Wasser-
stein (or Earth Mover’s) distance (WD) (Kantorovich, 2006; Rubner et al., 2000) which is a nonlinear metric 
defined as the minimal amount of work, or optimal mass transport (Villani, 2008), needed to transform a 
discrete probability distribution to another. This metric allows to rank CMIP6 models based on their skill to 
reproduce the magnitude and dynamics of MJO.

3.  Results
Figure 1 (a1, b1—top row) shows the power spectral density (PSD) of PPT and OLR for the observations, re-
analysis, and 20 CMIP6 models. The PSD indicates that much of the energy of both variables is concentrated 
within the ENSO timescale (2–7 years), highlighting the dominant influence of this interannual variability 
mode on the climate system. At intraseasonal timescales (1–3 months), the PSD obtained from the multi-
model ensemble (MME) mean of PPT is comparable to that from the observations, whereas the PSD of OLR 
in CMIP6 models is generally higher than that of observations and reanalysis.

The fraction of spectral power contributed by wPC1 ( 1)FSP  is presented in Figure 1 (a2, b2—bottom row). 
We note that 1FSP is high at low-frequencies (interannual and lower frequencies) for both PPT and OLR 
(40–70% of the spectral power is contributed by wPC1 within the ENSO timescale). At intraseasonal times-
cales, the 1FSP of OLR ranges from 4% to 18% and that of PPT is slightly lower. Nevertheless, while the 
observations and reanalysis show a well-defined peak in 1FSP within the intraseasonal timescales (reaching 
up to 16.2%) indicating a coherent signal of MJO (inset plots), many models substantially underestimate 

1FSP within the intraseasonal timescale and show no well-defined peak. This result implies that, although 
CMIP6 models do not lack total variance within intraseasonal timescales (Figure 1—top panels), they fail 
to properly model the MJO mode of variability. Comparisons of the PSD and 1FSP among observed precipi-
tation products are further shown in Figure S1.

The spatial pattern of 1,ISOu  computed from observed OLR shows a coherent spatio-temporal mode span-
ning from the tropical Indian Ocean to the Western Pacific (Figure 2a) and the pattern of 1,ISOarg( )u  shown 
in Figure 2b clearly indicates eastward propagation, demonstrating the robustness of the wsPCA to identify 
MJO as the dominant mode in the 4-12-cpy frequency band. The spatial patterns of the magnitude and 
argument of 1,ISOu  of OLR and PPT for all CMIP6 models, reanalysis, and observations are presented in 
Figures S2–S5 for comparison. Furthermore, the lag-longitude diagrams of the reconstructed OLR and PPT 
anomalies within the intraseasonal timescale are shown in Figure S6. It can be seen that the average east-
ward propagation speed of MJO as estimated from the observations, reanalysis, and a large number (13/20) 
of the models is about 5 m/s. Our results suggest that the majority of CMIP6 models are able to capture 
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well the average propagation speed of MJO which is consistent with previous studies (Ahn, Kim, Kang, 
et al., 2020; Orbe et al., 2020). Nevertheless, many models underestimate the MJO variability as reflected by 

the lower values of the normalized magnitudes 
 

 1,ISO
1,ISO

ISO

N

tr Λ
u  compared to those of the observations 

(Figures S2 and S4). The magnitudes of the wPC series 1, fκ  across frequencies and 1,ISOκ̂  are presented in 
Figure 2c. These plots show considerable interannual variability and strong seasonality (higher amplitude 
during boreal winter months) in MJO activity, as also evidenced in Figure 2e by the PDFs of 1,ISOκ̂  during 
the winter (November–April) and summer (May–October). Moreover, Figure 2d shows the trajectory in the 
complex plane of the daily wOMI obtained from observations during the study period and for the boreal 
winter. The trajectories of daily wOMI and wPMI obtained from all data sets are further presented in Fig-
ures S7 and S8.

Comparison of the PSDISO and FSP1,ISO for PPT and OLR is shown in Figures 3a and 3b, respectively. 
For PPT, while the CMIP6 models show a spread of the PSDISO above and below the value of the ob-
servations indicating no systematic bias, the FSP1,ISO estimated from the models is consistently smaller  
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Figure 1.  (Top) Power spectral density of (a1) daily precipitation rate (PPT) and (b1) daily outgoing longwave radiation (OLR). (Bottom) Fraction of spectral 
power explained by wPC1 for (a2) PPT and (b2) OLR. Blue lines correspond to observations, red lines to reanalysis data, dashed black lines correspond to 
the multimodel ensemble (MME) mean of 20 CMIP6 models, and the gray shaded regions represent MME  standard deviation (here individual models are 
not distinguished from one another). Frequency f  in cycles per year (cpy) is shown in the top horizontal axes. The timescale corresponding to intraseasonal 
oscillations (ISO; yellow shaded vertical bands) ranges from 1 to 3 months  (4 12f  cpy).
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than that from the observations, indicating that the models systematically underestimate the MJO 
variability. For OLR, most CMIP6 models exhibit higher PSDISO  than observations (except model IP-
SL-CM6A-LR(13); Figure 3b); however all models show lower FSP1,ISO than that of the observations, 
further confirming that CMIP6 models consistently underestimate the contribution of MJO to the  
intraseasonal climate variability. For both variables, PSDISO of the reanalysis is slightly higher than 

LE ET AL.

10.1029/2020GL092244

7 of 13

Figure 2.  (a and b) Spatial patterns of the intraseasonal oscillation (ISO) band-integrated first complex eigenvector 1,ISOu  for observed OLR for (a) modulus 

(magnitude) and (b) argument (phase), corresponding to MJO. The modulus is shown for the unit-norm eigenvector with a scaling factor 
1,ISO

Ω
, with 

 ISOΩ ( ) /tr NΛ . The counter-clockwise, circular arrow in the colorscale indicates the direction of propagation of the extracted wave. (c) Top: Magnitudes 
of the wsPCA-based OLR MJO index | |, 1 ISO  (wOMI; green line) and of the real-time multivariate MJO index (RMM; gray line; see M. C. Wheeler and 
Hendon (2004)). Bottom: Magnitude of the complex wPC1 time series | |

,


1 f  associated with 1,ISOu  across frequencies for observed OLR. (d) Trajectory in the 
complex plane of wOMI 1,ISO( )κ̂  for observed OLR. The wOMI is displayed during boreal winter season (November-April) from 1983 to 2014 with one sample 
per day plotted. Points that lie inside the black unit circle correspond to days that are classified as weak MJO. The same colorscale as in panel (b) is used to 
represent the values of 1,ISOa ˆrg( ( ))t , indicating the eastward propagation of MJO. (e) PDFs of wOMI during the boreal winter (November-April) and summer 
(May-October), demonstrating the ability of wsPCA to capture the seasonality of MJO. See text for definition of variables.
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that of the observations, but the FSP1,ISO  is lower. The scatter plot of the modulus of the complex 
pattern correlation coefficients | |

,
OLR

u1 ISO  and | |
,

PPT

u1 ISO  as defined in Equation 10 is shown in Figure 3c. 
Most of the models show correlations in the range of 0.6–0.85 for both variables, confirming that, for 
all models, the first dynamical mode extracted by the wsPCA in the 4-12-cpy frequency band is actually 
the MJO, and indicating quite good agreement of the modeled MJO patterns to the observed ones. We 
note however that the complex pattern correlation only indicates agreement between the unit-norm 
first complex eigenvectors (Equation 10) and does not take into account the discrepancy between their 
corresponding eigenvalues (variance explained), a discrepancy that has been separately assessed in 
Figures 3a and 3b. Two models showing very low values of | |

,
OLR

u1 ISO  and | |
,

PPT

u1 ISO  are the IPSL-CM6A-LR 
(13) and CanEMS (5). Finally, most of the scatter points are below the 1 : 1 line, implying that CMIP6 
models generally reproduce more accurately the patterns of OLR than PPT.

Figure 4a compares the relationship of the magnitude and propagation speed of MJO for models, reanal-
ysis, and observations for all days during 1983–2014 (these can be seen as joint PDFs). Note that the nor-
malized wPC series 1,ISOκ̂  (see Equation 11) are plotted to allow comparison between models and obser-
vations. We find that while the average propagation speed (mean of the PDF of 1,ISO( ))t  is quite similar 
among all models ( 0.1 0.13 rad/day, equivalent cycles of 60 48 days), CMIP6 models underestimate the 
magnitude | |, 1 ISO  of the MJO mode. The marginal PDFs of | ( )|,


1 ISO

t  and 1,ISO( )t  for all data sets are shown 
in Figure 4b further demonstrating that most of CMIP6 models capture the MJO propagation speed but 
underestimate the amplitude of MJO compared to the observations (as also shown in Figure 4a). More-
over, Figure  4c shows the ranked WD between the joint PDFs of | ( )|

,1 ISO
t  and 1,ISO( )t  inferred by the 

observations (reference) and those obtained from the reanalysis (red bar) and CMIP6 models (gray bars). 
The smaller the values of the WD, the better the performance of a model to reproduce the observed MJO 
magnitude and speed. Relatively good models that show the smallest WD values include the NESM3 (19) 
and SAM0-UNICON (20) that are consistent with recent reports on the improvements of MJO simulations 
in these models (Shin & Park, 2020; Yang et al., 2020).

The MJO interacts with a wide range of weather and climate phenomena not only in the tropics but also 
in the midlatitude regions by its teleconnections (De Souza & Ambrizzi,  2006; Roxy et  al.,  2019; Sossa 
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Figure 3.  Comparison of spectral energy within the ISO frequency band ( )PSDISO  and the fraction of energy explained by wPC1 ( ),FSP1 ISO  corresponding 
to MJO for (a) Precipitation rate and (b) Outgoing longwave radiation for observations, reanalysis products and models. The systematic underestimation of 
FSP1,ISO in the models is apparent. (c) Scatter plot of the correlation coefficients of the patterns for the first complex eigenvectors of the modeled and observed 
OLR (| |)

,
OLR

u1 ISO  and modeled and observed PPT (| |)
,

PPT

u1 ISO  as defined in Equation 10. Numbers inside markers represent CMIP6 models (1–20), reanalysis (21), 
and observations (22).
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et al., 2017). In Figure 5, we evaluate the impacts of the MJO on precipitation over three different regions: 
Amazonia, Southwest Africa, and Maritime Continent. The Hovmöller phase-longitude diagrams of PPT 
anomalies show that the MME mean produces smaller MJO-related precipitation variability compared to 
the observations during all eight MJO phases and in all regions (Figure 5a). Details of the Hovmöller dia-
grams for each model in each region are further shown in Figures S9–S11. These diagrams suggest that a 
large number of CMIP6 models underestimate the MJO signal to regional precipitation compared to the 
observations. Among three regions, the models produce the most realistic precipitation variability in the 
Maritime Continent where MJO activity is the greatest. Furthermore, the scatter plots of the WD and cor-
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Figure 4.  (a) Relationship between the normalized magnitude | ( )|,1 ISO
t  and angular frequency 1,ISO( )t  of the ISO band-integrated wPC1 series corresponding 

to MJO for CMIP6 models, reanalysis products, and observations computed at the daily scale. Points under the unit horizontal dashed lines are classified as 
weak MJO. The colorscale represents the joint PDF of | ( )|,1 ISO

t  and 1,ISO( )t , with warmer color indicating higher probability. (b) Probability density functions 
of (top) magnitude | ( )|,1 ISO

t  and (bottom) angular frequency 1,ISO( )t . (c) Wasserstein distance (WD) between the joint probability distribution of | ( )|,1 ISO
t  

and 1,ISO( )t  obtained from observations (reference) and those obtained from reanalysis (red bar) and CMIP6 models (gray bars). The WD values of models are 
sorted from low to high, indicating the ranking of CMIP6 models in reproducing the MJO magnitude and propagation dynamics.
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relation coefficients of the Hovmöller diagrams of PPT (Hov
PPT ) between models and observations for each 

region are presented in Figures 5b–5d. It can be seen that models showing good performance in reproducing 
the MJO magnitude (low WD value) also tend to exhibit higher correlation of Hov

PPT  with observations and 
larger MJO-related precipitation variability in the Amazonia and Maritime Continent, while this tendency 
is not observed in Southwestern Africa. Our results suggest that CMIP6 models which underestimate MJO 
magnitude also reproduce weak MJO teleconnections to regional precipitation.

4.  Conclusions
In this study, we have analyzed historical simulations of 20 CMIP6 models to assess their ability to cap-
ture the space-time dynamics of MJO. For the first time, we applied the wsPCA to extract the pattern, 
magnitude, and eastward propagation of MJO from daily PPT and OLR. The key difference of wsPCA 
compared to other PCA methods is that the CSM between time series across locations is estimated using 
a complex CWT, enabling robust estimation of the CSM in any desired frequency band. In addition to ex-
isting methods in extracting MJO (Giannakis & Majda, 2012; Kiladis, Straub, & Haertel, 2005; Lo & Hen-
don, 2000; M. C. Wheeler & Hendon, 2004; M. Wheeler & Kiladis, 1999), our approach provides another 
way to extract MJO in particular and propagating physical modes in general. The wsPCA is also simple 
to implement without customized parameters, which significantly facilitates the extraction of dynamical 
modes from a large number of models. We defined the wsPCA MJO indices (wOMI and wMPI) based 
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Figure 5.  (a, Top) Comparison of modeled (MME Mean) and observed MJO-related precipitation anomalies around the climatic mean over the Amazonia 
(10°N–20°S, 45°W–80°W), Southwest Africa (10°S–30°S, 15°E–30°E), and Maritime Continent (20°S–20°N, 90°E–160°E). The dots indicate statistically 
significant anomalies (p < 0.05). (Bottom) Scatter plots of the WD between the observed and modeled joint PDFs of | ( )|,


1 ISO

t  and 1,ISO( )t  (see Figure 4) and 
the pattern correlation coefficients of the Hovmöller diagram (see Figures S7–S9) between models and observations for the (b) Amazonia, (c) Southwest Africa, 
and (d) Maritime Continent. Numbers inside markers represent CMIP6 models (1–20), reanalysis (21), and observations (22) as in Figure 3. It is seen that 
models that better reproduce MJO magnitude and propagation dynamics (low WD value) also tend to better reproduce the MJO-related precipitation variability 
over Amazonia and Maritime Continent, but not necessarily in Southwestern Africa.
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on the real and imaginary parts of the ISO band-integrated (4-12-cpy) complex wPC1 series to evaluate 
the magnitude and phase of the MJO mode at the daily scale and compare models with observations. We 
then investigated the influence of MJO to precipitation variability in CMIP6 models over three different 
regions.

The analysis herein showed that most CMIP6 models are able to realistically capture the eastward propa-
gation of MJO as also reported in recent studies (Ahn, Kim, Kang, et al., 2020; Orbe et al., 2020). However, 
the simulation of the MJO magnitude in CMIP6 remains a challenging problem. We demonstrated that 
although CMIP6 models exhibit enough spectral power or total variance within the intraseasonal times-
cales as compared to observations, they tend to underestimate the variability contributed by the MJO mode. 
This finding encourages potential future research on understanding the contributions of other ISOs to the 
intraseasonal variability represented in CMIP6 models and previous generation CGCMs. Furthermore, we 
showed that precipitation variability associated with the MJO is underestimated in the CMIP6 models in the 
Amazonia, Southwest Africa and Maritime Continent. Our results highlight the need to better simulate the 
coupled ocean-atmosphere dynamics in climate models to improve the MJO representation and MJO-driv-
en tropical and extratropical rainfall.

Data Availability Statement
The CMIP6 data set is available at https://esgf-node.llnl.gov/projects/cmip6. The ECMWF ERA5 reanalysis 
data set was downloaded from https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5. The 
PERSIANN-CDR precipitation data was downloaded from https://chrsdata.eng.uci.edu/. The interpolated 
OLR data of NCAR and the GPCP v2.3 precipitation data were provided by the NOAA/ESRL PSD, Boul-
der, CO, USA (https://psl.noaa.gov/data/gridded/index.html). The TRMM (34B2) and IMERG precipitation 
data were provided by the NASA’s Precipitation Measurement Missions (https://gpm.nasa.gov/data/direc-
tory). The CMORPH precipitation data was provided by the NOAA/CPC (https://www.cpc.ncep.noaa.gov/
products/janowiak/cmorph_description.html).
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