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Abstract Hydrology in many agricultural landscapes around the world is changing in unprecedented
ways due to the development of extensive surface and subsurface drainage systems that optimize produc-
tivity. This plumbing of the landscape alters water pathways, timings, and storage, creating new regimes of
hydrologic response and driving a chain of environmental changes in sediment dynamics, nutrient cycling,
and river ecology. In this work, we nonparametrically quantify the nature of hydrologic change in the Min-
nesota River Basin, an intensively managed agricultural landscape, and study how this change might modu-
late ecological transitions. During the growing season when climate effects are shown to be minimal, daily
streamflow hydrographs exhibit sharper rising limbs and stronger dependence on the previous-day precipi-
tation. We also find a changed storage-discharge relationship and show that the artificial landscape connec-
tivity has most drastically affected the rainfall-runoff relationship at intermediate quantiles. Considering the
whole year, we show that the combined climate and land use change effects reduce the inherent nonlinear-
ity in the dynamics of daily streamflow, perhaps reflecting a more linearized engineered hydrologic system.
Using a simplified dynamic interaction model that couples hydrology to river ecology, we demonstrate how
the observed hydrologic change and/or the discharge-driven sediment generation dynamics may have
modulated a regime shift in river ecology, namely extirpation of native mussel populations. We posit that
such nonparametric analyses and reduced complexity modeling can provide more insight than highly para-
meterized models and can guide development of vulnerability assessments and integrated watershed man-
agement frameworks.

1. Introduction

In a recent study, Joiner et al. [2014] reported that the ‘‘brightest’’ spot on Earth in terms of fluorescent glow,
an indicator of photosynthetic activity and gross productivity, is the midwestern region of the United States
during the growing season. In fact, the ‘‘corn belt’’ was found to be 40% more biologically productive during
July than the lush Amazonian rainforest. This is the result of the intensification and expansion of agriculture
due to the ever-growing demand for corn and soybeans that are supplanting small grains, and the human
ingenuity that keeps plants as healthy and productive as possible by controlling their water intake. Manag-
ing plant water availability to keep plant roots dry during the growing season requires artificial drainage sys-
tems created by installing millions of miles of subsurface drainage tiles per year. Unsurprisingly, this
subsurface plumbing of hydrologic pathways changes the magnitude (increased volume of streamflow
hydrographs), time response (faster delivery to streams), and partitioning of surface and subsurface contri-
butions to streamflow in these watersheds (see the extensive review of Blann et al. [2009, and references
therein]).

Figure 1 illustrates this hydrologic regime shift by showing the daily precipitation and streamflow series of
the Redwood basin, a subbasin of the Minnesota River Basin (MRB), during 2 years: 1971, when small grains
and soybeans accounted each for approximately 15% of the basin area, and 2002, when small grains cov-
ered 3% while soybean cover increased to almost 40% of the basin. Although total annual precipitation was
similar during these 2 years (total depths of 610 and 640 mm, respectively), streamflow increased by almost
a factor of three (mean annual flows of 2.3 m3/s in 1971 and 6.0 m3/s in 2002). A closer look at the daily
streamflow series during these 2 years reveals a complex hydrologic change including higher peaks, faster
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rising limbs of hydrographs, altered falling limbs, and increased base flow spanning several time scales. To
gain insight into the hydrologic changes due mainly to intensified agriculture (land-cover change and artifi-
cial drainage), we performed a detailed analysis of the hydrologic response during the growing season of
May and June, when climate-related precipitation changes were minimal. We also analyzed the yearlong
streamflow dynamics to quantify the combined climate/land use effects.

Hydrologic changes in a watershed trigger a cascade of often undesirable geomorphic and ecologic
changes [e.g., Konar et al., 2013], and the MRB, in particular, is geologically predisposed to amplify the
effects of hydrologic change due to increased sediment production (e.g., see Belmont et al. [2011] and dis-
cussion in section 2). Within the basin, 336 river reaches are currently listed as impaired under the Clean
Water Act for excessive sediment and nutrients as well as degraded aquatic life [Carlisle et al., 2011]. This
has prompted the state of Minnesota to pass an amendment to the Minnesota constitution (the Clean
Water, Land, and Legacy Amendment) that increases the state sales tax during 2009–2034 with a portion of
this revenue devoted to protecting, enhancing, and restoring water quality in lakes, rivers, and streams [Leg-
islative Coordinating Commission, 2014]. Mitigation planning efforts require a thorough understanding of
changes and integrated watershed-scale models of hydrologic and environmental response to evaluate
alternative scenarios of change.

Physically based hydrologic models that incorporate changes in land use and agricultural practices require
extensive data for calibration (see De Schepper et al. [2015] for a nice review of available models) and insight
may be obscured due to the many parameters, complicated physics, and large computational resources
required to perform simulations of large watersheds. Yet understanding and quantifying the nature of these
hydrologic changes and how they cascade to other environmental and ecological changes, such as sedi-
ment production, storage, and transport, changes in river morphology, nutrient cycling, and alteration of
the number and diversity of native riverine species are important for river basin mitigation and planning.

In this paper, we seek to understand the nature of hydrologic change in the intensively managed agricul-
tural MRB and quantify how a hydrologic shift might cascade to river ecosystems. We begin by providing
geologic, climatic, and land use context of the MRB in section 2 and establish the connection between agri-
cultural land use change and hydrologic change. In section 3, we analyze the hydrologic response during
the growing season via Copula analysis to detect changes in the magnitude-frequency dependence of the
rising (and falling) hydrograph limbs on the previous-day rain (and streamflow). We also perform time-
frequency and phase-space analyses of the yearlong daily streamflows and precipitation, when both climate
and land use changes are at play, to detect possible changes in their nonlinear dynamics. In section 4, we
apply a hydrology-driven, process-based dynamic interaction model that predicts native mussel population
abundance [Hansen et al., 2015] to show how altered streamflows and/or sediment production can cause

Figure 1. An illustration of hydrologic change in a midwestern agricultural basin. Observed daily precipitation and streamflow series for
the Redwood basin in (a) 1971 (when hay and small grains were more widespread) and (b) 2002 (when soybeans and agricultural drainage
became more prevalent). Total annual precipitation was 610 and 640 mm in 1971 and 2002, respectively, while mean annual streamflow
was 2.3 and 6.0 m3/s.
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ecological regime transitions. In section 5, we provide concluding remarks and present some perspectives
on a framework for sustainability analysis via reduced complexity modeling and key system vulnerabilities.

2. The Minnesota River Basin: A Landscape Sensitive to Hydrologic Change

2.1. Geologic History and Climate
The Minnesota River Basin drains approximately 44,000 km2 of southern Minnesota and parts of South
Dakota, Iowa, and North Dakota into the Mississippi River (see inset in Figure 2c). Its geology was set around
14,000 years ago when the last glacial advance of the Des Moines Lobe created a flat landscape dotted with
lakes. The catastrophic drainage of Glacial Lake Agassiz around 13,400 years ago created an outburst flood
which incised into the proto-Minnesota River and carved the present-day Minnesota River Valley [Ojakangas
and Matsch, 1982] leaving behind tributaries hanging above the main stem Minnesota River and initiating
multiple knickpoints. Today, these knickpoints have migrated about 40 km upstream and have created
knickzones of rapidly incising channels disconnected from their floodplains [Gran et al., 2011, 2013; Belmont,
2011]. As a consequence, steep bluffs, some 60 m high and close to streams, have been created within
these knickzones, making the basin prone to accelerated erosion in response to increased precipitation and
streamflows [Schottler et al., 2014].

In terms of climate, two major trends have been observed in the MRB: (1) higher temperatures leading to
earlier snowmelt and a longer growing season and (2) an increase in precipitation with an intensification of
extreme storms [e.g., Lettenmaier et al., 1994; Changnon and Kunkel, 1995; Karl et al., 1996; Angel and Huff,
1997; Michaels et al., 2004; Groisman et al., 2004, 2012; Pryor et al., 2009; Villarini et al., 2011; Higgins and
Kousky, 2013; Walsh et al., 2014]. Changes in evaporative and radiative cooling have also been reported and
attributed to the enhanced seasonal precipitation signal [e.g., Milly and Dunne, 2001]. Increasing streamflow
trends between the early 1900s and early 2000s have been documented in several studies [Lettenmaier
et al., 1994; Lins and Slack, 1999; Douglas et al., 2000; Schilling and Libra, 2003; Schilling et al., 2010; Hirsch
and Ryberg, 2012], although the attribution of these changes to mainly climate or land use remains contro-
versial (e.g., see Frans et al. [2013] for discussion and references on both sides). Within the MRB, significant
streamflow change has been documented over the past three decades with increased mean daily flow, 7
day low flow, and peak daily flow [e.g., Novotny and Stefan, 2007; Dadaser-Celik and Stefan, 2009].

2.2. Human Modifications
The MRB has a long history of direct human influences on its landscape through large-scale agriculture. His-
torically, around the time of European settlement in the mid-1800s, the MRB was dominated by tall-grass
prairie and dotted with poorly drained wetlands [Marschner, 1974]. Beginning in the late 1800s, these wet-
lands were drained for agriculture with the construction of surface ditches and installation of subsurface
drain tiles [Moline, 1969; Dahl and Allord, 1996]. While agriculture has largely dominated the MRB since the
early 1900s, at that time it mostly included hay and small grains (barley, flax, oats, rye, and wheat). Over
time these crops were replaced by soybeans while the number of acres of land for growing corn only
slightly increased (e.g., see Figure 2) [U.S. Department of Agriculture (USDA), 2014]. The crop conversion to
soybeans is hydrologically significant because it often involves the installation of extensive subsurface drain
tiles and affects seasonal evapotranspiration potential [e.g., Zhang and Schilling, 2006; Schottler et al., 2014].

Crop conversion to soybeans has taken place progressively within the MRB. To quantify this progression, we
define here the ‘‘Land-Cover Transition’’ (LCT) as the year when the percentage of soybean cover exceeded
that of hay and small grains. This year was computed from 5 year running averages of county-level land-
cover data available from USDA [2014] (Figure 2). We observe that the LCT progressively shifted from the
late 1950s and early 1960s in the southeastern MRB to the 1990s and 2000s in the northwestern MRB.

In addition to the LCT, we define the ‘‘Hydrologic Transition’’ (HT) as the year marking a transition to ampli-
fied daily streamflows triggered by the expansion and intensification of agricultural drainage. Unfortunately,
data on the extent and intensity of subsurface drain tiles are mostly unavailable. However, the 1970s were a
pivotal time for agricultural drainage in the MRB when plastic drain tiles, which were cheaper and easier to
install, became more widespread and replaced old clay tiles [Stuyt et al., 2005]. Several studies have also
shown that this period corresponded to observed major hydrologic changes in the region [e.g., Schilling
and Libra, 2003; Raymond et al., 2008; Schottler et al., 2014]. The 1970s, then, represent the earliest period in
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which the HT may occur. However, the HT for a basin may occur after the 1970s if the LCT has not yet
occurred.

Figure 3 establishes a link between agricultural and hydrologic change by focusing on the daily streamflow
series of three river basins (see map in Figure 2) during only the growing season of May–June when tile
drainage is most active and climate effects are minimal. For the Redwood basin (1800 km2), the LCT in 1976
(Figure 3a) synchronizes well with the HT (Figure 3b) corresponding to the onset of major hydrologic
change. The Cottonwood basin (3400 km2) undergoes its LCT in 1964 (Figure 3c), but its HT does not occur
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Figure 2. Spatial progression of agricultural changes in the Minnesota River Basin (MRB). Using land-cover data at the county level, we
define the ‘‘Land-Cover Transition’’ (LCT) as the year when the percentage of area for growing soybeans exceeded that for hay and small
grains (barley, flax, oats, rye, and wheat) (see examples in (a) Redwood and (b) Whetstone basins). (c) The map demonstrates the south-
eastern to northeastern progression of this agricultural transition. The Redwood (R), Cottonwood (C), and Whetstone (W) subbasins are
shown for reference. Data are from the U.S. Department of Agriculture National Agricultural Statistics Service [USDA, 2014].
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Figure 3. The imprint of agricultural land use change on hydrologic change. Using daily streamflow data in the growing season of May–
June to minimize climatic effects, the onset of hydrologic change is observed following the conversion to soybeans, i.e., following the
Land-Cover Transition (LCT), which was objectively extracted from land-cover data for each basin (see also Figure 2). A lower bound on
the HT can be set based on the 1970s or LCT, whichever occurred later. Here we adopt the mid-1970s (1976) as the HT year for Redwood
and Cottonwood basins. We caution that adopting the same year for all basins can be misleading—for Whetstone, for example, selection
of 1976 would certainly mask hydrologic change.
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until the 1970s (Figure 3d) since the HT requires both predominant soybean cover (LCT) and the technologi-
cal tile advances of the 1970s. In the Whetstone basin (1100 km2), the LCT in 1991 (Figure 3e) occurred well
after the 1970s, and its HT was correspondingly delayed until 1991 (Figure 3f). These examples suggest that
each basin’s agricultural development must be considered independently, as using the mid-1970s as the HT
year for the Whetstone basin would be misleading and mask hydrologic changes.

3. The Nature of Hydrologic Change

In this section, we examine in detail the hydrologic changes in the Redwood River basin. Daily streamflow
data were obtained from the USGS streamflow gage at Redwood Falls (05316500) [U.S. Geological Survey,
2014], and three NOAA precipitation stations (Marshall, Tyler, and Vesta) [National Oceanic and Atmospheric
Administration, 2015] were used to compute the daily average precipitation over the basin. These stations
are displayed in Figure 4 together with the detailed land cover of the basin in 2007 and a demonstration of
the corn-soybean rotation for a small inset of the basin. Using the previously established HT year of 1976
for this basin, we separate the series into Before Land Use Change (BLUC) and After Land Use Change
(ALUC) periods.

Figure 4. The 2007 land-cover data of the 1800 km2 Redwood basin show that the majority of the basin is cultivated with corn and soybeans [U.S. Department of Agriculture, 2015]. An
inset box showing the same area for four different years 2006–2009 illustrates typical crop rotation between corn and soybeans from one year to the next.
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3.1. Hydrologic Response Change During the Growing Season
Streamflow statistics for the Redwood basin reveal that daily streamflow has increased in all months ALUC,
whereas daily precipitation has not changed much except for increases during November–February (Figure
5). During March–April, streamflow is affected by both snowmelt whose onset is occurring earlier due to
higher temperatures [Walsh et al., 2014] and agricultural drainage. By May, snowmelt is no longer a major fac-
tor and agricultural activity takes over as crops have been planted and agricultural drainage is most active
due to fields saturated with snowmelt and spring rainfall. During the growing season of May–June, changes in
the probability distribution of daily precipitation were not significant while drastic changes in hydrology were
observed (Figure 5). We note that an analysis of storm totals, durations, and interarrival times (not reported
here) did not provide evidence for change in the ALUC period. Changes in hydrologic response, then, may be
attributed to nonclimatic effects including the predominant agricultural land use changes.

To quantify changes in hydrologic response, we jointly analyzed streamflow Qt, streamflow increments,
dQt=dt5 Qt112Qtð Þ=Dt, and precipitation Pt to detect possible changes in their probabilistic dependence.
Specifically, we analyzed (1) positive streamflow increments ðdQt=dt > 0Þ or rising limbs of daily hydrographs,
dQ1

t =dt, against precipitation, Pt , and (2) absolute value of negative streamflow increments ðdQt=dt < 0Þ con-
ditioned on no precipitation the previous day, dQ2

t =dtjPt50, against streamflow, Qt . The first relationship
(dQ1

t =dt versus Pt) captures how daily precipitation is converted to daily streamflow via the ‘‘unaltered’’
(BLUC) and human-altered (ALUC) hydrologic connectivity system. Strengthened overall dependence of the
hydrograph slope on precipitation in the ALUC May–June period was expected due to the direct subsurface
drainage, but the nature of the dependence was seen through an interquantile dependence analysis. The
probabilistic dependence of dQ2

t =dtjPt50 versus Qt captures the rate of hydrograph decline in the absence
of rain as a function of streamflow and changes would reflect altered storage-discharge dynamics. In order to
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focus on the structure of flood hydrographs, very small increments of streamflow were not considered here as
these were found to correspond to base flow and isolated fluctuations in the hydrograph limbs. By varying the
threshold and examining the location of these fluctuations, we chose the truncation level of 0.2 quantile corre-
sponding to dQ1

t =dt< 0.08 m3/s (0.20 m3/s) and jdQ2
t =dtj< 0.06 m3/s (0.11 m3/s) for BLUC (ALUC) periods.

We employed nonparametric Copula analysis [Favre et al., 2004; Dupuis, 2007; Salvadori and De Michele, 2007;
R€uschendorf, 2009] to quantify how the dependencies discussed above changed between BLUC and ALUC
periods. The Copula is defined as the joint cumulative distribution of the quantiles of two random variables
and contains all the information of their dependence. Let X1 and X2 denote two random variables with mar-
ginal cumulative distributions F1 x1ð Þ � P X1 � x1½ � and F2 x2ð Þ � P X2 � x2½ � and cumulative joint distribution
function F x1; x2ð Þ � P X1 � x1; X2 � x2½ �. Sklar’s theorem [Nelsen, 1999] relates the joint distribution F x1; x2ð Þ of
X1 and X2 to the cumulative distribution function C u1; u2ð Þ of the quantiles u15F1 x1ð Þ and u25F2 x2ð Þ by:

F x1; x2ð Þ5P X1 � x1; X2 � x2½ �

5P X1 � F21
1 ðu1Þ; X2 � F21

2 ðu2Þ
� �

� C U1 � u1;U2 � u2½ �5C u1; u2ð Þ

5C F1ðx1Þ; F2ðx2Þð Þ

(1)

where C F1ðx1Þ; F2ðx2Þð Þ is the Copula.

Figure 6. Copula interquantile analysis of hydrologic response for the BLUC (black) and ALUC (red) periods of the Redwood basin. (a) Scatterplot of positive slopes of daily hydrographs
dQ1

t =dt versus previous-day precipitation Pt . (b) Scatterplot of negative slopes of daily hydrographs dQ2
t =dt conditioned on no previous-day rainfall (Pt 5 0) versus streamflow Qt .

(c) Copula of dQ1
t =dt and Pt . (d) Copula of dQ2

t =dtjPt50 and Qt . A strengthened dependence of streamflow increase to previous-day rain (a and c) and a reduced dependence of the
falling hydrograph slope to streamflow magnitude (b and d) are observed in the ALUC period. See text for discussion.
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Empirical Copulas C FðdQ1
t =dtÞ; FðPtÞ

� �
and C FðdQ2

t =dt
� ��Pt50Þ; FðQtÞÞ are shown in Figures 6c and 6d, where

the axes values show the marginal quantiles of each variable and the curves trace the cumulative Copulas at
varying quantile levels. An ‘‘L-shaped’’ Copula implies a larger interquantile dependence between the two vari-
ables. As expected, the empirical Copula of the flashiness of the hydrograph C FðdQ1

t =dtÞ; FðPtÞ
� �

shows a
strengthened dependence structure in ALUC (Figure 6c) establishing that the rate of increase in streamflow
(dQ1

t =dt) in response to the previous-day precipitation has become more closely coupled across a range of
quantiles, especially for medium (0.2–0.6) quantiles for both variables. This tighter probabilistic dependence is
also visible in Figure 6a, although no inference about quantile dependence can be easily made from such a
plot.

The empirical Copula of the falling limbs of the hydrographs C FðdQ2
t =dt

� ��Pt50Þ; FðQtÞÞ did not show as sig-
nificant a change in the dependence structure of the rate of decrease of the falling limb to the magnitude
of streamflow from BLUC to ALUC (Figure 6d). If anything, this dependence has weakened in the ALUC
period as the Copula curves have become less L shaped, especially in the medium quantiles. Interpreting
this dependence weakening is not straightforward, but examination of multiple individual hydrographs
revealed that in ALUC the falling limbs of the hydrographs have become more ‘‘punctuated.’’ That is, for a
value of Qt of some exceedance probability, the corresponding slope dQ2

t =dt became more variable in the
ALUC period (Figure 6b). Apparently, in this basin, artificial drainage accelerates the hydrologic response at
smaller scales, maintaining rather than integrating the signature of the subbasin contributions to the outlet
of the larger basin. Hydrographs from the now-faster draining smaller subbasins in the ALUC period main-
tain separation from each other when routed through the river system due to the discrepancy between the
small subbasin hydrograph time scales and river routing time scales. This creates a rougher overall falling
hydrograph limb at the outlet of the larger basin. It remains to be understood further how this effect
depends on the scale of the basin and whether it reflects more the overall basin heterogeneity or its hier-
archical drainage structure [e.g., see Harman et al., 2009; Chen and Krajewski, 2015].

Understanding a basin’s hydrologic response through analyzing receding hydrograph slopes dQ2
t =dt has a

long history. For example, Brutsaert and Nieber [1977] used the lower envelope of the dQ2
t =dt versus Qt rela-

tionship to interpret the recession curves from a hydraulic perspective and guide regionalized prediction of
drought hydrographs in ungauged basins. Kirchner [2009] proposed using the dQ2

t =dt versus Qt relationship
for catchment characterization via a catchment storage function. Harman et al. [2009] provided a landscape
interpretation of the recession curves as capturing landscape heterogeneity, Biswal and Marani [2010] linked
recession curve properties to river network morphology, and Chen and Krajewski [2015] accounted for the
hierarchical (nonrandom) organization of landscapes and the scale effect of the storage-discharge relation-
ship. Shaw and Riha [2012] investigated individual recession events within the dQ2

t =dt versus Qt cloud of
points, noting that much of the scatter arose from seasonal variability. Here we explored the (dQ2

t =dt versus
Qt) and (dQ1

t =dt versus Pt) relationships from a probabilistic dependence perspective and specifically to
assess whether a change occurred in the precipitation-to-streamflow conversion and in the storage-
discharge relationship. To the best of our knowledge such analysis has not been reported before and its
potential for detecting hydrologic change deserves further investigation.

3.2. Change in Daily Streamflow Dynamics
Agricultural drain tiles short-circuit natural recharge processes not only during the growing season but also
in the summer and during the snowmelt periods. This land-use imposed change superimposed on climatic
changes creates an altered daily streamflow signal throughout the entire year. Figure 7a displays the year-
long series of daily precipitation and streamflow for the Redwood basin from 1944 to 2007, whereas Figures
7b and 7c display the squared modulus of the Morlet wavelet coefficients jTða; bÞj2 giving the relative con-
tribution of the signal’s energy at different scales a and locations b (see Appendix A for details on wavelet
selection and implementation). Amplified energy content is observed in all scales of streamflow over the
last two decades (Figure 7c), while little change is observed in daily precipitation (Figure 7b).

To quantify changes in the underlying dynamics of daily precipitation and streamflow, we tapped into the
theory developed for deterministic nonlinear systems and invoked the acclaimed Takens theorem [Takens,
1981] for embedding a data series into an appropriately chosen phase space. The embedding procedure
results in a geometric representation of the system’s dynamics called an attractor (see Appendix B for
details). Measures on reconstructed attractors from BLUC and ALUC periods quantified the magnitude and
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abruptness of the shift in the underlying dynamics of daily precipitation and streamflow. Beyond just cap-
turing changing streamflow dynamics, we also measured the degree of nonlinearity in the dynamics of
BLUC and ALUC conditions. To detect progressive changes in the dynamics of daily streamflow and precipi-
tation, the BLUC and ALUC periods were further subdivided into two time periods of equal length for a total
of four series: BLUC1, BLUC2, ALUC1, and ALUC2. A brief account of the essence of the nonlinear analysis
carried out on daily streamflows and precipitation follows, and a more detailed description may be found in
Appendix B.

If two time series are properly embedded in the same phase space, their resulting attractors may contain
structural and density differences reflecting differences between their underlying dynamics. Among a num-
ber of metrics to measure such differences, the transportation distance dT [Kantorovitch, 1958] considers
both geometric and probabilistic attractor structure while being insensitive to outliers, perturbations, and
discretization errors (see Appendix C and Moeckel and Murray [1997] for comparisons against other similar
distance metrics).

Each period BLUC1, BLUC2, ALUC1, and ALUC2 was embedded into a rigorously determined phase space of
dimension three (four) and lag 20 (10) days for streamflow (precipitation); see Appendix B and Schreiber
[1999]. Then, the distance metric dT was computed between each pair of attractors (Figure 8). Larger dT indi-
cates significant discrepancy between attractors and implies a difference in the generative dynamical systems.
Streamflow attractors between BLUC1 and BLUC2 were more alike than any other pair, implying their dynami-
cal systems are correspondingly most similar. According to Figure 8b, the hydrologic dynamics of the basin
shifted substantially between BLUC2 and ALUC1, supporting the choice of 1976 as a hydrological transition
year for the Redwood basin. Dynamics continued to shift between ALUC1 and ALUC2 periods. Although
hydrologic changes were likely occurring throughout the entire period of record, if the conservative assump-
tion of unchanging dynamics between BLUC1 and BLUC2 is granted, then dT 5 0.73 3 1023 m3/s provides a
measure of variation expected due to noise, discretization effects, etc. The fact that dT obtained significantly

Figure 7. Temporal change in precipitation and streamflow in the Redwood basin. (a) Daily precipitation and streamflow series and (b and c)
time-frequency plots using Morlet wavelet. The Hydrologic Transition (HT) year of 1976 (see Figure 3) is marked.
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higher values through time indi-
cates an accelerated shift in
hydrologic dynamics post-1976.
In contrast, precipitation dynam-
ics showed much less change
(Figure 8a). Unfortunately how-
ever, precipitation and stream-
flow transportation distances
were not directly comparable;
each has units of its input data
and dT scales with discretization
schemes. However, normalization
of dT from the three chronologi-
cal pairs by their sum (percen-
tages in Figure 8) suggested that
changes in streamflow dynamics
are not likely attributable to non-
stationary precipitation alone, as
relative differences between pre-
cipitation dT were much smaller
than those between streamflows.

The nature of an altered
dynamical system’s change may
be further understood by meas-
uring its attractor’s degree of
nonlinearity. A signal’s nonli-
nearity may be quantified by
first generating linearized ver-
sions of the series known as
surrogates. Inherent nonlinear-
ities in the original signal are
destroyed in the surrogates via
phase randomization in the
Fourier domain while preserv-
ing the power spectrum, distri-
bution, and linear correlation
structure of the original series.
We employed the Wavelet-
modified Iterated Amplitude
Adjusted Fourier Transform
[Keylock, 2008] algorithm for
surrogate generation. The trans-
portation distance then meas-
ures the distances between the

original signal and its linear variants (OS)i, as well as the distances between the linear variants amongst
themselves (SS)j resulting in two distributions: dT ;OS and dT ;SS (Figure 9). A larger distance between the
dT ;OS and dT ;SS distributions implies that the original signal contained more nonlinearity that was
destroyed by the linearization procedure. Therefore, nonlinearity may be inferred if these distributions
are significantly nonoverlapping. On the other hand, for example, distributions from an ARMA-generated
time series are entirely overlapping. The difference between the medians of dT ;OS and dT ;SS may thus be
taken as a measure of nonlinearity.

Transportation distances between original signals and linear surrogates for BLUC and ALUC showed that
streamflow dynamics have become more linear post-1976 (Figure 9b). This result is arguably consistent
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Figure 8. Change in nonlinear dynamics of daily precipitation and streamflow. Transporta-
tion distances are shown between the attractor pairs of (a) precipitation and (b) stream-
flow between four time periods described in section 3.2. Precipitation and streamflow
series are plotted from 1944 to 2007; BLUC in black and ALUC in red. Percentages are
computed for the three chronological distances as dT divided by the sum of dT between
all three distances. Clearly precipitation dynamics have not changed significantly but
streamflow dynamics have.
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with the intuition that engineered landscapes introduce an element of ‘‘simplicity’’ in the water system
(e.g., Schilling and Helmers [2008] report that tiling results in more linear base flow recession curves).
Identifying which portions of the daily streamflow record contributed most to reduction of inherent
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Figure 9. Quantifying the degree of nonlinearity in daily streamflow series. (a) Log-transformed attractors of streamflow are shown for the original BLUC series (black) and linearized sur-
rogates (blue). A total of 100 surrogates were generated, and the transportation distance between each surrogate and the original signal dT(OS)i is shown by solid arrows. Transportation
distances between 100 surrogate pairs dT(SS)i are shown by dashed arrows. (b) Distributions of dT between original signal and 100 surrogates (dT(OS)) are shown by solid lines. Distribu-
tions of dT between 100 pairs of surrogates (dT(SS)) are shown by dashed lines. The differences between the medians of dT(OS) and dT(SS) are shown for BLUC (black) and ALUC (red) con-
ditions. These results quantify the reduced nonlinear dynamics in the ALUC period.
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nonlinearity is not straightforward using the methods described here, although such inquiry could be
undertaken using the Gradual Wavelet Reconstruction methodologies of Keylock [2010].

4. The Nonlinear Cascade of Hydrologic Change to Regime Shifts in River Ecology

4.1. A Simplified Interaction Model Coupling Hydrology and River Ecology
Decline in native mussel, macroinvertebrate, and sensitive fish species populations [Kirsch et al., 1985;
Musser et al., 2009] coincident with changes in land use, hydrology, climate, and sedimentation [e.g., Kelley
and Nater, 2000; Engstrom et al., 2009; Belmont et al., 2011] in the Minnesota River Basin call for an under-
standing of the couplings between hydrology, geomorphology, and ecology to guide assessment of future
states. A model recently proposed by Hansen et al. [2015] considers the interactions between streamflow
(Qt), suspended sediment (St), phytoplankton population density (chlorophyll-a) (Ct), and mussel population
density (Mt) (Figure 10a). Three coupled differential equations driven by hydrology (see equations (D1)–(D3)
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Figure 10. Overview of simulated mussel population dynamics driven by streamflow. (a) Schematic of the process interaction network showing the couplings incorporated in the mussel
population density model. Each arrow represents a physical interaction considered by the model which is either positive (1) or negative (2). (b) Flow-sediment relationship from USGS
gaging station data with power law fits for BLUC (n 5 207), ALUC (n 5 67), and all data. a; b values for each period: BLUC (29.1, 0.191), ALUC (6.36, 0.362), and all data (16.4, 0.262). (c)
Map of the Minnesota River basin showing the sites (red circles) with observed mussel population densities where the model of Hansen et al. [2015] was applied. The analysis herein
focuses on the Redwood site indicated by the arrow.
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in Appendix D) predict site-specific mussel population abundance. The model was fitted and calibrated at
11 sites within the MRB where mussel abundance data were available, and it can be used as a predictive or
diagnostic tool to explore how changes in hydrology and/or sediment production propagate to river ecol-
ogy. Details can be found in Hansen et al. [2015].

Here we employed this model at the Redwood site (at Redwood Falls)—a site with low mussel abun-
dance—to investigate how daily streamflow change nonlinearly modulates suspended sediment genera-
tion and food availability, thus determining the future of the mussel population density and its possible
decline or even extirpation. Mussel population dynamics are governed by a logistic-type model:

_Mt5rt Mt 12
Mt

gt KM

� �
(2)

where the dot in _Mt denotes the time derivative of the mussel population Mt at time t. The mussel growth
rate parameter rt depends on the suspended sediment concentration (St), and gt reduces the carrying
capacity KM when food (Ct) becomes scarce, resulting in an effective carrying capacity gtK M.

Assuming constant parameters rt and gt , equation (2) has two fixed points (i.e., equilibrium states, or
where _M50) corresponding to population extirpation (M�50) and effective carrying capacity (M�5gtKM).
Given sufficient time, then, mussel populations will either wither or thrive depending on the sign of the RHS
of equation (2). Specifically, when rt > 0, a population grows toward its effective carrying capacity and when
rt < 0 a population diminishes toward extirpation. The formulation of rt results in the following condition:

if St < Sthresh rt > 0

St > Sthresh rt < 0
(3)

where Sthresh represents a threshold level of suspended sediment above which mussel birth rate becomes
smaller than the mortality rate, resulting in population decline. Sthresh depends on model parameters and for
the Redwood site equals 18.9 mg/L [see Hansen et al., 2015].

The deterministic model dynamics are forced via stochastic streamflows Qt. Because of this, rt and gt are gen-
erally not constant as assumed above, and therefore fixed point stabilities also vary in time. Phase portraits
and stability landscapes well-illustrate fixed point stability; the phase portrait (Figure 11a) simply plots
_Mt (equation (2)) for all realistic values of M, and the stability landscape (Figure 11b) intuitively conceptualizes

population dynamics as an inertia-less ball rolling down a hill (see Appendix E for formulation and details).
Nonstationarity of rt and gt implies that each time may have a unique phase portrait and stability landscape.
Fixed point stability depends solely on the sign of rt. That is, for rt > 0, M�50 is unstable and M�5gt KM sta-
ble. For rt < 0, the stabilities of the fixed points flip. As discussed above, the sign of rt depends on St, thus
population stability depends on St. The parameter gt depends on available food (Ct) and acts to stretch both
the phase portrait and stability landscape (stretching between gray and black curves of the same line type in
Figures 11a and 11b).

The outermost phase portraits in Figure 11a delineate the model’s accessible dynamic space; these portraits
correspond to low St (max(rt)) associated with lower Qt and large St from flood flows (min(rt)). Since Ct is also
modeled semilogistically, it has fixed points C�5 0; gC KC½ � which correspond to gt5½0:5; 1�. Therefore, simu-
lated mussel populations tend to evolve according to one of the four phase portraits shown in Figure 11a.
The phase portrait also shows that for a given M, population declines at a time can be roughly 3 times larger
in magnitude than growths (Figure 11a). This feature is also visible in the time series of Mt (Figure 12a)—a
dynamic suggesting that a population for which St> Sthresh above roughly 25% of the time will eventually
approach extirpation.

4.2. Effects of Hydrologic Change on Mussel Populations
In this section, we explore how the observed hydrologic changes may propagate to ecologic changes and
elucidate emergent critical regime transitions. Consistent with the land use change (section 2) and statistical
and nonlinear streamflow analyses (section 3), the year 1976 was selected to separate two distinct hydro-
logic regimes to apply to mussel populations at the Redwood site: BLUC (1944–1975) and ALUC (1976–
2007). The volume of suspended sediment generated from a given discharge may also vary with hydrologi-
cal or morphological changes. For instance, a river migrating across its flood plain and into bluffs may result
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Figure 11. Nonlinear dynamics of the mussel population model. (a) Phase portraits show the possible dynamic space visited by model
dynamics. Each portrait has two fixed points M* 5 0, gtKM whose stabilities depend on the sign of rt. For positive rt, portraits are above zero
(solid lines) with stable fixed points at M 5 gtKM. Negative rt (dashed lines) corresponds to stable fixed points at M 5 0. The stretching of
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tion density shows the effects of hydrology on model dynamics. Each dot represents the modeled mussel population density (x axis) and
its corresponding change (y axis) for each day over 32 years starting from an initial population density of 5 mussels/m2. Only input stream-
flows are different between the ALUC and BLUC conditions above; all other model parameters including the flow-sediment relationship
are identical. Populations under ALUC hydrology move toward extirpation, while BLUC hydrology results in a population approaching
effective carrying capacity. (d) Pdfs of daily population growth rates shown in Figure 11c. The 85% of BLUC time steps result in population
growth, compared to only 67% for ALUC conditions.
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in larger sediment supplies for a given flow. On the other hand, bank stabilization measures and riparian
corridors may reduce sediment loading to streams. These effects are captured by the parameters a;b of the
power law fits to suspended sediment against streamflow data, which were performed for BLUC, ALUC, and
all data (Figure 10b).

As discussed above, simulated mussel populations approach one of two possible steady states: extirpation
or effective carrying capacity. Since population decay occurs when St < 18:9 mg=L, and St5f ðQtÞ, both
streamflow (Qt) and sediment generation parameters a;b play crucial roles in a population’s final state.
Even if sediment generation is assumed constant, increased streamflow alone may switch a population’s
stable fixed point from a healthy population to extirpation (Figure 12d). Conversely, sediment generation
may also cause a regime shift even if streamflow remains unchanged (Figure 12c).

Observed mussel population density at the Redwood site is among the lowest in the MRB (Figure 10c). We
simulated mussel population densities across a range of realistic a; b values using repeated BLUC or ALUC
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Figure 12. Mussel population stability as a function of hydrology and sediment generation. (a) Mussel population densities are simulated
for 32 years driven by hydrology BLUC (black lines) and ALUC (red lines). For each hydrology, populations were simulated using the flow-
sediment relationship of the respective period (dashed lines) and the relationship derived from the entire record (solid lines). (b) Popula-
tion stability diagram for the Redwood site. Regime transition lines depend on observed hydrology, while positioning in the space
depends on the (a,b) fits to observed data (Figure 10b). Points above a given line correspond to (a,b) pairs that result in extirpation as the
stable fixed point, while those below have a stable fixed point at the effective carrying capacity. Points far away from the line reach steady
state faster than those nearer the line (see (a)). (c) Fixed point stability may switch due to changes in sediment generation or (d) changes
in hydrology.
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streamflows until populations reached a steady state. Realistic values obtained from the values at 10 other
sites across the MRB ranged from (a;b) 5 (0.22, 0.24) to (16, 0.63). The resulting a;b space can then be
divided by a line demarcating the critical threshold for a regime transition that is determined by the applied
hydrology; above this line, populations are extirpated, and below this line, populations reach their effective
carrying capacity. This space for the Redwood site (Figure 12b) tells a compelling story. Conservatively con-
sider that sediment generation remained constant across both BLUC and ALUC periods (gray ‘‘1’’ symbol).
In this case, altered hydrology via streamflow alone was sufficient to switch the population’s fixed point to
M�50. If, on the other hand, sediment generation did change along with hydrology (black triangle for
BLUC, red circle for ALUC), the respective a;b are farther from the regime transition line in both BLUC and
ALUC periods, indicating an even more drastic change in the rate at which the populations approach steady
state. In either case of altered hydrology, altered sediment production or both, a population growing
toward its effective carrying capacity in BLUC conditions declines toward extirpation under ALUC
conditions.

5. Concluding Remarks and Perspective: Sustainability Through Vulnerability
Science

Environmental systems undergoing change often result in unexpected regime shifts rather than gradual
responses to change (e.g., see schematic in Figure 13). For the MRB system, hydrology is the main driver of
change and ecological vulnerability rests on sediment amplification that puts chronic stress on mussel pop-
ulations. As discussed in this paper, an approach for framing an integrated study of the sustainability of agri-
cultural landscapes might evolve around the following questions: (1) What is the interplay of climate and
human-induced changes on the hydrology of the watershed? (2) What is the cascade of changes from
hydrology to sediment production and transport, to stream geomorphologic change, and stream biotic life?
(3) In the absence of detailed physical models (challenged with complex physics and a large number of
parameters to be calibrated), what simpler conceptual models can capture the essential elements of change
and help identify hydrologic-ecologic regime shifts?

Our study addressed the above questions in a systematic and quantitative way. We documented the nature
of hydrologic change at the daily hydrograph and streamflow dynamics and showed via a simplified eco-
logical model how the altered hydrology is bound to lead to extirpation of the native mussel population for
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[2006].
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the basin of study. Using the methodologies presented herein, the trade-offs between altering the hydrol-
ogy and/or the water-sediment production regime of the watershed to avoid transitioning from a healthy
population to extirpation in native mussel population can be further studied, thus providing useful guid-
ance for management of the basin. Specifically, a change in either hydrology (e.g., via strategically posi-
tioned water retention structures) and/or reduced sediment production (e.g., via riparian vegetation or
other stabilization methods) would be needed to avoid ecological collapse, and the costs and benefits
can be evaluated for the particular system at hand. By setting desirable targets of sediment reduction
and having a detailed knowledge of the sediment-producing geomorphic features, such as ravines, bluffs
channel banks relative to the river network (e.g., from a high-resolution LiDAR topographic map, see Pas-
salacqua et al. [2012]), the exact locations where management would provide the highest returns could
be identified.

We argue here that in our often-limited capacity to accurately predict the future, decisions toward sustain-
ability could be informed by focusing on the most essential drivers of change, understanding system func-
tionality, and quantifying how the envelope of change would project to the envelope of response. We call
this framework ‘‘sustainability through vulnerability science.’’ Indeed, as demonstrated in this paper, it is
possible to interrogate complex systems in such a way that useful insight on the long-term cascade of
changes can be gained by using a systems perspective and focusing on the variables that would exert the
most significant change. A similar framework of analysis as the one discussed in this paper was adopted for
identifying emergent hot spots of geomorphic change in the MRB as dictated by river topology and sedi-
ment dynamics [Czuba and Foufoula-Georgiou, 2015] and for studying sustainability of deltaic systems via
identifying where changes would most drastically affect water and sediment delivery to the shoreline [Teje-
dor et al., 2015a, 2015b].

On the opportunity of the fiftieth anniversary of Water Resources Research (WRR), it is appropriate to note
that WRR has been a pioneer in taking a systems approach to studying hydrologic systems at the intersec-
tion of geomorphology, ecology, meteorology, and socioeconomics and in promoting the use of advanced
analytical methodologies for practical problems (e.g., WRR 1966 special issue on Analytical Methods in
Hydrology and WRR 1972 special issue on Water Resources Systems). It is hard to imagine what the next 50
years of WRR will bring, but certainly it will continue to lead disciplinary and interdisciplinary hydrologic sci-
ences and engineering, setting new paradigms of approaching increasingly complex and challenging prob-
lems while providing science-based solutions.

Appendix A: Continuous Wavelet Transform

The continuous wavelet transform (CWT) of a series x(t) provides a time-frequency decomposition where at
location b and scale a, the energy of the signal is captured by the square of the wavelet coefficient T a; bð Þ
given by

T a; bð Þ5 1ffiffiffi
a
p

ð1
21

xðtÞw� t2b
a

� �
dt (A1)

where wðtÞ is the mother wavelet and w�ðtÞ denotes its complex conjugate. Here we used the Morlet wave-
let, a complex wavelet given as:

w tð Þ5 1
p1=4

ei2pf0t2e2 2pf0ð Þ2=2

 �

e2t2=2 (A2)

The p21=4 term ensures that the wavelet has unit energy and the second term in the brackets (correction
term) corrects for the nonzero mean of the complex sinusoid of the first term. In practice, this correction
term becomes negligible for values of f0 � 0 simplifying the above equation to

w tð Þ5 1
p1=4

ei2pf0t e2t2=2 (A3)

This form reveals that the Morlet wavelet is simply a complex wave contained within a Gaussian envelope
(centered at zero and of unit standard deviation for the mother wavelet). The Fourier transform of this
wavelet is a Gaussian function centered at f0 which serves as the characteristic frequency of the mother
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wavelet and determines the number of effective (nonzero amplitude) sinusoidal waveforms contained
within the Gaussian envelope. Larger f0 (and hence the larger the number of cycles within the Gaussian
envelope) corresponds to better frequency localization at the expense of time localization. In practice, a
value of f050:849 5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1= 2 ln 2ð Þ

p� �
is used making the simplified equation (A3) applicable and enclosing

three effective sinusoidal waveforms within the Gaussian envelope with the amplitude of the central
peak twice as large as the amplitudes of the two smaller adjacent peaks [see Daubechies, 1992; Kumar
and Foufoula-Georgiou, 1997; Torrence and Compo, 1998]. This choice of central pass frequency ensures a
good frequency localization without compromising the time localization. The mother wavelet wðtÞ (scale
a 5 1) captures the energy corresponding to frequency f050:849 (the central frequency of the Gaussian
spectrum of wðtÞ). By scaling the mother wavelet (dilated a> 1 or contracted a< 1), the energy at lower
and higher frequencies, f0=a, is captured. This provides the conversion of frequency to scale used in the
plots of Figure 7. The Morlet wavelet is a commonly used wavelet for CWT analysis, sometimes prefera-
ble to the Mexican hat wavelet since it allows a phase analysis (not used here) and has minimum Heisen-
berg uncertainty achieving optimal compromise between time and frequency localization [e.g., Addison,
2002].

Appendix B: Phase Space Embedding and Attractor Reconstruction

The theory of nonlinear dynamics exploits the underlying dynamic structure of a system of coupled and
independent evolving variables by reconstructing its attractor in a phase space. Although it has roots in
deterministic, noise-free nonlinear systems, its utility for the analysis of observed data has been proven in
many fields of study (see Schreiber [1999] for a thorough and accessible review).

Phase space refers to a space in which all possible states of a system are represented. For example, a
phase space for the Lorenz system of equations _x52rðx2yÞ; _y52xðq2zÞ; _z5xy2bzð Þ, where a dot indi-
cates a time derivative, with given parameters r, q, and b [Sparrow, 1982] can be constructed by assigning
each independent variable an axis in space. Within this space, any xðtÞ; yðtÞ; zðtÞð Þ triplet completely
specifies the state of the system at time t. Integrating the Lorenz equations forward in time and plotting
them in the phase space reveals a trajectory of the dynamic system. Given sufficient integration time, the
trajectory will delineate the boundary of the underlying attractor. An attractor may be thought of as the
geometric structure in phase-space toward which trajectories tend to evolve regardless of the system’s
initial condition. Phase space embeddings can reveal otherwise hidden structure in time series measure-
ments from dynamical systems. However, unlike constructed models such as the Lorenz attractor, evolu-
tion equations are rarely known in natural systems, preventing direct reconstruction of an attractor. The
acclaimed embedding theorem of Takens [1981] provided a way to reconstruct attractors from only a sin-
gle scalar measurement of the dynamical system, provided that the scalar measurement couples all the
degrees of freedom of the system:

~sn5 sn2ðm20Þs; sn2ðm21Þs; :::; sn
� �

(B1)

where~sn is a time delayed vector formed from the original data series sn, n is the number of data points
in sn, m is the embedding dimension, and s is the delay parameter. Each vector~sn serves as an independ-
ent axis of the phase space. The literature contains extensive guidance for selecting embedding parame-
ters, but optimal selection is application dependent [Kantz and Schreiber, 2004]. Embedding dimension
and delay parameters were selected here such that the attractor ‘‘unfolds’’ without destroying its struc-
ture. False nearest neighbors and mutual information [Abarbanel, 1996] analyses guided our selection of
m and s, respectively.

Time delay embedding theorems for attractor reconstruction [Takens, 1981; Sauer et al., 1991] rest upon
assumptions that are seldom fulfilled in natural systems. Most notably, a proper reconstruction requires infi-
nite, noise-free trajectories. However, these requirements have not prevented applications of the theories to a
host of problems including environmental, financial, physiological, and others (see Schreiber [1999] for a thor-
ough, accessible review and discussion of the potential pitfalls of applying the theory to real data). If proper
care is taken, phase space reconstruction captures deterministic nonlinearity even in the presence of noise.

The analyses herein used the following embedding parameters: daily streamflow (Q): m 5 3, s 5 20 days
and daily precipitation (P): m 5 4, s 5 10 days.
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Appendix C: Transportation Distance Metric for Phase Space Comparison

Transportation distance is computed as follows: two time series G and H are embedded into an m dimen-
sional space Rm via time delay embedding. The domain occupied by their attractors is discretized into B
boxes by dividing each mi axis into B1=m segments. The probability that attractor G occupies box Bi is esti-
mated as gi Bið Þ5N G; Bið Þ=NðGÞ, where N G; Bið Þ is the number of points in series G that lie within box Bi and
N Gð Þ is the length of series G. The discretization of Rm into boxes may be performed such that either (a)
each box is the same size (equally spaced bins), or (b) each box contains the same probability (equal proba-
bility bins). We employ the latter method herein as it adds robustness against outliers. Now, let lij > 0 rep-
resent the amount of ‘‘mass’’ shipped from box Bi to Bj according to transportation plan l. To preserve initial
and final distributions of G and H, we require that

XN

j51

lij5gi ; i51; . . . ;N and

XN

i51

lij5hj ; j51; . . . ;N

(C1)

Finally, let M g; hð Þ represent all transportation plans meeting these requirements, and then the transporta-
tion distance may be defined as the minimized transportation cost

dT g; hð Þ5 inf
l2M g;hð Þ

XN

i;j51

lijdij (C2)

where dij is a taxi cab metric normalized to the embedding dimension between the centers of Bi and Bj.
Thus, the transportation distance in effect measures the least amount of work required to ensure equal
probability of both attractors across all B boxes.

The analyses herein used the following discretization parameters for dT: daily streamflow (Q): m 5 3,
B1=m 5 10 and daily precipitation (P): m 5 4, B1=m 5 5.

Appendix D: Coupled Hydrology-Ecology Dynamic Process Interaction Model

The evolution equations (D1)–(D3) of the process-based interaction mussel population density model
are given in terms of parameterized functionals fi(.). Note that rt 5 f5(St) and gt 5 f6(Ct) as discussed in
this work in section 4.1. That is, the growth rate parameter is a function of the suspended sediment
concentration and the mussel carrying capacity modifier depends on the logistically modeled phyto-
plankton population density as chlorophyll-a concentration. For explicit expressions of the functional
relationships, parameter values, and insight into their interactions, refer to Hansen et al. [2015]. Model
parameters for this work were assigned exactly as Site 6—Redwood—R. Falls [Hansen et al., 2015,
Table 2].

dSt

dt
5 f1 Qtð Þ|fflffl{zfflffl}

flow dependent suspended
sediment generation rate

2 f2 Mt; St;Qtð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
mussel filtration rate

St (D1)

dCt

dt
5 f3 Stð Þ|fflffl{zfflffl}

sediment modulated
phytoplankton

growth rate

Ct 12
Ct

KC

� �
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

logistic growth of
phytoplankton pop:

with carrying
capacity KC

2 f4 Qtð Þ|fflffl{zfflffl}
streamflow

dilution of
phytoplankton

1 f2 Mt; St;Qtð Þ|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
mussel filtration rate

0
BBBBBBB@

1
CCCCCCCA

Ct (D2)
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dMt

dt
5 f5 Stð Þ|fflffl{zfflffl}

sediment
modulated

mussel
pop: growth

rate

Mt 12
Mt

f6 Ctð Þ

� �
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

logistic growth of
mussel pop: with food

modified effective
carrying capacity

(D3)

Appendix E: Constructing and Understanding Stability Landscapes

The potential (or stability landscape) Vt is defined such that the slope of the potential gives the rate of
change of the system variable of interest [Strogatz, 2000]. Specifically,

dVt

dM
� 2 _Mt (E1)

where the negative sign enforces the convention of positive _Mt when moving from high to low in the posi-
tive M direction on the stability landscape or potential Vt . The potential or stability landscape is thus
obtained analytically by integrating equation (E1) with respect to M as

Vt52

ð
_Mt dM (E2)

Upon substituting equation (2) into equation (E2) and integrating, the equation for the potential is given by

Vt5rtM2
t

1
3gtKM

Mt2
1
2

� �
1C (E3)

where C is a constant of integration set equal to zero.

A more intuitive way to think about the dynamics of equation (2) is to consider its stability landscape or
potential (both terms are used interchangeably herein) shown in Figure 11b. Imagine placing an inertia-less
ball somewhere along one of the potential curves and letting it roll toward equilibrium. Wherever it comes
to rest (at a minimum) is a stable fixed point, because the ball will return to this point following a perturba-
tion. The steepness of the slope indicates how quickly a steady state is attained. If the ball is precisely on
top of a hill, the system is at an unstable fixed point as a slight perturbation will send it rolling down the
hill.
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