
1. Introduction
A landscape is an assemblage of individual, identifiable features that can be classified and explained by the 
geomorphologist (Arrell et al., 2007; Clubb et al., 2014; Ehsani & Quiel, 2008; Passalacqua et al., 2010), and 
also the parts in between that are a palimpsest of current and past processes (Jerolmack & Paola, 2010). A 
focus on individual landscape features can be key to unlocking the geological history of a region (Gasparini 
et al., 2014; Kirby & Whipple, 2012), while consideration of the landscape as a whole using measures such as 
the hypsometric integral (Boon & Byrne, 1981; Brocklehurst & Whipple, 2004; Keylock, Singh, et al., 2020; 
Strahler, 1952), or statistical scaling laws of topography (Hack, 1957; Lague & Davy, 2003; Tokunaga, 1978; 
Willgoose, 1994; Zanardo et al., 2013) gives an insight into how uplift, erosion, and deposition interact to 
shape our landscapes. From the perspective of this latter approach, the question remains as to the extent 
that statistical models for topography can adequately represent observed elevation statistics. Expressed an-
other way, do the particular dynamics of geomorphic processes leave an imprint on the terrain that makes 
simple statistical models inadequate? Addressing this question forms the goal of this study.

The complex configuration and environmental history of a landscape make a formal, mathematical, or sta-
tistical description of terrain regularity problematic. Attempts to do this have commonly adopted methods 
based on the notion of fractal dimension (Gagnon et al., 2006; Klinkenberg & Goodchild, 1992; Lifton & 
Chase, 1992; Outcalt & Melton, 1992). However, the generalization of the description of landscape from 
mono-fractal to one where more than a single fractal dimension is present has resulted in significant ter-
minological confusion. Monofractality assumes that the Hölder exponent describing the terrain is constant 
everywhere (it is a Hurst exponent), while in this study we use the term “multi-Hölder” for the general 
notion of a terrain where the Hölder exponents vary. This provides the freedom to contrast a “multifractal” 
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surface with a “multi-fractional Brownian surface” in terms of how the variability is structured: A multi-
fractal surface is one that is the outcome of a hierarchical process such that individual Hölder exponents 
are imbricated in a non-continuous fashion (Benzi et al., 1993), while a multi-fractional Brownian surface is 
one where the variability is given by a continuous function (Peltier & Lévy Véhel, 1995). In addition, a land-
scape may be considered as being driven by a self-regulating process, a relatively recent development in reg-
ularity theory where the regularity is coupled to the values of the signal (Echelard et al., 2015). This concept 
underpins the velocity-intermittency method for extracting information on flow structures from turbulence 
time series (Ali et al., 2019; Keylock et al., 2012; Keylock, Ghisalberti, et al., 2020), and in the case of land-
scape geomorphology, would mean that the elevation drives the regularity. This notion of self-regulation 
underpinned the recent proposal to couple hypsometric (area-elevation analysis) (Strahler, 1952) to Hölder 
analysis (Keylock, Singh, et al., 2020), which is a technique utilized in this study.

While previous work has shown that geomorphic surfaces are not monofractal (Evans & McLean, 1995; 
Perron et al., 2008), the nature and extent to which a multi-Hölder description of landscape adequately rep-
resents geomorphic process is still unclear. While some authors have suggested that a multifractal model is 
suitable for characterizing topography (Gagnon et al., 2006), others have been more cautious. Of particular 
importance in this context is a study by Veneziano and Iacobellis (1999) that not only critiqued the meth-
odologies adopted in some previous works, but also showed that for various terrains, there was evidence of 
consistent self-similar relations for both the channel network part of the terrain where fluvial incision was 
dominant, and the hillslopes dominated by diffusive processes. In other words, the Hölder exponents in a 
land surface are conditioned on the type of process that is dominant (an advective fluvial system or a diffu-
sive hillslope one). See Clubb et al. (2020) for recent work that has arrived at a similar conclusion.

A difficulty with all previous investigations of this phenomenon is the absence of an appropriate control 
that may be used to compare extracted statistical quantities from topographic surfaces and determine their 
statistical significance. Given that some of these phenomena are rather subtle in nature, as well as the 
error in any statistical curve-fitting exercise used for deriving a scaling relation, this is important. In this 
study, we develop a framework that permits analysis of landscape scaling properties relative to appropriate 
control models for the topography. We apply this framework to investigate the extent to which elevation 
statistics contain a signature from geomorphic processes that cannot be represented adequately by simple 
multi-Hölder models for terrain statistics. To accomplish this, we make use of a laboratory experiment on 
terrain evolution (Singh et al., 2015), as well as digital elevation models (DEMs) from Florida and Washing-
ton States. Before presenting our methodology and results, we briefly review the definition of the pointwise 
Hölder exponents that underpin fractal and multifractal analyses.

2. Hölder Exponents
Given a DEM containing elevations, z(x, y), the increments (the elevation differences between points at 
separation, r) are:

     ( , ) ( cos , sin ),z z x y z x r y r (1)

where θ is a direction selected for analysis and r is the separation distance between points. The statistical 
moments of order n for δz are given by 〈δzn〉, where the angled braces indicate an averaging operation. The 
scaling relation

  | | ,n nz r (2)

is then found from a log-log plot of 〈|δz|n〉 against r. A fractal form for the distribution of elevations implies 
that ξn increases linearly with n (Frisch & Parisi, 1985). In the well-known case of classical turbulence the-

ory, the Kolmogorov (1941) theory gives  
1
3n n.

A multi-Hölder signal exhibits a convex relation between n, and ξn (Frisch & Parisi, 1985), but is more for-
mally concerned with the set of pointwise Hölder scaling exponents, h(x, y), that characterize the properties 
of the surface at all positions, (x, y). At a particular position, (x = X, y = Y), we can evaluate the local scaling 
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behavior of z to determine the Hölder exponent, h, in a fashion that is 
similar to the statistical moments of the increments, above, but without 
the averaging operator:

     ( , )| ( , ) ( cos , sin ) | | |h X Yz X Y z X r Y r C r (3)

where C is a constant (see Venugopal et al., 2006 for a review). Having 
applied Equation 3 to the whole DEM (i.e., we have z(x, y) and h(x, y)), 
the singularity spectrum, D(h), may be derived as the Hausdorf (fractal) 
dimension, dH, of the set of all points, (x, y), where the h(x, y) = h. That 
is, D(h) = dH(x, y) belongs to the support of z(x, y) for h(x, y) = h. The 
Frisch-Parisi conjecture states that

  ( ) min( 1).nn
D h hn (4)

Thus, the structure functions and the Hölder exponents are related via a 
Legendre transform (Jaffard, 1997). Therefore, a mono-fractal landscape 
has a constant degree of proportionality between n and ξn, giving a sin-
gle constant value for D(h): the Hurst exponent, d. The fractal dimension 
of the surface would then be   2 (1 )d . Given a departure from 
mono-fractality, there will be multiple values for the Hölder exponents 
observed in the terrain. These may be organized in a hierarchical fash-
ion (like a true multifractal process) or potentially a function of another 
variable, such as elevation itself (a self-regulating process). Large Hölder 
exponents correspond to smoother regions in the terrain and, thus, are 
potentially related to more diffusive processes, while small exponents 
are likely linked to incision and advective processes. This geomorphic 
interpretation motivated Keylock, Singh, et al. (2020) to re-examine the 
area-altitude scaling of terrain (hypsometry) by coupling it to the Hölder 

exponents, thereby linking topographic roughness to the broader manner in which elevations are distrib-
uted in the terrain, leading to an ability to discriminate between landscapes from different areas or with 
different underlying process-based generating mechanisms, even if all have similar hypsometric integrals.

3. Methodology
3.1. Experimental Set-Up

Experiments were performed at the eXperimental Landscape Evolution (XLE) facility of the St. Anthony 
Falls Laboratory at the University of Minnesota (Figure 1). XLE consisted of a 0.5 × 0.5 × 0.3 m3 erosion box 
with two opposing sides able to slide up and down at variable rates mimicking changes in the base level. The 
facility includes a rainfall simulator consisting of 20 ultrafine misting nozzles which were able to generate 
rain droplets of sizes less than 10 μm. The experimental setup was also equipped with a laser scanner able to 
scan the experimental topography at a resolution of 0.5 mm in a few seconds. This was done every 300 s for 
over 9 h. The experimental landscapes discussed here were evolved under constant uplift, U = 20 mm h−1, 
and precipitation intensity, P = 45 mm h−1. The erodible material was a homogeneous mixture of fine silica 
(specific density ∼2.65) with a grain size distribution of D25 = 10 μm, D50 = 25 μm, and D75 = 45 μm, mixed 
with 35% water by volume in a cement mixer; see Singh et al. (2015) and Tejedor et al. (2017) for more de-
tails. The key changes that arose in the evolution of the topography were the establishment of a drainage 
basin at t ∼ 150 min, the main drainage divide at t ∼ 225 min, a steady-state landscape in terms of sediment 
flux at t ∼ 375 min, and a final evolution toward a morphometric steady state for t ≳ 475 min. Each of these 
stages is illustrated in Figure 2. Sediment flux steady state was considered to be achieved when the mean 
erosion rate did not change with time, with mean erosion rate computed from the differenced DEMs (Singh 
et al., 2015). In the morphometric steady state, there is no change in the topographic features with time. 
While the landscape surfaces we generated were primarily erosional, differencing consecutive DEMs did 
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Figure 1. Illustration of the eXperimental Landscape Evolution (XLE) 
facility at the University of Minnesota. XLE, eXperimental Landscape 
Evolution.
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indicate that significant deposition events did arise. These were more prevalent once flux steady state was 
established, as shown in Figure 6 of Singh et al. (2015).

3.2. Hypothesis Testing With Surrogate Data

To distinguish between the various forms of regularity that might arise in terrain statistics, we need a suit-
able means to place statistical confidence on the results. Here, we use the concept of surrogate data, which 
have been used for about 30 years for hypothesis testing for non-linear processes in time-series signal pro-
cessing (Theiler et  al.,  1992). This field, including geophysical applications of the salient methods, was 
recently reviewed by Keylock (2019). Example DEMs generated using the most well-known surrogate data 
generating algorithm, which preserves the Fourier amplitudes of the original data, are provided in the Ap-
pendix. Such an approach is highly suited to distinguishing between mono-fractal signals and general forms 
of multi-Hölder regularity. However, it cannot be used to discriminate between self-regulating and other 
forms of multi-Hölder surface, for example, which is the focus of this study. An algorithm for this class of 
problems was developed by Keylock (2017) and was termed the iterated amplitude-adjusted wavelet trans-
form (IAAWT) method. It was integrated into a gradual reconstruction framework by Keylock (2018) and 
is described below.

3.3. The IAAWT Algorithm and Gradual Reconstruction

The IAAWT algorithm is based on a dual-tree complex wavelet transform (DTCWT) (Kingsbury, 2001; Sele-
snick et al., 2005). A pair of dyadic wavelet trees may be constructed to form a Hilbert pair (Selesnick, 2002), 
resulting in a complex transform. Here, we use symmetric, biorthogonal filters with support widths of 13 
and 19 values for the first level of the algorithm and Q-shift filters with a support of 14 values for all other 
levels on the dual-tree (case C in Kingsbury, 2001). The Q-shift dual-tree approach retains properties that 
make undecimated transforms advantageous for use in surrogate generation, such as shift-invariance, but 
at a computational cost that is merely double that for a standard discrete wavelet transform. In addition, 
although we do not make use of this property in this study, the transform also has enhanced directional 
selectivity compared to a classic discrete wavelet transform.

The IAAWT algorithm for a DEM containing elevations, z(x, y), where x = y = 2J, and where J is an integer, 
proceeds as follows:
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Figure 2. Stages in the evolution of the experimental topography as described in the text. The time intervals quoted are 
in minutes.
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1.  Store the original elevations z(x, y)
2.  Apply the two-dimensional (2D) DTCWT and obtain wavelet amplitudes, Ak, ℓ, j, p and wavelet phases, ωk, 

ℓ, j, p over all j = 1, …, J scales for the p = 1, …, 6 planes at each scale and for wavelet coefficient w, with 
coordinates (k, ℓ), where at each j there are 6 × 22(J−j) coefficients:

 , , , , , ,| |k j p k j pA w 

  




, , ,1
, , ,

, , ,

( )
tan ,

( )
k j p

k j p
k j p

w
w

I

R
 (5)

where I is the imaginary part and R is the real part of the wavelet coefficients, w;
3.  Randomly sort the original elevations to give an initial elevation surface, z(0)

4.  Take its two-dimensional DTCWT to derive randomized wavelet phases, (0)
,k j for each scale and position

5.  Produce new (1)
,k jw  by combining the original amplitudes with the randomized phases:

(1) (0)
, , ,exp( )k j k j k jw A i (6)

6.  Iterate the following steps until a convergence criterion is met, where at each step, s

 (a)  Take the inverse DTCWT to give a new DEM, z(s) (x, y) and then apply the amplitude adjustment step 
where a mapping is established between the original elevations, z(x, y), and the z(s) (x, y) by rank-or-
der matching to permit the values of z(s) to be replaced by the value in z(x, y) with the same rank

 (b)  Take the DTCWT and obtain the new phases, ( )
,
s

k j. Combine these with the original amplitudes, Ak,j 

to give the ( 1)
,
s

j kw  using the s’th iterated variant of Equation 6

Following this approach, we generate synthetic surfaces with the exact same set of elevation values (but ran-
domly distributed in space) and with the pointwise Hölder regularity fixed. Example surfaces are shown in 
Figure 3 where the reported root-mean-squared differences are not errors as such, they indicate the degree 
of randomization taking place in a given DEM. This is greatest when the central ridge becomes inverted in 
panel (d). A similar figure produced using a Fourier-amplitude preserving method and a statistical compar-
ison of the two algorithms are provided in the Appendix.
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Figure 3. The original DEM at t = 500 min is shown in (a), while (b)–(d) show three surrogate DEMs for this surface 
generated with the IAAWT algorithm with the minimum, median, and maximum root-mean-squared differences in the 
elevations, z, of 19 surrogates. DEM, digital elevation model; IAAWT, iterated amplitude-adjusted wavelet transform.
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Gradual multifractal reconstruction (GMR) (Keylock, 2018) generates synthetic data based on the IAAWT 
algorithm between limits of η = 0 (corresponding to realizations using the original IAAWT algorithm) and 
η = 1 (the original data set). We first define an energy measure that needs to account for the decimated 
nature of the dual-tree complex transform by weighting the coefficients by a factor 2j (i.e., we adopt an L1 
norm):


   

     



26
, , ,

1 1 1 1

| |

2

J K L
k j p

jj p k

w
E (7)

That is, with j = 1, …, J scales, there are K × L coefficients, where K, L = 2J−j in each of six orientation 
planes at each scale, meaning that more energy will be associated with each coefficient on average at the 
larger j, necessitating the introduction of the denominator. We then place the absolute values for the wk,ℓ,j,p 

in descending rank order and fix the first r coefficients such that 







2

1 | |K N
r rw

E
. This selected set of 

coefficients are fixed in place on the wavelet coefficient template, while the others are phase randomized 
using Equation 6. More coefficients can be fixed until there is no significant difference between the original 
data and the surrogates with respect to a chosen metric to characterize the surfaces and, thus, establishing 
a threshold value for η, which is denoted by η* in this manuscript. A higher value for η* implies greater 
additional complexity in the data, beyond the preservation of the Hölder regularity.

Using the IAAWT surrogate data algorithm within the GMR framework, and given a chosen measure for 
geomorphometric similarity (as described in the next sub-section), the form for the null hypotheses here 
is as follows: Landscape system complexity with respect to a chosen metric of geomorphometric similarity 
is inferred by statistical comparison between the source DEM and the surrogate landscapes that preserve 
the elevations and multi-Hölder structure of the original DEM (at the η = 0 limit), as well as an increasing 
proportion of other properties of the DEM as η increases.

3.4. Geomorphometric Measures

In this study, we draw upon three basic classes of geomorphometric analysis. The first is based on the 
slope-area relation, which Willgoose (1994) showed was highly relevant to the study of evolving topogra-
phies with both tectonic and climatological forcing. It should be highlighted that we investigate drainage 
basin slope-area scaling as is common in small-scale experimental studies (Bonnet & Crave, 2006; Lague 
et al., 2003), rather than channel slope-area scaling, which is more common in field-scale analyses of ma-
ture topography where identifying channels is rather more straightforward (Kirby & Whipple, 2012). The 
consequence is that our exponent, dS/dA has a lower value as in headwater basins both slopes and chan-
nels are steep, while larger basins tend to have very low gradient river channels, but still a mix of hillslope 
gradients.

We computed topographic slopes using the steepest downslope direction, whereas the drainage areas were 
determined using the D-infinity algorithm (Dietrich & Perron, 2006; Tarboton, 1997). Slope-area curves 
were computed based on averaged topographic slopes in equally spaced logarithmic bins representing 
drainage area. Although, in general, three regimes were identified in the slope-area curve of the experimen-
tal landscapes at the steady state (Singh et al., 2015); here, we focused on the longer (intermediate) log-log 
linear regime that exhibited a scaling exponent of ∼ 0.1. This low scaling exponent has been argued to be a 
characteristic of colluvial landscapes that are dominated by debris flows and mass wasting events (Bonnet 
& Crave, 2006; Montgomery, 2001; Montgomery & Foufoula-Georgiou, 1993). Note that similar scaling ex-
ponents were observed from other physical experiments (Bonnet & Crave, 2006; Hasbargen & Paola, 2003; 
Lague et al., 2003). Also note that, for computing scaling exponents for DEM surrogates, we used the same 
scaling range as that of the original DEM.

Figure 4 shows example fits of the slope-area scaling for one of our experiments from the experimental 
landscape evolution facility at t = 550 min, as well as for the Florida and Washington DEMs examined later 
here. In all cases, the power-law scaling exists over at least two orders of magnitude with relatively low var-
iance, indicating that the exponent is estimated well. Statistical significance to the results is then ascribed 
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using the surrogate data. That is, given the fits are precise, we focus on if there is a statistically significant 
difference in the exponent between data and multi-Hölder preserving surrogates as a function of η, rather 
than on the fitting of the exponents. This is an advantage of our approach - we focus on adopting a consist-
ent means for estimating the exponent and the significance via the surrogates and η* rather than the exact 
value for the exponent. The consequence is that we can place less emphasis on the subtleties that can arise 
when focusing on the exact value for the exponent, as discussed recently by Gailleton et al. (2019).

The second class of geomorphometry utilizes the notion of Horton-Strahler channel ordering to classify 
sub-catchments in the DEM into different basin orders, Ω. To derive the channel in the DEM we used To-
poToolbox (Schwanghart & Kuhn, 2010) with a threshold area of 100 pixels and a D8 flow accumulation to 
obtain the channel heads numerically. This corresponded to a drainage area of 25 mm2 for the experimen-
tal DEMs and 104 m2 in natural DEMs. For all of the basins of a given order, we then derived the number 
of basins at that order, NB(Ω), and the average total channel length for a given order, 〈∑L(Ω)〉. Typically, 
power-law relations for these quantities are found (Rodriguez-Iturbe & Rinaldo, 1997). However, here, we 
focus on the raw values rather than the fitted exponent to contrast with the approach taken with slope-area 
scaling. These first and second classes of geomorphometric measures are similar to those adopted in related 
work (Singh et al., 2015; Tejedor et al., 2017). Our third method is based on a recently proposed variant of 
terrain hypsometry (Strahler, 1952), but modified to include simultaneous consideration of the Hölder reg-
ularity of a landscape (Keylock, Singh, et al., 2020). Rather than look at the conditional hypsometric curves 
as function of h, as we did in our recent study; here, we simply focus on the joint distribution function of the 
elevations and Hölder exponents. In other words, we examine if there is a structure to the coupling between 
elevation and terrain roughness that a multi-Hölder model cannot capture.

For the analysis of the experiment, we employed seven η values (η ∈{0.0, 0.2, 0.4, 0.6, 0.8, 0.9, 0.99}) and 
generated 19 surrogate DEMs for each of 22 experimental DEMs using GMR (i.e., 22 original and 2,926 syn-
thetic DEMs were analyzed). These spanned the times from when the drainage basin was first established 
at t ∼ 150 min, through the attainment of a sediment flux equilibrium at t ∼ 350 min, to beyond the devel-
opment of a morphometric steady state at t ∼ 375 min.

4. Results
4.1. Slope-Area Relations

Figure 5 shows how the threshold values, η* are determined for the slope-area scaling, dS/dA, for DEMs 
obtained at four instances that span the experimental duration. All DEMs clearly have values for dS/dA 
that depart from those obtained from a simple multi-Hölder representation of the terrain at η = 0. Once the 
central drainage divide is established in the experiment, that is, for t ≳ 150 min., the surrogate landscapes 
differ from the actual DEM for η ≤ 0.4. With 19 surrogates generated and a directional, one-tailed hypothesis 
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Figure 4. The nature of the scaling between basin slope and contributing area for the experimental data at t = 550 min (top-left), the Florida DEM (top right), 
and the Washington DEM (bottom left). The length of the line indicates the limits for the fit applied to the original and surrogate DEMs. DEM, digital elevation 
model.
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that dS/dA for the surrogates is not significantly greater than for the original DEM, our analysis indicates a 
significant difference at the 5% level up to η = 0.8 for most cases.

Given values for η*(dS/dA) for all 22 DEMs, Figure 6b shows how these vary as a function of the evolution 
of the catchment. All values are high and there is a possible weak tendency in these results with random 
variability in the range 0.6 < η*(dS/dA) ≤  0.9 up until a flux equilibrium is established at t ∼  350 min, 
followed by a gradual increase in η*(dS/dA) beyond this point. Figure 6a shows the values for dS/dA as 
a function of time, with a quadratic decay illustrated by a red line. The vertical lines extending from each 
symbol show a form of confidence interval that is possible using surrogate data analysis (Keylock, 2012); 
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Figure 5. Boxplots showing values of dS/dA for the original DEM (horizontal, dashed line) and surrogates (boxplots) 
as a function of η. The threshold, η*, is obtained by working from right to left until the last case is found for which there 
is no significant difference between data and surrogates. This gives η* = {0.8, 0.6, 0.8, 0.9} for t = 150, t = 230, t = 355, 
and t = 500 min, respectively. The boxplots are formulated in the same way as in Figure A2. DEM, digital elevation 
model.

Figure 6. The slope-area scaling exponent as a function of time, t, is shown in panel (a) as a circle, with a best-
fit quadratic as a red curve. The vertical dark gray lines show the range of values for the gradual multifractal 
reconstruction surrogates at the value for η*(dS/dA), with η*(dS/dA) = 0.6 (dashed, gray), η*(dS/dA) = 0.8 (solid, gray), 
and η*(dS/dA) = 0.9 (solid, blue). The variation for η*(dS/dA) = 0.99 is no greater than the diameter of the circles and 
is not shown. Panel (b) shows these values for η*(dS/dA) as a function of time. Panels (c) and (d) show the relation 
between basin slope and upstream contributing area for the surrogate data at t = 500 min for η = 0.6 (c) and η = 0.8 (d). 
Results are shown on semi-logarithmic axes for clarity, although all fits are of a power-law form.
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one based on the range of values for the surrogates at the appropriate η*(t), rather than the quality of fit to 
one set of data. It is clear that: (a) the one instance of η*(dS/dA) = 0.6, at t = 225 min, is a consequence of 
the wide range of values for dS/dA obtained for the surrogates at this time; and, (b) the change in dS/dA 
with time is significant.

Given there is a possible change in behavior of landscape features and processes after the flux equilibrium 
is attained, we examined the proportion of wavelet coefficients fixed for this DEM. The observed value for 
η* = 0.8 arises when 0.34% of the coefficients are fixed (1,787 from 524,286 coefficients). For η = 0.6 this 
drops by nearly an order of magnitude to 0.04%, while for η = 0.9 and η = 0.99, the percentages are 1.4% and 
14.7%, respectively. These percentages increase by 20%–30% at t = 500 min, highlighting how the increase 
in landscape complexity is not just measured by an increase in η* but also consistent increase in the fixed 
coefficients for a given η. Comparing the results for t = 230 min to those at t = 350 min, the number of fixed 
coefficients at a given η is about a third, indicating that these landscapes are simpler than those at the end 
of the experiment both because the value for η* is lower and because fewer coefficients need to be fixed for 
a given proportion of the wavelet energy. Thus, from t = 230 to t = 350 min complexity in the underlying 
DEM certainly increases greatly, even if the threshold for statistically detecting convergence on the DEM’s 
properties (η*), is similar.

To understand why the η*(dS/dA) values are generally high, in Figure 6c and 6d, we plot the fitted pow-
er-laws for the surrogates using the DEM for t = 500 min as an example. For η = 0.6 and η = 0.8, the slopes 
for the small area basins are the same (∼1.4), while they are significantly lower for the large basins at 
η = 0.8. Hence, we can explain why the surrogates cannot replicate the dS/dA values at low η: the slopes of 
the larger basins are too steep. As small basins are typically located in the headwater catchments, the true 
landscape has a stronger coupling between lower elevations and reduced gradients, implying some degree 
of self-regulation as considered in Section 4.4. Thus, the shortcomings of a simple multi-Hölder model are 
less in the representation of the dissected, upper basins but rather in the correct representation of the dep-
osition-affected, larger catchments.

To illustrate the difficulty of detecting these differences by observation and, thus, the difficulty of evaluating 
the verisimilitude of a multi-Hölder model by qualitative assessment, we show in Figure 7 the detail of the 
original data and various surrogate DEMs for t = 500 min. Panel (a) shows a plan view of the original DEM, 
while panel (b) highlights the region in the white box in panel (a). From Figure 5d, the surrogate DEM at 
η = 0.6 with the median value for dS/dA and that at η = 0.8 with the maximum for dS/dA shown in panels 
(c) and (e), respectively, are in error, while the surrogate at η = 0.8 with the median and minimum for dS/dA 
shown in (d) and (f), respectively, are very close to the original case. The highlighted area of the DEM is one 
containing a large basin consisting of low elevations and high values for h. The primary visible difference 
is that the spine of high h values in (c) indicated by the arrow is too broad and diffuse relative to the cases 
seen in panels (b), (d), and (f). This results in high h values being associated with somewhat higher z values 
than in the original DEM, causing reduced values for dS/dA at η = 0.6 compared to the true case. Clearly, a 
surrogate data framework is needed to extract such subtleties with statistical confidence.

4.2. Average Total Channel Length

Figures 8 and 9 show the average channel length for basins of four Horton-Strahler orders at two different 
times as a function of η. These results contrast with the slope-area scaling as a simple multi-Hölder mod-
el with no additional constraints (η = 0) can replicate the observed channel lengths in many cases, even 
though η* itself is often greater. Furthermore, in neither case do the fourth-order basins indicate any sig-
nificant differences. These are the largest in the system and are integrating information over a sufficiently 
large area that the preservation of the elevations and the approximate preservation of the h is sufficient to 
get the average channel length statistics correct. However, at t = 150 min and before the drainage divide is 
firmly established, the values of 〈∑L(Ω)〉 for Ω = 3 are a sensitive measure, implying that the properties of 
third-order basins are highly dependent on the structure of the main divide. While η* is also high for Ω = 3 
for t = 500 min, the η = 0 case can attain the requisite values by chance. In contrast, in this case, it is the 
Ω = 1 basins where additional structure is required to get the correct channel length statistics, with the 
surrogates producing lengths that are too short. The implication of the slopes being matched very well for 
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Figure 7. The DEM extracted at t = 500 min in plan view, together with accompanying surrogate data. In each of six cases, two panels are shown with the 
left-hand cases (copper color scheme) illustrating the elevations, z, and the right-hand (gray color scheme) the Hölder exponents. Panel (a) is the original DEM 
with a white box showing the region extracted in the other panels. Panel (b) is this extracted region, (c) is the surrogate DEM at η = 0.6 with the median value 
for dS/dA, while (d), (e), and (f) are the surrogate DEMs at η = 0.8 with the median value, maximum, and minimum values for dS/dA, respectively. The arrow 
highlights a feature discussed in the text. DEM, digital elevation model.

Figure 8. Boxplots showing the determination of η*(L) for the DEM at t = 150 min for basin orders Ω ∈{1, 2, 3, 4}. The 
values of 〈∑L(Ω)〉 for the surrogates are shown as boxplots a function of η, with the dashed lines showing the value for 
the data itself. From these plots, η*(L) = {0.8, 0.6, 0.8, 0.0} for ascending values of Ω. The boxplots are formulated in the 
same way as in Figure A2. DEM, digital elevation model.
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small basins at t = 500 min (Figure 6c) but 〈∑L(Ω = 1)〉 being too small is that a simple multi-Hölder model 
cannot adequately represent either basin shape or valley sinuosity effects correctly.

4.3. Total Number of Basins

Three classical scalings for drainage basins as a function of stream order are the laws of stream number, 
stream length, and basin area (Rodriguez-Iturbe & Rinaldo, 1997). Because we found that the behavior for 
basin area was similar to that for stream length, we do not report those results here, focusing instead on the 
stream number results, which in terms of our analysis we state as the number of basins of a given order, 
NB(Ω) and present the results for t = 500 min in Figure 10. Here, a much stronger effect was found in terms 
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Figure 9. Boxplots showing the determination of η*(L) for the DEM at t = 500 min for basin orders Ω ∈{1, 2, 3, 4}. The 
values of 〈∑L(Ω)〉 for the surrogates are shown as a function of η, with the dashed lines showing the value for the data 
itself. From these plots, η*(L) = {0.4, 0.0, 0.99, 0.0} for ascending values of Ω. The boxplots are formulated in the same 
way as in Figure A2. DEM, digital elevation model.

0.026

0.028

0.030

0.032

0.034

L(
)

0.14

0.15

0.16

0.17

0  0.2  0.4  0.6  0.8  0.9 0.99

0.6

0.8

1.0

1.2

L(
)

0  0.2  0.4  0.6  0.8  0.9 0.99

2

3

4

 = 1  = 2

 = 3  = 4

Figure 10. Boxplots showing the determination of η*(NB) for the DEM at t = 500 min for different basin orders, Ω. 
The values of NB for the surrogates are shown as a function of η in each panel, with the dashed lines showing the value 
for the data itself. From these plots, η*(NB) = {0.9, 0.6, 0.6, 0.0} for stream orders, 1– 4, respectively. The boxplots are 
formulated in the same way as in Figure A2. DEM, digital elevation model.
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of significant differences at η = 0 for different stream orders less than Ω = 4. Thus, NB(Ω) is a more sensitive 
metric than 〈∑L(Ω)〉 for studying landscape complexity. In Figure 11, we plot η*(NB) for all four stream 
orders as a function of time. As with the results for dS/dA in Figure 6a and 6b transition seems to emerge 
after about t = 350 min, but the effect is much more marked here: complexity measured by η* really only in-
creases once the flux steady state is established for t > 350 min; it is only in the early stages of landscape that 
a simple multi-Hölder model is effective. Given that flux steady state was defined as the condition where the 
erosional fluxes balanced out the sediment provided by the rock uplift and was obtained by direct measure-
ment during the experiment (Singh et al., 2015), the congruence between the attainment of this state and 
the increase in η* is rather remarkable. The implication is that complexity increases once diffusive forces 
gain greater prominence in the landscape dynamics, although without process-based measurements, one 
cannot disregard the possibility that the nature of the diffusive processes themselves have a more marked 
impact on the non-linear response of the terrain at later times.

4.4. The Joint Distribution of Elevation and Regularity

A recent extension to the classic hypsometry measure of Strahler (1952) (see Leuven et al., 2018 and Cun-
ningham et al., 2019 for recent uses of hypsometry) examines the joint probability distribution function 
(PDF) between the elevations and the Hölder exponents (Keylock, Singh, et al., 2020). In other words, it 
captures the coupling that underpins the nature of a self-regulating landscape as discussed in the introduc-
tion. The top-left panel of Figure 12 shows this PDF for the original DEM at t = 500 min. The other panels 
show the results for the surrogate DEM with the median root-mean-squared error for different choices of η. 
Recall that our algorithm uses exactly the same z values. Hence, there is no difference in the marginal dis-
tribution for z and the hypsometries for all of these data are identical. However, there are clear differences 
in the shape of the joint PDFs and, as η increases, relatively subtle features of the original PDF, such as the 
outlying region identified by the arrow in the top-left panel, begin to be captured in the surrogates. Here, 
we focus on two conditional distributions given by the transects through the joint distribution shown by the 
dashed lines in the upper left panel. These pass through the mode of the distribution at z = 25 mm, h = 0.95 
and are given by the black line in each panel of Figure 13. The gray lines in this figure are the equivalent 
conditional distributions for the surrogates at the stated value for η. It is clear that at low η, the surrogate 
data cannot replicate this mode, which is too large in magnitude for p(z|h = 0.95) given in the right-hand 
column and is located at too high a value for h for p(h|z = 25) in the left-hand column. A threshold value of 
η* = 0.4 is appropriate from this analysis. Hence, once more, a simple multi-Hölder model cannot serve, and 
the key difficulty for such a model in terms of self-regulation is to have a sufficient number of intermediate 
elevations that are as smooth as h = 0.95.

Physically, this means that diffusive processes, which increase h at intermediate elevations, gain in geo-
morphic significance either in terms of intensity or the area dominated by diffusion once the landscape 
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Figure 11. Values for η*(NB) as a function of stream order, Ω (each panel), and time.
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attains a flux equilibrium, and are more important to the landscape structure than a simple multi-Hölder 
model can capture. This result is consistent with the earlier results that the simple multi-Hölder model 
produces too many basins of a given order (incision is excessive relative to diffusion) and has slopes that are 
over-steepened within the largest basins. Significant diffusive action on the intermediate slopes will result 
in fewer basins of intermediate order and will promote a reduction in average slopes for the larger water-
sheds of which these slopes are a part. The potential to use the Hölder regularity of the landscape to detect 
transient effects such as over-steepened slopes was looked at by Keylock, Singh, et al. (2020), who applied 
an anisotropic diffusion operator to the terrain that moved mass in the DEM toward regions of strong local 
curvature. While this operation had a minimal impact on the hypsometry, it impacted on the Hölder reg-
ularity such that it was easy to detect the effect on the terrain, even without employing the surrogate data 
methodology developed here.

5. Application to Two Distinct Topographies
While the experimental surfaces allow us to examine the evolution of a topography’s response to a par-
ticular forcing, the idealized boundary conditions, particularly the issue of material homogeneity, mean 
that there is not necessarily a relation to any specific observed terrain. As a consequence, in this section of 
the study, we examine the geomorphometry of two contrasting regions of the conterminous United States, 
Florida and Washington States, focusing on the slope-area scaling properties. The two DEMs were obtained 
from the USGS National Elevation Data set at https://catalog.data.gov/dataset/usgs-national-elevation-da-
taset-ned and both cover an area of 20.48 × 20.48 km2 at a 1/3ʺ (10 m) resolution. The particular drainage 
basins are the Ochlockonee River basin in Florida and the Cowlitz River basin in Washington States and 
these are shown in Figure 14. The elevation range in the former basin is 0.5–105 m, and is 263–4,100 m in 
the latter. Within the extracted regions that are the focus of our investigation, the elevations range from 33 
to 101 m for the Florida case, and 361 to 2,274 m for the Washington case. The natural DEMs were projected 
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Figure 12. Probability contours for the joint distributions of the elevations, z, and Hölder exponents, h, for the DEM 
obtained at t = 500 min for the original data (a) and three surrogate data sets at the value for η stated in each panel. 
Each surrogate DEM shown is that with the median RMSE between data and surrogates for the joint PDF. The dashed 
construction lines in panel (a) are the transects examined in Figure 13 and the arrow identifies a feature discussed in 
the text. DEM, digital elevation model; PDF, probability distribution function; RMSE, root-mean-squared error.
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Figure 13. Transects through the joint PDF shown in Figure 12a are shown in each panel as a solid line, together 
with the transects for 19 surrogates at the stated value for η. The left-hand column of panels shows the transect, 
p(h|z = 25 mm), that is, the vertical line in Figure 12a), while the right-hand column is for the horizontal line in 
Figure 12a, that is, p(z|h = 0.95). The conditional distributions shown are not renormalized; they are transect through 
the joint PDF. PDF, probability distribution function.
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in a metric system and the topographic depressions (e.g., sinks) were filled to enable the continuous flow. 
Thereafter, processing followed that used for the experimental data.

Panels (a) and (b) in Figure 15 show that the slope-area scaling for these two topographies is significantly 
different, with the scaling exponent nearly double in magnitude for the Florida case. The value for Flori-
da of dS/dA = 0.25 is tending toward the values seen for channel slope-area relations in fluvial landscapes 
(Hooshyar et al., 2017; Lague et al., 2003; Montgomery, 2001). Clearly, as the scale of the system increases, 
the basin slope-area scaling we have used for consistency with the experimental results is converging 
toward the values anticipated for channel slope-area scalings (Kirby & Whipple, 2012). The Washington 
data retain a shallower value of dS/dA = 0.18 as a consequence of the stronger influence of mass-wasting 
and colluvium-dominated processes. Despite these differences, both basins have η* = 0.999, although 
while the surrogates for the Washington DEM have a slope-area scaling exponent that converges on the 
true values in an approximately linear fashion, the Florida data exhibit a rapid decrease in the value of 
dS/dA from η = 0.2 to η = 0.5. The largest change in the dS/dA values for the Washington data occurs 
from η = 0.99 to η = 0.999. To investigate this further, we examined the fixed wavelet coefficients at these 
choices for η. The proportion of fixed coefficients as a function of 1 − η (to apply a logarithmic scale more 
easily) is given in Figure 15c. It is notable that for both DEMs, η = 0.999 equates to about 20% of the coef-
ficients being fixed (left-most dotted line), but that for lower values for η (to the right in this panel) there 
is a clear divergence in the proportion of coefficients fixed between the two DEMs, with energy spread 
among a greater number of coefficients for the Florida case. To understand these results more clearly, 
we found the difference in the elevations for the DEMs reconstructed from the fixed wavelet coefficients 
only for the values of η that represent the major changes seen in Figure 15a and 15b. We then derived the 
joint distribution functions for these differences (z(η = 0.5) − z(η = 0.2) and z(η = 0.999) − z(η = 0.99)) 
against the original elevations, which are shown in Figure 16 together with the marginal distributions for 
the original elevations.

For the Florida data, the top-left panels show that the dominant change as η increases from 0.2 to 0.5 is an 
increase in the elevation by 2.6 m, concentrated at an elevation of 78 m. The correlation between the two 
variables is also rather strong, R = 0.55, indicating a clear tendency for the positive elevation differences to 
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Figure 15. Values for the slope-area scaling exponent for the surrogate data as a function of η for Florida (a) and 
Washington (b), with the actual value shown as a horizontal, dashed line. Panel (c) shows the proportion of fixed 
wavelet coefficients as a function of 1 − η for Washington and Florida DEMs. Vertical dotted lines highlight the values 
at, from left to right, η = 0.999, η = 0.5, and η = 0.2 as discussed in the text. DEM, digital elevation model.
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arise preferentially at the mid to upper elevations. Consequently, we can conclude that the key difficulty for 
a multi-Hölder, η = 0 model in replicating the slope-area scaling for the Florida case-study is in allocating 
sufficient heights to the elevations at the mode of the marginal distribution for elevations in the original 
DEM. In other words, these regions in the terrain are dissected too much in the low η surrogates, while in 
nature, the greater preponderance of diffusive processes preserves these elevations. This is consistent with 
the earlier analysis of the number of Ω = 1 basins and of the slope-area scaling for the experimental surfac-
es. Preserving mass in the topography in the 60–80 m elevation range at η = 0.5 results in greater slopes in 
the smaller area basins, changing the median slope-area scaling for the surrogates from −0.026 for η = 0.2 
to −0.162 at η = 0.5.

The tendency for a positive covariance to exist in the joint distribution at z(η = 0.5) − z(η = 0.2) is also seen 
for the Washington data with R = 0.69. However, in this case, the mode is located centrally at z = 930 m, 
z(η = 0.5) − z(η = 0.2) = 0 m, although there are a number of strongly expressed additional modes, such 
as that at z = 630 m, z(η = 0.5) − z(η = 0.2) = −150 m, and z = 1600 m, z(η = 0.5) − z(η = 0.2) = 200 m. 
These latter modes also indicate that a multi-Hölder model fails to preserve the lower and upper elevations 
appropriately, resulting in incorrect slope-area scalings.

For both regions, the change to η*  =  0.999 is symmetric in the difference distribution  
for z(η = 0.999) − z(η = 0.99) with no structure as a function of z, the joint distribution reflects the na-
ture of the marginal distribution for z. Thus, the final stage of convergence to no significant difference 
in the slope-area scaling is simply about removing a sufficient number of small-scale irregularities. 
Hence, we can see that two very different landscapes exhibit qualitatively similar behaviors in terms 
of the manner by which the elevations are fixed in the wavelet coefficients for 0.2 ≤ η ≤ 0.5 and then 
0.99 ≤ η ≤ 0.999. Given that in both cases η* = 0.999, the major difference is in the nature of the dS/
dA scalings in Figure 15. What Figure 16 reveals about this is that the major drops toward convergence 
(0.2 ≤ η ≤ 0.5 for Florida and 0.99 ≤ η ≤ 0.999) arise at a similar length scale. The standard deviation of 
z(η = 0.5) − z(η = 0.2) for Florida is 4.4 m, and is 2.7 m for z(η = 0.999) − z(η = 0.99). This is most likely 
an artifact of the 10 m resolution of the two DEM products, but does imply that GMR may be able to 
detect any fundamental scale-breaks in the terrain from the manner that topographic metrics change as 
a function of η.
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Figure 16. The joint probability distribution functions for Florida (top row) and Washington (bottom row) between the 
elevations in the original DEM and the difference in elevations between the DEMs reconstructed from the fixed wavelet 
coefficients. The marginal distributions of the elevations are shown above each main panel. The differences used are 
z(η = 0.5) − z(η = 0.2) (left-hand panels) and z(η = 0.999) − z(η = 0.99) (right-hand panels). DEM, digital elevation 
model.
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6. Discussion and Conclusion
Here, we have formalized the non-linear analysis of DEMs using the GMR framework. In particular, we 
have used experimental, evolving landscapes to show that a simple multi-Hölder model for terrain, even 
with the set of elevations, z, constrained to the original values and the pointwise Hölder exponents located 
correctly in the terrain, is not sufficient to replicate several measures of geomorphometry for mature topog-
raphy. Our analysis framework has shown that the slope-area scaling relation, dS/dA and, particularly, the 
number of basins for a given Horton-Strahler stream order (when this is less than the scale of the system 
studied) are sensitive measures of landscape structure. In fact, the number of basins for most stream orders 
could be replicated appropriately by a multi-Hölder model at early times, but once a sediment flux equilib-
rium was established at t ∼ 350 min, complexity increased dramatically, as shown by the increase in η* in 
Figure 11. Values for η* remained high even when the landscape appeared to be in a steady-state, with the 
key geomorphic insight being that diffusive processes in the experimental landscape act to reduce the num-
ber of basins relative to the statistical models. We emphasize that it is only by using the surrogate data ap-
proach that the significance of these results can be established. Hence, while the slope-area results suggest 
η* is always high, the NB results for Ω < 4 suggest that when a topography is in the early stages of growth, 
a simple multi-Hölder stochastic process may be able to replicate most geomorphically relevant measures 
of landscape structure. However, when changes in flux become negligible, it is the subtle re-working of a 
landscape by more diffusive processes that result in an increase in landscape complexity as measured by η*. 
This was particularly associated with the coupling between low or intermediate elevations and large Hölder 
exponents (smooth regions).

The slope-area scaling was also applied to regions of the same area from Florida and Washington States 
with an order of magnitude difference in elevation range. Despite very different values for dS/dA, the 
values for the GMR control parameter at which there was no significant difference between data and 
surrogates was very similar (η* = 0.999) and very different to the value of η* = 0 expected if a simple mul-
ti-Hölder or multifractal model is sufficient to describe the topography. Furthermore, in both cases, as η 
increased from 0.2 to 0.5, which was the largest change in dS/dA for the Florida data, there was a strong 
positive correlation between the elevations in the original DEM and the difference in the elevations from 
the DEMs reconstructed from the fixed wavelet coefficients at η = 0.2 and η = 0.5. These results showed 
that the primary limitation in the multi-Hölder model was that it was removing too much elevation from 
the higher altitudes and placing too much at the lower elevations, which affected the ability to mimic the 
observed slope-area scalings.

Our observations raise the question of which class of stochastic processes provides a potential guide to 
modeling mature landscape surfaces effectively. Our results in Figures 12 and 13 are explicitly about the 
coupling between the Hölder exponents and the elevations themselves and that they demonstrate an 
association implies that self-regulating multi-Hölder surfaces (Echelard et al., 2015; Lévy Véhel, 2013) 
may have some potential. It also lends support to the recent suggestion that hypsometric analysis can 
be usefully extended by simultaneous consideration of elevation and Hölder regularity (Keylock, Singh, 
et al., 2020). However, our results also reveal no simple relation between elevation and Hölder regularity, 
implying further conditioning is necessary. As noted in the introduction, Veneziano and Iacobellis (1999) 
proposed that differing Hölder regularity could be associated with the channel network and the hillslope 
and, similar arguments have also been made by Tucker and Bras (1999) and Perron et al. (2008). These 
ideas are supported by the surrogate data methodology used here. However, such an approach takes us 
full circle as the introduction began by contrasting geomorphic studies that focus on extracted landscape 
features with those that attempt to characterize the landscape as a whole, with the latter philosophy 
guiding the study presented here. Advances in digital terrain processing (e.g., Passalacqua et al., 2010), 
simplify the process of DEM classification and the next stage of our study is to form a set of landscape 
regimes and determine the Hölder conditioning for each, potentially also as a function of elevation. This 
will lead to a means to determine a statistical modeling framework for natural terrains. The hypothesis 
testing framework introduced here, or one similar in nature, will be needed to examine the functional 
relations between landscape regimes and Hölder regularity and, thus, the statistical significance of par-
ticular landscape regimes for such a model.
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Appendix: The Classical Approach to Surrogate Data Generation
The philosophy of hypothesis testing for non-linear phenomena using surrogate data was formulated in 
the 1990s (Theiler et al., 1992; Theiler & Rapp, 1996). In these studies, surrogate data were generated that 
fulfilled the null hypothesis of being a possible realization of a linear (autocorrelative) process by preserving 
the Fourier amplitudes and the values of the original signal, but randomizing the Fourier phases. This is 
known as the iterated amplitude-adjusted Fourier transform (IAAFT) method (Schreiber & Schmitz, 1996). 
As the surrogates are linearized variants of the original data, comparison of the original data to the sur-
rogates using a suitable metric allows various forms of nonlinearity to be detected. For example, one can 
determine if the variation in Hölder exponents is sufficient for a signal to be significantly different to monof-
ractal and thereby exhibits statistical intermittency (Basu et al., 2007; Keylock, 2009; Poggi et al., 2004; Ven-
ema et al., 2006).

Given the rejection of such a hypothesis of linearity, gradual reconstruction (Keylock, 2010) can then be 
used to determine how complex a signal is. In geomorphology, Keylock et al. (2014) used gradual recon-
struction to show how the complexity of river bed topography was a function of discharge, with the super-
position of intermediate scale bedforms driving this complexity. Schwenk and Foufoula-Georgiou (2017) 
used gradual reconstruction to show that the planform of river meanders encodes information on process 
nonlinearities, with the behavior of pre-cutoff and post-cutoff meander bends contrasted. Beyond geomor-
phology, Keylock et al. (2015) applied this approach to a multi-Hölder model for turbulence and were able 
to show the statistical significance of relatively small coefficients in a Fokker-Planck model for the velocity 
increments.

A. 1 An Example Application of the IAAFT Method to Our DEMs

Figure A1 shows one DEM from our experiment (Singh et al., 2015), together with three example surrogates 
generated by the Fourier amplitude-preserving IAAFT algorithm. The chosen three DEMs are those with 
the minimum, median, and maximum root-mean-squared differences in elevation between the surrogate 
DEM and the original DEM at t = 100. Hence, this figure may be directly compared to Figure 3, which was 
based on the same source DEM and had minimum, median, and maximum root-mean-squared elevation 
differences of 5.72, 9.91, and 21.43 mm, respectively. The strong visual contrast between the actual terrain 
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Figure A1. The original DEM at t = 100 is shown in (a), while (b), (c), and (d) show three surrogate DEMs for 
this surface generated with the IAAFT algorithm with the minimum, median, and maximum root-mean-squared 
differences in the elevations, z, of 19 surrogates. DEM, digital elevation model; IAAWT, iterated amplitude-adjusted 
wavelet transform.
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and the surrogates implies straightaway that a mono-fractal description is inappropriate for describing this 
surface as a monofractal is statistically equivalent to prescribing a power-law relation for the decay in Fou-
rier amplitudes with frequency. The surrogate data generated in Figure 3 appear to be much more realistic.

This qualitative assessment may be formalized by generating a total of b surrogate data sets and, assuming 
a two-tailed statistical test, if the value for the original data on some measure is greater than or less than 
that for all b surrogates, the null hypothesis may be rejected at a significance level of α = 2/(b + 1). The 
differences between the IAAFT and IAAWT methods are formalized in Figure A2. The left-most panels 
show the mean of the absolute part of the Fourier transform of all 512 horizontal and 512 vertical profiles 
extracted from the DEM as a function of frequency, ω in radians as a black line, together with the results 
for the surrogates for the IAAFT (a) and IAAWT (d) algorithms. A power-law fit is also shown as a dashed 
line, indicating that there is “mono-fractal-like” behavior exhibited by these data (a monofractal exhibits a 
power-law decrease in spectral energy with frequency). Because the IAAFT algorithm preserves the Fourier 
amplitudes, not surprisingly, there is no visible difference between data and surrogates on this measure. 
The IAAWT algorithm also replicates the observed behavior of the Fourier amplitudes to a good level of 
accuracy but, in addition, it preserves the multi-Hölder properties as can be seen in the difference in the 
histograms for the pointwise Hölder exponents, h in (b) and (e). This is summarized more effectively by the 
boxplots in (c) and (f), where the former examines the mean value of h for both data and surrogates, and the 
latter considers the standard deviation.

Data Availability Statement
Digital elevations for the experimental data and the sub-regions of the Ochlockonee River basin and Cowlitz 
River basin used in this study may be obtained from http://doi.org/10.5281/zenodo.3922330. Code to under-
take gradual multifractal reconstruction in two dimensions may be downloaded from https://github.com/
ChrisKeylock/GradualMultifractalReconstruction.
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Figure A2. Statistical properties of the original DEM at t = 100 and the surrogate data. Panels (a) and (b) show results 
using the IAAFT algorithm and panels (d) and (e) are for the IAAWT algorithm. In each of these four panels, results for 
the original data are shown in black and for the surrogates in gray. Panels (a) and (d) illustrate the spectral properties of 
the DEMs with a best-fit power-law shown as a dashed line (displaced vertically). Panels (b) and (e) are the histograms 
of the pointwise Hölder exponents, h. Panels (c) and (f) show boxplots of the values of the mean and standard deviation 
for h, respectively, for 19 surrogates DEMs generated with the IAAFT and IAAWT algorithms. The values from the 
original DEM are shown by a horizontal dot-dashed line. The box delimits the lower and upper quartiles with the 
central bar the median. Whiskers extend for up to 1.5 times the inter-quartile deviation, with outliers shown as crosses. 
DEM, digital elevation model; IAAWT, iterated amplitude-adjusted wavelet transform.

http://doi.org/10.5281/zenodo.3922330
https://github.com/ChrisKeylock/GradualMultifractalReconstruction
https://github.com/ChrisKeylock/GradualMultifractalReconstruction
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