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A B S T R A C T

Climatic or geologic controls, such as tectonics or glacial drainage, might impose constraints on landscape self-
organization resulting in spatial patterns of rivers and valleys which do not obey the typical self-similar re-
lationships found in most landscapes. The goal of this study is to quantify how such geologic constraints express
themselves on channel network topology, spatial heterogeneity of drainage patterns, and emergence of preferred
scales of landscape dissection. We use as an example a basin located in the Upper Midwestern United States
where successive glaciations over the past thousand years have led to a pronounced spatially anisotropic channel
network structure which defeats most scaling laws of fluvial landscapes. This is contrasted with another river
basin in the North-Central U.S. which has been organized under the absence of major geologic influences and
follows a typical self-similar channel network organization. We show how the geologic constraints have imposed
a competition for space which is captured in the slope–local drainage density probabilistic structure, in the
failure of self-similarity in basin-wide river network topology, and in the length-area scaling relationship being
not typical of fluvial landscapes. Via a two-dimensional wavelet analysis and synthesis, we demonstrate the
occurrence of a gap in the power spectrum which corresponds to the presence of preferred scales of organization,
and characterize them through multi-scale detrending. The developed methodologies can be useful in advancing
our geomorphologic understanding of how external controls might manifest themselves in creating a landscape
dissection that is outside the norm and how this dissection can be studied objectively for understanding cause
and effect.

1. Introduction

Landscape self-organization driven by the movement of water and
sediment, and the emergence of river networks that exhibit a hier-
archical structure across a range of scales have been the subjects of
intensive research over the past decades (e.g., see Rodriguez-Iturbe and
Rinaldo, 2001 and references therein). Recently, Zanardo et al. (2013)
studied 408 river networks from 50 basins with different geographic
location and climate across the United States to assess if the majority of
the river networks exhibit self-similarity (SS) in their topological
structure. Through a rigorous statistical testing of the Hortonian and
Tokunaga self-similarities (see Zanardo et al., 2013 for a detailed re-
presentation of these tests), they concluded that 96% of the river net-
works overwhelmingly exhibited Hortonian Self-Similarity (HSS), while
80% of them followed a topological hierarchical structure that can be
characterized successfully by Tokunaga Self-Similarity (TSS). Despite

the wealth of studies on landscapes drained by river networks that
exhibit HSS, detailed studies of those 20% basins that break the stricter
TSS are lacking. The goal of this work is to explore such “outlier basins”
which we call “self-dissimilar” and propose methodologies that can
probe into their structure in ways that are able to reveal spatially het-
erogeneous organization and preferential scales of dissection, which
then can be related to the underlying controls of, e.g., climate or
geology.

Fig. 1a illustrates an example of such basins corresponding to the
43,400 km2 Minnesota River Basin (MRB) located in the Upper Mid-
western Unites States. The geologic history of the MRB (Ojakangas,
1982; Nicollet, 1993) reveals that successive glaciations around
100,000–10,000 BP and the draining of glacial Lake Agassiz in 13,400
BP drastically carved this landscape (Clayton and Moran, 1982;
Belmont et al., 2011). While glacial lobes draining over most of this
basin left behind a flat and lake-punctuated landscape in the central-
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eastern part, the western bedrock part was not eroded (Fig. 1b). Instead,
repeated glacial cycles covered that bedrock with glacial till deposits
and formed the 320 km long, 160 km wide geological feature called
Coteau des Prairies (CDP) residing along the South Dakota border and
extending to the northwestern part of the MRB. At the edge of the CDP

(Fig. 1c,d) there is a pronounced difference in the fluvial dissection
compared to the rest of the basin, expressed by the presence of a dense
number of steep channels and quasi-periodic ridges and valleys. This
high slope region (HSR) includes channels with slope larger than
0.01 m m−1 and maximum elevation less than 500 m. A cross-section

Fig. 1. Illustration of the Minnesota River Basin (MRB) and the Coteau des Prairies (CDP) region. (a) Elevation map of the MRB and the CDP residing along the South Dakota border and
extending to the Northwestern part of the MRB. (b) River network topology of the Northern part of the MRB, including the Headwaters sub-basin which encompasses a portion of the CDP.
(c) 3D view of the Headwaters landscape delineated by the box shown in (b), showing the presence of a dense number of fairly parallel channels. (d) Hillshade of the DEM corresponding
to a 70 km2 patch in the high slope region, depicting quasi-periodic ridges and valleys in this part of the landscape. (e) Longitudinal profile of the cross section A–B within the box shown
in (b), indicating a 200 m drop in elevation within a 12 km horizontal distance.
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of these almost parallel channels in Fig. 1d reveals that these are not
rills, but well-formed channels ranging in depth from 10 to 20 m. The
longitudinal profile (Fig. 1e) of the analyzed area shown by the box in
Fig. 1b and expanded in Fig. 1c shows a 200 m drop in elevation within
a 12 km horizontal distance, resulting in the gradient of 0.017 m m−1

(see also Gran et al., 2009).
Fig. 2a,d shows the Digital Elevation Model (DEM) and the drainage

pattern of the Headwaters River Basin, one of the 12 major sub-basins
of the MRB, encompassing a portion of the CDP with a peculiar river
network topology, and Fig. 2b,e shows those of the Upper Bluestone
River Basin in West Virginia, U.S., as another example of a geologically-
controlled landscape. The Upper Bluestone River Basin is a tributary of
the much bigger New River Basin, which experienced ten geologic era-
periods dividing the basin into three major physiographic provinces,
that is, Appalachian Plateaus, Ridge and Valley, and the Blue Ridge
Provinces (Paybins, 2000). The Ordovician Taconic Orogeny was the
first well-known tectonic event which formed a chain of mountains to
the north and east of West Virginia and the next Devonian Acadian
Orogeny tectonic event further formed a new set of mountains to the
northeast. This strong folding and thrust faulting resulted in the de-
velopment of long folded ridges which are underlain by sedimentary
rocks and separated by relatively flat, broad valleys (Cardwell, 1975).

The above basins are only a few examples of a broader category of
geologically-controlled landscapes at which deviation from the uni-
versal scaling relationships is recognizable from both the landscape
dissection structure and the underlying forming processes. For instance,
contrasting relationships were found between specific sediment yield
and drainage area across a wide range of spatial scales in various re-
gions of Canada, as compared to the typically observed negative cor-
relation (between specific sediment yield and drainage area), e.g., in
the south-eastern United States (e.g., see de Vente et al., 2007 and

references therein). These opposing trends have been associated with
the activity of rivers that are still responding to large volumes of se-
diments remobilized during periods of glaciation (e.g., Church and
Slaymaker, 1989). In the study of slope-control on the aspect ratio of
weakly dissected river basins (~10–103 km2), Castelltort et al. (2009)
also attributed anomalous results obtained from some basins in the
Columbia River Basin (46° 0′ 0″ N, 116° 0′ 0″W) to the influence of past
tectonics when the North-American plate moved south-west over the
Yellowstone Plume.

Although subjected to a different type of control, all the afore-
mentioned basins share communalities of carrying the imprint of ex-
ternal forcing, offering a playground for advancing our geomorpholo-
gical understanding of cause and effect, studying quantitatively how
geologic constrains express themselves on the river network topology,
and developing objective methodologies that can explore the spatial
heterogeneity and variability of such basins as a function of scale.
Addressing these issues constitutes the chief objective of this study. We
additionally highlight the morphological differences between self-dis-
similar and self-similar landscapes by contrasting the Headwaters River
Basin with the 4900 km2 Methow River Basin (Fig. 2c,f) located in
North-Central Washington, which is known to exhibit a typical self-si-
milar channel network organization (Zanardo et al., 2013) and to have
reached a geomorphic stable condition (United Stated Bureau of
Reclamation, 2008).

To address questions of spatial heterogeneity across different scales
and quantify the particular scales and locations contributing mostly to
the landscape variability, a localized multi-scale analysis framework,
such as that provided by wavelets, is needed. Wavelet analysis has at-
tractive properties such as spatial and spectral localization which allow
characterization of differences in the shape and orientation of topo-
graphic features in either one or two dimensions (e.g., Booth et al.,

Fig. 2. Digital Elevation Model (DEM) and river network topology of the self-similar Methow and self-dissimilar Headwaters and Upper Bluestone basins. (a–c) DEM of the 5400 km2

Headwaters basin (located in Southwestern Minnesota, U.S.), 1200 km2 Upper Bluestone basin (a tributary of the much larger New River Basin located in West Virginia, U.S.), and
4900 km2 Methow basin (located in Northern Washington, U.S.), respectively. (d–f) NHDPlus2 (2012) channel network of the Headwaters, Upper Bluestone, and Methow basins,
respectively.
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2009; Kalbermatten et al., 2012; Doglioni and Simeone, 2014). Here,
we examine the wavelet spectrum to study the distribution of landscape
variance across scales. We also apply two-dimensional Discrete Wavelet
Transform (DWT) and multi-resolution representation to characterize
regular topographic features with preferred scales of organization via a
multi-scale landscape detrending.

This paper is organized as follows. In Section 2, landscape dissection
analysis is performed through tests of river network SS, probabilistic
study of the relationship between the local drainage density and
channel slope, and scaling of the length-area relationship. Section 3
demonstrates how wavelet multi-scale analysis and synthesis can be
used to identify characteristic scales within a landscape, and Section 4
concludes by summarizing the important findings and suggestions for
future research.

2. Landscape dissection analysis

2.1. Tests of Hortonian and Tokunaga self-similarity

If a river network is represented by a tree composed of links (stream
channels) and nodes (stream junctions), in the Horton-Strahler ordering
scheme: (1) external links or sources have order equal to 1; (2) when
links of the same order w join, the order of the immediate downstream
link is w + 1; and (3) the link directly downstream of two joining links
with different orders is labeled with the highest order of the two
(Horton, 1945; Strahler, 1957). The order (Ω) of a finite river network
is equal to the maximum order of links present in the network. For a
Hortonian self-similar river network, Nw / Nw + 1 = RB, where RB is the
so-called bifurcation ratio, and Nw is the number of branches of order w,
where branches are defined as connected links of the same order. Other
commonly studied Horton laws also apply in terms of the average
length and average upstream contributing area of the braches of order
w, but are not considered here.

The Tokunaga indexing accounts for the side branching structure of
a river network, i.e., if Nij is the number of branches of order i that join a
branch of order j, and Nj is the total number of branches of order j, the
Tokunaga index Tij is defined as Tij = Nij / Nj. Thus Tij can be inter-
preted as the average number of branches of order i that join a branch
of order j. If τij(l) (1 ≤ l≤ Nj, 1≤ i < j≤ Ω) denotes the number of
branches of order i that join the nonterminal nodes of the l-th branch of
order j > i, a tree is called self-similar if its side-branching structure is
the same for all branches of the same order (i.e., τij(l) = Tij, 1≤ l≤ Nj,
1 ≤ i < j ≤ Ω) and is also independent of the branch order (i.e.,
Ti(i + k) = Tk, 2≤ i + k≤ Ω). The TSS applies an extra constraint
(Tokunaga, 1978) based on which the ratio of two consecutive Toku-
naga indices is constant, i.e., Tk + 1 / Tk = c, 1≤ k ≤ Ω − 1. This
gives rise to a family of trees represented by Tk = ack − 1, where the
positive parameters a and c are indicative of the first-order side-
branching (T1) and the degree of higher order branching, respectively.

River networks for the Headwaters and Methow basins were ob-
tained from the National Hydrography Dataset (NHDPlus 2.10 released
in 2012) and are shown in Fig. 3a and b, respectively. Fig. 3c and d
show the Horton law of the number of branches, giving the bifurcation
ratio equal to 2.87 and 3.93 for the Headwaters and Methow basins,
respectively. The linear relationships with coefficients of determination
(R2) equal to 0.92 and 0.98 are both statistically significant, implying
that both river networks follow the HSS. However, two points are worth
noting. First, although even visually the Headwaters basin exhibits
distinct scales of topologic variability not homogeneously present in the
landscape, the Hortonian analysis (which essentially applies a coar-
sening of the landscape based on basin order) is blind to such a struc-
ture and indicates the presence of SS. The inability of the Hortonian
analysis to critically depict deviations from SS has also been reported in
other studies (e.g., Kirkby, 1976; Gupta and Waymire, 1989; Kirchner,
1993; Tarboton, 1996). Second, we note that the estimated bifurcation
ratio of 2.87 for the Headwaters basin is very low compared to that

expected for typical river networks (~4), raising suspicion in its in-
terpretation. The reason for this deviation might be tracked back by
comparing the real number of branches of different orders in this basin
to the ones “expected” from the bifurcation ratio of 2.87. Indeed, since
the maximum order of the Headwaters basin is 7, it is expected that the
network includes approximately three branches of order 6, eight
branches of order 5, …, 195 branches of order 2, and 559 branches of
order 1 if we assume it maintains the bifurcation ratio throughout the
lower-order branches. However, topologic analysis of this river network
reveals that there exists a lower number of streams with orders 2 to 5,
but a much larger number of first-order streams (648) than expected.
Fig. 3a shows that the vast majority of such first-order streams not only
is present in the high slope region (HSR) of the CDP, but also these
streams drain almost parallel to each other decreasing the chance to
join and create higher order streams, which ultimately results in a
smaller bifurcation ratio than expected for typical landscapes.

Fig. 3e and f show the Tokunaga index against the side-branching
order for the Headwaters and Methow basins, respectively. It is clearly
seen how the stricter TSS is violated in the Headwaters basin, but not in
the Methow basin. This is because the TSS considers not only the first-
order organization (i.e., number of branches of order w draining into
branches of order w + 1, that is, Nw,w + 1), but also the transition
probability of a branch of order w to drain into a branch of order w + k,
implying higher order branching. It was found that the total number of
low order side-branchings (i.e., N12, N23, N34, N13, N24, N14), which are
essentially all the existing transitions in the HSR, forms nearly 60% of
the same transitions present within the whole basin. This indicates how
the hierarchical progression from one order to another is over-
whelmingly violated at the above transitions, probing further ex-
amination of the causes of the abundance of lower order side-branching
within the HSR. Indeed, steep facies (or knickzones) created by the
geologic forcing in this region have maintained large areas of low
convergence inhibiting the merging of streams to higher orders and
resulting in a large number of low order channels within the HSR. This
observation is further investigated in the next section by studying the
local drainage density and other geomorphic attributes of the land-
scape.

2.2. Slope–local drainage density analysis

Drainage density, which is a measure of how dense a landscape is
dissected by fluvial channels, has been the focus of several studies
aiming to understand how dissection is controlled by factors related to
climate and relief (e.g., Tucker and Bras, 1998 and references therein).
Since drainage density in its global form (defined as the total length of
fluvial channels divided by total drainage area) cannot account for
spatial heterogeneities in a landscape, we compute here the local drai-
nage density (LDD), defined as the ratio of the length of a channel to the
incremental contributing area draining directly into that channel. Based
on this definition, Fig. 4a–d illustrates the color mapping of LDD as well
as the channel slope (S) on the river network of the Headwaters and
Methow basins.

First, it is observed that although the local slopes in the Headwaters
basin are on average smaller than those in the Methow basin (average
slope of 0.009 m m−1 vs. 0.129 m m−1, respectively), a reversal is
found for LDD values (average LDD of 1.49 km km−2 vs.
1.02 km km−2, respectively). The maximum LDD value in the
Headwaters basin (4.98 km km−2) is also twice as large as the max-
imum LDD value in the Methow basin (2.49 km km−2), implying that
LDD does not necessarily increase with the local slope (see Table 1 for
other statistics on the channel slope and LDD). This is counterintuitive
as one expects steeper slopes to create longer and narrower incremental
areas due to less flow convergence; however, the deviation found here
can be an indicator of large-scale heterogeneities in the landscape im-
posed by geologic controls (e.g., Castelltort and Simpson, 2006;
Castelltort et al., 2009). Second, higher LDD values in the Headwaters
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basin are concentrated in the HSR which is very steep and dissected by
low order channels (up to order 3), while the Methow basin shows a
spatially uniform distribution of slope and LDD values. A functional
comparison of slope and LDD, as shown in Fig. 4e, further confirms that
in the Headwaters river basin high values of LDD and slope fall in the
same topographic region related to the HSR, while this is clearly not
true in the Methow basin where channels with high LDD do not ne-
cessarily correspond to high slopes but span a relatively wide range of
slopes. These observations underscore not only the subtle differences

between the Headwaters and Methow basins with respect to their
landscape organization, but also highlight how the Headwaters basin's
HSR has experienced a completely different dissection mechanism
compared to the rest of the basin. Fig. 4f quantifies this by showing the
scaling relationship between the channel length and incremental drai-
nage area for all the channels within and outside of the HSR. The high
scaling exponent of 0.70 for the HSR affirms the presence of longer
streams and narrower contributing areas in this region, demonstrating
the particular type of dissection formed in this part of the landscape.

Fig. 3. Topology and tests of self-similarity (SS) for the river networks of the Headwaters and Methow basins. (a) and (b) show the channel network colored by the Horton-Strahler order
in the Headwaters and Methow basin, respectively. (c) and (d) depict the Hortonian scaling for the number of branches, confirming the Hortonian self-similarity (HSS) for both river
networks. (e) and (f) show the Tokunaga index versus side-branching order, revealing that the stricter Tokunaga self-similarity (TSS) is violated in the Headwaters basin, but not in the
Methow basin.
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To probe further into the relationship between LDD and local slope
and specifically to investigate how this relationship might change in a
magnitude–frequency space under the presence of spatial hetero-
geneity, the joint probabilistic structure of these two attributes is stu-
died. Fig. 5c,d shows the quantile–quantile (Q–Q) plots of LDD and
slope for the Headwaters and Methow basins, while Fig. 5a,b shows the
marginal probability distributions functions (PDFs). In the Methow
basin, the LDD and slope PDFs follow each other up to the 92nd

quantile after which the tails of the two distributions diverge as evi-
denced by their deviation from the line passing through the 25th and
75th quantiles. However, this breaking point (corresponding to S⁎ and
LDD⁎) for the Headwaters basin takes place at the 76th quantile, in-
dicating that higher slopes do not necessarily support higher LDD va-
lues. The position of all channels with LDD and slope beyond the Q–Q
plot's breakpoint are mapped on the Headwaters and Methow river
networks as depicted in Fig. 5e and f, respectively. It is seen that these

Fig. 4. Channel slope and local drainage density (LDD) spatial distribution, and their functional relationship. (a and b) Spatial distribution of channel slope and LDD in the Headwaters
basin, showing concentration of high LDD in the high slope region (HSR) with steep channels. (c and d) Depicts a uniform spatial distribution of channel slope and LDD in the Methow
basin. (e) Functional comparison of the channel slope and LDD between the Headwaters (blue stars), the Methow (red triangles), and the HSR (black circles). (f) Scaling relationship
between channel length and incremental drainage area in the Headwaters basin. (For interpretation of the references to color in this figure legend, the reader is referred to the web version
of this article.)
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channels are located throughout the Methow basin while they are
concentrated within the HSR in the Headwaters basin. Indeed, the
western part of the Headwaters landscape has been confined in space
creating competition for the developing channels, resulting in the for-
mation of long and fairly parallel low-order channels. Such a pre-
ferential dissection and reduced LDD variability at small spatial scales
once again is a signature of the strong influence of external forcings,
geologic control in this basin, on the landscape organization, leading to
deviation from the typical relationships under SS. It is interesting to
report that the same analysis performed on the Bluestone River Basin
showed a breakpoint of the Q–Q plot of the LDD–Slope at approximately
the same 75th quantile. Although we are far from making a general
conclusion about the quantile of the occurring breakpoint for self-dis-
similar landscapes, it is apparent that this Q–Q plot can serve as an
indicator of deviation from SS and the presence of heterogeneity in the
spatial organization of a landscape. Our next goal is to quantify spatial
scales of preferred dissection for which we need appropriate tools such
as localized decomposition to interrogate the landscape locally. This
issue is examined in the next section.

3. Landscape multi-scale analysis and preferred scales of
organization

Multi-scale filtering of landscapes for isolating features within a
desired range of scales can be achieved by spectral analysis via Fourier
Transform (FT) or Wavelet Transform (WT). Both the FT and the WT
perform a convolution of the landscape topography with a family of
functions, that is, the sine and cosine functions for the FT and the
wavelet functions for the WT. In spite of the widespread application of
the FT to study topographic data (e.g., Ansoult, 1989; Hough, 1989;
Cheng et al., 2000; Wörman et al., 2007; Perron et al., 2008; Orloff
et al., 2013), its disadvantages include the lack of spatial localization
and the prerequisite for parametric removal of large-scale trends or
non-stationarities in the data before the FT can be applied. Instead, the
WT is a localized transform in space and frequency and allows for the
non-parametric removal of trends by appropriate selection of the mo-
ther wavelet (Foufoula-Georgiou and Kumar, 1994; Mallat, 1989a,b).

The WT of a signal f(t) is defined as

∫= < > =∗

−∞

+∞
∗f b f t t f t dtWT (λ, ) ( ), ψ ( ) ( )ψb bλ, λ,

(1)

where< ∙,∙>denotes the inner product (convolution) of f(t) with a
family of functions ψ⁎

λ,b(t) which are the complex conjugates of the
wavelet function ψλ,b(t), expressed as

= ⎛
⎝

− ⎞
⎠

>t t bψ ( ) 1
λ

ψ
λ

, λ 0bλ, (2)

where λ is the scale and b is the location parameter controlling the
contraction (or dilation) and translation of the mother wavelet ψ(t),

respectively. A wavelet function has zero mean, i.e., ∫ =
−∞

+∞
t dtψ( ) 0, and

higher order moments may also be zero,

∫ = = … −
−∞

+∞
t t dt k Nψ( ) 0, 0, , 1k , allowing removal of polynomial

trends up to degree N.

3.1. Quantifying preferred scales of organization

The wavelet power spectrum (WPS) of topography measures how
the variance of the topography is distributed across scales. Contrary to
the Fourier spectrum, it offers the advantage of non-parametric surface
detrending and also minimizing aliases via the space-frequency locali-
zation property of wavelets (Mallat, 1989a,b). Here we use the Mexican
hat wavelet (which has two zero moments and thus removes poly-
nomial trends of order 2) to compute the continuous WPS. Indeed, the
power spectrum (PS) can be computed across continuous fine scales via
the Continuous Wavelet Transform (CWT), while the dyadic (i.e., power
of two) scales in the orthogonal DWT limits the WPS to some definite
discrete scales (depending on the size of the data) making it harder to
interpret possible abrupt changes in the distribution of energy across
scales. A number of past studies have reported that the topography is
typically scale-invariant and the PS obeys a single power-law scaling
relationship with frequency (f) according to PS(f) ∝ f−β (e.g., Pelletier,
1999; Veneziano and Iacobellis, 1999; Gagnon et al., 2006). Since the
amplitude and the wavelength of topographic features are related to the
PS and f, respectively, the spectral slope (β) indicates how the height-to-
width ratio of landforms varies with scale. In general, the spectral slope
of a self-similar topography computed from a two-dimensional spec-
trum is equal to 3 (i.e., the landforms' height-to-width ratio is in-
dependent of scale), while topographies with constant β other than 3
are categorized as self-affine (e.g., Voss, 1988).

Fig. 6a and b show the WPS of the landscape topographies corre-
sponding to a 70 km2 patch in the Headwaters basin's HSR (Fig. 1c,d)
and a 190 km2 patch extracted from the Methow basin (marked by the
box in Fig. 2c), respectively. The WPS of the patch of Methow gives a
single spectral slope equal to 2.2 indicating that the landscape topo-
graphy is self-affine and obeys the same scaling relationship across a
range of scales. However, in the Headwaters' WPS, there are two dif-
ferent scaling regimes with spectral slopes equal to 4.9 and 2.1, sepa-
rated by a spectral gap between the scales of 0.3 and 1.5 km. The larger
spectral slope above the spectral gap implies that large-scale features
(i.e., scales larger than 1.5 km) have larger height-to-width ratios
compared to small-scale features. The spectral gap within a range of
scales indicates an energy plateau which signifies that these scales
contribute more to the overall energy (or variance of the topography) as
compared to the case where the spectrum maintained a constant slope
within the whole range of scales; it indeed documents the existence of
regular topographic features and some preferred scales of organization.
Such features correspond to mildly convergent (almost parallel) chan-
nels in the Headwaters basin's HSR, and the profile of a cross-section in
this region shown in Fig. 1d confirms that the scales corresponding to
the spectral gap (0.3 to 1.5 km) pertain to the distance between the
quasi-periodic ridges and valleys in the HSR. The emergence of a
spectral gap, and the presence of two distinctly different scaling re-
gimes around it, is viewed as a signature of “a structured self-dissim-
ilarity” in such landscapes providing information about specific scales
of preferred organization and probing the question of understanding
the processes that lead to such organization across scales. Topographies
that exhibit a break in their power spectra have been reported before, as
for example in Perron et al. (2008), but landscapes that exhibit a
spectral gap over a range of scales have not been reported before to the
best of our knowledge.

Table 1
Statistics of the channel slope (S) and local drainage density (LDD) in the Headwaters and
Methow River Basins.

Attribute Statistic Headwaters basin Methow
basin

Channel slope (S) Mean (m m−1) 0.009 0.129
Standard deviation
(m m−1)

0.011 0.102

Skewness coefficient 1.82 1.17
Maximum (m m−1) 0.089 0.620

Local drainage
density (LDD)

Mean (km km−2) 1.49 1.02
Standard deviation
(km km−2)

0.89 0.46

Skewness coefficient 0.88 0.73
Maximum
(km km−2)

4.98 2.49
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3.2. Characterizing landscape regularity via multi-scale detrending

Although for multi-scale analysis of landscapes the continuous wa-
velet transform is appropriate, for landscape detrending and re-
construction of local features of interest, a DWT is necessary. The dis-
crete wavelet function can be constructed by discretizing the scale and
location parameters (usually in a logarithmic scale) written as

⎜ ⎟= ⎛
⎝

− ⎞
⎠

t t nbψ ( ) 1
λ

ψ λ
λm n m

m

m,
0

0 0

0 (3)

where m and n are non-zero integers, λ0 is a fixed value greater than 1,
and b0 is a positive value. The convolution of signal f(t) with ψm,n(t) is
called the DWT.

By choosing λ0 = 2 and b0 = 1 (called dyadic grid discretization), a

Fig. 5. Probabilistic comparison of the channel slope and local drainage density (LDD) in the Headwaters and Methow basins. (a) and (b) give the channel slope and LDD probability
distribution function, respectively. (c) and (d) show the quantile-quantile plots of LDD versus slope for the Headwaters and Methow basins, respectively. In panels (e) and (f), green
channels have slope larger than S⁎, red channels have LDD larger than LDD⁎, and black channels are those having both slope larger than S⁎ and LDD larger than LDD⁎. Concentration of
these channels in the Headwaters' high slope region (HSR) is apparent, while they are distributed throughout the Methow basin. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
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certain class of wavelets ψ(t) can be constructed such that ψm,n(t) are
orthogonal to their dilations and translations
(i.e., < ψm , n(t) ,ψm′ ,n′(t) > =δm,m′δn,n′, where δij is the Kronecker
delta function) and form a complete orthonormal basis for all signals
that have finite energy. Such signals f(t) can then be written as a linear
combination of the wavelets ψm,n(t), i.e.,

∑ ∑= < >
=−∞

+∞

=−∞

+∞

f t f t ψ t ψ t( ) ( ), ( ) ( )
m n

m n m n, ,
(4)

where the weights are the inner products of f(t) with the corresponding
wavelet function ψm,n(t). Mallat (1989a, b) showed that there exists a
unique function φ(t) with certain properties, called the scaling function,
such that f(t) can also be written as

∑

∑ ∑

= < >

+ < >

=−∞

+∞

=−∞ =−∞
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f t f t φ t φ t

f t ψ t ψ t

( ) ( ), ( ) ( )

( ), ( ) ( )
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n
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, ,

0 0

0

(5)

where the first term in the RHS represents the average or approxima-
tion of f(t) at scale m0 and the second term captures all the “details” of f
(t) at scales equal and smaller than m0. It can be easily shown from the
above equation that the following recursive equation results:

= + ′−f t f t f t( ) ( ) ( )͠ ͠
m m m1 (6)

implying that a signal approximation at scale m− 1, −f t( )m͠ 1 , can be
written as the sum of the signal approximation at the immediately
smaller scale m, f t( )m͠ , plus its detail at that scale, fm′(t).

Eq. (6) constitutes the so-called wavelet multi-resolution re-
presentation (Mallat, 1989a). Multi-resolution representation allows for
detrending a landscape through the inverse DWT by successive elim-
ination of large-scale features from the topography to better char-
acterize the complex hierarchy of topographic features. From here on, a
detrended landscape is denoted by Hm(t, s) and is obtained by setting
the approximation coefficients at scale m equal to zero in the re-
construction operation. Fig. 7 schematically shows the general proce-
dure for the multi-resolution decomposition and detrending of a land-
scape in two dimensions. To analyze two-dimensional topographic data
such as DEMs, two-dimensional orthonormal bases can be constructed
by taking the tensor product of the one-dimensional scaling and wavelet
bases given above (Mallat, 1989a). If the bandpass center frequency of
the chosen mother wavelet is fc, and the data sampling period (which is
the resolution of the DEM) is denoted by Δ, the physical scale (Lm)
relating to the scale m is computed by using the following relationship.

= ⋅L
f

2 Δ
m

m

c (7)

The simplest and most widely used discrete orthonormal wavelet is
the Haar wavelet which is, however, poorly localized in frequency.
Instead, the Daubechies wavelets (Daubechies, 1988, 1992) have en-
hanced localization in the frequency domain and allow for removal of
high order polynomial trends as needed. We chose the most suitable
wavelet for our analysis by testing different Daubechies wavelets, i.e.,
DB1, DB2, …, DB10 on the two patches within the Headwaters and
Methow basins (the same patches shown in Figs. 1d and 2c and used in
Section 3.1). The best wavelet would be the one that results in the
minimum least squares difference between the original landscape and
the detrended landscape containing the approximation coefficients at
the largest scale, which capture the spatial trend in topography. We
found DB5 as the best wavelet for both landscapes with respect to our
criterion as it provided a balance between removal of trends and effi-
ciency in the spatial localization compared to other wavelets.

Since the signature of geological controls on landscape organization
is embedded in nested topographical features with different spatial
scales, multi-scale detrending facilitates reconstructing a portion of the
landscape possessing features with certain spatial scales. For instance,
the structure of regular features identified by the spectral gap can be
spatially located and statistically characterized by successively filtering
out the larger scale features from the landscape. Fig. 8a and b show the
elevation probability distributions of the detrended landscapes (Hm(t,
s), m= 1, …, 8) for the Headwaters and Methow patches, respectively.
The common observation is that by gradual removal of large scale
features, i.e., setting the corresponding wavelet coefficients equal to
zero, the elevation probability distribution becomes smoother and more
symmetrical. However, the shape of the probability distributions from
one level of detrending to another does not change similarly in the
patches. Indeed, if the variance of the probability distributions is
plotted against scale (Fig. 8c,d), the variability changes proportionally
across spatial scales in the patch of Methow (as expected for self-similar
landscapes), while the variance of the probability distributions does not
change significantly by filtering out the features with wavelengths be-
tween 0.36 and 1.44 km from the patch of Headwaters basin. Fig. 8e
further depicts the structure of the detrended landscape, H4(t, s), con-
taining all topographic features with spatial scale equal and less than
0.72 km. The regularity of the features is apparent in this detrended
landscape, which corresponds to the quasi-periodic ridges and valleys
in the Headwaters basin's HSR and their wavelengths are consistent
with the scales already revealed by the spectral gap in the WPS of this
landscape.

Fig. 6. Wavelet power spectra. (a) and (b) depict
the wavelet power spectrum (WPS) for the patch
of Headwaters (Fig. 1d) and the patch of Methow
(Fig. 2c) basins, respectively. The WPS of the
patch of Methow shows a single scaling regime
with exponent equal to 2.2 denoting the self-af-
finity of this landscape. However, the WPS of the
patch of Headwaters shows two scaling regimes
separated by a spectral gap between scales ~0.30
and 1.50 km.
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Fig. 7. General procedure for the wavelet decomposition and detrending of a landscape. (a) Schematic diagram of the multi-resolution representation of a landscape using two-
dimensional discrete wavelet transform (DWT). Ai, Di,h, Di,v, and Di,d, i= 1, …, N, are the approximation, horizontal detail, vertical detail, and diagonal detail matrices at scale i,
respectively. (b) Flowchart of the multi-scale detrending of a landscape using two-dimensional DWT. The detrending procedure starts by setting the approximation coefficients at the
largest scale to 0. In the next iterations, the detail coefficients from large to smaller scales are successively set to 0, until all the details are removed from the landscape.

Fig. 8. Elevation probability distribution and the variance of detrended landscapes against scale. (a and b) Probability distribution of the detrended landscapes for the patch of
Headwaters and Methow basins, respectively. (c and d) Variance of the detrended landscapes, Hm (t, s), against scale, Lm. The horizontal axis in these plots gives the largest scale present
in Hm (t, s). (e) Image view of the detrended landscape, H4(t, s), from the patch of Headwaters basin, showing regularity that corresponds to the quasi-periodic ridges and valleys in the
Headwaters' high slope region (HSR).
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4. Conclusions

Landscapes possess a hierarchical variability over a wide range of
scales: from hillslopes to valleys, and to nested river basins of increasing
order. If the physical processes that sculpted a landscape are spatially
homogeneous, then it is expected that some kind of order in how this
variability changes with scale will be found. In fact, a considerable body
of work has centered over the past three decades on quantifying SS in
landscape dissection (e.g., see Rodriguez-Iturbe and Rinaldo, 2001).
However, if geologically or geomorphologically spatially heterogeneous
processes dominated the landscape evolution, one would expect that
this heterogeneity will be reflected over some range of scales which
would exhibit different spatial organization and variability than other
scales. The purpose of this study was to examine landscapes which
exhibit spatial heterogeneity in their dissection, and via localized
analysis and synthesis identify and quantify scales of preferred orga-
nization and relate them to the underlying geologic controls. We call
these landscapes “self-dissimilar” and suggest that research is needed to
both theoretically characterize these landscapes and to connect their
structure to the underlying climatic, tectonic, or geologic mechanisms
that have broken the typical symmetries that most landscapes possess.
From the analysis presented here, the following conclusions are made:

1) Even in basins which exhibit visually distinct spatially hetero-
geneous river branching structures, HSS analysis is unable to cap-
ture broken symmetries in network topology. However, the stricter
TSS analysis can detect the presence of hierarchical irregularities in
the branching structure of the river networks.

2) The probabilistic dependence of local slope and LDD, examined via a
quantile-quantile analysis, has the potential to quantify spatial
heterogeneities in landscape dissection by a disproportional lack of
high LDD at high slopes. Such an analysis is easy to perform and can
be a first step in detecting spatial heterogeneities in landscape dis-
section, which then can be explicitly positioned on the landscape to
study cause and effect.

3) The presence of a spectral gap (no net decrease in energy with de-
creasing scale) in WPS can reveal scales at which excess regularity is
present, as for example in the quasi-periodic ridges and valleys, in
our case.

4) Using appropriate localized multi-scale filters, the structure of these
regular features can be quantified via localized multi-scale de-
trending by successive removal of features from the largest to the
smallest scale of interest.

The analysis presented herein highlighted the need to develop
formal methods for studying spatially heterogeneous landscapes in
order to understand their drainage structure and relate it to the un-
derlying causative mechanisms. A detailed spatial and spectral inter-
rogation of a landscape as presented herein to detect specific scales and
relating them to certain terrain features cannot be achieved by only
studying the landscape DEM and geomorphometric attributes, e.g.,
slope, aspect, and curvature, as these do not provide information about
the landscape hierarchical structure. Our study is but one example of
demonstrating how the joint landscape decomposition and detrending
via the two-dimensional DWT allows for identifying, mapping, and
correlating the spatial patterns of DEM to particular geologic structures.
Other potential applications of such a framework include, but not
limited to, automatic extraction of deep-seated landslides
(Kalbermatten et al., 2012; Doglioni and Simeone, 2013) and char-
acterizing their morphologic features such as topography, hummocky,
and scarps (Booth et al., 2009), separating erosional features from the
landform of a volcano as well as retrieving volcanic activity from to-
pography (Gomez, 2012), and investigating the periodicity and spatial
pattern of lineaments associated with tectonic faults (Jordan and
Schott, 2005).
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