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ABSTRACT

The quantitative estimation of precipitation from orbiting passive microwave imagers has been performed

for more than 30 years. The development of retrieval methods consists of establishing physical or statistical

relationships between the brightness temperatures (TBs) measured at frequencies between 5 and 200GHz

and precipitation. Until now, these relationships have essentially been established at the ‘‘pixel’’ level, as-

sociating the average precipitation rate inside a predefined area (the pixel) to the collocated multispectral

radiometric measurement. This approach considers each pixel as an independent realization of a process and

ignores the fact that precipitation is a dynamic variable with richmultiscale spatial and temporal organization.

Herewe propose to look beyond the pixel values of the TBs and show that useful information for precipitation

retrieval can be derived from the variations of the observed TBs in a spatial neighborhood around the pixel of

interest. We also show that considering neighboring information allows us to better handle the complex

observation geometry of conical-scanning microwave imagers, involving frequency-dependent beamwidths,

overlapping fields of view, and large Earth incidence angles. Using spatial convolution filters, we compute

‘‘nonlocal’’ radiometric parameters sensitive to spatial patterns and scale-dependent structures of the TB

fields, which are the ‘‘geometric signatures’’ of specific precipitation structures such as convective cells. We

demonstrate that using nonlocal radiometric parameters to enrich the spectral information associated to each

pixel allows for reduced retrieval uncertainty (reduction of 6%–11% of the mean absolute retrieval error) in

a simple k-nearest neighbors retrieval scheme.

1. Introduction

Since the first experimental algorithms developed for

the SMMR (see appendixA for all acronyms used in this

article) imager in the 1980s, the algorithms performing

the retrieval of precipitation from passive microwave

imagers in orbit have been continuously evolving and

improving (Wilheit and Chang 1980; Spencer 1986;

Spencer et al. 1989; Wilheit et al. 1991; Liu and Curry

1992; Kummerow and Giglio 1994; Petty 1994; Ferraro

and Marks 1995; Kummerow et al. 1996, 2001, 2015;

Kubota et al. 2007; Gopalan et al. 2010; Mugnai et al.

2013; Ebtehaj et al. 2015; Kidd et al. 2016; Petković et al.

2018). The TRMM (Kummerow et al. 2000) and GPM

(Hou et al. 2014; Skofronick-Jackson et al. 2017) satel-

lite missions in particular provided the data and the re-

search framework allowing the successful development

of research and operational retrieval algorithms. Today,

the GPM Microwave Imager (GMI) is integrated in an

international constellation of orbiting imagers providing

frequent observations of clouds and precipitation all

over the globe (Skofronick-Jackson et al. 2018).

The passive microwave retrieval of precipitation relies

on the measurement of radiances at the top of the at-

mosphere, which are the product of the surface emission,

emission and absorption by liquid rain drops and water

vapor and scattering by ice particles. Vertically and
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horizontally polarized radiances are measured at vari-

ous frequencies between 5 and 200GHz and converted

into brightness temperatures (TBs) for physical in-

terpretation. The physical principles of the radiative

transfer of microwaves in the atmosphere are well un-

derstood and generally accurately reproduced by nu-

merical models. However, the conversion of observed

microwave multispectral signatures into hydrometeor

profiles (inverse problem) remains uncertain. This

uncertainty derives mostly from the inherent under-

determined nature of the inverse problem, that is,

while any given hydrometeor profile has a unique

spectral signature (assuming known surface emissiv-

ity) the inverse is not true (Bauer et al. 2001; Löhnert
et al. 2001; Sanò et al. 2013; Ebtehaj et al. 2015). The

increasing number of available channels (up to 13 and

14 channels respectively for GMI and AMSR-2, which

are the most recent radiometers sent into orbit) allows

a better constraining of the inversion, but nonnegligible

uncertainty still affects the state-of-the-art retrievals.

Many algorithms, among which the NASA opera-

tional algorithm GPROF (Kummerow et al. 2015), rely

on an a priori database (or dictionary) for the retrieval.

The a priori database is made of a large number of hy-

drometeor profiles, each one associated with a spectral

signature, that is, a vector of TBs. The database is typi-

cally obtained from actual radiometric measurements

collocated with radar observations, or generated using a

radiative transfer model to simulate brightness tem-

peratures from the radar-observed hydrometeor pro-

files. The retrieval generally relies on the computation of

radiometric distances (vectorial distances) between the

observed TB vector and the TB vectors of the a priori

database to find one or several hydrometeor profiles

with a spectral signature close to the observation (called

the ‘‘neighbors’’). An important element in the devel-

opment of distance-based retrieval algorithms is the

choice of the distance metric (Hastie et al. 2009; Petty

and Li 2013; Ebtehaj et al. 2015). In addition to the

neighbor search algorithms relying on radiometric dis-

tances, some experimental algorithms implement dif-

ferent statistical learning approaches such as neural

networks using the same a priori databases for the

training (Tsintikidis et al. 1997; Sanò et al. 2015).

The database can be seen as an ensemble of points

in the N-dimensional radiometric space (N being the

length of the TB vectors, i.e., the number of channels of

the imager) where the hydrometeor profile and the

surface precipitation rate R are defined. Therefore,

for each new radiometric observation, the retrieval of

the surface precipitation can be seen as an interpola-

tion problem. However, because different hydrome-

teor profiles may have very similar or identical spectral

signatures (Figs. 1a,b), the functionR(TB) to interpolate

is not regular (in the Lipchitz sense) meaning that

jjTBi 2 TBjjj / 0 does not necessarily imply that

jR(TBi)2R(TBj)j/ 0 (Fig. 1c). Therefore, even with a

densely populated database, associating a radiometric

observation to the hydrometeor profile of the database

having the closest spectral signature may lead to sub-

stantial retrieval errors. For this reason, most retrieval

algorithms provide smooth estimates of the surface

precipitation rate by averaging or combining several

profiles of the database having similar spectral signa-

tures instead of associating the observed TB vector to a

single hydrometeor profile. Bayesian versions of the

retrieval, computing the a posteriori probability distri-

bution of the precipitation rate given the observations,

have also been developed to overcome the uncertainty

issue (e.g., Evans et al. 1995; Kummerow et al. 2006;

Chiu and Petty 2006). Under the Bayesian framework,

one can retain the precipitation rate for which the a

posteriori probability is maximal as the ‘‘best’’ estimate

(maximum likelihood estimate). Alternatively, the ex-

pected value of the a posteriori distribution of R is the

estimate that theoretically minimizes the mean squared

error of the retrieval (minimum mean squared error

estimator). Either way, these Bayesian smooth estima-

tors tend to lessen the spatial and temporal variability of

precipitation, with mitigation of the extreme values and

the statistical distribution of the estimates having a

lower variance than the true precipitation fields (pro-

vided that the a priori distribution of the precipita-

tion rates is unimodal, with finite mean and variance)

(DeGroot 2004; Foufoula-Georgiou et al. 2014).

As already stated, a large part of the final uncertainty

on the retrieval is inherent to the incompleteness of the

information provided by the vector of observed TBs.

When computing the variograms of R(TB) in the TB

space, this inherent uncertainty appears as a nugget ef-

fect (Cressie 1993) (Fig. 1c) and therefore, it cannot be

reduced by increasing the density of the retrieval data-

base (or by increasing the size of the training dataset for

deep learning algorithms). It is also independent of the

distance metric used to compute the distances between

the TB vectors. The only way to reduce this uncertainty

is to add supplementary information to the vector of

observed TBs. This may be achieved by using ancillary

datasets, as for example environmental variables from

reanalyses (Ferraro et al. 2005; Ringerud et al. 2015;

Kidd et al. 2016; Petković et al. 2018; Takbiri et al. 2019).

While the current state-of-the-art algorithms may rely

on ancillary data to contextualize the observed TB

vectors, they do not use the context information pro-

vided by the TB fields themselves. Indeed, the retrieval

is performed one pixel at a time and independently for
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all pixels; that is, each pixel is retrieved only from the TBs

measured at the corresponding location and all the

neighboring TBs are ignored. Some algorithms have used

statistical indices computed over a restrained neighbor-

hood around the pixel of interest to identify cloud type

and precipitation type. For example, Prabhakara et al.

(2000), and laterGopalan et al. (2010), used theminimum

value and the standard deviation of the TB at 85GHz

within a 40km neighborhood to estimate the convection

fraction at the pixel of interest. However, these indices

FIG. 1. Atmospheric profiles with quasi-identical spectral signatures can have very different radar reflectivity

profiles and surface rain rates. (a) Two spectral signatures measured by GMI over ocean and (b) corresponding Ku

reflectivites measured by the DPR along GMI’s field of view. The profile 1 was observed at latitude 23.298 and
longitude 170.898 at 1210 UTC 6 Sep 2016 (orbit 14342 of the GPMCore Observatory) and has a 15mmh21 surface

precipitation rate. The profile 2 was observed at latitude 2.498 and longitude 2136.258 at 1730 UTC 4 Dec 2015

(orbit 10036) and has a 1mmh21 surface precipitation rate. (c) Variogram of the function R(TB) in the 13-di-

mensional space of TBs derived from 4000 collocated GMI-measured radiometric vectors TBi [all within a 5K

radiometric distance from the two vectors shown in (a)] and DPR-derived surface precipitation rate Ri over ocean.

The variogram shows the expected value of the squared difference 1/2 3 jR(TBi) 2 R(TBj)j2 as a function of the

Euclidean distance jjTBi 2 TBjjj. The so-called ‘‘nugget effect’’ [expected squared difference jR(TB1)2 R(TB2)j2
not tending toward zero when the distance jjTB1 2 TB2jj tends toward zero (Cressie 1993)] quantifies the inherent

uncertainty of the retrieval and is solely attributed to the limited radiometric information. The nugget effect ac-

counts for 52% of the variance of R among the 4000 hydrometeor profiles, the total sample variance being

98mm2 h22 and the sample mean 13.1mmh21.
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have only been used for unispectral or bispectral algo-

rithms within a linear regression framework so far. What

is proposed here is to exploit the information contained in

the observed fields of TB by analyzing spatial variations,

covariations and patterns of TBs at various scales instead

of associating a TB signature to a hydrometeor profile at

the ‘‘pixel’’ level as is classically done. Several elements

related to the observation geometry and the scale de-

pendence of the relations between precipitation and TBs

motivate our resolve to overcome the pixel-wise ap-

proach of the retrieval by developing a new ‘‘nonlocal’’

approach. These elements are detailed and supported by

examples in this article. The article is organized as fol-

lows: section 2 is dedicated to the description of the used

data, namely brightness temperatures from the GMI in-

strument collocated with observations from the Dual-

Frequency Precipitation Radar (DPR) on board the

GPM Core Observatory satellite. In section 3, the ob-

servation geometry of GMI and other similar passive

microwave imagers is described, with particular focus on

how this geometry interacts with the three-dimensional

structure of precipitation, making the pixel and the res-

olution of the retrieval not trivial to define. In section 4,

relations between measured TBs and precipitation are

analyzed in terms of their spatial patterns and scale

dependence. Preliminary results on the reduction of the

retrieval uncertainty allowed by using nonlocal infor-

mation, namely spatial derivatives (gradients) and spa-

tial averages of TBs at various scales, are presented in

section 5, while conclusions and perspectives are dis-

cussed in section 6.

2. Data

The analysis presented in this article relies on the

brightness temperatures measured by theGMI on board

the GPM Core Observatory satellite collocated with the

measurements from the DPR also on board the GPM

Core Observatory.

a. GMI brightness temperature

The GMI instrument on board the GPM Core

Observatory (Draper et al. 2015) measures the radiances

originating from the atmosphere and Earth’s surface be-

low the satellite. Vertically polarized radiances are mea-

sured at 10.6, 18.7, 23.8, 37, 89, and 166GHz (single-band

channels), and at 1836 3GHz and 1836 7GHz (double-

sideband channels). Horizontally polarized radiances are

measured at 10.6, 18.7, 37, 89, and 166GHz (single-band

channels). In the following, the notation 37V designates

the 37GHz vertically polarized channel, the notation 89H

designates the 89GHz horizontally polarized channel,

etc. The GMI scan is conical with a constant 538 Earth

incidence angle covering an approximately 850-km wide

swath. More details on GMI’s observation geometry and

on its consequence on the retrieval of precipitation are

given in section 3. The GPM Core Observatory performs

16 orbits per day covering latitudes between 08 and6658.
Its orbit is non-sun-synchronous, so the local time of the

overpasses is variable. In this article, the brightness

temperatures derived from the radiances measured by

the 13 channels of GMI distributed by NASA under the

GPM_1CGPMGMI_R.05 product (GPMGMICommon

Calibrated Brightness Temperatures Collocated L1C

version 5) are used (Berg 2016).

b. DPR reflectivity and near-surface precipitation rate

The DPR instrument is made of two radars oper-

ating at 13.6GHz (Ku band) and 35.5GHz (Ka band).

For the statistical analyses performed in this article,

only the reflectivities and precipitation rates from the

Ku-band Precipitation Radar (KuPR) are used. The

KuPR cross-track scan covers 245 km wide swath

embedded within the wider swath of GMI. The radar

produces three-dimensional reflectivity profiles of the

atmosphere below 22 km altitude with a 250m verti-

cal resolution and a 5 km horizontal resolution. The

minimum reflectivity measurable by the KuPR is

12dBZ. In this article, attenuation-corrected reflectivities

and radar-derived near-surface precipitation rates from

theGPM_2AKu.06 product (GPMDPRKuPrecipitation

Profile 2A version 6) (Iguchi and Meneghini 2016a)

are used. Ka and Ku/Ka combined precipitation esti-

mates are not used in the present study because the

narrower swath of the KaPR (120 km) limits the

number of profiles that can be collocated with GMI

observations and the extent over which spatial pat-

terns analysis can be performed.

c. GPROF passive-microwave-derived near-surface
precipitation rate

GPROF is the operational NASA Precipitation

Profiling algorithm for the passive microwave im-

agers of the GPM constellation (Kummerow et al.

2015). The GPROF version 5 near-surface precip-

itation rate estimates from the GMI instrument

(GPM_2AGPROFGPMGMI.05 product) (Iguchi and

Meneghini 2016b) are used in this article as reference

state-of-the-art passive microwave estimates. The

surface classes defined by Aires et al. (2011) and

the 2-m temperature from the ECMWF interim re-

analysis (ERA-Interim) used as input of the GPROF

algorithm are also used for the analyses presented in

this study; these two variables are provided as an-

cillary data in the GPM_2AGPROFGPMGMI.05

product files.
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3. Observation geometry and definition of the
retrieval pixel

We describe below the observation geometry of the

GMI on board the GPM Core Observatory satellite.

GMI continuously measures the radiations coming from

the surface and the atmosphere below the GPM Core

Observatory satellite. For the 9 lower-frequency chan-

nels (between 10 and 90GHz) the mechanical rotation

ofGMI allows to perform a conical scan at a constant 538
Earth incidence angle over an around 850-km wide

swath every 1.9 s. Each scan is made of 221 samples, 5 km

apart. The distance between two consecutive scans

(along-track) is 13.5 km. Each sample corresponds to a

different position of the observation beam (or field of

view) for each one of the 9 channels. While all 9 beams

are concentric for a given sample, the beamwidth varies

with the frequency; the footprint, defined as the intersec-

tion of the 23dB beam contour with the surface is then

different for each channel (Fig. 2). The 4 higher-frequency

channels of GMI have a slightly different scanning ge-

ometry compared to the lower frequencies, with beams

centered at different locations (Draper et al. 2015). In the

GPM_1CGPMGMI_R.05 product used in this article,

the measured TBs at 166 and 183GHz are interpolated at

the locations of the low-frequency observations.

The state-of-the-art algorithms perform the retrieval

of the local precipitation rate at the intersection of the

beams with the surface for each individual sample from

the 13 measured TBs. One must note that the fact that

each channel has its own footprint creates an issue for

the definition of the pixel and resolution of the retrieval.

Some retrieval products (arbitrarily) assign the retrieval

pixel to the footprint of one of the channels or to an

average footprint compromising between the different

channel footprints (Munchak and Skofronick-Jackson

2013). A computational footprint matching method re-

lying on convolution and deconvolution operators has

been proposed by Petty and Bennartz (2017) to generate

synthetic footprints converging toward the 18.7GHz

footprint for all GMI channels. While the method per-

forms reasonably well for the 23.8 and 37GHz channels,

it is less satisfactory for the 10.6 and 89GHz channels.

One shall also consider the fact that for a given

channel, the gain of the receiving antenna (i.e., the

sensitivity of the imager) is not constant inside the

footprint. While the footprints are classically defined as

the intersection of the surface with the 23 dB contour

of the antenna beam this definition is also partially arbi-

trary; the 26dB contour is sometimes used as an alter-

native for defining radiometric footprints (e.g., Cracknell

1992; Kucera et al. 2004) (for aGaussian beam75%of the

transmitted/received power is focused inside the 23dB

contour and 90% inside the 26dB contour). Regardless

of the definition of the retrieval pixel, the assumption that

the measured TBs respond to the average precipitation

rate inside this pixel is always a very crude approxima-

tion. In the end, when establishing statistical relationships

between measured TBs and precipitation rates or con-

structing a priori databases for precipitation retrieval, the

resolution at which the rain rates are computed is at the

discretion of the algorithm developers.

While the target variable of the retrieval is generally

the precipitation rate at the surface, the observed TBs

are sensitive to the presence of hydrometeors at any

altitude in the atmospheric column (Bauer et al. 1998;

Fu and Liu 2001; You et al. 2015; Guilloteau et al. 2018).

In fact, in addition to the surface precipitation rate,

various parameters characterizing the observed atmo-

spheric column (e.g., integrated liquid/ice water content,

precipitation top height, etc.) can be retrieved from the

passive microwave TBs (Bauer and Schluessel 1993;

Ferraro et al. 2005; Tapiador et al. 2019). One must note

that with the 538 Earth incidence angle of GMI, the

observed atmospheric volume for each individual sample

is not a vertical but rather a tilted column, whichmay lead

to very heterogeneous and seemingly inconsistent distri-

bution of the hydrometeors inside the observed volume.

This is also prone to create a dependence of themeasured

TBs on the azimuthal direction of the observation (Bauer

et al. 1998; Hong et al. 2000). The consequence of this is

FIG. 2. The23 dB footprints ofGMI at 10.6, 18.7, 23.8, 37, 89, 166,

and 183GHz. Because of varying footprints of the different GMI

channels, defining the retrieval pixel and resolution is not trivial. We

note that same-frequency vertically and horizontally polarized

channels have identical footprints and that the 166 and 183GHz

channels have the same footprint size as the 89GHz channels.
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that two systems with different spatial structure and dif-

ferent precipitation rates observed from different direc-

tionsmay give rise to similarmeasuredTBs.Additionally,

with such a geometry, at a given frequency, a given ver-

tical atmospheric column is always intercepted by several

beams at various altitude levels (Fig. 3a). Moreover, with

different channels responding to the presence of hydro-

meteors at different altitude levels, the multispectral

signature characterizing a given vertical column may be

split across several samples. In particular, the signature of

the atmospheric ice is likely to appear in beams inter-

cepting the column at a high altitude rather than in the

beam intercepting the column at the ground level; this

effect is called parallax shift and is documented in several

publications (Bauer et al. 1998; Guilloteau et al. 2018).

Additionally, significant overlapping of adjacent fields of

view occurs for frequencies lower than 40GHz. For

GMI, at 10.6GHz, a given atmospheric column may be

intercepted by up to 12 different beams (Fig. 3b).

From these geometrical considerations, neighboring

TBs are expected to contain information complemen-

tary to that of the local TBs and potentially useful for

retrieving precipitation in the pixel of interest. Actually,

for the high-frequency channels responding to ice par-

ticles at high altitude, because of the parallax shift

caused by the 538 Earth incidence angle of the scan, the

TBs measured in one or several neighbor pixels are

potentially more informative than the local TB for the

retrieval of the local precipitation rate (Guilloteau et al.

2018). More generally, with the high incidence angle of

the observations, the three-dimensional variability of

precipitation systems, including their vertical variability

is likely to be partially reflected in the variations of the

two-dimensional fields of observed TB.We note that the

considerations made here about GMI are also valid

for other conical-scanning microwave imagers such as

SSMIS on board the DMSP satellite series (Kunkee

et al. 2008) orAMSR-2 on board theGCOM-W1 satellite

(Imaoka et al. 2012) which also have an Earth incidence

angle of around 538, frequency-dependent beamwidths

and overlapping fields of view.

4. Pattern signature and scale-dependence of the
TB–precipitation relations

Because of the observation geometry and instrumental

characteristics mentioned in the previous section, the

pixel size and spatial resolution of the retrieval of the

surface precipitation rate are partially arbitrarily defined

[see Guilloteau et al. (2017) for a detailed discussion on

the resolution and ‘‘effective resolution’’ of passive mi-

crowave retrievals]. Additionally, pixel-wise relations

between TBs and precipitation are limited in the sense

that they do not account for the fact that precipitation

fields are spatially organized at several scales and that the

response of the TBs to the spatial variability of precipi-

tation is complex and scale-dependent. Moreover, while

some spectral signatures can be ambiguous at the pixel

level, the analysis of the spatial patterns of the TBs may

allow to partially resolve this ambiguity. In other words,

some specific atmospheric features are expected to gen-

erate specific spatial patterns (or geometric signatures)

rendering them more easily identifiable in the TB fields.

We present here two case studies illustrating this fact.

The first case study is identified through the analysis

of a database of 4 million GPM KuPR radar reflectivity

profiles and near-surface precipitation rates over ocean,

associated to collocated GMI TB vectors at the pixel

level. One of the reflectivity profiles of this database,

showing a 149mmh21 precipitation rate at the surface

(average rate in the 18.7GHz GMI 23 dB footprint) is

associated to a 278K brightness temperature at 89GHz

FIG. 3. Illustration of split and shifted multispectral information

from the observation geometry. (a) GMI three-dimensional ob-

servation geometry at 89GHz. The cylinders correspond to the

fields of view (23 dB contour) of individual TB measurements.

Here, two fields of view intercepting the same atmospheric column

at different altitudes are represented. The footprints corresponding

to several adjacent fields of view are shown on the surface. (b) GMI

three-dimensional observation geometry at 10.6GHz. With the

overlapping of the fields of view, a single atmospheric column is

intercepted up to 12 times at 10.6GHz.
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(vertical polarization). Such a high TB at 89GHz indi-

cates that the observed atmospheric column contains

no (or few) ice particles. The absence of a significant

amount of ice is very surprising as liquid-phase only

precipitation processes are unlikely to generate instan-

taneous precipitation rates higher than 50mmh21 (Liu

and Zipser 2009; Lebsock and L’Ecuyer 2011). In fact,

precipitation rates as high as 149mmh21 are expected to

be associated with convective systems showing radar

echo tops several kilometers above the melting layer

(Tokay et al. 1999; Hamada et al. 2015). This particu-

lar profile was observed over the South China Sea at

latitude 22.18 and longitude 17.78 at 0445UTC 9October

2016 (orbit 14851 of the GPM Core Observatory).

Figure 4 shows the GMI-observed fields of TB at 10.6,

37, and 89GHz (vertical polarization) in the vicinity of

this profile, as well as the near-surface precipitation

fields derived from the TBs using the NASA operational

algorithm GPROF and the near-surface precipitation

derived from the DPR. The above-mentioned profile is

located near the southeastern edge of a 60km by 30km

area with extremely intense radar near-surface precipi-

tation rates (higher than 60mmh21 and locally higher

than 200mmh21). The highTBs (between 225 and 260K)

FIG. 4. Exploration of the information in the spatial structure of the GMI TBs for an oceanic convective system (South China Sea, at

0445 UTC 9 Oct 2016). (top) Observed TBs at 89, 37, and 10.6GHz (vertical polarization). (bottom) Near-surface precipitation rates

derived from theDPR and fromGMI using the GPROF algorithm; the white line corresponds to the cross section shown in Fig. 5. The ice

scattering signature at 89GHz is shifted to the northwest relatively to the emission signature at 10.6GHz; this shift and the spatial

structure of the TB fields in general reflect the three-dimensional structure of the precipitation field (see Fig. 5). This example illustrates

the need to overcome pixel-wise relations between TBs and precipitation by using the spatial information of the TB fields.
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measured byGMI at 10.6GHz inside this area, indicating

strong emission from liquid rain drops, are consistent with

the radar observations.

We noticed previously the absence of ice scattering

signature at 89GHz in a pixel where the DPR-estimated

surface precipitation rate is 149mmh21. In fact, a 180-K

depression caused by the ice scattering actually appears in

the 89GHz TB field, about 40km northwest from the lo-

cation of maximum DPR near-surface precipitation rate.

It is interesting to note that the location of the maximum

of the 89GHz TB depression corresponds to a zero-

precipitation area according to the DPR. The analysis of

the three-dimensional structure of the precipitation system

seen by theDPR reveals a deep convective systemwith an

echo top above 15km altitude (Fig. 5). It can be seen that

themaximumof the radar reflectivity above 10kmaltitude

is horizontally shifted by about 20km relatively to the lo-

cation of the maximum near-surface reflectivity because

the system has a tilted vertical structure. Additionally, the

parallax effect, caused by the Earth incidence angle of the

passive microwave imager associated with the fact that

the 89GHzTB responds primarily to the presence of ice in

the upper layer of the clouds generates a shift between the

apparent location of the ice-scattering signature at 89GHz

and the actual location of the ice clusters. This shift is

proportional to the mean altitude of the center of gravity

of the ice (Bauer et al. 1998; Guilloteau et al. 2018). In the

present case study, the parallax shift is on the order of

15–20kmand adds to the physical horizontal shift between

the high-altitude ice cluster and the maximum of the near-

surface precipitation. Hong et al. (2000) also analyzed

tilted convective systems observed by aircraft and ground-

based radars and spaceborne microwave imagers (TMI

and SSM/I) and reported shifts up to 100km between the

maximum of the liquid emission signal and the maximum

of the ice scattering signal.

The estimated precipitation field derived from the

passive microwave observations with the GPROF algo-

rithm shows a correct location of the precipitation at the

surface but also a severe underestimation of the precipi-

tation rate. The GPROF algorithm successfully associates

the emission signal at 10–40GHz with the precipitating

area, but, with the absence of a significant ice scattering

signal in the corresponding pixels, it fails to identify the

extremely active deep convective cell. The geometric

mismatch between the emission signal and the scattering

signal therefore penalizes the retrieval. Nevertheless, the

observed spatial shift between the liquid emission signal at

10.6GHz and the ice-scattering signal at 89GHz poten-

tially provides information about the underlying structure

of the observed precipitation system, revealing in partic-

ular its vertical development; however, an algorithm re-

lying only on pixel-wise relations between TB and

precipitation cannot leverage this information.

The interpretation of the spatial patterns of the bright-

ness temperature can be particularly informative for

channels that are sensitive to both ice scattering and liq-

uid emission. This is the case in particular for the 37GHz

channels of GMI. In the present case study, the combi-

nation of the ice scattering and liquid emission signals

generates a strong TB gradient at 37GHz between the

area where the emission signal is dominant and the area

where the scattering signal is dominant (Fig. 4). Because

of the 538 Earth incidence angle of GMI, this gradient

reveals both the horizontal and vertical structure of the

precipitation system. One must note that, because the

area where the surface precipitation is the most intense is

located at the limit between the areas of strong ice scat-

tering and strong liquid emission, it shows moderately

high TBs at 37GHz, similar to those observed in areas

with low precipitation rates. One can also note that the

shift between the maximum of the ice scattering signal

FIG. 5. DPRKu reflectivity vertical cross section of the precipitation system shown in Fig. 4. The system is a tilted

deep convective system. The cross section is taken along the azimuthal direction of the GMI beams. The gray

dashed line shows the direction of GMI’s observations. The black line shows GMI-measured 89GHzV TB (scale

on the right). The tilt amplifies the parallax shift causing the spatial mismatch between the liquid drops emission

signature and the ice scattering signature in the TB fields.
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and the maximum of the surface precipitation rate is

smaller at 37GHz than at 89GHz, which can be ex-

plained by the fact that the 37GHz channel is sensitive to

larger ice particles found at lower altitudes.

The second case study illustrates more specifically the

particularity of the 37GHz channels, which are sensitive

to both liquid raindrops emission and ice scattering.

[One must note that all channels are potentially sensi-

tive to both phenomena, however the emission signal is

generally dominant for frequencies lower than 30GHz

and the scattering signal is dominant for frequencies

higher than 50GHz (Liu and Curry 1992)]. Because of

this, the 37GHz TBs have a nonmonotonic response to

the intensity of precipitation (Spencer 1986): the absence

of precipitation is associated with medium TBs, low or

medium precipitation rates are associated with high TBs,

high convective precipitation rates are associated with

medium TBs and extreme deep convective precipitation

rates are associated with low TBs. Figure 6 shows a

tropical mesoscale convective system observed by GMI

at 37 and 89GHz over the Atlantic Ocean off the coast

of Brazil at 0640 UTC 9 October 2016 (orbit 14852). At

37GHz the system appears as a 300km by 300km area

with an average TB higher than 245K (while the TB of

the ocean in the surrounding precipitation-free area is

around 230K). Strong variations of the 37GHz TB can

be observed within the system with TBs locally higher

than 275K and several areas of low or medium TBs

(230–250K) embedded inside a larger region with rela-

tively high mean TB. A strong depression of the 37GHz

TB can be observed at the southeastern edge of the

system, reaching a minimum value lower than 200K. At

89GHz, identifying the extent of the precipitating area

is uneasy, but one can observe depressions of the TB

caused by ice scattering at several locations coinciding

with local minima of the 37GHz TB. This indicates that

the variations of the 37GHz TB inside the system are

mostly caused by the ice scattering rather than resulting

from variations of the liquid rain drops emission signal.

From this last case study, it seems that while the coarse-

scale variations of the 37GHz TB (i.e., spatial averages

over large areas) are dominated by the liquid drops

emission signal, finescale local variations (intrasystem

variability) is dominated by the ice-scattering signal.

Statistics at the global scale confirm this finding. The co-

efficient of linear correlation between the 37V and 89V

TBs computed from 4 years of GMI measurements over

ocean (see Fig. 7a) is 20.08 (excluding nonprecipitating

areas). Both TBs are corrected from the influence of the

surface temperature (assimilated to the ERA-Interim

2-m temperature), assuming a linear relation between TB

and surface temperature [see appendix B and Guilloteau

et al. (2018) for more details]. While from the previous

result the 37 and 89GHz TBs do not appear to be linearly

correlated, after removing the finescale spatial variations

in both TB fields through low-pass filtering (convolution

with a Gaussian smoothing kernel, with s 5 30km) we

find a20.47 correlation coefficient between the two TBs

(Fig. 7b). On the contrary, if we apply a high-pass filtering

(isotropic Laplacian of Gaussian differentiating kernel,

with s 5 15km), we find a positive 0.24 correlation be-

tween the two TBs (Fig. 7c). Assuming that the 89GHz

TB responds essentially to ice scattering at all scales, this

confirms that the finescale variability of the 37GHz TB in

precipitating areas is dominated by the ice-scattering

signal, while the coarse-scale variability is dominated by

the liquid rain drops emission signal. Once again, this il-

lustrates the complexity of the scale-dependent relations

between the TBs and precipitation, which if understood

and quantified can be leveraged for improved retrieval.

While inferring a precipitation regime and precipitation

rate from the pixel value of the 37GHzTBmay not always

be possible because of the ambiguous nonmonotonic

relation between the two variables, the analysis of the

FIG. 6. Mesoscale convective complex observed byGMI at 37 and

89GHz (vertical polarization) over theAtlantic Ocean at 0640UTC

9Oct 2016. At 37GHz the high TB envelopemarks the extent of the

precipitating area. Inside this envelope, local depressions of the TB

at 89 and 37GHz mark the most intense convective cells.
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spatial pattern of the 37GHz TB field can help resolve

the ambiguity. For example, an area of medium or low

TBs embedded inside an area of high TBs is a typical

pattern signature of a deep convective cell, generally

associated with high precipitation rates. Convective cells

are also prone to appear as dipoles in the 37GHz TB

fields, with a local maximum caused by liquid emission

close to a local minimum caused by ice scattering. Even

if the system is not tilted, the emission and scattering

signals may be spatially shifted because of the incidence

angle of the microwave imager. This may be beneficial

for retrieval as it prevents the scattering and emission

signals at 37GHz from cancelling each other out.

5. Extracting nonlocal parameters for enriched
radiometric information and reduced retrieval
uncertainty

The results presented in the previous section show that

the spatial patterns of the TBs potentially contain useful

information for retrieving hydrometeor profiles and es-

timating the surface precipitation rate. Convolution fil-

ters are a widely used potent tool for the analysis of the

spatial variations and patterns in images or physical fields

(Milligan and Gunn 1997; Szeliski 2010). For numerical

images, the filtering operation simply consists of con-

volving the image with a convolution matrix (or kernel).

Various standardized types of kernels exist, enabling

blurring, smoothing and sharpening, as well as edge and

pattern extraction with or without dependence on direc-

tionality. Some families of convolution kernels such as

wavelets, designed for multiresolution analysis (Kumar

and Foufoula-Georgiou 1997) are potentially useful for

analyzing and utilizing the scale-dependent relations

between TBs and precipitation (Turiel et al. 2005;

Guilloteau et al. 2017; Klein et al. 2018). We call a

‘‘nonlocal radiometric parameter’’ the result of the con-

volution of the TB field with a predefined kernel at a

given location. For each pixel and for each radiomet-

ric channel many different nonlocal parameters can be

computed using different convolution kernels. Including

these nonlocal parameters in the a priori database allows

for a more comprehensive radiometric characterization

of each individual hydrometeor profile of the database.

For algorithms relying on the computation of the ra-

diometric distance between the observation and the pro-

files of the a priori database, the nonlocal parameters can

then be used to form enriched radiometric vectors and

compute the radiometric distances in a higher-dimensional

space. This is expected to partially resolve the ambiguity

between radiometric signatures and hydrometeor profiles,

allowing to distinguish previously indistinguishable hy-

drometeor profiles from the enriched radiometric in-

formation. While many different nonlocal radiometric

parameters can potentially be computed, a parsimonious

parameterization is always preferable for computational

efficiency. Moreover, for a retrieval based on radiometric

distance, it is also preferable to keep the number of di-

mensions of the radiometric space low enough to ensure

that the radiometric vectors of the database stay reason-

ably close to each other (Beyer et al. 1999).

As a proof of concept, a simple k-nearest neighbors

retrieval algorithm (Hastie et al. 2009) has been im-

plemented using two 700 000-member a priori databases

of DPR hydrometeor profiles associated with collocated

GMI radiometric measurements. The first database

FIG. 7. Scale dependence in the statistical relations between the 37 and 89V TBs in precipitating areas over ocean. (a) Joint distribution

of TBs 37 and 89V observed by GMI in precipitating areas over ocean; (b) joint distribution of TBs 37 and 89V after low-pass spatial

filtering (convolution with a Gaussian kernel with s 5 30 km) of both TBs; and (c) joint distribution of TBs 37 and 89V after high-pass

spatial filtering (isotropic Laplacian of Gaussian kernel with s 5 15 km) of both TBs. See Szeliski (2010) for the description of the

Gaussian and Laplacian of Gaussian kernels. The correlation between the 37 and 89V TBs is negative for the coarse scale gradients and

positive for the finescale gradients. The correlation coefficients are computed from 70 000 randomly sampled independent data points over

global ocean and are all statistically significant at the 99% level. All TBs are corrected for surface temperature variations before applying

the filtering [see appendix B and Guilloteau et al. (2018)].
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contains only profiles over vegetated land surfaces, ex-

cluding, in particular, coastal areas and snow-covered

areas. For this, we rely on the surface type classification

used in the current operational implementation (V05) of

theGPROF algorithm (Aires et al. 2011). The vegetated

surface classes account for 70%of all land surfaces at the

latitudes covered by the GPM Core Observatory. The

second database contains only profiles over ocean.

Each profile of the two databases is associated with

the 13 TBs between 10 and 183GHz measured by

GMI, the 2-m temperature derived from the ERA-

Interim reanalysis, and 3 nonlocal radiometric pa-

rameters. The k-nearest neighbors search is therefore

performed in a 17-dimensional space.

The first two nonlocal parameters are chosen to char-

acterize the spatial derivative of the 37V and 89V TBs in

the azimuthal direction of GMI’s observation beam.

These two parameters are obtained by convolving the

37V and 89V TB fields with a first derivative of Gaussian

kernel (with s 5 8km, Fig. 8a). Figures 9a and 9b shows

FIG. 8. Convolution kernels used to extract spatial information from the TB fields. (a) First derivative ofGaussian

kernel (Szeliski 2010): f (x, y)52(y/2ps4)e2[(x21y2)/2s2] with s5 8 km; this kernel is convolved with the 37 and 89V

TB fields. (b) Gaussian kernel (Szeliski 2010): f (x, y)5 (1/2ps2)e2[(x21y2)/2s2] with s 5 20 km; this kernel is con-

volved with the 37V TB field. (c) Result of the convolution of the 89V TB field shown in Fig. 6 (bottom) with the

First derivative of Gaussian kernel. (d) Result of the convolution of the 37V TB field shown in Fig. 6 (top) with the

Gaussian kernel. The Gaussian smoothing kernel partially erases the ice-scattering signal at 37GHz. In (a) and (b),

the x direction is tangent to the imager’s scan (orthogonal to the observation direction) and the y direction is along

the azimuthal direction of the imager’s observation beam (orthogonal to the scan).
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FIG. 9. (a) Joint distributions of DPR surface rain rates and collocatedGMI 89VTBs conditioned on the value of

the spatial derivative (gradient) of the 89V TB in the azimuthal direction of GMI’s observation beam over land: for

(left) negative, and (right) positive gradients. (b) Joint distributions of DPR surface rain rates and collocated GMI

37V TBs conditioned on the value of the spatial derivative (gradient) of the 37V TB in the azimuthal direction of

GMI’s observation beam over land: for (left) negative, and (right) positive gradients. (c) Schematic illustration of
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that, over land, the statistical relations between sur-

face precipitation rate and the local value of the 37V

and 89V TBs vary significantly when conditioned on

the value of the two nonlocal parameters; in particu-

lar, they vary depending on the sign of these two pa-

rameters. For example, when the spatial derivative of

the 89V TB in the azimuthal direction of the beam is

negative, the precipitation rate is on average 2.4 times

higher than when the derivative is positive (while

the conditional marginal distribution of the local

89V TB is identical for the two cases). A similar re-

sult is found with the spatial derivative of the 37V TB.

This asymmetry is the consequence of the tilted ob-

servation beam of GMI as illustrated in Fig. 9c. In fact,

the 37 and 89V TB gradients partially reflect the

vertical variability of the precipitating system. The

most intense precipitation rates are more likely to

be found in the areas where the gradient is negative,

that is, when a lower 37V and/or 89V TB is measured

in the next field of view in the azimuthal direction of

the observation (which intercepts the same atmo-

spheric column 10 km higher), as this is likely to in-

dicate the presence of ice particles at high altitude.

Including the 37V and 89V directional gradients in

the retrieval scheme is expected to help differenti-

ating precipitating systems which have different

three-dimensional structure but show similar spectral

signatures when observed from different azimuthal

angles. It is also expected to allow identifying pro-

files which are potentially affected by the parallax

shift effect.

The third parameter is obtained by convolving the

37V TB field with a Gaussian low-pass filtering kernel

(with s 5 20 km, Fig. 8b). This parameter is expected

to characterize the liquid rain emission signal at

37GHz by removing the finescale spatial variations

associated with the ice scattering (Fig. 8d); conse-

quently, the difference between this parameter and

the raw 37GHz TB is expected to characterize the ice-

scattering signal only.

The target variable of the k-nearest neighbors re-

trieval is the average near-surface precipitation rate

inside the 18.7GHz 23 dB footprint of GMI. For

each new radiometric observation over land or over

ocean, the radiometric distance to each profile of the

corresponding database is computed as a Euclidean

distance:

D
o,i
5 kV

i
2V

o
k ,

where Vo, belonging to R17, is the observed radiometric

vector made of the 13 GMI TBs (pixel values), plus the

2-m temperature and the 3 nonlocal radiometric pa-

rameters; Vi, belonging to R17, is the corresponding ra-

diometric vector associated with the ith profile of the a

priori database (with i belonging to {1, 2, . . . , 7 3 105}).

The k profiles of the database for which Do,i is mini-

mal are retained and the final estimate of the near-

surface precipitation rateRGMI is simply the mean value

(without weighting) of the k near-surface radar-derived

precipitation rates RDPR associated to these k profiles.

This extremely simple retrieval scheme is used to dem-

onstrate that the nonlocal parameters contain informa-

tion useful to reduce the retrieval uncertainty. The use

of nonlocal parameters in a neighbor-search algorithm

does not require defining explicit relations between TB

patterns and precipitation; it is simply assumed that

similar TB patterns correspond to similar precipitation

systems and geometries. In particular, with this ap-

proach, it is not necessary to explicitly correct for the

parallax shift as is done in Guilloteau et al. (2018).

The retrieval performance is evaluated over 6 million

randomly sampled DPR profiles and collocated GMI

TBs (3 million profiles over ocean and 3 million profiles

over land, all independent from those of the retrieval

databases), with k varying between 1 and 28. For com-

parison, the retrieval is also performed without includ-

ing the nonlocal parameters in the vectors Vo and Vi,

thus computing the radiometric distances Do,i in a

14-dimensional space (13 GMI TBs plus the 2-m tem-

perature). Figure 10 (top) shows the mean absolute re-

trieval error [mean absolute difference between the

GMI-retrieved precipitation rate and the DPR Ku pre-

cipitation rate E(jRGMI 2 RDPRj) with j�j denoting the

absolute value] as a function of kwith and without using

the nonlocal parameters. One can see that, for all values

of k, the inclusion of the three nonlocal parameters

allows a reduction of the mean absolute error of around

11%over land and around 6%over ocean. Additionally,

it can be seen that the same level of mean absolute error

 
GMI’s observation geometry for a typical convective system. The observation geometry causes the asymmetrical

relationship between TB gradients and precipitation rates at 37 and 89GHz. The area of maximum precipitation

rate (between the fields of view 2 and 3) corresponds to decreasing TB gradients along the observation direction.

The distributions of (a) and (b) are obtained from 700 000 randomly sampled collocated DPR and GMI obser-

vations over vegetated surfaces (coastal areas and snow-covered areas excluded). Precipitation rates correspond to

near-surface KuPR-derived precipitation rates averaged inside GMI’s 23 dB footprint at 18.7GHz.
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can be reached with a smaller value of k, that is, a less

smooth estimate for the retrieval using the nonlocal

information. For k greater than 15, the mean absolute

error is found stable around 0.195mmh21 over land

and around 0.124mmh21 over ocean. For comparison,

the mean absolute errors for the GPROF estimates

on the same test datasets are respectively 0.266 and

0.154mmh21.

FIG. 10. Comparison of the retrieval performance of the k-nearest neighbors algorithm with and without the

nonlocal parameters. (top)Mean absolute error of the retrieved near-surface precipitation rate over land and ocean

as a function of the number k of neighbors retained in the nearest-neighbor algorithm for two different retrieval

schemes: using 13 TBs plus the 2-m temperature (black circles); and using 13 TBs plus the 2-m temperature plus

3 nonlocal radiometric parameters (blue triangles). (middle) Detection rate over land and ocean as a function of

k with (blue triangles) and without (black circles) the three nonlocal radiometric parameters. (bottom) False de-

tection rate over land and ocean as a function of k with (blue triangles) and without (black circles) the three

nonlocal radiometric parameters. The three nonlocal parameters are the spatial derivative of the 37 and 89VTBs in

the azimuthal direction of the beam (from a first derivative of Gaussian convolution kernel with s5 8 km) and the

low-pass-filtered 37V TB (using a smoothing Gaussian convolution kernel with s5 20 km). Note that the detection

rate and false detection rate are computed only for odd values of k.
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The ability of nonlocal parameters to help the

k-nearest neighbors algorithm distinguishing between

precipitating and nonprecipitating profiles is also tested.

The observed scene is considered precipitating if the

majority of the k profiles of the retrieval database se-

lected by the k-nearest neighbors algorithm are associ-

ated to a nonzero surface precipitation rates (with a

0.3mmh21 detection threshold). This is implemented

only with odd values of k to avoid indecisive results (i.e.,

50% of the k profiles being precipitating profiles).

Significant improvement of the detection rate (per-

centage of precipitating profiles correctly identified) is

observed over both ocean and land surfaces when in-

cluding the nonlocal parameters: from 81% to 86% over

land and 94% to 95% over ocean (Fig. 10, middle). In

terms of false detection rate (percentage of profiles

classified as precipitating by k-nearest neighbors algo-

rithm which are nonprecipitating according to the ra-

dar), the improvement is faint over ocean. Over land,

when k is higher than 15, the false detection rate is re-

duced from 3.6% to 2.6% (Fig. 10, bottom). This im-

provement in detection performance can be attributed

to a better localization of the edges of the systems al-

lowed by the nonlocal parameters. Considering that the

two evaluation datasets are made of 3 million indepen-

dent profiles, for all the considered scoring metrics

(mean retrieval error, detection rate and false detection

rate) the improvement is statistically significant at the

99% level.

Figure 11 shows that the reduction of the mean

absolute error due to incorporation of the nonlocal

parameters affects the retrieval of stratiform-type

precipitation as well as convective-type precipitation.

Precipitation type is determined from the KuPR re-

flectivity profile using the Awaka et al. (1997), method.

A microwave pixel is classified as stratiform (convec-

tive) if 60% or more of the 18.7GHz footprint is clas-

sified as stratiform (convective) from the KuPR. All

other precipitating profiles are classified as mixed or

undetermined precipitation type. While over land the

nonlocal parameters allow only very little improve-

ment for stratiform-type precipitation, the reduc-

tion of the mean absolute error is noticeable for

convective-type precipitation and is particularly salient

for mixed/undetermined precipitation type. Over ocean,

the improvement is more salient for stratiform and

mixed/undetermined precipitation types than for con-

vective precipitation.

6. Conclusions and perspectives

The retrieval of surface precipitation from passive

microwave observations is intrinsically uncertain to

some degree because of the limited information content of

the radiometric measurements. In the present article, we

illustrate via case studies the fact that the relations be-

tween TBs and precipitation constructed at the pixel level

are limited by the fact that 1) due to the observation ge-

ometry, the multispectral information characterizing the

local state of the atmosphere can be spatially shifted and

split across several neighboring pixels and 2) the relations

between TBs and precipitation can be nonmonotonic and

scale dependent. These results motivate a new direction

for passive microwave precipitation retrieval that moves

away from the pixel-wise only approach and considers

the spatial patterns and variations/covariations of TBs at

various scales.We call it a nonlocal retrieval approach and

note that although it is potentially pertinent for the remote

sensing of any spatial variable, it is particularly relevant

for vertically integrated atmospheric measurements, as

the observed horizontal variability may partially reflect

the vertical variability of the underlying process (hori-

zontal and vertical variations being dynamically coupled).

From a global analysis over land and ocean, we show

that using standard convolution filters (Gaussian and de-

rivative of Gaussian) to extract nonlocal parameters from

the TB fields allows to define enriched spectral signatures

that can help resolve the ambiguity in the TB-precipitation

relations. In particular, at 37GHz, scale-dependent infor-

mation extracted through convolution filters enables to

partially separate the liquid drops emission signal from the

ice scattering signal, the latter being associated with finer-

scale variations. The nonlocal parameters are also useful in

handling the complex observation geometry of conical-

scanning microwave imagers. For example, considering

the spatial derivative of the ice-sensitive TBs (higher than

30GHz) in the azimuthal direction of the imager’s obser-

vation beam helps characterizing the vertical variability of

hydrometeor profiles and handling the parallax shift effect.

Initial results show that adding only three nonlocal

parameters to the vector of TBs for the computation of

the radiometric distances in a k-nearest neighbors re-

trieval scheme allows improving the retrieval perfor-

mance scores over ocean and land surfaces. Over land,

the detection rate is improved from 81% to 86%, the false

alarm ratio is reduced from 3.6% to 2.6% and the mean

absolute error is reduced from 0.212 to 0.195mmh21.

Over ocean, the detection rate is improved from 94% to

95%and themean absolute error is reduced from0.132 to

0.124mmh21, all improvements being statistically sig-

nificant.While improvement is noticed for the retrieval of

both stratiform and convective type precipitation, the

most significant improvement occurs when the precipi-

tation type is not homogeneous within the 18.7GHz

footprint or when the precipitation type could not be

determined by the radar algorithm, that is, for atypical
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profiles, which are known to be challenging for passive

microwave precipitation retrievals.

The interpretation of the TB fields is always easier

over ocean than over land surfaces because of the

complex varying background emission of land surfaces.

In particular, the surface emissivity makes the inter-

pretation of the low-frequency liquid emission-sensitive

TBs notably complicated over land surfaces. Therefore,

passive microwave retrieval over land relies preferably

on the high-frequency ice-scattering signal. It must be

FIG. 11.Mean absolute error of the retrieved near-surface precipitation rate over (left) land and (right) ocean, for

(top) stratiform, (middle) convective, and (bottom)mixed/undetermined hydrometeor profiles, as a function of the

number k of neighbors retained by the nearest-neighbor algorithm for two different retrieval schemes: using 13 TBs

plus the 2-m temperature (black circles); and using 13 TBs plus the 2-m temperature plus 3 nonlocal radiometric

parameters (blue triangles). The number of stratiform, convective and mixed/undetermined profiles is respectively

301934, 30931, 188657 over land, and 233194, 21133, 172254 over ocean. The class of hydrometeor profile is de-

termined from the KuPR reflectivity profile using the Awaka et al. (1997) method. A profile is classified as strat-

iform (convective) if 60% or more of the 18.7GHz footprint is classified as stratiform (convective). All other

precipitating profiles are classified as mixed or undetermined precipitation type.
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noted that, although the illustrative case studies presented

in section 4 are oceanic systems, the three nonlocal pa-

rameters retained for the retrieval demonstration essen-

tially improve the characterization of the ice-scattering

signal, allowing a more salient improvement of the re-

trieval over land surfaces (11% reduction of the mean

absolute retrieval error against 6% over ocean). Scale

decomposition and pattern extraction may also help dis-

tinguishing the atmospheric signal from the background

surface signal over land. The addition of more than three

nonlocal parameters in the k-nearest neighbors retrieval

scheme (not shown) was not found to further improve the

retrieval in terms of global statistics; however, this may be

due to the limited ability of the k-nearest neighbors al-

gorithm to handle high-dimensional problems. The pat-

terns at 166 and 183GHz in particular are expected to

contain information similar to the 89GHz patterns with

potentially higher benefits for the identification of small

ice particles and of falling snow. One shall note that the

nonlocal parameters used here for the initial demonstra-

tion are the same over land and ocean; however, surface-

specific fine-tuning and parameter optimization is likely

to allow further improvement of the retrieval perfor-

mance and this is a topic for future research.

Apart from the nonlocal parameters extracted with

linear convolution filters examined in this study, various

methods can also be explored for extracting nonlocal

information from the fields of TB and to determine an

optimal set of parameters in terms of both parsimony and

information content (Hastie et al. 2009). For example, as

an alternative to the heuristic approach used herewithin a

k-nearest neighbors retrieval framework, learning via

neural networks, which has already been successfully

used for the retrieval of precipitation from passive in-

struments (Hsu et al. 1997; Hong et al. 2004; Sanò et al.

2015), offers an attractive alternative in terms of ex-

tracting pattern information. The results of the present

study advocate in particular for the use of deep con-

volutional neural networks, a class of neural networks

using convolution filters (Lecun et al. 2015; Nogueira

et al. 2017). However, a prior comprehensive analysis of

the retrieval problem and of the available datasets is al-

ways necessary to guide the machine learning approach

(e.g., to help choose the topology of a neural network).

One of the arguments for the necessity of overcoming

the pixel-wise approach of precipitation retrieval from

passive microwave sensors is the spatial shift between the

liquid rain drops emission signal and the ice scattering

signal. As already noted by Hong et al. (2000), this effect

is naturallymore salient when the instrumental resolution

is higher. Consequently, higher instrumental resolution

may paradoxically be disadvantageous for the retrieval of

precipitation, and particularly for the retrieval of the

finescale variability with a pixel-wise retrieval scheme.

The nonlocal retrieval approach proposed herein may

therefore allow to realize the full benefits of the increased

resolution and accuracy of the most recent and future

microwave imagers.

We presented herein the use of nonlocal parameters

to enrich the spectral signatures derived from the

conical-scanning passive microwave imager GMI (on

board the GPM Core Observatory satellite) specifically

designed for the retrieval of precipitation. It must be

noted that precipitation can also be detected and mea-

sured from passive microwave imagers designed for

other purposes such as the cross-track scanning humid-

ity sounders MHS and SAPHIR (Kidd et al. 2016).

Because these instruments have fewer channels than

GMI, in particular they miss the low-frequency channels

sensitive to liquid drops emission and the polarization

information, the (pixel-wise) spectral signatures they

produce have a poorer information content regarding

precipitation. Therefore, the incremental gain of us-

ing nonlocal parameters to retrieve precipitation from

these types of instruments is potentially higher than for

the conical-scanning microwave imagers such as GMI,

SSMI/S, and AMSR-2. One must note that multisensor

precipitation products such as CMORPH (Xie et al.

2017), IMERG (Huffman et al. 2018), or GSMaP-MVK

(Ushio et al. 2009), providing global mapping of hourly

or half-hourly cumulative precipitation, rely on instanta-

neous precipitation retrievals from both conical-scanning

imagers and cross-track sounders. Thus, exploring the

nonlocal retrieval approach holds great potential for im-

proving the accuracy and space–time resolution of mul-

tisensor merged products.
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APPENDIX A

Acronyms

AMSR-2 AdvancedMicrowaveScanningRadiometer 2

CMORPH Climate Prediction Center morphing

technique

DMSP DefenseMeteorological Satellite Program
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DPR Dual-Frequency Precipitation Radar

ECMWF European Centre for Medium-Range

Weather Forecasts

ERA ECMWF Re-Analysis

GCOM-

W1

Global Change Observation Mission–Water

GMI GPM Microwave Imager

GPM Global Precipitation Measurement

GPROF Goddard profiling algorithm

GSMaP-

MVK

Global Satellite Mapping of Precipitation

withMoving Vectors and Kalman filtering

IMERG IntegratedMultisatelliteRetrievals forGPM

KuPR Ku Precipitation Radar

MHS Microwave Humidity Sounder

NASA NationalAeronauticsandSpaceAdministration

SAPHIR Sondeur Atmosphérique du Profil d’Humidité
Intertropicale (atmospheric sounder for

intertropical humidity profile)

SMMR ScanningMultichannelMicrowaveRadiometer

SSM/I Special Sensor Microwave Imager

SSMIS Special SensorMicrowave Imager/Sounder

TB Brightness Temperature

TMI TRMM Microwave Imager

TRMM Tropical Rainfall Measuring Mission

APPENDIX B

Correcting Observed TBs from the Influence of
the Surface Temperature

The method used in Guilloteau et al. (2018) to correct

GMI’s 89V TBs from the influence of the surface tem-

perature is used here over ocean for the 89V and 37V

channels. In nonprecipitating areas, two linear regres-

sions are performed between GMI 37V TB and ERA-

Interim 2-m temperature and between the 89V TB and

the 2-m temperature. We establish the following rela-

tions between TB37V, TB89V, and T2m expressed in

kelvin in nonprecipitating areas:

TB
37V_NP

5 31:151 0:595T
2m

(B1)

and

TB
89V_NP

52117:121 1:248T
2m

. (B2)

We define the corrected 37V and 89V TBs as

TB
37V_cor

5TB
37V

2TB
37V_NP

(B3)

and

TB
89V_cor

5TB
89V

2TB
89V_NP

. (B4)

The corrected TBs are expected to vary only due to

hydrometeors and should have a value close to 0K for

nonprecipitating profiles.
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Klein, C., D. Belu�sić, and C. M. Taylor, 2018: Wavelet scale anal-

ysis of mesoscale convective systems for detecting deep con-

vection from infrared imagery. J. Geophys. Res. Atmos., 123,

3035–3050, https://doi.org/10.1002/2017JD027432.

Kubota, T., and Coauthors, 2007: Global precipitation map using

satellite-bornemicrowave radiometers by theGSMaP project:

Production and validation. IEEETrans. Geosci. Remote Sens.,

45, 2259–2275, https://doi.org/10.1109/TGRS.2007.895337.

Kucera, P. A., W. F. Krajewski, and C. B. Young, 2004: Radar

beam occultation studies using GIS and DEM technology:

An example study of Guam. J. Atmos. Oceanic Technol., 21,

995–1006, https://doi.org/10.1175/1520-0426(2004)021,0995:

RBOSUG.2.0.CO;2.

Kumar, P., and E. Foufoula-Georgiou, 1997: Wavelet analysis for

geophysical applications. Rev. Geophys., 35, 385–412, https://

doi.org/10.1029/97RG00427.

Kummerow, C., and L. Giglio, 1994: A passive microwave tech-

nique for estimating rainfall and vertical structure informa-

tion from space. Part I: Algorithm description. J. Appl.

Meteor., 33, 3–18, https://doi.org/10.1175/1520-0450(1994)

033,0003:APMTFE.2.0.CO;2.

——, W. S. Olson, and L. Giglio, 1996: A simplified scheme for

obtaining precipitation and vertical hydrometeor profiles from

passive microwave sensors. IEEE Trans. Geosci. Remote

Sens., 34, 1213–1232, https://doi.org/10.1109/36.536538.
——, and Coauthors, 2000: The status of the Tropical Rainfall

Measuring Mission (TRMM) after two years in orbit.

J. Appl. Meteor., 39, 1965–1982, https://doi.org/10.1175/

1520-0450(2001)040,1965:TSOTTR.2.0.CO;2.

——, and Coauthors, 2001: The evolution of the Goddard profiling

algorithm (GPROF) for rainfall estimation from passive mi-

crowave sensors. J.Appl.Meteor., 40, 1801–1820, https://doi.org/

10.1175/1520-0450(2001)040,1801:TEOTGP.2.0.CO;2.

——, W. Berg, J. Thomas-Stahle, and H. Masunaga, 2006:

Quantifying global uncertainties in a simple microwave

rainfall algorithm. J. Atmos. Oceanic Technol., 23, 23–37,

https://doi.org/10.1175/JTECH1827.1.

——, D. L. Randel, M. Kulie, N. Y. Wang, R. Ferraro, J. S.

Munchak, and V. Petkovic, 2015: The evolution of the

Goddard profiling algorithm to a fully parametric scheme.

J. Atmos. Oceanic Technol., 32, 2265–2280, https://doi.org/

10.1175/JTECH-D-15-0039.1.

Kunkee, D. B., G. A. Poe, D. J. Boucher, S. D. Swadley, Y. Hong,

J. E. Wessel, and E. A. Uliana, 2008: Design and evaluation

of the first special sensor microwave imager/sounder. IEEE

Trans. Geosci. Remote Sens., 46, 863–883, https://doi.org/

10.1109/TGRS.2008.917980.

SEPTEMBER 2020 GU I L LOTEAU AND FOUFOULA -GEORG IOU 1589

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/37/9/1571/4994155/jtechd190067.pdf by guest on 21 Septem
ber 2020

https://doi.org/10.1175/1520-0426(1995)012<0755:TDOSRR>2.0.CO;2
https://doi.org/10.1175/1520-0426(1995)012<0755:TDOSRR>2.0.CO;2
https://doi.org/10.1109/TGRS.2004.843249
https://doi.org/10.1007/s10712-013-9264-9
https://doi.org/10.1007/s10712-013-9264-9
https://doi.org/10.1175/1520-0450(2001)040<2130:TVOTPP>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<2130:TVOTPP>2.0.CO;2
https://doi.org/10.1175/2010JTECHA1454.1
https://doi.org/10.1175/2010JTECHA1454.1
https://doi.org/10.1175/JHM-D-17-0087.1
https://doi.org/10.1175/JHM-D-17-0087.1
https://doi.org/10.1175/JTECH-D-18-0011.1
https://doi.org/10.1175/JTECH-D-18-0011.1
https://doi.org/10.1038/ncomms7213
https://doi.org/10.1175/1520-0450(2000)039<0983:MBTFTC>2.0.CO;2
https://doi.org/10.1175/1520-0450(2000)039<0983:MBTFTC>2.0.CO;2
https://doi.org/10.1175/JAM2173.1
https://doi.org/10.1175/BAMS-D-13-00164.1
https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
https://doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.2_0.pdf
https://pmm.nasa.gov/sites/default/files/document_files/IMERG_ATBD_V5.2_0.pdf
https://doi.org/10.5067/GPM/DPR/Ku/2A/06
https://doi.org/10.5067/GPM/DPR/Ku/2A/06
https://doi.org/10.5067/GPM/GMI/GPM/GPROF/2A/05
https://doi.org/10.5067/GPM/GMI/GPM/GPROF/2A/05
https://doi.org/10.1117/12.977774
https://doi.org/10.1117/12.977774
https://doi.org/10.1175/JHM-D-15-0051.1
https://doi.org/10.1175/JHM-D-15-0051.1
https://doi.org/10.1002/2017JD027432
https://doi.org/10.1109/TGRS.2007.895337
https://doi.org/10.1175/1520-0426(2004)021<0995:RBOSUG>2.0.CO;2
https://doi.org/10.1175/1520-0426(2004)021<0995:RBOSUG>2.0.CO;2
https://doi.org/10.1029/97RG00427
https://doi.org/10.1029/97RG00427
https://doi.org/10.1175/1520-0450(1994)033<0003:APMTFE>2.0.CO;2
https://doi.org/10.1175/1520-0450(1994)033<0003:APMTFE>2.0.CO;2
https://doi.org/10.1109/36.536538
https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<1965:TSOTTR>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2
https://doi.org/10.1175/1520-0450(2001)040<1801:TEOTGP>2.0.CO;2
https://doi.org/10.1175/JTECH1827.1
https://doi.org/10.1175/JTECH-D-15-0039.1
https://doi.org/10.1175/JTECH-D-15-0039.1
https://doi.org/10.1109/TGRS.2008.917980
https://doi.org/10.1109/TGRS.2008.917980


Lebsock, M. D., and T. S. L’Ecuyer, 2011: The retrieval of warm

rain from CloudSat. J. Geophys. Res., 116, D20209, https://

doi.org/10.1029/2011JD016076.

Lecun, Y., Y. Bengio, and G. Hinton, 2015: Deep learning.Nature,

521, 436–444, https://doi.org/10.1038/nature14539.

Liu, C., and E. J. Zipser, 2009: ‘‘Warm rain’’ in the tropics: Seasonal

and regional distributions based on 9 yr of TRMM data.

J. Climate, 22, 767–779, https://doi.org/10.1175/2008JCLI2641.1.

Liu, G., and J. A. Curry, 1992: Retrieval of precipitation from

satellite microwave measurement using both emission and

scattering. J. Geophys. Res., 97, 9959–9974, https://doi.org/

10.1029/92JD00289.

Löhnert, U., S. Crewell, C. Simmer, andA.Macke, 2001: Profiling

cloud liquid water by combining active and passive micro-

wave measurements with cloud model statistics. J. Atmos.

Oceanic Technol., 18, 1354–1366, https://doi.org/10.1175/

1520-0426(2001)018,1354:PCLWBC.2.0.CO;2.

Milligan, P. R., and P. J. Gunn, 1997: Enhancement and presen-

tation of airborne geophysical data. AGSO J. Aust. Geol.

Geophys., 17, 63–75.
Mugnai, A., and Coauthors, 2013: CDRD and PNPR satel-

lite passive microwave precipitation retrieval algorithms:

EuroTRMM/EURAINSAT origins andH-SAF operations.

Nat. Hazards Earth Syst. Sci., 13, 887–912, https://doi.org/

10.5194/nhess-13-887-2013.

Munchak, S. J., and G. Skofronick-Jackson, 2013: Evaluation of

precipitation detection over various surfaces from passive

microwave imagers and sounders. Atmos. Res., 131, 81–94,

https://doi.org/10.1016/j.atmosres.2012.10.011.

Nogueira, K., O. A. B. Penatti, and J. A. dos Santos, 2017: Towards

better exploiting convolutional neural networks for remote

sensing scene classification. Pattern Recognit., 61, 539–556,

https://doi.org/10.1016/j.patcog.2016.07.001.
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