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Forecasting Daily Wildfire Activity
Using Poisson Regression
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Abstract— Wildfires and their emissions reduce air quality
in many regions of the world, contributing to thousands of
premature deaths each year. Smoke forecasting systems have the
potential to improve health outcomes by providing future esti-
mates of surface aerosol concentrations (and health hazards) over
a period of several days. In most operational smoke forecasting
systems, fire emissions are assumed to remain constant during the
duration of the weather forecast and are initialized using satellite
observations. Recent work suggests that it may be possible
to improve these models by predicting the temporal evolution
of emissions. Here, we develop statistical models to predict
fire activity one to five days into the future using Moderate
Resolution Imaging Spectroradiometer (MODIS) satellite fire
counts and weather data from ERA-interim reanalysis. Our
predictive framework consists of two-Poisson regression models
that separately represent new ignitions and the dynamics of
existing fires on a coarse resolution spatial grid. We use ten
years of active fire detections in Alaska to develop the model and
use a cross-validation approach to evaluate model performance.
Our results show that regression methods are significantly more
accurate in predicting daily fire activity than persistence-based
models (which suffer from an overestimation of fire counts by
not accounting for fire extinction), with vapor pressure deficit
being particularly effective as a single weather-based predictor
in the regression approach.

Index Terms— Daily fire forecasting, fire ignitions, moderate
resolution imaging spectroradiometer (MODIS), smoke aerosols,
vapor pressure deficit (VPD).
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I. INTRODUCTION

G IVEN that aerosol emissions from wildfires pose a
significant threat to human health [1], [2], an impor-

tant goal is to build national and international capacity to
adaptively manage fires and their impacts on air quality.
In this context, improved hourly fire forecasts on daily time
scales (one to ten days) can reduce negative health outcomes
and may increase the efficacy of fire suppression efforts.
The integration of fire-emitted aerosols and trace gases into
numerical weather forecasting systems has become possible
because of the availability of reliable, high-quality active fire
and fire radiative power (FRP) observations from the Moderate
Resolution Imaging Spectroradiometer (MODIS) [3], Visible
and Infrared Imaging spectroradiometer [4], and other satel-
lite sensors with similar characteristics. These near-real-time
satellite observations determine the initial boundary condition
for emissions within the atmospheric model, which, in turn,
predicts the dispersal and evolution of fire plumes and the
influence of biomass burning on atmospheric composition
over the duration of the weather forecast. Several operational
and quasi-operational systems exist, including the European
Union’s Monitoring Atmospheric Composition and Climate
(MACC) System [5], the U.S. Navy’s Fire Locating and
Monitoring of Burning Emissions (FLAMBE) Project [6],
NOAA’s Smoke Forecasting System [7], and NASA’s
GEOS-5 Forward Processing (FP) system [8].

Until recently, all of these systems have assumed that
the spatial structure and intensity of fire emissions remain
constant over the duration of the numerical weather forecast.
Thus, the evolving impact of fires on atmospheric compo-
sition was determined by the influence of meteorology on
transport, chemistry, and loss processes but not because of
modification of fire behavior due to changing weather. If, for
example, surface winds and vapor pressure deficits (VPDs)
are predicted to abruptly increase several days into the future,
the influence of fires on atmospheric composition may be
underestimated because of the inability of these persistence-
based algorithms to simulate an increase in emissions. Moving
beyond the persistence assumption with the active fire data,
Di Giuseppe et al. [9] explored the use of the Canadian Forest
Fire Weather Index [10] as a modulator of fire activity over
the duration of the forecast. By allowing emissions to covary
with fire weather, the authors were able to improve estimates
of aerosol optical depth in their atmospheric model compared
with observations from AERONET [11].
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Here, we build on work by Di Giuseppe et al. [9] by
developing Poisson regression models to estimate the daily
evolution of active fires over the duration of a weather forecast
in response to weather variability and intrinsic fire dynamics.
Our models rely on satellite observations and weather forecasts
and operate on a 0.5◦ by 0.5◦ grid, which we chose to be
comparable to the resolution of many operational smoke fore-
casting systems. Weather variables (temperature, precipitation,
relative humidity, and wind speed) and previously observed
counts are leveraged to generate fire count predictions for
up to five days in the future. We focus our analysis on the
spatial domain of Alaska, although conceptually the models we
develop should be applicable in other regions and at the global
scale. Alaska is an important region for model development
because recent increases in lightning-ignited fires threaten
human health and vulnerable species [12], [13].

Two broad categories of relevant methods exist for fore-
casting fire activity on daily time scales: 1) fire behavior and
spread models and 2) statistical forecast models. Fire behavior
and spread models generally focus on simulations of specific,
ongoing fires to produce spatiotemporal predictions of a fire’s
trajectory and intensity. This category includes models such as
FARSITE [14], FSPro [15], and Australis [16]. These models
rely on physically based simulations that account for topog-
raphy, fuel amount, structure, and moisture status, and local
weather predictions [17]. Parameters in these models can be
manually adjusted to better capture the past growth trajectory
of the individual fire that is being targeted for decision support,
thus improving future estimates of fire spread. Improvements
in ground-based sensor networks are enabling near real-time
fire spread models that combine simulation and statistical
models, such as WIFIRE [18]. These models, while effective
for informing emergency response, focus on detailed tracking
of individual fire events rather than predicting emissions from
multiple fires that may be simultaneously active within the
regional-to-global scale domain of a smoke forecasting system.
In theory, individual fire spread models could be run simul-
taneously to create the emissions inputs to the atmospheric
model. In practice, however, computational and operational
demands make this approach impractical on continental to
global scales. Furthermore, in many regions, new fires are
often ignited during the forecast period. These fires, which
are often of short duration, can contribute significantly to the
smoke burden and necessitate a different conceptual approach.

Unlike physically based fire spread models which operate
on individual fires, a statistical forecasting approach can be
efficiently applied to produce forecasts for multiple fires over
large regions and to predict contributions from new ignitions.
Specifically, this article contributes to statistical fire forecast-
ing by demonstrating significant improvement in forecast accu-
racy by regression models over traditional persistence methods
and by providing detailed analyses of forecast performance.

The statistical models we develop here, which separately
predict existing and new fires, have the potential to increase
the accuracy of operational smoke forecasting systems and can
be applied globally. In particular, the use of globally available
satellite datasets is critical for remote regions such as Alaska
where detailed ground-based data are lacking.

The outline of the remainder of this article is as follows.
Section II describes the datasets we use in this article,
including satellite active fire detections and weather reanalysis
products on daily timescales. In Section III, we describe
the notation and general setup for the statistical models we
investigate. We introduce the evaluation methods in Section IV
and the predictive models in Section V. Our experimental
results are divided into two major sections. We begin in
Section VI by focusing on days with active fires and evaluate
the predictive performance of different models specifically for
active fires. We then extend this evaluation in Section VII
to all of the days in the study period, allowing for the eval-
uation of predictive performance of different models across
quiescent periods, ignition events, and active fire periods.
In Section VIII, we provide a discussion of the results and
present our primary conclusions.

The novel contributions of this article are as follows:
1) the development of a new model, based on mixtures of
Poisson regression models, for active-fire forecasting at daily
timescales, and 2) a systematic evaluation of the predictive
accuracy of the proposed model that demonstrates significant
improvements over current operational baselines being used in
NOAA and European Union smoke forecasting systems.

II. DATA

For this article, we use data for a ten-year period from
2007 to 2016 for the state of Alaska and use only the days
of each year between May 14 and August 31, which we will
refer to as the fire season. Specifically, we include all data
bounded by 71◦N by 165◦W and 55◦N by 138◦W; excluding
any areas comprising entirely of water. Although the bounding
box does not cover all of Alaska, it includes more than 99%
of all detections in the state for this time period. We describe
below the specific datasets we used from this period.

A. Active Fire Detections

We use the daily active fire detections in the MODIS
MCD14ML Fire Location Product (collection 6) [19] as our
ground truth for fire detections. These data are collected by
NASA’s MODIS instrument on two satellites, Aqua and Terra.
The spatial resolution of the fire detections is approximately
1 km2 near nadir. The sampling frequency is one to four
times per day and the effective sampling frequency (when
accounting for cloud cover) can be less [5]. This is due to
the fact that both Aqua and Terra are polar-orbiting, with
Terra passing at roughly 10:30 A.M./P.M. and Aqua passing
at roughly 1:30 A.M./P.M. local time. Fig. 1 shows all of the
active fire detections for June 25, 2015, in Alaska. Fig. 2 shows
the distribution of fire detections for the ten-year study period,
which results from the satellite orbital paths. The MODIS
data include detections from several different heat sources:
vegetation fires, active volcanoes, other static land sources,
and offshore gas flares. We only include detections classified
as vegetation fires.

Known issues in the MODIS fire product are false-negatives
that arise from obscured measurements due to cloud cover,
and false-positives due to reflectance from bodies of water,
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Fig. 1. All vegetation active fire detections in Alaska on June 25,
2015 from the MODIS dataset with smoke and terrain from LANDSAT with a
0.5◦ × 0.5◦ grid overlaid.

Fig. 2. Empirical density plot (kernel density estimate) of MODIS active
fire detections in Alaska as a function of local solar time, for satellites Aqua
and Terra from 2007 to 2016.

snow, and ice, as discussed in [3] and [20]. We chose not to
threshold or filter the active fire detections, as we do not expect
issues with false-positives at high latitudes. The collection 6
MODIS active fire algorithm sometimes misclassifies forest
clearing as fires, but this commission error occurs mostly in
tropical regions [21]. When all confidence levels are included,
the mean commission error in boreal regions is often smaller
than 4%.

B. Meteorology

Weather reanalysis data are obtained from the ERA-Interim
(ERA) product produced by the European Centre for Medium-
Range Weather Forecasts (ECMWFs) [22]. This numerical
weather forecast system produces analysis data for tempera-
ture, humidity, and wind four times a day, and for precipitation
twice a day. The product has a gridded spatial resolution of
approximately 0.75◦ which we resample to 0.5◦. We use the

Fig. 3. Comparison of (Top) daily active fire detections, (Middle) mean
VPD, and (Bottom) mean rainfall for June 17 to July 17, 2015, over
the interior region of Alaska. Observed values in blue (solid line) and
ten-year-mean values for interior Alaska for the same time period in black
(dashed line).

time closest to mid-day for Alaska for surface temperature,
humidity, and wind speed and use the 24-h accumulation
for precipitation. VPD is calculated according to Tetens
equation [23].

There is strong empirical evidence to support the inclusion
of weather variables in our models. For example, Table I shows
the correspondence between weather variables and MODIS
active fire detections, in terms of anomalies from the ten-year
mean. The temperature and humidity anomalies are largest
for the three years with the greatest number of detections:
2009, 2013, and 2015. In all the three years, there is an
increase in mean Alaskan interior temperature and a decrease
in humidity during the fire season. This follows the intuition
that these measurements are positive and negative drivers of
fire dynamics, respectively. The relationship between fire and
weather is also observed on shorter timescales, in daily com-
parisons between fire ignitions and weather variables within a
fire season. For example, as shown in Fig. 3, in mid-June and
July 2015 there are notable increases in interior VPD, with
respect to the ten-year mean that coincide with several large
fire events. In this period of roughly one month, over 80% of
all the year’s fires ignited. This positive correlation between
VPD and fire events is consistent with previous research on
Alaskan boreal forests [24]. In particular, we observe in Fig. 3
that all of the large increased periods of fire activity correspond
to dates with the above-average VPD and that the level of
fire activity tends to significantly diminish during periods of
increased precipitation.
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C. Land Cover

We also investigate the use of land cover information using
the MCD12C1 land cover product [25]. This information is
available at a 0.05◦ resolution and is downsampled to 0.5◦
by computing the fraction of each of the 17 International
Geosphere-Biosphere Programme (IGBP) global vegetation
classifications [26] for each 0.5◦ cell, producing 17 additional
variables. However, we found that land cover did not signif-
icantly contribute to the predictive accuracy of the models
we developed, likely due to coarse spatial resolution, and
thus, we do not discuss land cover further in this article as
a potential predictor variable in our models.

III. NOTATION AND MODEL STRUCTURE

We spatially partition the region of interest into equal-sized
grid cells of 0.5◦ latitude by 0.5◦ longitude. We use y(t)

l
to represent the number of active fire detections in grid cell
l on day t of the fire season, where y(t)

l takes nonnegative
integer values 0, 1, 2, . . . . The index t = 1, 2, . . . , T is an
index over the T days of each fire season, l ∈ {(i, j)} is an
index over the L = H × V locations, where i = 1, 2, . . . , H ,
and j = 1, 2, . . . , V index the H = 55 horizontal and V = 33
vertical cells in the grid, respectively.1 Similarly x(t)

l defines a
corresponding p-dimensional vector of explanatory covariates
observed on day t in grid cell l, where the covariates can
include temperature, rainfall, humidity, wind, and VPD as well
as lagged versions of y itself.

The forecasting problem can be formulated as predicting
the expected number of active fire detection counts E[y(t+k)

l ],
for each grid cell l, for k = 1, . . . , K days after the current
day t . We use a maximum lead time of K = 5. When making
forecasts, we assume that the forecasting model has access
to: 1) measurements of y (detections) up to and including the
day t that the forecast is being made and 2) weather covariate
values x not only in the past and on the current day t but also
for future days t � ∈ {t + 1, . . . , t + K }, where the x values for
the future days are based on forecasts of x available on day
t , e.g., from weather forecasts.

Thus, the forecast model can be written in the following
general form:

E
�
y(t+k)

l

�= f
�

y(1)
l , . . . y(t)

l , x(1)
l , . . . , x(t+k)

l ; θ
)
, 1 ≤ k ≤ K

(1)

where θ are the parameters of the model (to be estimated
from data), and f is the functional form of the model. For
example, if f were linear and if there were no covariates x in
the model then the model would reduce to a first-order linear
autoregressive (AR) model on the observed time-series y.

In the results presented here the values of the covariates
x used in our model are derived from reanalysis products,
which means that these can be considered “perfect” forecasts
and ignore forecast uncertainty. We would expect that if we
used actual forecasts, rather than reanalysis values, the perfor-
mance of the models would degrade. Nonetheless, the results

1An additional subscript or superscript could be added to y to indicate
which year each y(t)

l value corresponds to, but we suppress this notation for
simplicity.

TABLE I

SUMMARY STATISTICS OF ACTIVE FIRE DETECTIONS AND INTERIOR
CLIMATE FOR THE FIRE SEASON (MAY 14 TO AUGUST 31)

using reanalysis data are useful in that they provide us with
information about which variables have the most predictive
power and also inform us about the relative importance of
weather versus the past history of active fire detections for
this prediction problem. Moreover, the use of reanalysis data
allows us to isolate the fire forecast error from the weather
forecast error.

The parameters θ are assumed to be spatially and temporally
constant, i.e., θ is assumed not to vary over space or time.
Nonetheless, temporal and spatial variability in the predictions
enters via the y and x variables on the right-hand side of (1).

In making forecasts k days ahead using the general model
formulation in (1) there are two options. The first option is the
recursive approach, to build a single model that only predicts
one day ahead (i.e., K = 1) and then use the forecast y for day
t +1 as the input to recursively make predictions for day t +2,
and so on. The second option is to build K different models,
one for each value of k, 1 ≤ k ≤ K . We use the second
approach in this article since it more directly seeks to optimize
predictive accuracy for k > 1. We find the recursive approach
to be less accurate for prediction, potentially due to the
propagation of errors in forecasts beyond k = 1.

IV. EVALUATION METHODS

All of the predictive models are trained and evaluated using
crossvalidation. For each model, each of ten years of data is
defined as a test/holdout set and the model is trained on the
other nine years. The ten sets of test predictions for each model
are then averaged to generate a single cross-validated score.

We use root-mean-square error (RMSE) of the model’s
predictions as our primary metric for evaluation. To compute
the RMSE for a particular model, we compute the error over
all T days and L locations in a test set and average the results
from the ten cross-validation runs

RMSEmodel =
�

1

T L

T�
t=1

L�
l=1

�
y(t)

l −��y(t)
l

��2

� 1
2

.

We also use RMSE skill score SSmodel [27] using the
persistence model (predicting the expected count on day t + k
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as the observed count on day t) as a reference baseline

SSmodel =
	

RMSEpersistence − RMSEmodel

RMSEpersistence



∗ 100%.

This metric shows the relative improvement of a model
compared to the persistence model. A perfect forecast model
would have a skill score (SS) of 100, a model equivalent to
the reference would have a score of 0, and a model worse than
the reference would have a negative score.

In our experimental results later in this article, we evaluate
our predictive models under two different scenarios: 1) only
during active fires (Fire days) and 2) on the full data set (all
days). This breakdown allows us to analyze the predictive
performance of the models in detail in different contexts,
i.e., during active fires as well as in general. Fire days are
defined as pairs of grid cells and days where the preceding day
had at least one detection in that cell, i.e., a forecast is being
made in the context of an active fire in the cell. Non-Fire days
are defined, conversely, as grid cell/day pairs where there was
no detection on the day prior to the forecast in that cell, i.e., a
forecast is being made in the context of no active fire. We can
further partition each category as follows, depending on the
observation for the day being forecast. For Fire days the two
possibilities are: 1) sustain (the active fire continues to have
detections in that cell on the following day) or 2) extinction
(the detections go to zero in that cell). For non-Fire days
the possibilities are: 1) quiescence (there continues to be no
detections in that cell) or 2) ignition (there is a new detection
in that cell). Statistics for these four different combinations of
events are provided in Table II as a function of the lead time k.
The quiescent state dominates the statistics (consecutive days
with no detections)—note that for regions other than Alaska
the frequency of quiescence could be quite different. For Fire
days, the likelihood of extinction increases steadily as the lead
time k increases. Fig. 4 shows that, as expected, Fire days have
a significant increase in the frequency of nonzero counts at all
levels.

A. Baseline Persistence Model

This is a simple, frequently used baseline that uses the value
on the current day t as the forecast value for day t + k, often
referred to as a persistence model

�
�
y(t+k)

l

� = y(t)
l .

This model is limited in that it does not capture changes in fire
dynamics and its prediction accuracy degrades significantly as
the forecast range k is increased. This is the model deployed
by most operational smoke forecasting systems [6]–[8].

B. Modulated Persistence Model [9]

This model modulates the persistence model using the
change in the value of the Forest Fire Weather Index (FWI)
between the current day t and the day being predicted t + k.
In this article, we replace FWI with VPD where VPD is
computed using the relative humidity and temperature from the
ERA dataset. Prior work has shown that VPD and FWI often
correlate similarly with Alaskan fire variability [28], so we

expect the use of VPD to have a minimal impact on the model
compared to using FWI.

In particular, the modulated persistence model is defined as

�
�
y(t+k)

l

� = y(t)
l ∗ (1 + M(t + k))

M(t + k) = VPD(t+k) − VPD(t)

VPD(t) .

By incorporating this modulation factor M, the prediction
adjusts the standard persistence estimate by the percentage
change in the VPD. To avoid numerical issues, if VPD(t) is
equal to zero, the model defaults to a standard persistence
prediction. Furthermore, to avoid exceedingly large predictions
we allow the modulation factor to be at most 2; this value was
chosen by a cross-validated grid search to minimize test error.

V. PREDICTIVE MODELS

Below we define the different types of predictive models that
we evaluate ranging from baseline models using persistence to
Poisson regression models.

A. Poisson Regression

A suitable approach in general for predicting nonnegative
counts is to use Poisson regression. This method assumes a
conditional Poisson distribution for y, modeling the logarithm
of the expected counts as a linear function of the input
variables [29]. This formulation avoids the potential problem
of negative predictions for counts that can occur with least-
squares linear regression and a Gaussian noise assumption.
We can write the Poisson regression model in exponential form
as follows:

�
�
y(t+k)

l

� = λ̂
(t+k)
l

= exp
�
θ0 + θ1h

�
y(t)

l

�+ θT
2 x(t+k)

l

)

where λ̂
(t+k)
l denotes an estimate of the mean for the condi-

tional Poisson distribution for y(t+k)
l . The parameters θ are

estimated by maximizing the log-likelihood of the observed
data under a Poisson model. A transformation h is applied
to the AR component of the model y(t)

l above because the
relationship between the expected count and the previously
observed count is not expected to be multiplicative (which is
introduced by the use of the exponential function). To address
this, we take the logarithm of y(t)

l as suggested in [29], with

h(y) = ln(max(y, c)), 0 ≤ c ≤ 1

to avoid taking logarithms of zero when the previously
observed count y is zero. The value of c could be estimated
from the data as a parameter, but we found that setting it to a
value of 0.5 (as suggested in [29]) performed well empirically.

Prior work on using Poisson regression models to pre-
dict fires includes the work of Mandallaz and Ye [30] who
demonstrated that Poisson regression models provide a useful
framework for predicting the total number of forest fires on
daily time-scales over different large-scale regions in Central
Europe, as a function of weather, physical, and socio-economic
variables. In a similar vein, Preisler et al. [31] partitioned
the state of Oregon in the USA into 1 km2 cells and used
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logistic regression to model the probability of a fire occurring
in a given cell as a function of various explanatory vari-
ables. They then extended this approach to predict the total
number of fires on any given day over the whole region
by summing up predictions across individual cells. These
approaches [30], [31] differ from this article primarily in that
they are aimed at understanding different factors that can
influence the number of fires recorded on any given day,
rather than developing prediction schemes that can provide
operational forecasts k days into the future for the purpose of
smoke forecasting (which is the focus of our approach).

A common alternative to the Poisson model for forecasting
count data is the use of the negative binomial model, which
has a separate mean and variance, adding more flexibility to
the model. However, we found that using the negative binomial
model for regression did not result in improved prediction
performance over the Poisson model for the datasets used in
this article.

Because grid cells are measured in latitude and longitude,
there is a notable decrease in the area of grid cells toward
the north latitudes. To address this we formulate the model
to predict fire detection intensity per unit area and then scale
the prediction by the area of the cell being predicted. This
approach was successfully applied to the Poisson regression
of fire detections in [30]. We found that this had a negligible
effect on overall model performance. This is likely attributable
to the fact that the majority of detections occur in similar
latitudes, near the middle of the state, and to the fact that there
are other spatial differences (including climate, topography,
and land cover) that vary with latitude.

B. Poisson Hurdle Model

A well-known extension to the Poisson model is the Pois-
son hurdle model [32], allowing the model to capture the
conditional probability of additional zeros more easily. The
distribution and the corresponding expected value are defined
as follows, where π is the probability of a zero occurring and
where f is a Poisson distribution:

P(y = j) =
⎧⎨
⎩

π, if j = 0
(1 − π)

1 − f (0)
f ( j), if j > 0

�
�
y(t+k)

l

� =
�
1 − π

(t+k)
l

�
1 − f

�
0|λ̂(t+k)

l

� λ̂(t+k)
l .

Rather than treating the probability π as a fixed parameter,
a more flexible approach is to model it via regression, i.e., to
estimate π

(t+k)
l for each grid cell l on each day t , conditioned

on observed values. Since π is a probability bounded between
0 and 1, logistic regression is a natural choice, with π

(t+k)
l

modeled as

π
(t+k)
l = σ

�
α0 + α1 y(t)

l + αT
2 x(t+k)

l

)

where σ(z) is the logistic (or sigmoid) function, defined as
σ(z) = 1/(1 + e−z). We model both π and λ as functions
of the same covariates (i.e., x and past values of y), but with
separate parameters α and θ for each model.

We find in our experimental results that the Poisson hurdle
model consistently performed as well as or better than the
standard Poisson model (with no hurdle component), across
different prediction scenarios. Given this, we only present
results in the remainder of this article for the Poisson hurdle
model for clarity of presentation. We also found that linear
regression models tended to be competitive with Poisson hur-
dle regression in terms of prediction accuracy, with the Poisson
hurdle being consistently slightly more accurate. However,
the linear regression models suffered from the problem of
occasionally producing negative predictions. Thus, given that
the linear regression models do not provide any advantages
in the context of predicting fire activity (relative to Poisson
models), we do not discuss them further in this article.

C. Model Memory

We explored several approaches including temporal memory
(additional lags) in the model, but empirical results indicated
that no method produced substantial improvements in predic-
tive accuracy. However, we found that the use of an additional
lagged AR term y(t−1) made a qualitative improvement in
model forecasts for the initial day of fire events. As such,
when evaluating a model with AR terms, both y(t) and
y(t−1) are used. Additional details describing the methods for
incorporating memory can be found in the Appendix.

VI. RESULTS: FORECASTS FOR FIRE DAYS

We begin our discussion of predictive accuracy by com-
paring the performance of different models on Fire days,
as defined in Section IV and in Table II. As described earlier,
all results reported below were obtained by evaluating the
models using cross-validation across years. Code for data
fetching, preprocessing, training, and prediction is publicly
available.2 This code allows for full replication of the results
in this article.

A. Poisson Hurdle Variable Selection

We begin by evaluating the relative contributions of different
combinations of input variables, as reflected by the predictive
accuracy of the Poisson hurdle model. Table III shows the
average RMSE on Fire days for different combinations of
variables, including an intercept-only model for reference,
models with different weather variables (humidity, temper-
ature, VPD, rain, wind), and models with and without an
AR component. The RMSE used in this table is the average
RMSE across all five lead times. We see that models with
an AR component tend to systematically reduce the RMSE
by about 4% compared to models without an AR component
and models with VPD are more accurate than models with
either humidity or temperature. The addition of rain (and wind)
provides negligible gains in accuracy to models with VPD.
Based on these observations, in the remainder of this article
we will focus on models using VPD with an AR component—
this is a model that is easy to interpret and is in effect
as accurate as other models with additional combinations of
weather variables.

2https://github.com/UCIDataLab/fire_prediction



GRAFF et al.: FORECASTING DAILY WILDFIRE ACTIVITY USING POISSON REGRESSION 4843

TABLE II

PERCENTAGE OF OBSERVATIONS BY CATEGORY, CONDITIONED
ON FIRE/NON-FIRE AND LEAD TIME k

TABLE III

AVERAGE RMSE OF POISSON HURDLE MODELS ON FIRE DAYS

Fig. 4. Frequencies of grid cell counts from both Fire and non-Fire days;
truncated at 100 on the x-axis. Fire days occur when the number of detections
for a given cell on the preceding day was nonzero, and similarly non-Fire days
occur when the number of detections for a given cell on the preceding day
was zero. As such, Fire days can have a zero count due to extinctions and
non-Fire days can have a nonzero count due to ignitions.

Fig. 5 illustrates predictive error (RMSE) as a function
of lead time k, for the VPD + AR models compared to
the AR-only models and the VPD-only models (K = 5
different models for each). These lines are the disaggregated
versions (across k) of the aggregate RMSE numbers for
the corresponding models in Table III. There is a notable
difference in the relative errors of the different models across
the lead time. The combined model (VPD + AR) clearly
outperforms the other two models across all values of k.
The AR-only model performs substantially better than the
VPD-only model when k = 1 and the VPD-only models
perform slightly better than AR-only for k = 2, . . . , 5. This
indicates that accurate weather information is more useful into

Fig. 5. RMSE for Poisson hurdle models using different weather covariates
as a function of lead time on Fire days.

Fig. 6. Forecast performance of different models on Fire days. (Top) RMSE
scores (lower scores are better). (Bottom) SSs relative to persistence (larger
scores are better).

the future than information about the current fire size (bearing
in mind that we use reanalysis data instead of forecasts).

The fact that the RMSE values of the different models
tend to decrease as the lead time k increases is somewhat
counterintuitive since one would expect RMSE to generally
increase the further out in time the forecasts are being made.
This decrease in RMSE is explained by the fact that these
forecasts are being made only on Fire days. As the lead time
increases, the mean number of counts per day for an active
fire decreases (due to fire extinction), producing less variance
in the true counts for larger lead times, making the prediction
problem easier on average (and hence, lower RMSE) for days
that are further out.

B. Comparing Poisson Hurdle and Persistence Models

Fig. 6 shows both the RMSE (top) and the SSs (bot-
tom) as a function of lead time k, Poisson hurdle models
with VPD + AR, for the persistence and modulated per-
sistence baselines defined in Section V. The RMSE (top)
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Fig. 7. Decomposition of RMSE into two components, with (Top) predictions
for sustained events and (Bottom) predictions for extinctions on Fire days.

plot clearly illustrates that the persistence forecasts degrade
over time. The modulated persistence and Poisson hurdle
have substantially lower RMSE than persistence (except for
k = 1 where modulated persistence is less accurate than
persistence).

The bottom (SS) plot shows that both the modulated per-
sistence and Poisson hurdle models have SSs that increase as
the lead time increases, due to the fact that the persistence
model’s RMSE becomes increasingly worse relative to the
other two models with an increasing lead time. The Poisson
hurdle model has a substantially better SS than the modulated
persistence model, achieving SSs above 30% at lead times
of k = 3, 4, 5, compared to the 18%–20% SSs from the
modulated persistence model for the same lead times.

Fig. 7 shows a breakdown of the RMSE scores (from the
top of Fig. 6) where the RMSE has been separated into
two components. The first component (top) is the RMSE of
predicting sustained fires and the second component (bottom)
is the RMSE contribution from predicting fire extinctions.
Note that the two components represent different numbers of
observations (see Table II), so the RMSE values in Fig. 6
are a weighted average of the RMSE values in the two plots
in Fig. 7. The Poisson hurdle model is more accurate (much
lower RMSE) at predicting both sustain events (upper plot)
and extinction (lower plot) than the modulated persistence
model or the persistence model. The upper plot, the RMSE
for predicting sustained fire activity, demonstrates that this
prediction task becomes increasingly difficult farther into the
future. Much of the error here comes from the underprediction
of large growing fires. The lower plot, the RMSE for predicting
extinction, is quite different. As the lead time increases,
a larger fraction of observations will be extinctions due to
the end of a fire event (Table II), with the corresponding lower
mean value and variance in the detection counts as k increases

Fig. 8. Comparison of (Top) mean predicted number of detections by different
models from the first day of a fire, (Middle) percent of grid cell/day pairs
active on day 0 that have extinguished, and (Bottom) VPD anomaly from the
ten-year fire season mean for interior Alaska (.53).

and, thus, the model can more reliably predict the smaller
values.

Fig. 8 illustrates the nature of the predictions that the
different models make at the start of a fire. To do this,
we select all true ignition events by selecting the N grid
cell/day pairs which have a nonzero count and the same grid
cell on the previous day has a zero count (y(t)

l > 0 and
y(t−1)

l = 0). We then make predictions from each of the N
starting grid cell/day pairs for the next five days using the
k = 1, . . . , 5 models, resulting in N predicted values for each
of the five following days, and compute the mean value of the
N predictions for each day resulting in one mean value per
model per day.

The upper plot shows the mean value per day for the same
three models as before (persistence, modulated persistence,
and Poisson hurdle). The observed mean for each day is
also included since ideally each model should match this in
expectation: the expected number of detections for an active
fire tends to increase for the first two days and then decrease
after that. We see that the various models track this mean
behavior over time, except for the persistence model, which
has a constant prediction since it does not change its prediction
as a function of k.
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TABLE IV

AVERAGE RMSE AND SSS ON FIRE DAYS

Fig. 8 (middle) plot compares the expected fraction of
counts that are zero between the Poisson hurdle model and
the modulated persistence model with the observed number
of extinctions for grid cell/day pairs. For the Poisson hurdle
model, the conditional distribution is used instead of its
predictions. The persistence model is excluded because it is
incapable of predicting extinctions. The number of extinctions
increases over time and this is closely tracked by the distrib-
ution from the Poisson hurdle model, whereas the modulated
persistence rarely forecasts an extinction (i.e., a count of zero).

Finally, Fig. 8 (bottom) illustrates that the VPD values tend
to be shifted away from their mean on the days that fires
start (lead time zero) and tend to regress toward their mean
over time. This helps demonstrate the effectiveness of VPD
as a covariate and helps to explain why the use of VPD to
modulate persistence mitigates overprediction for larger lead
times.

C. Comparing Poisson Hurdle and Multilayer
Perceptron (MLP)

We also perform experiments comparing the Poisson hurdle
model with the MLP, a feed-forward, a fully connected neural
network trained with backpropogation [33]. We use the Adam
optimization algorithm [34] with a learning rate of 0.01, and
explored a number of reasonably sized layer configurations.
Our results (summarized in Table IV) show that the Poisson
hurdle model performs comparably or superior to all evalu-
ated MLPs. We found a two hidden-layer configuration with
16 neurons in the first hidden layer and eight neurons in
the second performed best. We again found that using VPD
and an AR term performed best for the MLP. We also explored
adding additional combinations of covariates including all-
weather covariates (temperature, humidity, wind, and rain) and
including additional memory terms, but found these generally
overfit and performed worse out-of-sample.

VII. RESULTS: FORECASTS FOR ALL DAYS

In this section, we evaluate the predictive accuracy of
different models across all days in our dataset, i.e., not just
for Fire days but across all rows in Table II. Although our
primary focus in evaluating different models is in terms of their
performance for forecasting on Fire days (as discussed in the
previous section), for completeness we are also interested in
how the models perform when also used to make predictions
for ignition and quiescent events.

A. Two-Poisson Hurdle Models

We find that using two different regression models, one
for Fire days and one for non-Fire days, improves predictive

TABLE V

AVERAGE RMSE AND SSS ON ALL DAYS

performance compared to using a single regression model for
both. We use the same type of model for each that we used
for Fire days, namely a Poisson hurdle model, with separate
parameters for each. The hurdle component is helpful for the
non-Fire data (as with the fire data—see Fig. 4).

The two Poisson hurdle models are trained on two separate
partitions of the grid cell/day data, depending on whether
they are identified as Fire or non-Fire days. At prediction
time (i.e., on out-of-sample test days during crossvalidation
in our experiments) each day that a forecast is being made is
identified as a Fire day or a non-Fire day and the corresponding
model makes the forecast.

B. Predictive Accuracy of Single- and Two-Poisson Models

Table V summarizes the reductions in RMSE obtained
with various combinations of models. The use of the hurdle
component or the two-Poisson model leads to significant
improvements in performance over the persistence model, with
SS improvements of around 15%–20%. The combined use of
the hurdle component and two-Poisson model produces a small
improvement relative to the single-Poisson hurdle model.

Because of the sparse nature of the detection data, most
grid cells on a given day t do not contain any active fires and
will not have any active fires on day t + k. As a consequence,
when used to forecast both fire ignitions and continued activity,
a single-Poisson model will tend to produce expected-valued
predictions that are near zero and rely heavily on the AR
term to predict activity. This produces significant overpre-
diction during large fire events that are heavily penalized by
RMSE, e.g., RMSE worse than persistence-based approaches.
In contrast, the Poisson hurdle and two-Poisson models can
effectively separate the prediction of the large fraction of
quiescent grid cell/day pairs from the prediction of the sparse
fire activity using their separate components.

We find that the non-Fire component of the model relies
heavily on VPD at long forecast horizons which, when
combined with the exponential from the Poisson link, leads
to substantial overprediction for outlier VPD. Empirically,
scaling VPD with log(VPD + 1) works well, so in all cases,
the non-Fire component uses this transformation for its input.

C. Interpreting the Coefficients of Two-Poisson Models

Tables VI and VII show the estimated coefficients for each
of the Fire and non-Fire components of the two-Poisson model.
The covariates were standardized to have mean zero and
standard deviation of 1 in order to put the coefficient values
on roughly the same scale. For these tables, we do not use the
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TABLE VI

COEFFICIENTS FOR THE TWO-POISSON HURDLE (k = 1)

TABLE VII

COEFFICIENTS FOR THE TWO-POISSON HURDLE (k = 5)

models scaled by the grid-cell area to ensure that the intercept
terms are easily interpretable; the models with and without
area scaling have almost perfect coefficient agreement except
for the intercept terms.

The coefficients broadly agree with physical intuition.
Specifically, the signs of the coefficients for VPD and y(t) are
positive for the nonhurdle (count) components of both models,
e.g., increases in VPD or y(t) on a given day correspond
to higher predicted detection counts from the model for the
following days. In the hurdle components of each model the
coefficients for VPD and y(t) are negative reflecting the fact
that increases in the values of VPD or y(t) lead to a decreased
likelihood of observing an extinction or nonignition.

We also find that for a lead time of k = 1 (Table VI), the AR
term has a relatively large coefficient value that decreases as
the lead time increases to k = 5 (Table VII). In contrast,
the coefficient on VPD becomes larger as the lead time k
increases from 1 to 5, reflecting our earlier findings that
weather is more important for prediction than the number of
past detections as k increases. In addition, we observe that
the intercept of the Poisson component of the active model
increases slightly as the lead time increases, which may reflect
the fact that a fire that is sustained for longer will be larger on
average. Likewise, the intercept of the hurdle component of
the active model increases substantially, reflecting the fact that
the likelihood of extinction increases when predicting further
into the future.

Coefficients for y(t) are omitted for the non-Fire compo-
nents because all y(t) are zero for this component due to the
definition of non-Fire days.

D. Evaluating the Non-Fire Component of the Model

Since the non-Fire model makes predictions on non-Fire
days, and since the non-Fire days are dominated by the
quiescent state (zero to zero, as in the last row of Table II),
a baseline model that always predicts zero will do quite well
in this context and be difficult to beat in terms of RMSE.
As a result, the non-Fire Poisson hurdle model performed
similarly to the baseline zero-only prediction (ŷ(t+k)

non-Fire is set to

Fig. 9. Cumulative fraction of total detections (from ignitions) accounted
for based on non-Fire grid cell/day pairs ranked by model prediction for lead
time k = 5. The gray uncertainty band around the expected random ranking
line is generated using the max and min values from 100 random rankings.

always predict zero) when predicting on non-Fire days in terms
of RMSE. This zero-only prediction baseline also performs
almost identically to always predicting the mean value for non-
Fire days because of the large fraction of inactive days in the
data (i.e., the mean is very small).

Despite the fact that the non-Fire Poisson hurdle model
does not outperform baselines in terms of RMSE, it nonethe-
less does extract useful information about the likelihood of
ignition events over nonignitions. Fig. 9 shows the results
of comparing the rankings of the non-Fire model with the
rankings of a constant predictor (which in effect generates
random rankings). All observations from the non-Fire data
(ignitions and quiescent days) are ranked according to the
model prediction in descending order along the x-axis and
each observation’s contribution to the total non-Fire counts
along the y-axis. An ideal model would produce a ranking in
which all observations are sorted by their observed count (as
shown by the “Perfect Ranking” line). We see a substantial
improvement in the model’s rankings compared to random.
The results shown are for a lead time of k = 5—they are
similar for all of the lead times. The ranking results indicate
that the non-Fire component of the two-Poisson model is
picking up a significant signal from the weather variables
(specifically, VPD) to predict the likelihood of an ignition.
Predicting the precise number of detections associated with
ignition events (which is what RMSE is evaluating in terms
of the nonzero outcomes) is a much more difficult problem
where constant baselines are difficult to beat. Hence, this task
may be best framed as predicting the probability of ignition
instead of predicting the number of detections for an ignition.

E. Regional Performance

We can also analyze global performance of the models
across the entire region by aggregating the observations and
predictions across all grid locations for each day. We define
a regional RMSE by computing the RMSE between the total
number of true detections per day and the aggregated sum of
the predictions across all grid cells per day
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Fig. 10. Forecasts with lead time k = 1 from the two-Poisson Hurdle and the Modulated Persistence models, for June 17 to July 17, 2015 (a highly active
period).

TABLE VIII

REGION RMSE OF DIFFERENT MODELS (k = 1) ON ALL DAYS

TABLE IX

REGION RMSE OF DIFFERENT MODELS (k = 5) ON ALL DAYS

The resulting regional RMSE scores, shown in Tables VIII–XI,
indicate that the two-Poisson hurdle models greatly outperform
the persistence-based models at the region level for k = 1 and
slightly outperforms them for k = 5.

Qualitatively, we also observe a systematic difference
between the actual predictions of the modulated persistence
and two-Poisson hurdle models. Fig. 10 shows the observed
data and forecasts from each model, aggregated to the region
level, for a one-month period during the 2015 fire season.
Although both models tend to underpredict the growth of large
fire events (e.g., June 17–25 and July 3–6), the Poisson hurdle
model tends to underpredict by a larger amount. However, this

TABLE X

REGION RMSE OF DIFFERENT MODELS (k = 1) ON ALL DAYS

TABLE XI

REGION RMSE OF DIFFERENT MODELS (k = 5) ON ALL DAYS

more conservative approach has the advantage of decreasing
the likelihood of overpredicting large growth (July 5) and
also leads to less overprediction when fires rapidly extinguish
(June 26 and July 7). This difference also appears with smaller
fire events, but is less pronounced. The overall effect, which
occurs at both the grid-level and regional RMSE, is that the
increased error from underprediction is compensated for by
the decreased error due to overprediction, when compared to
forecasts from the modulated persistence model.
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VIII. DISCUSSION

The techniques discussed above using regression mod-
els show promise for forecasting wildfire detections and
are broadly applicable to any region. Given historical data,
the regression models can be trained to capture the character-
istics of wildfire evolution in a particular region. For example,
in regions where the wildfire statistics are quite different from
those in Alaska, such as the Amazon basin or Central Africa
where there are frequent small human-caused fires to clear
forest and brush, models fitted to data from such regions would
likely predict much higher ignition rates and shorter duration
fire events.

As an example, one insight from the models fitted to
the Alaska data in this article is that a key component of
the regression model’s improved performance over modulated
persistence is the model’s intercept term which encodes the
fact that while individual fires (if sustained) continue to grow,
on average the fires increase in size from the first to second
day and then decrease at an accelerating pace. We find that
an intercept-only prediction model can capture this expected
behavior and that predicting this overall mean trend alone
is sufficient to improve on the predictive accuracy of either
persistence approach.

Upon comparing the proposed statistical approach to the
baseline models (both constant persistence and modulated
persistence), it is worth noting that the baseline models cannot
learn from data since they have no learnable parameters.
In contrast, in our proposed approach the model parameters
can be reestimated and updated over time as new data arrives.
In addition, although we did not leverage it in the results in this
article, the statistical modeling approach can provide estimates
of predictive uncertainty due to uncertainty in parameter
estimates as well due to as uncertainty in the conditional
predictive mixture distribution for y, in contrast to the baseline
approaches which have no notion of predictive uncertainty.

Below we discuss a number of other aspects of both the
modeling approach and the data employed that could poten-
tially be improved to systematically increase the prediction
accuracy of the forecasting approaches.

A. Potential Modeling Improvements

The regression-based model we propose assumes condi-
tional independence of the y’s, both temporally and spatially,
given the model covariates. There are a variety of modern
spatio-temporal statistical modeling approaches that allow for
relaxation of this assumption and that have the potential to
leverage any additional temporal and spatial dependence struc-
ture for predictive purposes (e.g., [35]–[37]). Such approaches
have been applied in the wildfire context to problems such
as estimating spatial fire risk maps and modeling temporal
patterns of postfire vegetation recovery [38], although not to
the specific problem we investigate here of predicting daily
wildfire activity.

In this context, we conducted a number of explorations
of the potential use of additional temporal and spatial
dependence to produce more accurate count predictions. For
active fire predictions from our model, we found that the

linear correlation between residuals from one day to the next
was −0.02 (whereas the correlation of the corresponding
counts was 0.37). The fact that the lag-1 residuals from our
model are temporally uncorrelated (effectively) implies that
there is limited opportunity for improving predictive power
via temporal residuals.

We also investigated potential spatial bias in our models
by computing the mean error E[ŷ(t)

l − y(t)
l ] over time for

each grid location l. Although the resulting spatial maps
showed significant spatial dependence in these bias terms
over the full ten-year study period, we also found that the
specific patterns of spatial dependence are highly dependent
on the period of observation. In particular, when we computed
the spatial bias map for the first five and the second five
years, the correlation between the biases in the two spatial
maps was 0.01, i.e., the patterns of bias do not persist over
time. The reason for this is that the spatial bias is strongly
influenced by the presence of specific fires from year to year
and there is little persistent systematic spatial pattern that is not
already captured by covariates (such as weather) in the model.
We validated this observation empirically by augmenting our
model with a mean (intercept) random effect term θ0,l per
grid location l. The resulting predictions of the model out-of-
sample did not improve over those of the model without the
grid-specific effects.

In addition, we computed correlations between active cells
at time t and their neighbors at time t + 1, for all four count-
residual pairs. We found these correlations were in the range
of 0.05–0.09, indicating relatively little predictive power for
single-lag, single-neighbor predictions beyond what is already
predicted by the model.

The observations above should not be taken to imply
that more sophisticated spatio-temporal modeling approaches
might not yield better predictions. For example, in terms of
temporal dependence, a model that adaptively and dynamically
estimates a “local fire effect” to modulate the global parame-
ters of our proposed model could be a promising direction,
e.g., to capture systematic differences between small and large
fires. However, given the relatively small amount of data
available for this article (in terms of the total number of
nonzero grid cell counts) we leave such extensions to possible
future work.

B. Data Improvements

We conjecture that a key factor that limits the predictive
accuracy of all of the models in this article is the spatial
resampling of grid data. The spatial resolution of 0.5◦ is too
coarse to capture fire spread dynamics and likely prevents the
model from effectively leveraging the land cover information
to improve forecasting.

To improve the spatial resolution of the model one could
reduce the size of the grid cells for representing the data, but
this would come with several notable drawbacks: increased
sparsity of detection activity, increased crossing of cell borders
by active fires, and increased computation. An alternative
approach would be to spatially model fire events directly in
continuous 2-D space, e.g., using clustering to group active
fire detections and then make predictions for each cluster.
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Another important future direction is to assess decreases
in model performance when archived forecast estimates of
weather are used as model drivers instead of reanalysis. If true
weather forecasts were used instead of reanalysis we would
expect that the degradation farther into the future would
increase for the regression model. As such, some of the
benefits of weather data when making predictions for larger
lead times would be diminished. A comparison of forecast
and reanalysis could also provide information about how the
degradation of fire weather forecasts varies regionally. This
information would be valuable for many fire management
applications.

The fire detection data suggest that there are likely active
fire detections that are unobserved. For example, there are
often single-day interruptions where a cell with significant
activity will become completely inactive on the following
day and then resume activity following that. While there
may be legitimate causes of single-day fire suppression, e.g.,
rain extinguishing fires, it is likely that some fraction of
these interruptions is caused by false-negatives introduced
by cloud cover which can obscure the signal. These false
zeros artificially penalize the regression model predictions and
further encourage underprediction. Future work could account
for this by detecting likely false-negatives and either exclude
them or attempt to interpolate the missed detections.

Another important direction for future work is to better
utilize rain data. There is a strong signal for individual fire
events, especially for large fire events, in that large rain events
often coincide with large extinction events (e.g., compare the
upper and lower panels in Fig. 3). However, for the datasets
used in this article, we found that the models do not show
notably improved results when incorporating rain. This may
be attributable to spatial mismatches between subgrid-scale
convective storms and fire perimeter locations or the high
correlation between precipitation and VPD. Analysis of the
data suggests that there should be predictive information about
fire activity available from rain data, but that the models are
not capturing it.

IX. CONCLUSION

We have shown that the use of regression models signifi-
cantly outperforms traditional persistence-based models used
in operational smoke forecasting applications at both the cell
and regional levels. In particular, the use of Poisson hurdle
models can effectively use past fire activity and weather
data and provide significantly more accurate forecasts of fire
activity up to five days into the future compared to other
approaches. When predicting for all days, Fire and non-Fire,
it is important to account for the significant presence of
quiescent days, e.g., using a hurdle model, training separate
models. We show that the non-Fire prediction task is difficult
and maybe better evaluated as a ranking or ignition probability
problem than with RMSE due to the skewed distribution.
The use of a spatial grid is effective, but comes with several
limitations that suggest a more comprehensive spatial approach
is necessary to further improve model performance and utiliza-
tion of available data.

APPENDIX

MODEL MEMORY

The models we developed can use lagged values of each
of the y and x variables, up to m days of “memory.” The
lagged values for y available to the model for prediction
are y(t−m:t)

l = {y(t), y(t−1), . . . , y(t−m)} and for x the lagged
values available are x(t+k−m:t+k) = {x(t+k), . . . , x(t+k−m)}.
Thus, the forecast models can be written in the following
general form:

E[y(t+k)
l ] = f (y(t−m:t)

l , x(t+k−m:t+k)
l ; θ), 1 ≤ k ≤ K . (2)

We explored two different approaches to model memory. In the
first approach, each of the previous count values ŷ(t−m:t)

l for
the days t − m to t , and the covariate values x(t+k−m:t+k)

i, j
for the days t + k − m to t + k, are used as separate inputs
to the model and each of these lagged values has their own
coefficient. In the second approach, the m − 1 lagged values
in ŷ(t−m:t−1)

l and covariates of x(t+k−m:t+k−1)
l ) are combined

using a decaying weighted average to produce a scalar value
ȳ(t−m:t−1)

l and a p-dimensional vector x̄(t+k−m:t+k−1)
l . For the

previous counts, ŷ(t−m:t)
l , a scalar γ is used as the decay rate

and for the vector of covariates, x(t+k−m:t+k)
l , each covariate

has a separate decay parameter in the p-dimensional vector φ

ȳ(t−m:t−1)
l = 1�m

r=1 wr

m�
r=1

wr ŷ(t−r)
l

x̄(t+k−m:t+k−1)
l = 1∑m

r=1 ur
◦

m∑

r=1

ur ◦ x(t+k−r)
l

wr = γ r−1, γ ∈ [0, 1]
ur = �

φr−1
1 , . . . , φr−1

p

�
, φi ∈ [0, 1].

These weighted averages are then used as inputs to the
model along with ŷ(t)

i, j and x(t+k)
l , i.e., in the weighted-average

version of the model there are two inputs and two coefficients
in the model for each of y and x. The decay parameters, γ
and φ, are selected using grid search.
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