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ABSTRACT: Spectral PCA (sPCA), in contrast to classical PCA, offers the advantage of identifying organized spatio-

temporal patterns within specific frequency bands and extracting dynamical modes. However, the unavoidable trade-off

between frequency resolution and robustness of the PCs leads to high sensitivity to noise and overfitting, which limits the

interpretation of the sPCA results. We propose herein a simple nonparametric implementation of sPCA using the con-

tinuous analytic Morlet wavelet as a robust estimator of the cross-spectral matrices with good frequency resolution. To

improve the interpretability of the results, especially when several modes of similar amplitude exist within the same fre-

quency band, we propose a rotation of the complex-valued eigenvectors to optimize their spatial regularity (smoothness).

The developed method, called rotated spectral PCA (rsPCA), is tested on synthetic data simulating propagating waves and

shows impressive performance even with high levels of noise in the data. Applied to global historical geopotential height

(GPH) and sea surface temperature (SST) daily time series, themethod accurately captures patterns of atmospheric Rossby

waves at high frequencies (3–60-day periods) in both GPH and SST and El Niño–Southern Oscillation (ENSO) at low

frequencies (2–7-yr periodicity) in SST. At high frequencies the rsPCA successfully unmixes the identified waves, revealing

spatially coherent patterns with robust propagation dynamics.

KEYWORDS: Dynamics; Sea surface temperature; Pressure; Empirical orthogonal functions; Pattern detection; Spectral

analysis/models/distribution

1. Introduction

Identifying spatiotemporal relations and defining coherent

spatiotemporal features, typically referred to as ‘‘modes’’ of

variability, is a proficient way to characterize complex systems.

These modes, whether they are trends or cyclic patterns, are

regular features whose evolution is expected to be more pre-

dictable than the general background variability and whose im-

pact on other parts of the system is often significant. Earth’s

climate system is a complex system of particular interest,

exhibiting a plethora of modes caused by different physical

processes (e.g., solar forcing, oceanic/atmospheric circulations,

land–atmosphere interactions, etc.), and imprinting themselves

at various spatial and temporal scales. The accurate identifica-

tion and modeling of the modes of the climate system is neces-

sary for many key problems in geosciences, such as weather/

climate prediction, attribution of extreme events and hazards,

and assessment of climate change impacts.

The comprehensive knowledge of the climatic ‘‘state’’ of

the Earth at any instant requires measured or estimated nu-

merical values at every location of the globe for dozens of

variables, at a sufficiently high spatiotemporal resolution to

encompass all relevant scales of variability. For example, the

NCEP–NCAR reanalysis (Kalnay et al. 1996) comprises

more than 20 variables every 6 h from 1948 to the present

globally with 17 pressure levels on a 2.58 3 2.58 grid (more

than 1 billion entries per variable and per level). To make

such large datasets interpretable and usable for diagnostic

and prediction purposes, it is often necessary to find a proper

dimensionality reduction scheme to reduce the number of

variables of this complex system while minimizing loss of

information; in other words, to reduce the system to a man-

ageable number of dynamical modes.

A wide range of dimensionality reduction methods exists.

Principal component analysis (PCA), also commonly referred

to as empirical orthogonal function (EOF) analysis, is a non-

parametric method widely used in climate science (Lorenz

1956; Wallace and Gutzler 1981; Jolliffe 1986; Keiner and

Yan 1997; Ghil et al. 2002; Hsieh 2004; Hannachi et al.

2007; Navarra and Simoncini 2010). It consists in performing

a singular value decomposition (SVD) of a multivariate sys-

tem. In practice, this is generally achieved by computing the
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empirical covariance matrix of the variables and extracting its

eigenvectors. Its simplicity of implementation as well as the

fact that this empirical method does not require any a priori

assumption or model/parameter selection have contributed to

its popularity and success. Nevertheless, because when it is

used to identify relations across several time series it handles

each time step as an independent realization of the variables,

the classical PCA cannot identify dynamical relations in the

data. This and other limitations as further discussed below have

led to many variations or extensions of the classical PCA. For

example, if the variables are given under the form of regularly

sampled time series, one can compute the lagged covariances

or the Fourier cross-spectra of the variables rather than com-

puting only the (zero-lag) covariances, and then construct the

empirical lagged-covariance matrices or the cross-spectral

matrices of the system. This gives rise to the lagged PCA and

the spectral PCA as ‘‘natural’’ extensions of the classical PCA.

The lagged PCA allows one to better extract dynamical modes

whendifferent variablesor areasof the studieddomainhavedelayed

linear responses to the samesignalwithdifferent delays.The spectral

PCA (sPCA), through the phase (complex argument) information

in the complex cross-spectral coefficients, also allows one to handle

lagged correlations. Additionally, it offers the possibility to look for

modes in specific frequency bands and is particularly potent at

extracting wave-type modes and handling propagation effects

(nonstationary waves). Many other methods rely on the use of the

classical PCA in association with Fourier spectral analysis

and frequency filtering (e.g., Kidson 1999; Power et al. 1999; Kessler

2001; Wheeler and Hendon 2004; Roundy and Schreck 2009; Chen

andWallace2016;Chenetal. 2017;Wills et al. 2018). For the spectral

PCA, the linear relations between the variables leading to the

spectral PCs are defined directly in the Fourier frequency domain.

While sPCA (also known as frequency domain EOF) was intro-

ducedand theorized in theearly 1970s (Wallace andDickinson1972;

Wallace 1972) and later redefined and implemented under various

forms (Horel 1984;Hasselmann 1988; Johnson andMcPhaden 1993;

Mann and Park 1994, 1999; Ghil et al. 2002; Thornhill et al. 2002;

Mann et al. 2020), it has not become a standard method in atmo-

spheric and climate science. Thismay be due to the fact that, in spite

of being relatively straightforward in theory, its implementation re-

quires choosing an appropriate method for computing robust cross-

spectral coefficients from finite-length time series and avoiding

overfitting. Additionally, as already pointed out by Wallace

(1971) andWallace andDickinson (1972), the interpretability of

the extracted principal components (PCs) may be difficult when

several dynamicalmodes aremixed, which is likely to be the case

when several PCs of similar amplitude are foundwithin the same

spectral band.

To overcome the above difficulties, we herein propose a

wavelet-based implementation of the sPCA, which relies on the

complex Morlet wavelet for the estimation of the cross-spectral

matrices. The continuous wavelet transform is nowadays a stan-

dard and popular tool for spectral and cross-spectral analysis

(Hudgins et al. 1993; Perrier et al. 1995; Kumar and Foufoula-

Georgiou 1997; Jiang andMahadevan 2011; Banskota et al. 2017).

TheMorlet analytic wavelet in particular allows robust estimation

of power spectra and cross-spectra in the frequency domain, even

from relatively short time series, while allowing for reasonably

good frequency localization (Kirby 2005; Cottis et al. 2016). In

addition, we propose a rotation of the eigenvectors resulting from

thewavelet-based sPCA, using the spatial regularity (smoothness)

of the magnitude and phase of the rotated vectors, quantified

through the L1 norm (sum of absolute values) of the spatial

Laplacian, as an optimality criterion to select the ‘‘best’’ rotation.

The combination of these two innovations (robust spectral esti-

mation through theMorlet wavelet and spatial regularization of the

rotated eigenvectors) improves the interpretability and reduces the

sensitivity of the extractedmodes to noise and sampling variability.

The article is organized as follows. Section 2 starts with the

classical PCA, introduces the implementation of sPCA through

the complex Morlet wavelet transform, and describes the meth-

odology for the rotation of the eigenvectors (rsPCA). In section 3,

the proposed methodology is tested on synthetic data, namely

numerically generated nonstationary waves propagating in a 2D

plane, plus a colored random noise. Section 4 presents the results

of applying the rsPCA method to historical global fields of daily

geopotential height (GPH) and sea surface temperature (SST)

with focus on both multiannual and subannual modes of vari-

ability. Discussion and conclusions are presented in section 5.

2. Methodology

Let us consider a dataset made of L observations of N cen-

tered variables (e.g., zero-mean time series of length L asso-

ciated withN spatial locations). This dataset corresponds to the

N 3 L data matrix X:

X5

2
664
x
1, 1

� � � x
1,L

..

.
1 ..

.

x
N,1

� � � x
N,L

3
775: (1)

In what follows, the notation xn 5 (xn,1, . . . , xn,L), designates

the nth row of the matrix, that is, the vector of observations of

the nth variable (e.g., the time series at location n). All nota-

tions are defined in appendix A.

a. Classical PCA

The empirical sample covariance matrix ~C of the X dataset is

an N 3 N matrix defined as

~C5
1

L2 1
XX0, (2)

with X0 denoting the transpose conjugate matrix of X.

The principal component analysis is performed by extracting

the eigenvectors un and associated eigenvalues l2
n of the co-

variance matrix, which are the solutions of the system:

~Cu
n
5 l2

nun
: (3)

By definition, if un is a solution of Eq. (3), so is aun for any real

number a. We therefore choose to impose a unit norm (L2

Euclidian norm) for all eigenvectors. We note that any unit-

norm un can always be arbitrarily multiplied by 21. The ei-

genvalues l2
n are ranked in decreasing order such as l2

n $l2
n11.

The principal component time series associated with the ei-

genvalue l2
n and the eigenvector un is obtained as
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k
n
5

l
n

N
X0u

n
: (4)

The rank of a system is the number of linearly independent

variables composing it. The empirical rank of a system is taken

as the rank of its covariance matrix, that is, the number of lin-

early independent columns of the ~C matrix, which is equal to N

minus the number of linearly independent eigenvectors associated

with the zero eigenvalue.A systemof rankR,N can be reduced to

R variables without loss of information. In practice, the covariance

matrix derived from the data is generally found to be full rank (of

rank N), simply because the relations between the variables of the

system are not perfectly linear or because of measurement noise.

However, PCs associated with small eigenvalues may be neglected

with minimum loss of information. Therefore, the decay rate of the

eigenvalues canbeusedas ameasureof the ‘‘reducibility’’ of a system

(i.e., how easily a high-dimensional system can be compressed into a

low number of modes without important loss of information).

PCA is a powerful tool for extracting linear modes of vari-

ability of complex systems and has seen many applications in

atmospheric sciences and beyond. However, it has one main

limitation in that it can only identify linear ‘‘synchronous’’

relationships between the variables of a system. In particular,

when several variables of the system have a delayed linear

response to a given signal and if the time delay is not identical

for all the variables, the PCA will generally fail to identify this

dynamic relationship or will require several PCs to compres-

sively capture it.

b. Spectral PCA via the Morlet wavelet

The spectral PCA (sPCA) relies on the computation of the

cross-spectral matrix Sk between the time series xn at locations

n 5 1, . . . , N and extraction of its eigenvectors in various fre-

quency bands bk( f ). In the frequency band bk( f ), the complex

N 3 N matrix Sk is defined as

S
k
5

1ð1‘

2‘

b
k
(f )df

2
666664

ð1‘

2‘

s
x1,x1

(f )b
k
(f )df � � �

ð1‘

2‘

s
x1,xN

(f )b
k
(f )df

..

.
1 ..

.ð1‘

2‘

s
xN ,x1

(f )b
k
(f )df � � �

ð1‘

2‘

s
xN ,xN

(f )b
k
(f )df

3
777775, (5)

with sxn ,xm(f ) being the Fourier cross-spectrum between the two

time series xn and xm at locations n and m, respectively, and

bk(f) a bandpass transfer function centered on frequency fk. The

matrix Sk is a complex Hermitian matrix with real diagonal co-

efficients. The index k in {1, 2, . . . ,K} is the frequency band index.

The sPCA is a direct extension of classical PCA in the Fourier

domain. In the fields of signal processing and systems control theory,

this approach, which consists in identifying empirical linear dynami-

cal relations between the variables of the system, is more commonly

referred to as linear dynamical systems identification (Picci and

Pinzoni1986;GeorgiouandLindquist 2019).While theessenceof the

approach always remains the same, it may be implemented in dif-

ferent ways. The various implementations of the method essentially

differ in the way the cross-spectral matrix Sk is computed from the

data and in the definition of the frequency bands {bk(f)}.

A direct consequence of the greater flexibility (more degrees of

freedom) of the sPCA method compared to the classical PCA is

that the sPCA is prone to overfitting when the cross-spectral coef-

ficients are not robustly estimated. For example, from a set of L

observations (with L finite) of N variables, if no regularity is im-

posed on the cross-spectra, and if the number K of independent

frequency bands of the empirical cross-spectra is greater than or

equal to L, one can always fit a ‘‘perfect’’ empirical dynamical re-

lation (i.e., a transfer function) between any two variables xn and xm
and thus obtain a rank-one cross-spectralmatrix for each frequency

band (see appendix B). Therefore, there is a necessary trade-off

between the spectral resolution (i.e., the number and width of fre-

quency bands) and the robustness of the cross-spectral matrix es-

timation. The Bartlett and Welch periodogram methods (Bartlett

1950; Welch 1967; Proakis 2001) are the most frequently used

methods for estimating robust (with low sampling variance)Fourier

power spectra and cross-spectra fromfinite-length time series. They

consist in splitting the time series into H segments and then

performing a discrete Fourier transform (DFT) for each segment.

The Welch method uses overlapping segments while the Bartlett

method uses nonoverlapping segments. A robust estimation of the

cross-spectral coefficients in each frequency band is obtained by

averaging the complex cross-spectral coefficients obtained for each

segment. As a trade-off for the greater robustness of the computed

cross-spectral coefficients with reduced sample variance due to

averaging, the Welch and Bartlett periodograms have reduced

spectral resolutions since each one of the H segments corresponds

to a shorter time series (see appendix B).

While the Welch and Bartlett methods for computing periodo-

grams are classified as nonparametric (as they do not rely on a

parametric spectrummodel), the user still needs to define the num-

ber of segments for the Bartlett method, plus the overlapping

fraction for the Welch periodogram. The commonly used ‘‘modi-

fied’’ version of the Welsh periodogram also requires selecting a

windowing function to be applied to each segment. All these

methodological choices affect the computed cross-spectral matrix,

in particular its rank and the decay rate of its eigenvalues (see

appendix B).

Other spectral estimation methods have been used in climate

science to perform spectral PCAs. In Mann and Park (1994, 1999)

Slepian tapers are used as weighting functions to compute cross-

spectral quantities. The Slepian tapers are designed to minimize

spectral leakage, that is, to compute cross-spectral coefficients over

narrow frequencybands.TheSlepian tapersmethod is adapted if, in

the frequency band of interest, most of the variability of the system

can be explained by a small number of PCs. Indeed, with this

method, the rank of the empirical cross-spectral matrix is at most

15 JANUARY 2021 GU I L LOTEAU ET AL . 717

Unauthenticated | Downloaded 12/23/20 08:16 PM UTC



equal to the number of orthogonal tapers. InMann andPark (1994)

and Mann et al. (2020), the method is implemented with 3–6 or-

thogonal tapers. In the cases when the system is too complex to be

reduced to a few PCs, using the Slepian tapers method will inevi-

tably lead to overfitting. The ‘‘multiwavelet’’ method (Lilly and

Park 1995; Park andMann 2000) corresponds to a localized in time

version of the Slepian taper method. The principal oscillation pat-

terns (POPs) introduced by Hasselmann (1988) can be seen as a

parametric version of sPCA where the PCs are autoregressive

moving average (ARMA) processes.

As a simple alternative to the spectral computation methods

mentioned above, we propose to apply the sPCA by relying on

the complex analytic Morlet wavelet to estimate the cross-

spectral matrix. The continuous wavelet transform is obtained

by convolving the analyzed signal with a basis of wavelet

functions which are all dilated and translated versions of the

same ‘‘mother’’ wavelet function. The Morlet mother wavelet

(Morlet et al. 1982; Addison 2017) is defined as

C(t)5p21/4(ei2pf0 t 2 e[2(2pf0)
2/2])e2t2/2, (6)

which, if 2pf0 . 5, can be approximated as

C(t)5p21/4ei2pf0 te2t2/2: (7)

TheMorlet wavelet is therefore the complex exponential function

ei2pf0 t 5 cos(2pf0t)1 isin(2pf0t) modulated by a Gaussian enve-

lope.The continuouswavelet transformwx(n, t) of the signal x(t) is

defined as

w
x
(n, t)5

1ffiffiffi
n

p
ð1‘

2‘

x(u)C0
�u2 t

n

�
du, (8)

with n being the scale parameter in the wavelet time-scale

domain; C0(u) designates the complex conjugate of C(u).

At scale nk, Wk is the N 3 L matrix of wavelet coefficients

derived from the data matrix X:

W
k
5

2
6664
w

x1
(n

k
, t

1
) � � � w

x1
(n

k
, t

L
)

..

.
1 ..

.

w
xN
(n

k
, t

1
) � � � w

xN
(n

k
, t

L
)

3
7775: (9)

Each scale nk in the wavelet scale domain corresponds to a

frequency band bk in the Fourier frequency domain with the

central frequency of bk being fk 5 f0/nk (see appendix B).

Because of the correspondence between the Morlet wavelet

transform and the Fourier transform [Eqs. (7) and (8) and

appendix C], the empirical sample cross-spectral matrix for the

frequency band bk can be computed as

fS
k
5

1

L2 1
W

k
W0

k: (10)

The Morlet wavelet method to compute the cross-spectral matrix

can be seen as similar to using amodifiedWelch periodogramwith a

Gaussian window whose length varies inversely proportional to the

frequency. Our proposed method can also be related to the ‘‘mul-

tiwavelet’’ method (Lilly and Park 1995; Park and Mann 2000),

except that in our case, robustness is obtained through temporal

integration rather than using multiple wavelets with mutually ex-

clusive frequency support.

Similarly to the classical real-value PCA case, the complex ei-

genvectors un,k of the fSk matrix are the solutions of the equation:

fS
k
u
n,k

5l2
n,kun,k

: (11)

The eigenvalues l2
n,k of

fSk are real becausefSk is by construction a

Hermitian matrix. As for the real case, we impose unit L2 norm

for each eigenvector. The PC series of complex wavelet coeffi-

cients associated with the eigenvector un,k at the scale nk is

k
n,k

5
l
n,k

N
W0

kun,k
: (12)

The wavelet PC kn,k is a complex signal defined in the wavelet

space; the real-value time series corresponding to the nth

wavelet PC at scale nk can be reconstructed through an inverse

wavelet transform. We can also combine several wavelet PCs at

various scales and then apply the inverse wavelet transform to

reconstruct a time series that encapsulates the variability of the

original signal within any desired frequency band (range of

scales). The reconstructed signal corresponds to a linear com-

bination of the bandpass filtered and phase-synchronized origi-

nal time series. One shall note that the phase shift between any

two complex scalar elements of the un,k vector is interpretable as

the phase shift at frequency fk between the two time series at the

corresponding locations. However, the argument of the scalar

elements of un,k is arbitrary and not physically meaningful

(similarly to the sign for real-valued eigenvectors). Indeed, if un,k
is a solution of Eq. (11), so is eivun,k for any value ofv. However,

multiplying un,k by eiv introduces a phase shift in the re-

constructed PC. For easier interpretation of the timing of the

reconstructed PC at frequency fk, we choose the reconstructed

PC which is aligned in phase with the highest contributing time

series at that frequency (i.e., we impose a zero argument for the

scalar element of un,k having the highest absolute value). When

reconstructing a real time series from several wavelet PCs, it is

important to control the relative phase of the combined wavelet

PCs. Here we chose to impose for each PC a zero phase shift

relatively to the time series having the highest total contribution

across all the combined wavelet PCs. Also note that the inverse

wavelet transform with the Morlet wavelet is not an exact re-

construction; however, in practicewe find that the time series are

well enough reconstructed to be interpretable.

The only parameter that has to be selected by the user for the

implementation of the Morlet wavelet sPCA is the central fre-

quency f0 of the mother wavelet. It is generally chosen between

0.8 and 1; the value f0 5 0:849 f5 [2ln(2)�21/2g can be chosen

such that the magnitude of the second highest peak of the

wavelet is half the magnitude of the highest peak (central peak).

In practice, values between 0.8 and 1will produce similar spectra

and cross-spectra. Taking a value of f0 higher than 1 will lead to a

narrower spectral bandwidth (higher-frequency resolution). It

will also lead to poorer localization of the wavelet coefficients

in the time domain (lower time resolution), which in practice

translates into wavelet coefficients more correlated in time (i.e.,

fewer independent samples for estimating the cross-spectral

coefficients), meaning less robust empirical cross-spectra and
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higher risk of overfitting. As for the periodogram methods, the

trade-off between frequency resolution and time resolution/

number of independent samples is related to the Heisenberg–

Gabor limit (Gabor 1946; Addison 2017). One of the interesting

properties of the Morlet wavelet is that it actually reaches the

Heisenberg–Gabor limit, therefore allowing the best possible

time resolution for a given frequency resolution (i.e., minimal

temporal correlation of the wavelet coefficients and maximal

effective sample size). Note that, because the wavelets shrink as

scale gets finer and the frequency gets higher [Eq. (8)], the ef-

fective sample size increases with frequency, allowing us to po-

tentially extract robust coherent high-frequency modes even if

their amplitude is low relatively to the noise. The counterpart of

this is reduced frequency resolution at high frequencies.

The Morlet wavelet, being a differentiable wavelet (Vetterli

and Kovacevic 1995; Addison 2017), is in theory blind to linear

trends; that is, the wavelet transform of a linear function of

time is zero everywhere. However, the wavelet coefficients will

be locally affected by the ‘‘transition points’’ in the time series,

which occur when different trends affect different portions of

the analyzed signal. The spectral PCA is designed specifically

to extract periodic modes of variability and is not a recom-

mended tool for trend analysis. However, wavelets can be used

to efficiently remove periodic signals from time series (Kumar

and Foufoula-Georgiou 1997; Addison 2017) to then perform a

trend analysis on the residual signal (e.g., through a classical

PCA). Note that the wavelet coefficients are affected by edge

effects at the beginning and at the end of a time series; these

can be avoided by considering only coefficients outside of the

cone of influence or by performing appropriate padding of the

time series before the wavelet transform (see appendix D).

c. Rotation of eigenvectors with spatial regularization for

physical interpretability

For the PCA and sPCA, the dimensionality reduction is

obtained by projecting the data X (respectively the wavelet

coefficientsWk at frequency fk) onto the subspace generated by

the first P eigenvectors (with P , N). The set of eigenvectors

{u1, u2, . . . , uP} (respectively {u1,k, u2,k, . . . , uP,k}) is an or-

thogonal basis of this subspace. One can generate other

FIG. 1. Wave propagation example. (top left) Representation of the simulated 51 3 51 spatial grid domain with

the origins A0 and B0 of the two waveforms a(t) and b(t) marked. (top right) Synthetic waveforms a(t) and b(t).

(bottom) Temporal power spectral density and cross-spectral density of the waves a(t) and b(t) and of the noise mn1,n2
(t).

Power spectral densities (PSD) and cross-spectral densities (CPSD) are estimated using the Morlet wavelet.
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orthogonal bases of the same subspace by performing a rota-

tion of the initial basis (i.e., by recombining linearly the eigenvec-

tors while preserving orthogonality). While the information

retained by the projection of the data onto the subspace would

remain the same under any rotation of the basis, the physical in-

terpretability of the basis vectors may be improved by finding the

right rotation, which allows ‘‘unmixing’’ (i.e., distinguishing) phys-

ical modes of variability (Richman 1986). In particular, in the case

when the PCA identifies twoormore PCs of equal importance (i.e.,

associated with equal eigenvalues) all rotated bases are equally

valid solutions to the SVD problem, and therefore without per-

forming regularizationby rotationone cannotfindaunique solution

of the PCA. In practice when the eigenvalues are relatively close to

each other, physical modes of variability are more likely to be

mixed. This fact had already been pointed out by Wallace (1971)

andWallace andDickinson (1972), among others, as a limitation of

the sPCA technique. While this also affects the classical PCA [see,

e.g., the ‘‘ruleof thumb’’ inNorthet al. (1982)], it ismore likely tobe

troublesome for the sPCA as the higher number of degrees of

freedom compared to the PCA makes it more likely for two sep-

arate physical modes to have a nonzero spectral coherence in a

specific frequency band (than two separate physicalmodes having a

nonzero correlation for the classical PCA).

Rotated PCA methods aim at finding a rotation of the eigen-

vectors (or rotation of the PCs) maximizing a given criterion (or

minimizing a cost function). The varimaxmethod (Kaiser 1958) is

for example themost widely used formof rotated PCA. It consists

in finding the rotation that maximizes the sum of the squared

correlations between the original variables and the rotated PCs.

While rotated PCAs have often been used in climate science

(Mestas-Nuñez andEnfield 1999; Lian andChen 2012; Chen et al.
2017), they have rarely been applied in a complex domain such as

the Fourier domain, and, in these rare examples (Wallace and

Dickinson 1972; Bloomfield and Davis 1994; Bueso et al. 2020),

only using the varimax or promax criteria, which ignore the phase

information and the spatial structure of the eigenvectors.

When each variable of the system can be attributed to a

spatial location, the rotated eigenvectors can be mapped as a

D-dimensional field whose structure and regularity can be

analyzed and used as a criterion to find interpretable and

meaningful rotated PCs. We propose here to evaluate the

spatial regularity (smoothness) of the rotated eigenvectors

through the Laplacian operator (sum of second partial deriv-

atives). For the sPCA, the spatial structure of the phase

(complex argument) of the eigenvectors is particularly infor-

mative, especially when one seeks to identify dynamical

propagating modes. Indeed, for a propagating wave, the phase

is expected to be a linear (or at least locally linear) function

of space.

Let us consider u1,k and u2,k two unit-norm eigenvectors of

the cross-spectral matrix fSk associated with the l2
1,k and l2

2,k

eigenvalues. We define

FIG. 2. Classical PCA applied to the synthetic wave propagation example, setup 1 (waves with different amplitudes), without noise. (top

left) Fraction of the variance of the synthetic system explained by the first 12 PCs for the classical PCA. (bottom left) Spatial repre-

sentation of the eigenvectors associated with the first four PCs, the unit-norm eigenvectors are shown with a scaling factor ln/L, with

L5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N

n51l
2
n/N

q
. (right) First four PC time series.
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uR1
u,u,k 5 cos(u)u

1,k
1 sin(u)eiuu

2,k
, (13)

and

uR2
u,u,k 52sin(u)u

1,k
1 cos(u)eiuu

2,k
: (14)

The vectors uR1
u,u,k and uR2

u,u,k are by definition unit-norm or-

thogonal vectors of C
N . In the case when all N time series

forming the X dataset are associated with a spatial location

(in aD-dimensional space), the complex vectors uR1
u,u,kand uR2

u,u,k

can be represented as complex functions of space uR1
u,u,k(y) and

uR2
u,u,k(y); y is a D-dimensional coordinate vector. We can then

define an objective function:

J(u,u)5
ð
R
D

[jDuR1
u,u,k(y)j1 jDuR2

u,u,k(y)j]dy, (15)

where D denotes the Laplacian operator in D dimensions. To

identify smooth rotated eigenvectors (i.e., with both phase

and magnitude being locally regular in space), we look for

the rotation parameters minimizing the objective function

J(u, u):

(u
opt

,u
opt

)5 argmin[J(u,u)]: (16)

The optimally rotated vectors at frequency fk are therefore

uopt1
k 5 cos(u

opt
)u

1,k
1 sin(u

opt
)eiuoptu

2,k
(17)

and

u
opt2
k 52sin(u

opt
)u

1,k
1 cos(u

opt
)eiuoptu

2,k
: (18)

In practice, with a finite numberN of time series corresponding

to discrete locations yn, J(u, u) is approximated as

~J(u,u)5 �
N

n51

j~DuR1
u,u,k(yn)j1 j~DuR2

u,u,k(yn)j, (19)

where ~D is a discrete Laplacian operator (see appendix E). In

fact, the minimized quantity is the L1 norm of the spatial

Laplacian of the mapped eigenvector. We therefore term the

proposed rotation criterion spatial Laplacian regularization

(SLR). Rotations with more than two eigenvectors can be

implemented by performing iterative pairwise rotations with

all pairs of vectors until convergence to a stable solution.

3. Demonstration of the rotated spectral PCA (rsPCA)
in a synthetic example

We demonstrate the possibilities of the proposed method-

ology by applying it to a synthetic data generated by a simple

numerical model simulating twowaves propagating in opposite

directions on a 2D plane plus a colored random noise. The

magnitudes, phase, and propagation speed of the waves are

controlled, as is the noise level of the system. The simulated

system corresponds toN5 2601 time series of length L5 6000

samples (with arbitrary time unit), spatially distributed on a

51351 spatial grid (Fig. 1). At the (n1, n2) location (with n1 and

n2 in {1, 2, . . . , 51}), the time series xn1,n2(t) is

FIG. 3. As in Fig. 2, with noise added to the system. The noise accounts here for 70% of the system’s variance.
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x
n1,n2

(t)5
1

d
0
1d
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�
t1

d
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c

�
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1

d
0
1 d

b

g
1
b

�
t1

d
b

c

�
1 g

2
m
n1,n2

(t),

(20)

with

d
a
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n

1
2 5)

2 1 (n
2
2 5)

2
q

, (21)

d
b
5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(n

1
2 47)

2 1 (n
2
2 47)

2
q

: (22)

The functions a(t) and b(t), shown in Fig. 1, are two series of

nondispersive wave packets oscillating at the same frequency.

The a(t) signal originates from the (5,5) grid point (point A0)

and propagates linearly through the domain. Similarly, the b(t)

signal originates from the (47,47) grid point (point B0) and

propagates linearly through the domain. The parameter c con-

trols the propagation speed of the a(t) and b(t) signals. The pa-

rameter d0 is a constant ensuring that the amplitude of the waves

remain finite at their origin. Theparameters g1 andg2 control the

relative amplitude of the two waves and of the noise mn1,n2
(t).

The noise mn1,n2
(t) is a colored noise with both its temporal and

spatial power spectral density (PSD) proportional to f21.4, where

f is the Fourier temporal/spatial frequency (see Fig. 1 for the

temporal PSD). The instantaneous phase shift between a(t) and

b(t) is randomized (by adding a random phase shift in each

individual wave packet of the b(t) signal) to minimize the spec-

tral coherence between the twowaves. Two setups are presented

below. In setup 1 the two waves have different amplitudes (g1 5
0.8). In setup 2, the two waves have the same amplitude (g15 1).

For both setups, d0 5 30 and c 5 1.2.

The classical PCA is applied to identify the principal modes

of variation of the 2601 time series of the synthetic system for

setup 1, first without noise (g2 5 0) and then with a noise level

adjusted such as the variance of the noise accounts for 70% of

the total variance of the system. The result of the PCA without

noise is shown in Fig. 2. Note that four PCs are needed to

capture 80% of the variance and no less than nine PCs are

needed to capture 95% of the variance. Additionally, none of

the first four eigenvectors can be related specifically to one of

the two waves but all four are rather a combination of both a(t)

and b(t). This illustrates the poor ability of the classical PCA to

simply capture dynamical linear relations between the variables

when propagation effects are involved. Figure 3 shows the result

of the PCA when noise is added to the system. One can see that

all first four eigenvectors are strongly affected by the noise. The

first two PCs essentially capture low-frequency components of

the random noise, mixed with the a(t) and b(t) signals.

The spectral PCA is then applied to the system for setups

1 and 2 described previously and with a noise accounting in

both cases for 70% of the system’s variance. The results for

FIG. 4. Spectral PCA applied to the synthetic wave propagation example for setup 1. For this setup, g1 5 0.8 so the waves a and b have

different amplitude. The noise accounts for 70% of the variance of the system. (top left) Fraction of the spectral power of the synthetic

system explained by the first three PCs of the sPCA as a function of the frequency. (right) Spatial representation of the eigenvectors

(magnitude and phase) associated with the first two PCs at frequency fk5 0.04; the unit-norm eigenvectors are shown with a scaling factor

ln,k/L, with L5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N

n51l
2
n,k/N

q
. The circular arrow in the color scale of the phase indicates the direction of propagation of the extracted

waves. (bottom left) Reconstructed signal through the inverse wavelet transform of the first (s21) wavelet PCs at all frequencies between

0.025 and 0.065.

722 JOURNAL OF CL IMATE VOLUME 34

Unauthenticated | Downloaded 12/23/20 08:16 PM UTC



setup 1 are shown in Fig. 4. For the frequency band centered

at the frequency fk 5 0.04 the first two PCs explain respec-

tively 56% and 35% of the spectral power. The phase and

magnitude structure of the two corresponding eigenvectors

accurately describe the propagation of a(t) and b(t) with

good separation of the two waves. The counterclockwise

progression of the phase corresponds to a forward delay in

time. The signal reconstructed through inverse wavelet

transform from the first wavelet PCs at frequencies 0.025–

0.065 corresponds mostly to the a(t) signal while the signal

reconstructed from the second PCs within the same fre-

quency range corresponds mostly to the b(t) signal. In spite

of the relatively good separation of the two waves some in-

terference patterns are visible in the spatial structure of the ei-

genvectors (in both the phase and the magnitude). These arise

because the two waves are not perfectly independent and can be

locally coherent over some periods of time. Actually, the spectral

coherence between the waves a(t) and b(t) at the peak frequency is

0.1 (see Fig. 1). In practice, for a real case, nonsignificant coherence

between two dynamical modes, arising from numerical approxi-

mations and limited number of samples, can have the same effect.

In setup 2, the waves a and b have same total energy. The

results of the sPCA for this setup are shown in Fig. 5. In this

case, sPCA is able to determine that two modes of equal

FIG. 5. As in Fig. 4, but for setup 2. For this setup, g15 1 so thewaves a and b have same amplitude. The noise accounts for 70%of the variance of

the system. It is observed that in this case the first two PCs are hardly interpretable since they are both reflecting mixtures of the two waves.

FIG. 6. Spatial Laplacian regularization (SLR) objective function ~J(u, u) as a function of the rotation parameters

u and u for the rotation of the first two eigenvectors of the sPCA u1,k and u2,k at frequency 0.04 for the two setups of

the synthetic wave propagation example. In both panels, the white star indicates the minimum of ~J(u, u).
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importance, explaining together more than 90% of the spectral

power, exist around the frequency 0.04. However, the first two

eigenvectors are not easily interpretable since both of them are

reflecting a complex combination of the waves a and b. As

mentioned before, with the two waves having equal amplitude,

any two orthogonal unit-norm vectors being linear combina-

tions of the two eigenvectors corresponding to the signals a and

b can be solutions of the SVD problem. In practice, numerical

approximations and small fluctuations caused by the noise will

lead to a random ‘‘optimal’’ decomposition. The result of the

sPCA is therefore extremely sensitive to noise and is also un-

stable across nearby frequency bands in that case.

We then perform the rotation of the eigenvectors u1,k and

u2,k at frequency 0.04 with the SLR criterion as described in

section 2d for the two setups presented above. Figure 6 shows

the value of the criterion ~J(u, u) as a function of the rotation

parameters u and u. For both setups, the function ~J(u, u)
shows a unique minimum on the [0, p/2] 3 [0, p] hypercube.

One shall note that eight symmetrical solutions always exist on

[0, 2p] 3 [0, 2p], which correspond to uopt1
k and uopt2

k being

switched and/or multiplied by 21. For the setup 1, the pair

(uopt, uopt) minimizing ~J(u, u) is (0.93p/2, 1.32p/2). The values
cos(uopt) 5 0.11 and sin(uopt) 5 0.99 reveal that the initial solu-

tions identifiedby the sPCAwere relatively close to the optimally

rotated solutions. For setup 2, (uopt, uopt) 5 (0.55p/2, 1.1p/2)

with cos(uopt) 5 0.65 and sin(uopt) 5 0.76 revealing that the ei-

genvectors u1,k and u2,k identified by the sPCA were equipoised

mixtures of the optimally rotated vectors uopt1
k and uopt2

k .

The rotation converged to identical vectors u
opt1
k and u

opt2
k

leading to identical PCs (up to the difference in the magnitude

of the second PC) in the two cases (Fig. 7). One can see that,

after rotation, the two waves a and b are effectively separated.

The separation of the two waves is improved even for setup 1,

which for the initial decomposition found by the sPCA was

relatively good in identifying separately the waves a and b. We

can estimate the propagation speed from the phase informa-

tion from the spatial structure of the phase of the eigenvectors:

a phase shift of 2p at fk 5 0.04 corresponds to 30 grid incre-

ments, and we therefore estimate ~c5 303 0:045 1:2, which is

an accurate estimate of the true propagation speed.

FIG. 7. Result of the proposed rotation procedure of the first two eigenvectors of the sPCA u1,k and u2,k at frequency 0.04 applied to the

synthetic wave propagation example for the setups 1 (waves with different amplitude) and 2 (waves with same amplitude). (top) Optimally

rotated vectors uopt1
k and uopt2

k . The unit-norm vectors are shown with a scaling factor l
optn
k /L, with L5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N

n51l
2
n,k/N

q
. (bottom) Reconstructed

signal through the inverse wavelet transform of the first (s21) optimally rotated wavelet PCs at all frequencies between 0.025 and 0.065.
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For comparison the result of the rotation with the varimax

criterion for case 2 is shown in Fig. 8. The varimax criterion

ignores the phase information and the spatial structure of the

eigenvectors. As it maximizes the variance of the square of the

loadings, it promotes sparse solutions (i.e., rotated eigenvec-

tors with a few high-magnitude loadings and many loadings of

magnitude close to zero). However, in our synthetic case, as

bothwaves propagate across the whole domain, their support is

not sparse. The varimax criterion therefore selects a solution

highlighting constructive and destructive interferences be-

tween the two waves rather than unmixing them. In fact, the

varimax criterion can effectively help separate two waves only

in the case when these have distinct spatial supports.

4. Analysis of global geopotential height and sea surface
temperature

Identifying and extracting dominant climate modes across a

range of space–time scales, such as interannual to decadal SST

modes (Mantua et al. 1997; Trenberth 1997; Newman et al.

2016; Wang et al. 2017) and seasonal to subseasonal modes in

the atmosphere (Madden and Julian 1971; Trenberth and

Paolino 1981; Leathers et al. 1991; Trenberth andHurrell 1994;

Thompson and Wallace 1998; Feldstein 2000; Hurrell et al.

2013), has received a lot of attention. PCAmethodologies have

been a primary tool in such studies, with the many variants and

extensions of the classical PCA method as discussed in the

introduction. However, unmixing modes and accurately ex-

tracting propagating anomalies still present unique challenges.

In this section, we apply the proposed rsPCA methodology to

global daily SST and 500-mb (1 mb5 1 hPa) GPH time series,

with the aim of highlighting its advantages in identifying and

unmixing modes of climate variability at any desired temporal

scale, as well as depicting the propagation of dynamical modes.

We focus on subseasonal and interannual scales.

a. Data used for analysis

The analyzed data consist of a record of 71 years (1948–2019)

of global daily 500-mb GPH from the NCEP–NCAR reanalysis

project (Kalnay et al. 1996) and daily global SST observations

from September 1981 to December 2014 from the NOAA

Optimum Interpolation Sea Surface Temperature (OISST)

analysis (Reynolds et al. 2007). The original GPH data are

provided on 2.58 3 2.58 latitude/longitude grid while the original

SSTdata are given on a 0.258 3 0.258 grid. For the purpose of this
study, both datasets are reprojected on 220 km3 220 km equal-

area pixels through a Mollweide projection (Snyder 1977). The

reprojection on equal-area pixels is recommended before ap-

plying PCA or sPCA, to avoid giving excessive weight to high-

latitude areas in terms of contribution to the system’s variance.

FIG. 8. Result of the varimax rotation of the first two eigenvectors of the sPCA u1,k and u2,k at frequency 0.04 for the setup 2 (waves with

same amplitude) of the synthetic wave propagation example. (top left) Varimax criterion as a function of the rotation parameters u andu,

the white star indicates themaximum, i.e., the optimal rotation. (right)Optimally rotated vectors uopt1
k and uopt2

k . The unit-norm vectors are

shown with a scaling factor loptn
k /L, with L5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N

n51l
2
n,k/N

q
. (bottom left) Reconstructed signal from the combination of the first (s21)

optimally rotated wavelet PCs at all frequencies between 0.025 and 0.065.
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Because the temporal variations ofGPHand SSTare dominated

by the seasonal cycle, which is not what we are trying to char-

acterize here, we removed the seasonal variations of the time

series by subtracting the climatic mean of each calendar day in

every pixel to obtain series of climatic anomalies. The climatic

mean for each calendar day corresponds to the average over the

whole time series of the 15-day period centered on this day. The

studied systems are of dimension N 5 10 284 pixels and L 5
26 298 time steps for the GPH data, and N 5 7588 pixels (land

pixel being excluded) and L 5 12 167 time steps for the

SST data.

Figure 9 shows how the energy (variance) of these variables

is distributed across space and across temporal frequencies.

The variability of the GPH is much lower in the tropics than at

middle and high latitudes, whereas for the SST the variability is

foundmore evenly distributed across the globe. Comparing the

power spectral density of the two variables, we can see that SST

shows relatively more variability than GPH at temporal scales

between 3 months and 10 years while GPH shows more vari-

ability for periods shorter than 3 months (i.e., S2S time scales).

b. Results

Similarly to previous published studies (Weare et al. 1976;

Wallace et al. 1993; Messié and Chavez 2011), the classical

PCA is first applied to the global GPH and SST anomalies.

Figure 10 shows how much of the variance is captured by the

first 400 PCs for both variables. One can see that the first two

PCs explain a higher fraction of the variance for the SST than

for 500-mb GPH; however, the 50 first PCs explain 80% of the

variability for GPH while they explain only 65% for SST. For

FIG. 9. Distribution of energy (variance) of SST and 500-mb GPH daily anomalies across space and across

temporal frequencies. (left) Standard deviation of the anomaly time series in each pixel. (right) Temporal power

spectral densities (PSD) of the GPH and SST time series. PSDs are estimated using the Morlet wavelet for each

pixel and then averaged over all pixels. PSDs are normalized by the total variance of the system to be comparable.

FIG. 10. (left) Percentage of the variance explained by the first 10 PCs for the classical PCAapplied to daily SST and

500-mb GPH anomalies. (right) Cumulated variance explained by the first 400 PCs.
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the SST, the first twomodes, accounting respectively for 10.8%

and 8.3% of the variance, appear to be related to the El Niño–
Southern Oscillation (ENSO) signal (Trenberth 1997; Wang

et al. 2017) (3–7-yr cycle) and to anthropogenic climate change

(trend) with a strong signal over the tropical Pacific Ocean

(Fig. 11). The third and fourth modes seem to resemble the

patterns of the North Pacific gyre oscillation (Di Lorenzo et al.

2008, 2009) and the Pacific decadal oscillation (PDO) (Mantua

et al. 1997; Newman et al. 2016). However, all these physical

modes of variability and change are not perfectly separated by

the PCA, as the first two PCs both reflect part of the ENSO and

climate change signals, and the third and fourth PCs both re-

flect signals of the PDO and the North Pacific gyre oscillation.

This is therefore a case for which a rotation of the PCs with an

adapted criterion may allow a better physical attribution and

interpretation (e.g., Chen and Wallace 2016; Chen et al. 2017;

Wills et al. 2018). We note that all first four modes identified by

the classical PCA are low-frequency modes corresponding to

interannual to decadal time scales.

For the 500-mb GPH all first six PCs affect the medium and

high latitudes (Fig. 12). The first one is located over Antarctica

and the Southern Ocean. It forms a dipole as the polar region

and the region between 508 and 708S show an opposite re-

sponse, which seems to resemble the pattern of the Antarctic

Oscillation (AAO) (Thompson and Wallace 2000). The first

PC shows a long-term trend (which is consistent with studies

reporting current and projected trends in the AAO; Cai et al.

2003; Shindell and Schmidt 2004), together with high-

frequency variations (typically 10–50-day oscillations). The

other five first PCs only show high-frequency variations with no

noticeable trend. The patterns shown by the eigenvectors

with a succession of negative and positive values along

FIG. 11. Result of the classical PCA applied to daily SST anomalies, first four eigenvectors and associated PC time

series. The unit-norm eigenvectors are shown with a scaling factor ln/L, with L5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N

n51l
2
n/N

q
.
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latitudinal bands are typical wave propagation patterns

(Kidson 1999; Roundy and Schreck 2009; Roundy 2015).

However, nothing can be said about the direction and speed of

propagation of the waves from the eigenvectors.

The wavelet-based spectral PCA is then applied to the GPH

and SST datasets. Figure 13 shows how much of the spectral

power of the system is explained by the four first spectral PCs

as a function of the frequency. For the SST at periods between

2 and 10 years, the first spectral PC explains 50%–70% of the

spectral power. For subannual frequencies, the fraction of

spectral power explained by the first four PCs decreases at

higher frequencies. For periods shorter than two months, each

FIG. 12. Result of the classical PCA applied to daily 500-mbGPHanomalies, first six eigenvectors, and associated PC time series. The unit-

norm eigenvectors are shown with a scaling factor ln/L, with L5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N

n51l
2
n/N

q
.

FIG. 13. Fraction of the spectral power explained by the first four spectral PCs of the sPCA as a function of the

frequency for daily 500-mb GPH and SST anomalies.
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one of the first four PCs explains less than 4% of the spectral

power. For the 500-mb GPH, the first four PCs each explain

between 5% and 12% of the spectral power for periods shorter

than 6 months.

Figure 14 (top panel) shows the first four eigenvectors

identified by the sPCA for the 500-mb GPH at the 4-day pe-

riod, which is the highest frequency that can reasonably be

analyzed with daily data. All the first four spectral PCs affect

the latitudes poleward from 458, specifically the first two PCs

affect mostly the Southern Hemisphere, while the third and

fourth ones affect both hemispheres. The SLR rotation pro-

cedure is performed among the first five eigenvectors to unmix

their patterns (Fig. 14, bottom panel; the fifth vector is not

shown). The first two eigenvectors are only slightly affected

by the rotation, but the third and fourth are better differenti-

ated after rotation: the third rotated vector affects the

Northern Hemisphere and the fourth one affects the Southern

Hemisphere. All four vectors depict waves of GPH anoma-

lies with an eastward propagation, which are most likely the

signature of Rossby wave propagation on top of the mean

circulation in the atmosphere (i.e., the jet stream). At the 15-

day period (Fig. 15), the first eigenvector also shows a wave

with eastward propagation southward of 508S, consistently

corresponding to Rossby waves. This pattern in the Southern

Hemisphere is consistently found among the first two eigen-

vectors of the sPCA for all periods between 4 and 60 days (not

shown) with a spatial wavelength increasing with decreasing

frequency, as expected from Rossby wave theory (Rossby

1945; Platzman 1968; Gill 1982). In the Northern Hemisphere,

at the 15 days period, the second and fourth eigenvectors after

rotation show a meandering pattern northward of 508N with a

westward propagation.

For the SST, the first eigenvector at frequencies 1/4 and

1/6 yr21 is shown in Fig. 16. The spectral PCs associated with

the first eigenvector represent respectively 59% and 68% of

the spectral power at these two frequencies. The patterns at

these two frequencies are consistent and correspond to the

ENSO patterns that also appeared in the first two eigenvectors

of the classical PCA. The tropical Pacific Ocean is the region of

the globe showing the strongest response to this mode. Regions

in the South and North Pacific also respond to this mode with

an opposite phase (p shift) to what is found in the tropical region,

meaning anomalies of opposite sign. Outside of the Pacific, some

regions of the Atlantic and Indian Oceans seem to also have a

weaker response to the ENSO signal; however, for these regions

the patterns are not consistent between the 4- and 6-yr period,

FIG. 14. Results of the sPCA and rsPCA applied to daily 500-mb GPH anomalies at the 4-day period. (top) First four unrotated

eigenvectors (magnitude and phase); the unit-norm eigenvectors are shown with a scaling factor ln,k/L, with L5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�N

n51l
2
n, k/N

q
. The

circular arrow in the color scale of the phase indicates the direction of propagation of the extracted waves. (bottom) First four optimally

rotated vectors, using the proposed spatial Laplacian regularization (SLR) criterion. It is noted how the rotation ‘‘unmixes’’ the dynamic

modes (i.e., separates the waves in the Northern and Southern Hemispheres).
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particularly in terms of phase. No neat propagation patterns can

be found in the phase of the first eigenvector at the two considered

frequencies. ENSO is therefore characterized mostly as a sta-

tionary wave (a dipole). The bottom panel of Fig. 16 shows the

reconstructed signal through the inverse wavelet transform of the

first wavelet PC at all frequencies between 1/2 and 1/7 yr21. As

explained in section 2b, the reconstructed signal is a linear com-

bination of the bandpass filtered and phase-synchronized SST

anomaly time series. The bandpass filtering through the (inverse)

wavelet transform allows a smooth signal and well-defined peaks.

The phase synchronization also fosters well-defined peaks as the

combined phase-synchronized time series will generally all peak

at the same time. The reconstructed signal is consistent with the

well-known historical variations of ENSO.

At the 15-day period, the first spectral PC of the SST only

accounts for 2% of the spectral power (Fig. 13). However, even

if noisy, the spatial pattern of the associated eigenvector is

coherent. It appears as a wave around 508S with an eastward

propagation (Fig. 17). It is consistent with the Rossby wave

pattern identified by the rsPCA in the 500-mb GPH at that

same frequency of 15 days. Therefore, this mode is interpreted

as the signature of an atmospheric Rossby wave on the SST and

reveals ocean–atmosphere coupling. This shows the ability of

the spectral PCA to extract coherent modes of low amplitude

from random variability and noise.

The results shown in this section clearly illustrate the ad-

vantage of the wavelet-based sPCA against the classical PCA,

in separating modes that correspond to different frequencies,

and in extracting propagation information. Moreover, it is

demonstrated that, in the presence of several competingmodes

at subannual scales, rotation of the eigenvectors and optimal

unmixing of the underlying climate modes via the proposed

rsPCA methodology is essential for physical interpretability.

5. Conclusions

The need for understanding patterns of variability and

change in climate signals for the purpose of predictive and diag-

nostic analysis (e.g., for regional prediction, untangling the forced

signal from internal variability, anddiagnosing the performance of

climate models) has never been more imperative. Classical PCA

is a well-developed mathematical analysis tool that has been used

extensively in climate studies. Its extension in the Fourier fre-

quency domain, the spectral PCA (sPCA), has seen more limited

application even though it canpotentially better handle dynamical

modes of variability thanks to the phase information. We show

that the implementation of spectral PCA through the continuous

Morlet analytic wavelet transform offers several advantages in

terms of simplicity and robustness. In the present work, particular

interest is given to the phase of the eigenvectors, which contains

the information for making the patterns physically interpretable.

Moreover, when several modes of similar amplitude exist within

the same frequency band, the rotation of the eigenvectors pro-

cedure can help interpret the patterns of the emerging modes.

Our proposed criterion for optimal rotation is to look for the ro-

tated eigenvectors having the simplest spatial structure, which is

FIG. 15. As in Fig. 14, but at the 15-day period.
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achieved by a regularized estimation that minimizes the integral

over the studied spatial area of the absolute value (i.e., the L1

norm) of the spatial Laplacian of the rotated vectors. This crite-

rion, termed spatial Laplacian regularization (SLR), is found to be

very efficient when applied to a synthetic example with twowaves

propagating in opposite directions, even in the presence of high

variance spatiotemporally correlated noise.

When applied to global 500-mb GPH reanalysis data, the

Morlet wavelet–based spectral PCA is able to identify signa-

tures of Rossby waves at periods between 4 and 60 days. The

SLR rotation allows to better separate the several components

of the Rossby waves and leads to more easily interpreted ei-

genvectors. When applied to global SST observations, the

sPCA can extract the ENSO signal for period between 2 and 7

years. This signal accounts for about 60% of the spectral power

in the corresponding frequency band. Even without the rota-

tion procedure, it does well in isolating the ENSO signal from

other physical modes (unlike the classical PCA, which mixes

the ENSO and climate change signals). This can be attributed

both to the frequency localization (two modes of variability

operating at different frequencies are naturally separated by

the sPCA) and to the fact that the Morlet wavelet is not sen-

sitive to linear trends. At the 15-day period, the wavelet-based

sPCA is able to identify the signature of an atmospheric Rossby

wave on the SST anomaly time series even if the corresponding

spectral PC accounts for only 2% of the spectral power showing

the ability of the method to extract low-amplitude propagating

waves from a highly variable random signal.

When analyzing the spatial structure of themapped complex

eigenvectors, the argument (phase) is particularly informative.

It informs us about the propagation of the wave-type modes at

the corresponding frequency, and the phase velocity in

FIG. 16. Results of the sPCAapplied to SST daily anomalies at the periods between 2 and 7 years. (top) First unrotated

eigenvector (magnitude and phase) at 6- and 4-yr periods. (bottom) Reconstructed signal through the inverse wavelet

transformof the first wavelet PC at every frequency corresponding to periods between 2 and 7 years alongwith theNiño-
3.4 index (Deser et al. 2010). The linear correlation between the reconstructed signal and the Niño-3.4 index is 0.83.

FIG. 17. First unrotated eigenvector (magnitude and phase) at

the 15-day period of the sPCA applied to daily SST anomalies. The

eastward propagating signal is interpreted as the signature of an

atmospheric Rossby wave.
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particular can be estimated directly from the mapped ei-

genvector. The phase information of the sPCA can help

understand dynamics and causal relations when classical

PCA can only determine correlations. One must note however

that the propagation of the phase information does not necessarily

correspond to energy or mass flow, particularly when it comes to

non-monochromatic dispersive waves, for which phase velocity

and group velocity are different (Gill 1982). That is why it is im-

portant to analyze the full range of frequencies when non-

monochromatic signals are involved.

As the SLR regularization has been shown particularly ef-

ficient in improving the interpretability of the patterns of the

complex mapped eigenvectors in the present study, it could

also be used on real-valued eigenvectors such as those resulting

from the classical PCA (e.g., Figs. 11 and 12). Even in the ab-

sence of phase information it would impose spatially smooth

eigenvectors. For complex eigenvectors, a possible alternative

to minimizing the L1 norm of the Laplacian is to minimize only

the norm of the Laplacian of the argument of the mapped ei-

genvector. This would impose smooth and spatially linear

phase, while ignoring the local magnitude of the waves. This

alternative criterion has been found efficient when the sought

waves affect the whole analyzed domain (not shown); however,

when some regions of the spatial domain do not show any re-

sponse to the wave signal, the criterion is negatively affected by

the fact that the phase is undefined (random in practice) in

those unaffected areas.

The rsPCA method holds a great potential for evaluating

and comparing climate model simulations and separate cli-

matic signal from noise by applying the method to ensembles

of realizations. We note that the method may be employed

using an analytic wavelet different from the Morlet wavelet.

While the Morlet wavelet transform has the advantage of

being relatively simply related to the Fourier transform,

making the Morlet wavelet and Fourier cross-spectral ma-

trices interpretable in a similar way, other wavelets may be

more adapted for identifying modes that are not necessarily

oscillatory and show irregular periodicity. The proposed

rsPCA methodology is expected to benefit from further ex-

perimentation and evaluation, which may lead to potential

improvements in implementation. For example, an open

question concerning this particular rsPCA and rotated PCAs

in general, is how to choose the number of PCs to retain when

performing rotations (Horel 1981, 1984; Richman 1981, 1986;

White et al. 1991).
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APPENDIX A

Notations

Operators are given as follows:

y0 denotes the transpose conjugate of y; if y is a complex

scalar, y0 simply denotes the complex conjugate;

~y denotes the empirical estimate of the quantity y;

ŷ denotes the Fourier transform of y;

D is the Laplacian operator.

Indices are denoted as follows:

n in (1, . . . , N) is the variable/location index. It also denotes

the rank of an eigenvalue and associated eigenvector;

l in (1, . . . , L) is the observation/time index;

k in (1, . . . , K) is the scale/frequency index.

Matrix and vector notation is given as follows:

X is the N 3 L data matrix;

xn is the nth row of the matrix X;

C is the N 3 N covariance matrix;

Wk is the N 3 L matrix of wavelet coefficients at scale nk;

Sk is the N 3 N cross-spectral matrix at frequency fk;

un is the nth eigenvector of ~C;

un,k is the nth eigenvector of fSk;

uoptn
k is the nth optimally rotated vector;

kn is the nth principal component time series for the clas-

sical PCA;

kn,k is the nth principal component series of wavelet coef-

ficients at scale nk of the sPCA.

Variable and parameters are denoted as follows:

l2
n is the nth eigenvalue of ~C;

l2
n,k is the nth eigenvalue of fSk;

nk is the scale parameter;

fk is the frequency parameter;

bk(f) is the frequency band associated to the Morlet wavelet

at scale nk;

(u, u) are the rotation parameters in the space generated by

two complex vectors;

J(u, u) is the objective function of the rotation;

(uopt, uopt) are the rotation parameters minimizing the

objective function;

a(t) and b(t) are the wave signals of the synthetic example;

mn1,n2
(t) is the noise in the synthetic example;
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da is the distance to the origin of the wave a in the synthetic

example;

db is the distance to the origin of the wave b in the synthetic

example;

g1, g2, d0, and c are the parameters controlling the waves and

the noise amplitude and the waves propagation in the

synthetic example [Eq. (20)].

APPENDIX B

Rank of Empirical Cross-Spectral Matrix

The empirical Fourier cross-spectral matrix computed di-

rectly from the Fourier coefficients over the bk frequency

band is

fS
k
5

1

L
s
L

f

�
fl2bk

�
Ls

j51

cx
1,j
(f

l
)cx

1,j

0
(f

l
) � � � �

fl2bk
�
Ls

j51

cx
1,j
(f

l
)dx

N,j

0
(f

l
)

..

.
1 ..

.

�
fl2bk

�
Ls

j51

dx
N,j
(f

l
)cx

1,j

0
(f

l
) � � � �

fl2bk
�
Ls

j51

dx
N,j
(f

l
)dx

N,j

0
(f

l
)

2
6666666664

3
7777777775
,

(B1)

where cx1,j(fl) is the empirical Fourier coefficient (from a dis-

crete Fourier transform) derived from the jth subsample of the

time series x1 at frequency fl; Lf is the number of number of

discrete frequencies within the bk frequency band and Ls is the

number of subsamples. Each subsample is obtained by win-

dowing or tapering the time series. The prime (0) denotes the
complex conjugate operator.

In the limit case where Lf 5 1 and Ls 5 1 (e.g., when using

the discrete Fourier transform without averaging, windowing

or tapering in the time domain or in the frequency domain),

with dx1, 1(fl)5a1e
iu1 we obtain
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which is by construction a rank-1 matrix. More generally, the

rank of the empirical cross-spectral matrix is at most of rank

Ls 3 Lf since from (B1) it can be decomposed as a sum of Ls3
Lf rank-1 matrices. The degree of independence between the

subsamples and the adjacent frequency bands also affects the

decrease rate of the eigenvalues (see Fig. B1).

APPENDIX C

Fourier Spectrum of the Morlet Wavelet

The Fourier transform of the Morlet mother wavelet C is

(Addison 2017)

Ĉ(f )5p1/4
ffiffiffi
2

p
e2(2pf22pfo)

2/2: (C1)

The frequency band b0 associated with the Morlet mother

wavelet C is therefore a Gaussian function centered at the

frequency fo. The Fourier transform of the Morlet daughter

wavelet Ct,n(u)5 1/
ffiffiffi
n

p
C(u2 t/n) is

dC
t,n
(f )5

ffiffiffi
n

p
Ĉ(nf )e22ipft: (C2)

The frequency band bk associated with the Morlet daughter

wavelet at scale nk is therefore a Gaussian function centered at

the frequency fk 5 f0/nk.

FIG. B1. Cumulative variance explained as a function of the PC

rank for periodogram-based spectral PCAs with different win-

dowing setups applied to a system composed of 3960 independent

time series (white noise);Lf is the number of discrete frequencies in

each frequency band bk, and Ls is the number of windows of the

periodograms. For the Welch periodograms, the windowing func-

tion is a Daniell window and the overlapping factor is 50%. Note

that for the periodogram-based PCAwith independent white noise

time series, these results are independent of the frequency.
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APPENDIX D

Cone of Influence and Edge Effects

When computing wavelet coefficients from finite length time

series, a padding operation is needed to compute the coeffi-

cients at the beginning and at the end of the series (Torrence

and Compo 1998). Possible solutions are zero-padding, re-

peating, or mirroring the time series. Repeating and zero-

padding are not recommended since they are likely to create a

sharp discontinuity (particularly when the time series show a

trend). An efficient solution, which is used in the present ar-

ticle, is to pad the series with the values corresponding to its

first and last time steps, thus avoiding creating discontinuities.

The most conservative option would be to not consider all the

coefficients inside the ‘‘cone of influence’’, that is, all the co-

efficients potentially affected by edge effects (e.g., by setting

them to zero). However, this would reduce the length of the

series of wavelet coefficients available for computing the cross-

spectral matrix (particularly at coarse scales/low frequencies).

APPENDIX E

Laplacian Operator and Phase Unwrapping

In image processing the discrete Laplacian operator D̂ is

defined as a convolution kernel of the following form:

0 21 0

21 4 21

0 21 0

: (E1)
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