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Abstract Analysis of bend-scale meandering river dynamics is a problem of theoretical and practical
interest. This work introduces a method for extracting and analyzing the history of individual meander
bends from inception until cutoff (called “atoms”) by tracking backward through time the set of two
cutoff nodes in numerical meander migration models. Application of this method to a simplified yet
physically based model provides access to previously unavailable bend-scale meander dynamics over long
times and at high temporal resolutions. We find that before cutoffs, the intrinsic model dynamics invariably
simulate a prototypical cutoff atom shape we dub simple. Once perturbations from cutoffs occur, two other
archetypal cutoff planform shapes emerge called long and round that are distinguished by a stretching
along their long and perpendicular axes, respectively. Three measures of meander migration—growth
rate, average migration rate, and centroid migration rate—are introduced to capture the dynamic lives of
individual bends and reveal that similar cutoff atom geometries share similar dynamic histories. Specifically,
through the lens of the three shape types, simples are seen to have the highest growth and average
migration rates, followed by rounds, and finally longs. Using the maximum average migration rate as a
metric describing an atom’s dynamic past, we show a strong connection between it and two metrics of
cutoff geometry. This result suggests both that early formative dynamics may be inferred from static cutoff
planforms and that there exists a critical period early in a meander bend’s life when its dynamic trajectory
is most sensitive to cutoff perturbations. An example of how these results could be applied to Mississippi
River oxbow lakes with unknown historic dynamics is shown. The results characterize the underlying model
and provide a framework for comparisons against more complex models and observed dynamics.

1. Introduction

Meandering rivers have intrigued researchers for decades with their beautiful esthetics, complex dynamics,
and extraordinary cutoffs. The first physically based theory answering the question of why rivers meander
was not introduced until the early 1980s [Ikeda et al., 1981] despite decades of study on the problem (see
Seminara [2006] for a thorough review). Meandering channels seem to be universal; besides the ubiquitous
terrestrial meandering rivers, they are also found in submarine [Imran et al., 1999; Lazarus and Constantine,
2013] and other planetary [Weihaupt, 1974; Irwin et al., 2005; Lorenz et al., 2008; Ori et al., 2013] environ-
ments. Understanding meandering river dynamics is important for a host of engineering and geologic
applications including stream restoration [Kondolf, 2006], bridge design [Lagasse et al., 2004], agriculture
management [Graf, 2008], stratigraphic interpretation [van de Lageweg et al., 2013], oil discovery [Henriquez
et al., 1990; Swanson, 1993], and even predator-prey population dynamics [Beschta and Ripple, 2012].

A concerted effort emerged in the 1960s from within the geomorphology community to measure meander
planform changes [Hooke, 1977] and to explain mechanisms driving observed planform evolution [Leopold
and Wolman, 1960]. This work rested upon previous research that developed metrics of planform geometry
through analysis of both real [Jefferson, 1902; Dury, 1955; Leopold and Wolman, 1957] and experimental
[Quraishy, 1944; Friedkin, 1945] meanders. Since then, significant contributions have been made via an
abundance of field studies that apply these metrics to real river centerlines derived from combinations of
historic maps [Hooke and Redmond, 1989], aerial photography [Yao et al., 2012; Nagata et al., 2014], and field
surveys [Legleiter, 2014].

Despite these studies’ significant contributions toward deciphering meandering river dynamics, the
difficulty of acquiring long-time, high temporal and spatial resolution channel migration data has hampered
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efforts to fully quantify dynamics from observations alone [Hooke, 2003; Hooke and Yorke, 2010]. Numerical
modeling has thus become a primary tool for understanding meandering complexity and emergent
behavior. Long-term meander models simulate migrating channels over centuries to millennia, providing
insight into otherwise inaccessible dynamics. These models are useful for both practical [e.g., Xu et al., 2011;
Jackson and Austin, 2013] and theoretical investigations. Theoretical analyses of such simulations typically
focus on either reach-scale measures such as sinuosity [Crosato, 2009; Frascati and Lanzoni, 2009], mean
meander wavelength [Camporeale et al., 2005], or mean curvature [Howard and Hemberger, 1991]. However,
to the best of our knowledge no study has considered either observed or modeled well-resolved temporal
dynamics of individual meander bend evolutions. Here we present a new tool for identifying and extracting
the lives of these individual meander bends, dubbed “atoms” and defined extensively in section 3, from
the centerline output of long-time channel migration models. Our method makes accessible the lifespan of
individual meander bends from inception until cutoff by tracking the two end indices of a set of cutoff nodes
backward through time.

Our choice to focus primarily on bend-scale morphodynamics is guided by its emergence as perhaps
the only natural intermediate scale between the cross-section and river-valley scales. Meandering river
relicts are frequently preserved at bend scales through the formation of oxbow lakes or scroll bars.
Engineering designs are often concerned only with morphodynamics of a single bend [e.g., Shields et al.,
2005; Rossell and Ting, 2013]. Besides the pragmatism of the bend scale, physically based meander migration
theories [Ikeda et al., 1981; Zolezzi and Seminara, 2001] predict a nonlocal memory effect on local
hydrodynamics from nearby curvatures that becomes approximately negligible beyond a single meander
wavelength. In addition to being a natural scale for analysis of meandering rivers, the bend-scale approach
promises at least three advantages toward understanding river meandering dynamics.

First, a bend-scale framework may help reinterpret previous work on meander loop classification by linking
static planform shapes to historic dynamic signatures. Classification schemes for oxbow lakes [Weihaupt,
1974] and river meanders [Leighly, 1936; Melton, 1936] are well developed, but as Schumm [1985] points
out, the goal of such classifications is to connect form and process. Although modes of planform migration
have been well established [Hooke, 1984; Lagasse et al., 2003], linking these modes to underlying physical
processes has largely remained an open research area: which dynamic behaviors are correlated with
which planform shapes? Conversely, inferring dynamics from static planform shapes can be useful for
paleochannel studies [Baker et al., 1987].

Second, meander bends provide a more refined basis to compare model outputs to both real rivers and
other models by avoiding reach-wide-averaged metrics. Camporeale et al. [2005] found three contemporary
models of increasing complexity to be statistically indistinguishable in their spatially averaged meander
wavelengths and curvatures. The dynamic details resulting from the different physics and assumptions of
each model are smoothed over by such reach-wide averaging. Bend-scale measures that dissect reach-wide
ones are better suited for describing and explaining differences in model outputs because they provide full
distributions rather than sole averages. The problem of statistical averaging in meandering river studies
has been known for awhile [Hooke, 1984] but remains largely unaddressed because tools have not yet
been developed. Meander loops are already inherently difficult to classify with single measures [Ferguson,
1975], so averaging over already averaged quantities results in substantial information loss. An attempt
to overcome these difficulties was put forward by Howard and Hemberger [1991] who proposed a suite of
40 morphometric variables to distinguish between modeled and natural planforms. However, their work
focused only on spatial analyses of these variables rather than their dynamics. By combining spatial and
temporal analyses, our method can both effectively diagnose a model’s dynamic accuracy and elucidate
how accounting for different physical processes affects channel migration dynamics.

Third, a recent special issue on meandering [Güneralp et al., 2012] highlights the apparent gap between
holistic and reductionist philosophies of river meandering. In the format of an entertaining philosophical
dialog, Seminara and Pittaluga [2012] discuss the incongruities of holistic analyses performed using
reductionist-based migration models. For example, researchers have tested meandering rivers for nonlinear
dynamics [Montgomery, 1993; Perucca et al., 2005], chaotic dynamics [Frascati and Lanzoni, 2010], self-
similarity [Leopold and Wolman, 1960; Stolum, 1998], self-organized criticality [Stolum, 1996], and fractality
[Snow, 1989; Montgomery, 1996], all concepts that imply the presence of energy at many space-time scales.
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Accessible bend-scale dynamics will help link local physical processes with reach-scale phenomena by
providing a coherent intermediate scale between global and local.

The focus of this paper is primarily on the first of these three issues, i.e., connecting simulated meander
geometries with their formative dynamics, but we hope the utility of our study toward refined model
comparisons and bridging scales of analysis becomes clear from the work herein. This paper is structured
as follows: section 2 describes the numerical migration model we used, section 3 explains how individual
bends are extracted through time, section 4 presents some results and insights of the analysis followed by
discussion in section 5. Section 6 concludes with general remarks and future work.

2. Model Description

Long-time meander migration models usually have four distinct components: (1) a morphodynamic model
relating the flow field to bank migration; (2) a hydrodynamic model relating the channel geometry (i.e.,
curvature and cross-sectional geometry) to the flow field; (3) an evolution equation relating bank migration
to planform geometry; and (4) a model accounting for cutoff events [e.g., Frascati and Lanzoni, 2009]. The
third and fourth components render numerical models necessary to account for the strong nonlinearities
associated with the kinematics of channel planform evolution and abrupt channel shortening due to cutoff
processes [Camporeale et al., 2008]. By adopting simple first and second components (i.e., morphodynamic
and hydrodynamic models) here, our resulting dynamics provide insight into the geometric nonlinear
interactions that are present in all models of long-time channel migration.

2.1. Morphodynamic and Hydrodynamic Model
Several models are currently available to treat bank erosion [Hasegawa, 1977; Parker et al., 2011; Motta et al.,
2012a] and to describe the flow field in meandering channels with arbitrary distribution of the channel
axis curvature [Ikeda et al., 1981; Zolezzi and Seminara, 2001; Bolla Pittaluga et al., 2009] and channel width
[Frascati and Lanzoni, 2013; Eke et al., 2014]. In the following, however, we prefer to keep the hydrodynamic
and morphodynamic models at the lowest level of refinement. In fact, our aim is to develop a new
methodology for characterizing individual bend dynamics that can be used independently of the degree
of approximation and physical realism embodied by the adopted morphodynamic and hydrodynamic
models. We thus follow the work of Hasegawa [1977] and Ikeda et al. [1981] who first introduced a dynamic
approach for bank erosion and a linearized flow field model in sinuous channels, providing a relatively
simple framework for computational modeling (hereafter called HIPS after its authors). A suite of models
has emerged following their pioneering work that share the following morphodynamic model:

𝜁 = EoUb (1)

in which the lateral migration rate, 𝜁 , at a point along a channel centerline is the product of a bank
erodibility coefficient Eo and an excess bank velocity Ub resulting from perturbations in channel curvature
and bar formation. This linear relationship for migration has been validated by the field campaigns of
Hasegawa [1977], Odgaard [1987], and Pizzuto and Meckelnburg [1989]. The erodibility coefficient Eo is
generally considered representative of the geotechnical bank properties [Wallick et al., 2006] whose
functional dependencies remain unknown but include near-bank vegetation, failure mechanism, and local
channel geometry effects among others [Constantine et al., 2009a]. In predictive models Eo is typically
calibrated using past channel configurations [e.g., Mosselman, 1998; Larsen and Anderson, 2002; Micheli and
Kirchner, 2002], although studies have also investigated its effects on migration dynamics [Sun and Meakin,
1996; Perucca et al., 2007; Constantine et al., 2009a; Güneralp and Rhoads, 2011].

The hydrodynamic model for Ub is developed by casting the Saint Venant shallow water equations in an
intrinsic coordinate system, where the s=S∕B coordinate refers to the dimensionless streamwise direction,
n=N∕B coordinate to the transverse direction, and B is the channel half width (Figure 1). Lowercase variables
are dimensionless and variables subscripted with o denote channel-averaged values. Scaling the channel
axis curvature as c=CRo, where Ro is the minimum value of the radius of curvature within the investigated
reach, reveals the existence of the usually small parameter 𝜈o =B∕Ro. The relevant variables can then be
expanded in terms of 𝜈o, and a linear perturbation analysis gives the following linear solution for excess flow
velocity at the bank under assumptions of constant channel width and spatially constant friction factor:

ub(s) =
[

ub(s = 0) + 𝜈oc(s = 0)
]

e𝜆os − 𝜈o

[
c(s) +

𝜆o

2
(F2

o + A)∫
s

0
c(𝜉)e𝜆o(s−𝜉)d𝜉

]
(2)
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Figure 1. Coordinate systems and modeling variables.
(a) Planform view of a meander of constant width 2B. The s
coordinate always points in the streamwise direction, and the
X axis is aligned with the valley direction. (b) Cross section of
the channel. The outer bank corresponds to n=1 and at the
centerline n=0.

where the dimensionless excess bank velocity
ub =Ub∕Uo and channel axis curvature c=CRo

are (1) quantities, 𝜆o =−2𝛽Cfo is a charac-
teristic exponent where 𝛽=B∕Do, Cfo is the
spatially constant friction factor, F2

o =U2
o∕gDo,

and A is a constant slope factor expressed
as 𝛼+1 after [Johannesson and Parker, 1985]
where 𝛼 is a dimensionless parameter related
to the across-stream bed slope. Our simulation
parameters, based on bankfull flow conditions
of the Beatton River in Canada originally
reported by Parker and Andrews [1986], are as
follows: B=35 m, Qo =325.6 cm, Cf ,o =0.0036,
Eo =1.85 × 10−8, 𝛼=10, and sv =0.0067. The
upstream boundary condition on ub was set
to zero, prohibiting migration of the first node,
and boundary conditions on curvature are
discussed in section 2.2.2. The convolution
integral in equation (2) implies that the excess
bank velocity at a given section is affected not
only by the local value of the axis curvature
but also by the hydrodynamics and morphody-
namics of the upstream reaches. In particular,
influence is exerted only in the downstream
direction. This is a direct consequence of
the decoupled treatment of sediment-flow
dynamics (i.e., prescribed transverse bed slope)
that precludes the model’s accounting for

overdeepening [Struiksma et al., 1985], resonance [Blondeaux and Seminara, 1985], and upstream influence
[Lanzoni and Seminara, 2006]. The hydrodynamic model does not explicitly account for secondary flow
momentum convection and instead uses the surrogate parameter A [Johannesson and Parker, 1989].

We should note that many of the assumptions and simplifications of the original HIPS work have since
been relaxed, including small-curvature restrictions [Blanckaert and de Vriend, 2010], constant width
[Luchi et al., 2011; Frascati and Lanzoni, 2013], prescribed width [Eke et al., 2014], constant discharge [Hall,
2004; Asahi et al., 2013], deformable bed [Johannesson and Parker, 1989; Zolezzi and Seminara, 2001], two
dimensionality [Rüther and Olsen, 2007], linearity [Bolla Pittaluga et al., 2009], and single-threadedness
[Coulthard and Wiel, 2006]. Camporeale et al. [2007] reviews two decades’ progress in meander migration
modeling, while Parker et al. [2011] offers a recent critical assessment of the HIPS formulation. Despite
their significant simplifications, HIPS models can produce reach-scale planforms and dynamics that under
subresonant conditions are statistically similar to real planforms with regards to fractal dimension of river
lengths [Stolum, 1996], size-frequency distributions of oxbow lakes [Stolum, 1998], and planimetric form
[Frascati and Lanzoni, 2009]. Additionally, Camporeale et al. [2005] compared a HIPS model with two more
sophisticated models [Johannesson and Parker, 1989; Zolezzi and Seminara, 2001] and found that the
average river wavelength and curvature approached a statistically steady state independent of model
complexity. Under subresonant conditions the HIPS model we employ here sufficiently captures the
first-order, curvature-forced processes driving river meandering over long times and hence is suitable for
developing new tools that characterize the individual bend dynamics.

2.2. Numerical Environment
The basic steps of our meander migration model proceed as follows: (1) input a centerline and reach-wide
hydraulic variables, (2) solve hydrodynamics throughout the reach, (3) migrate the channel, (4) locate and
perform cutoffs, (5) check node spacing criteria, and (6) update reach-averaged variables. The model was
implemented in MATLAB and takes advantage of parallel processing for solving the hydrodynamics and
locating and performing cutoffs. Source code for the model and extraction algorithm is provided in the
supporting information.
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2.2.1. Gridding and Numerical Migration
Our numerical model uses both Cartesian and intrinsic coordinates, as shown in Figure 1. The channel
centerline is first discretized into a series of initially evenly spaced nodes every B∕2. Constant channel width
and prescribed bed topography permit reconstruction of the channel geometry from its centerline so no
other planform variables are saved. Following Sun and Meakin [1996], the initial planform configuration
is a straight line parallel to the valley axis with small random Gaussian perturbations ∼  (0, 0.01B) in
the streamwise-perpendicular direction. At every time step, each centerline node migrates according to
equation (1) and

dXi

dt
= −𝜁i sin 𝜃i (3)

dYi

dt
= 𝜁i cos 𝜃i (4)

for node i, where 𝜃i is the ith angle between the downstream channel direction and the x axis. As the nodes
of the channel centerline migrate, spacing between nodes may become either too large or too small. If
the distance between nodes becomes too large, numerical accuracy suffers and the model tends toward
instability. Conversely, very small node spacings can introduce errors associated with the computation of
curvature. Crosato [2007] suggests based on empirical analysis that optimal node spacing is on the order
of 2B; we adopted a maximum node spacing threshold value of 4

3
B. Where this threshold was exceeded,

a parametric cubic spline [Duris, 1977; de Boor, 2001] fit to the preceding and following three points (six
nodes total) determined the coordinates of the interpolated node. In rare cases, especially after cutoff, node
spacing could become too small so a lower threshold of B

5
was maintained. The time step △t=0.2 years

was chosen small enough to ensure numerical accuracy and stable computations [Crosato, 1990; Sun and
Meakin, 1996; Lanzoni and Seminara, 2006].
2.2.2. Computation of Curvature
The hydrodynamic model is primarily driven by variations in curvature along the centerline, yet methods of
digital curvature estimation from discrete nodes are often inaccurate and biased [Worring and Smeulders,
1993]. Evidence suggests that long-time meander migration models are sensitive to small perturbations
[see Sun and Meakin, 1996, Figure 4], so even small inaccuracies in curvature estimation could significantly
alter the simulated planform. One of three mathematically equivalent definitions of curvature 𝜅 is usually
employed in meander migration models, but their accuracies are dependent on both gridding and

computation method. For a planar curve in Cartesian coordinates, 𝜅1 =
|x′y′′−y′x′′|
(x′2+y′2)3∕2 , where the prime denotes a

derivative taken with respect to the S direction. If derivatives are approximated via a first-order differencing
scheme, the denominator equals unity leading to the form in Johannesson and Parker [1985, equation (28)].
A second widely used method exploits the definition 𝜅2 =d𝜃∕dS, where first-order differencing gives

𝜃i =arctan
(

yi+1−yi

xi+1−xi

)
. The third method and one we employ considers 𝜅3 =1∕R, where the radius of curvature

R =

√
(a2

x + a2
y)(b2

x + b2
y)(c2

x + c2
y)

2
(

aybx − axby

) (5)

for ax =xi −xi−1, bx =xi+1 −xi−1, cx =xi+1 −xi. This formula for R arises from geometric considerations showing
that the radius of a circle defined by three points is the area of their triangle divided by the product of the
lengths of their sides; it provided the stablest and smoothest curvature signal among the three methods
(Figure 2), preventing the need for a smoothing filter as often required by numerical meander migration
models [Crosato, 2007]. Our selected method for curvature computation may not produce similar results in
other numerical environments because the computation of curvature depends also on grid resolution and
configuration, derivative estimation method, and computational precision.

An upstream boundary condition on curvature must be applied at each time step; we used a periodic
boundary condition of c(s=0)t =c(s=end−1)t−1, where end refers to the final node along the centerline
and t denotes the model’s current time step. The downstreammost curvature value c(s=end) requires a
linearly interpolated centerline node downstream of the reach at each time step; information only travels
downstream in models that do not account for resonance [Lanzoni and Seminara, 2006], so any errors
introduced by this interpolation will not propagate upstream into the domain.
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Figure 2. (a) Comparison of three different curvature computation methods for the bend. The 4 km bend is scaled
such that the aspect ratio is 1:1, and the upstream end is denoted by S=0. (b) The box around the region of maximum
curvature in Figure 2a is expanded. Definitions for computing each 𝜅i are discussed in section 2.2.2. Derivatives are
estimated by first-order differencing. We employ 𝜅3 for the analyses herein.

2.2.3. Cutoffs
Natural meandering rivers typically cut off via either chute or neck mechanisms [Allen, 1965]. Neck cutoffs
occur when migrating river reaches intersect themselves, while chute cutoffs “short circuit” neck cutoffs
with a connecting channel usually during flood flows. Chute cutoffs have been well-documented [e.g., Lewis
and Lewin, 1983; Gay et al., 1998], but the various mechanisms driving their occurrence remain relatively
unexplored and therefore difficult to predict [Seminara, 2006; Constantine et al., 2009b]. Howard [1996]
presents a meander migration model that takes a stochastic approach to chute cutoffs. Because of the poor
predictability of chute cutoffs, our model accounts only for neck cutoffs.

Neck cutoffs are identified when two nodes of stream centerline are separated by a distance less than or
equal to 2B. This search begins at the upstream-most centerline node and works downstream, removing
cutoffs along the way. The built-in MATLAB function rangesearch builds a k-d tree to reduce search time of
closest nodes from  (

m2
)

time complexity to  (log(m)), where m is the number of centerline nodes. If
intersections are detected, the portion of centerline between the intersecting segments is removed, a single
node is added across the cutoff via cubic spline interpolation, and a local Savitztky-Golay filter [Orfanidis,
1996] is applied to smooth the resulting discontinuity. Camporeale et al. [2005] offer an algorithm for cutoff
search that operates in apparently (m) time.

3. Atom Tracking Method

In this work we seek to explore the dynamics of simulated individual meanders from their inception until
cutoff, requiring a robust and accurate method for continuously identifying meander loops. A meander
loop is typically defined as the reach of stream between two points of zero curvature known as inflection
points. For a continuous function, curvature can be computed analytically as the second derivative and
the inflection points easily obtained, but for discrete nodes inflection point detection becomes more
complicated. In general, inflection points are not located exactly at grid nodes, so they must be somehow
interpolated between two nodes of oppositely-signed curvature. The simplest identification method
assigns the inflection point to the node with the smaller absolute curvature value. However, as discussed
in section 2.2.2, discrete curvature computations can cause complications connected with curvature
calculation method which might lead to misidentifying the inflection node [Worring and Smeulders, 1993;
Utcke, 2003]. Additionally, spurious flexes especially along nearly straight sections of the curve will identify
more than two inflection points per meander bend [e.g., Güneralp and Rhoads, 2007, Figure 9], rendering
ambiguous meander endpoints. These flexes preclude robust algorithms from properly detecting inflection
points smoothly through time and therefore require ad hoc rules. For example, Howard and Hemberger
[1991] proposed identifying nodes as inflection points when

sign
(

Ci + Ci−1

) ≠ sign
(

Ci+1 + Ci+2

)
(6)

where Ci is the curvature of the node in question. Others such as Carson and Lapointe [1983] have used
minimum length and minimum curvature criteria.
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Figure 3. (a) The dissection of a centerline reach into atoms. The dark
portions of centerline are atoms whose extents are marked by blue
(upstream) and red (downstream) boundaries. Some atoms are as short as
three nodes, while some are approaching cutoff. The lighter portions of
the centerline are fractions of atoms whose boundaries are yet unknown
because their cutoff nodes do not yet exist. (b) The development of two
atoms’ centerlines from inception until cutoff. Legend values represent
the fraction of atom length La to its length at cutoff Lcut, i.e., 1/10 shows
an atom at one-tenth its cutoff length (near inception) and 1/1 shows
the atom at cutoff. The left atom shows the growth of an unperturbed
single loop, while the right atom develops a second loop due to a
cutoff immediately upstream that occurs between 1/4 and 1/3. This
figure highlights the ambiguity of atom inception; as tracking proceeds
backward, the atom loses its loop-like form and becomes a segment of
almost constant-curvature centerline.

For spatial analyses of meanders
[e.g., Howard and Hemberger, 1991;
Camporeale et al., 2005; Güneralp
and Rhoads, 2010], simple meander
loop detection methods based on
inflection points are usually sufficient
because small errors in the inflection
point location only slightly affect
average meander measures of
wavelength, amplitude, or skewness.
For estimating such properties
dynamically (as they change through
time), however, errors in detection
can lead to substantial inaccuracies
in the time series. Therefore, dynamic
investigations require a robust and
continuous detection of meander
endpoints for any given planform.

We found ad hoc methods to be
unreliable when applied to the
various evolving complex shapes
produced by the model, so a new
method was developed. With only a
few modifications, this method can
be applied to any model that tracks a
set of centerline nodes through time.
Instead of defining meander bends as
reaches of stream between inflection
points, we take another approach and
introduce atoms. An atom is simply a
river reach that evolves in time and
eventually intersects itself to become
a cutoff meander loop (Figure 3).

Our method for identifying an atom
continuously through time requires
that its cutoff locations (or indices) be
known a priori. The indices of the first
and last nodes of the known cutoff
may then be tracked by moving
backward through time, adjusting
the cutoff indices as nodes were

added or removed upstream. Figure 3b shows two atoms developing from apparent squiggles of centerline
into full meander loops. A single-loop atom usually has an upstream and downstream tail defined as
the length of stream between the cutoff node and the inflection node (see Figure 9 and discussion in
section 4.2), while its head corresponds to the traditional definition of a meander bend as the length
of stream between inflection points containing the apex of the loop. We should note that although the
definition of an atom does not preclude its application to real rivers, the condition that the cutoff location
be known beforehand limits its applicability. In the following section we present an unambiguous method
for identifying atoms from simulated meander migration models.

3.1. Numerical Implementation
An atom’s endpoints are tracked backward through time with a node accounting algorithm beginning with
the positions of the first and last indices of a set of cutoff nodes, or the two cutoff indices. This algorithm,
while conceptually simple, can be tricky to implement. It requires that the model saves at each time step (i)
the channel centerline and (ii) the time and locations of any added or removed nodes including the time
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Figure 4. How the tracking algorithm deals
with centerline node interpolations. Circles are
centerline nodes and squares are the cutoff
node being tracked by the algorithm. As the
model advances in time, the distance between
nodes increases until it becomes larger than
the node spacing threshold, at which time a
new node is interpolated at t2. Conversely, the
algorithm that tracks the cutoff node works
backward through time and sees the cutoff
node removed after t2. The cutoff node at
t1 is selected based on the shortest distance
to the nearest neighboring nodes; in this
case d1 <d2.

and locations of cutoffs. The algorithm then marches backward
in time, adjusting the two cutoff indices to account for nodes
inserted due to spacing threshold requirements and/or
removed due to cutoffs, smoothing or grid spacing.

The heart of the meander bend tracking algorithm is an
accounting scheme which simply adds or subtracts to the
original cutoff indices in the reverse order that nodes were
added or removed, respectively. For example, a typical meander
migration model implementation might progress as follows:
input centerline nodes→migrate centerline nodes→remove
cut off nodes→insert or remove nodes to maintain grid
spacing→advance time step. The corresponding algorithm to
track atoms would then be input cutoff indices→adjust cutoff
indices for spacing insertions/removals→adjust cutoff indices
for cutoffs removed upstream→”advance” to previous time
step. The specifics of the accounting algorithm are dependent
on the model implementation; for example, some models may
smooth the centerline near a cutoff and if this process adds or
removes nodes, the accounting scheme must consider it.

As the algorithm tracks cutoff nodes backward through time,
the atom being tracked shrinks. At some point the tracked
atom reaches a minimum length associated with its inception
or birth, and at this point the algorithm should halt. If the
algorithm instead continues tracking, the tracked cutoff indices
become meaningless as they represent a part of another
atom whose cutoff gave birth to the originally tracked atom.
Therefore a threshold on the atom’s change in length serves
as a robust method to identify time of inception: i.e., abort
tracking when La(j)−La(j − 1)>Lthresh, where j refers to the jth
iteration of the tracking algorithm for a particular atom. We

recommend Lthresh =10B based on the modeling scheme herein, but this threshold depends on the strategy
implemented to enforce sufficient node spacing.

3.2. Limitation of the Methodology
The atom extraction scheme cannot be applied to a model which periodically regrids the centerline.
Generally, node spacing can be maintained by either globally regridding the full centerline or adding or
removing nodes locally. Both methods require an interpolation scheme, usually parametric cubic splines
[Duris, 1977; Legleiter and Kyriakidis, 2007], which invariably introduces errors into the channel centerline
[Crosato, 2007]. The atom tracking algorithm presented here cannot be used in conjunction with global
regridding because regridding erases the individual node history exploited by the algorithm. While most
meander migration models do regrid the channel centerline periodically [e.g., Duan and Julien, 2010; Posner
and Duan, 2012; Motta et al., 2012b], it is not required generally. (Camporeale et al. [2005] do take advantage
of equal node spacing for coordinate transformation and cutoff detection.) While some smoothing is usually
required for stability, local interpolation introduces fewer errors into the centerline configuration compared
with complete regridding. Moreover, regridding essentially low-pass filters the channel centerline at a
frequency determined by the interpolation scheme, removing the smallest-scale bends [Crosato, 2007].
Modelers have successfully employed local interpolation schemes (Sun and Meakin [1996]; Sun et al. [2001],
model herein), avoiding the need for computationally-expensive regridding schemes while maintaining
spacing requirements and numerical stability.

However, even local regridding poses a problem for the algorithm: as a bend grows and nodes are added,
sometimes the interpolated node becomes the cutoff node being tracked. In other words, an atom’s cutoff
node(s) may not have existed at the atom’s inception but were interpolated during its growth. In this case,
when tracking an atom’s two cutoff nodes backward through time, this node disappears at the time step
it was originally introduced (Figure 4). Rather than halt the algorithm, the node nearest the one removed
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Figure 5. Results of the long-term simulated meandering river. (a) 30,000 years of modeled centerline realizations.
Older centerlines are darker; the blue centerline shows t=30, 000 years. The upstream boundary condition fixes the first
centerline node in place, leading to the formation of the spiral pattern at the upstream boundary. No restrictions are
placed on the downstream node so the river may migrate freely. (b) A reach of simulated centerline selected shows the
growth and cutoff of all three atom types. Realizations are 300 years apart. Note the complex multilobe meander that
starts as double lobed but develops a third lobe before cutting off between 900 and 1200 years.

becomes the cutoff node at the next time step. The frequency of such instances depends on the average
node migration rates (which depend on model parameters) and the spacing thresholds, but for the
simulation herein this occurred approximately once per atom lifetime.

4. Results

The simulation of a slightly perturbed, initially straight 40 km river reach for 30,000 years (Figure 5a) resulted
in 992 cutoffs corresponding to one cutoff approximately every 30 years. Of these 992 atoms, only those
occurring a downstream distance greater than 20% of the entire reach length were considered further,
ensuring that atom dynamics are unaffected by the upstream periodic boundary condition on curvature
(see section 2.2.2). Our model allows only downstream propagation of perturbations so the threshold was
not applied to the downstream portion of the reach. The mean tortuosity, or ratio of river length to the
distance between its ends, approached a steady average value of 4.46 after 3000 years, and atoms occurring
before this time were not included in the analyses. Of the remaining atoms, only those with life spans longer
than 400 years were considered to ensure sufficiently long time series, leaving a total of 672 atoms. The
following results draw only from these 672 atoms unless otherwise noted.

This section contains three parts that describe the lifetime of an atom. In section 4.1, atom cutoff geometries
are classified and geometric relationships established; three archetypal emergent cutoff shapes are
identified and compared. In section 4.2, atoms’ dynamic histories are described using three measures
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Figure 6. Geometric classification via curvature measures of modeled and real meander loops. (a) Aerial imagery of a
reach of the Mississippi River in Minnesota, USA. Centerlines of three oxbows have been traced in colors corresponding
to the cutoff atom geometry they most resemble. The shaded meander loops are cutoff atoms simulated by the
model and are positioned next to similarly shaped oxbows. White numbers in the center of each oxbow or atom are cr
values. (b) Absolute value of curvature signals for the cutoff atoms simulated by the model shown in (a). Dashed lines
are average absolute curvatures. (b) Absolute value of curvature signals for the traced oxbow lakes of the Mississippi
River shown in (a). (c) The distribution of cr (ratio of apex curvature to average curvature) simulated by the model shows
how cr serves as a good metric for ordering meander loops of various geometries by shape. The color gradient of the cr
histogram emphasizes that simulated atom shapes are characterized by a spectrum rather than falling neatly into
one of the three archetypal shape (simple, round, long) categories. Statistics for each group have sample size n=25,
while n=552 for all cutoff atoms. The cr mean value for all cutoff atoms is 2.77. Map data: Google Earth: DigitalGlobe.
46◦37’31.36”N, 93◦38’13.31”W. Imagery date 7/2/2011.

of bend-scale meander dynamics. Finally, in section 4.3, the results from the preceding two sections are
combined to demonstrate that cutoff geometry contains the signature of historic formative dynamics.

4.1. Atom Cutoff Geometries
Atom cutoff geometries emerging from the simulation spanned a variety of planform shapes and sizes
including double- and triple-compound loops and a diversity of single-lobed bends. Despite this diversity,
some recurring archetypal cutoff atom shapes were identified through basic curvature and shape metrics.
In general, the inability of HIPS models to reproduce the resonance phenomenon and hence failure to
describe superresonant conditions produces single-lobed bends that are invariably upstream skewed and
downstream migrating [Lanzoni and Seminara, 2006].

Following Brice [1974], we first separated singles from multilobes requiring that a single have a maximum
of two inflection points and only one maximum curvature corresponding to the apex of the bend (e.g.,
Figure 3b, left). By this criterion 82% of all atoms were singles. Multilobe atoms (e.g., Figure 3b) showed
substantial variability in their planform geometries that precluded analysis using the metrics developed
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Figure 7. Geometric phase spaces for all single atoms at cutoff. (a)
Relationship between mean and maximum absolute curvatures for
each single cutoff atom made dimensionless by channel width. Each
symbol represents a unique cutoff atom geometry. The shape groups
tend to follow straight lines because shape classifications were based
on the approximately constant ratio |C|max∕|C|avg. (b) Log-log rela-
tionship between cutoff length Lcut and area Acut for each single
cutoff atom. Area and length are nondimensionalized with o , the
length scale relevant to meander migration described in section 4.2. For
a given cutoff length Lcut, rounds tend to cover a larger area whereas
simples and longs occupy approximately the same area. The average
slope of the marker cloud is two, since A ∼ L2 for nonfractal geometries.

here. The hydrodynamic model we
employ contains no inherent dynamic
mechanisms capable of forming a mul-
tilobed atom in the absence cutoff
perturbations, contrary to models like
that of Frascati and Lanzoni [2009], for
example, which simulates single lobes
that grow additional bends before cutoff
(their Figure 7a). We therefore consider
multilobes produced by the HIPS model
as aggregations of individual singles,
and subsequently focus our attention
solely on singles.

Among the diversity of single planform
configurations, three archetypal
shapes emerged from the simulation
dubbed here as simple, round, and long
(Figure 6a). We note that these shape
designations are presented as a con-
ceptual model to help relate different
geometries to distinct dynamic behavior
and not intended as a broader classi-
fication scheme. Simple cutoff atoms
have a teardrop shape reminiscent of
the classic Kinoshita [1961] loop. Simples
are prototypical in the sense that in the
absence of large perturbations (i.e.,
an initially straight planform with only
small perturbations in curvature), they
are the only shape that forms. Indeed,
each of the first 30 cutoffs of the simu-
lation fell into the simple category. The
spectrum of simples ranges from a fatter
planform shape (round), to an elongated
version (long), both of which may be
considered stretched simples. Longs are

stretched parallel to the long axis of the meander loop, while rounds are stretched in the perpendicular
direction.

The previously qualitatively described classifications may also be distinguished quantitatively by
considering the ratio of the absolute curvature at the apex of an atom to the average absolute curvature
along the cutoff atom cr = |C|max∕|C|avg (Figure 6d). This dimensionless ratio, which is unity for a circle,
clusters similarly shaped cutoff atoms together such that those atoms with values near the mean tend
toward the simple shape, while atoms with values closer to one have round geometry (Figure 6d). For larger
values of the ratio, cutoff atoms become more elongated giving rise to the long group. To illustrate the links
between geometric and dynamic relationships, we selected 25 cutoff atoms with the lowest (highest) cr

values to represent rounds (longs) and chose 25 cutoff atoms nearest the mean cr value to represent
simples. As Figure 6b shows, both the maximum and average curvature values are necessary to distinguish
between the three groups; the |C|max value for the round cutoff atom is very near the long cutoff atom,
but their |C|avg are dissimilar. For the round and simple cutoff atoms, the situation is reversed and the |C|avg

values are close but the |C|max values differentiate the two.

Regardless of their stage of development at cutoff and despite the various centerline configurations, simu-
lated single cutoff atoms’ apex curvatures scale linearly with their average curvatures depending on shape
(Figure 7). The cutoff atom groupings in Figure 7 reflect the use of cr as a metric; each group maintains
approximately the same ratio and therefore falls within a narrow band. Rounds exhibit significantly more
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geometric variability than other types. For example, for a given |C|avg the range of observed |C|max is
greater for rounds than longs. A cutoff atom’s area scales with the square of its perimeter as with nonfractal
2-D polygons.

4.2. Atom Dynamics
The complex behavior of meandering river migration has given rise to a host of metrics designed to capture
the many possible planform migration modes of a meander bend [e.g., Brice, 1974, Lagasse et al., 2004]. Here
we take advantage of the atom extraction algorithm which delineates a meander loop through time along
with known simulated migration at every point and time and investigate atom evolution via three migration
measures: average migration rate (𝜑avg), centroid migration rate (𝜑cen), and atom growth rate ( dLa

dt
).

4.2.1. Dynamic Measures
A single node’s instantaneous migration rate is computed as the Euclidian distance between the node’s
location after some elapsed time divided by the elapsed time:

𝜑i(t) =
1
△t

‖‖‖‖‖
Xi(t +△t) − Xi(t)
Yi(t +△t) − Yi(t)

‖‖‖‖‖2

(7)

for some node i, where ‖x‖2 is the Euclidian norm of x.

Average migration rate 𝜑avg is simply the average of all an atom’s nodes’ migration rates (weighted by node
spacing) at a given time, or

𝜑avg(t) =
1
La

m∑
i=1

△Si𝜑i (8)

where La =
∑m

i=1 △Si is the atom length, m is the number of nodes comprising the atom, and △S was found
by first-order differencing. Average migration condenses the local migration activity along a meander loop
into a single measure.

Centroid migration rate, 𝜑cen, considers the movement of the centroid of the polygon formed by joining
an atom’s cutoff nodes with a line segment. Equation (9) specifies the centroid coordinates of a polygon
composed of m nodes computed from its moments of inertia.

XC = 1
6

m∑
i=1

6xiyiΔxi − 3x2
i Δyi + 3yiΔx2

i + Δx2
i Δyi

yiΔxi − xiΔyi

YC = 1
6

m∑
i=1

−6xiyiΔyi + 3y2
i Δxi − 3xiΔy2

i − Δy2
i Δxi

yiΔxi − xiΔyi

(9)

where Δxi = xi+1−xi, xm = x0 and Δyi = yi+1−yi, ym = y0. The centroid migration rate 𝜑cen is then computed
by equation (7) with

(
Xi, Yi

)
=

(
XC , YC

)
. Computed as such, the centroid migration rate is an integrated

measure of all modes of atom migration, i.e., translation, rotation, extension, and expansion [Daniel, 1971].
For example, downstream translation of an atom and streamwise-perpendicular growth of the atom may
have similar centroid migration rates yet result in significantly different atom planform shapes.

Atom growth rate ( dLa

dt
) simply measures the rate of change of length:

dLa

dt
(t) =

La(t +△t) − La(t)
△t

(10)

for some atom a.

Migration rates are normalized by the space scale (o) and time scale (𝜏o) characterizing the length growth
rate that emerges naturally from the structure of the solution for excess bank velocity given by equation (2)
and from the differential equations controlling migration of the channel axis given by equations (3) and (4).
They read o =B∕|𝜆o|=Do∕2Cfo and 𝜏o =o∕EoUo. The former essentially controls the exponential decay
of spatial disturbances of the flow field [Camporeale et al., 2005] and in the subresonant regime has been
found to attain values similar to the morphodynamic length scale emerging from more refined models
[Frascati and Lanzoni, 2009]. The latter is simply dictated by the equation describing how the centerline
evolves in time and the bank erosion law.
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Figure 8. Collections of individual atoms’ dynamic trajectories. (a)
Atom growth rates dLa

dt
. Each trajectory represents the evolution of a

single atom’s growth rate from near inception until cutoff. The right
end of each trajectory corresponds to cutoff. Trajectories are aligned
as described in section 4.2 such that their maxima occur at t=0 for
comparison purposes. (b) Average atom migration rates 𝜑avg. Again,
atoms are aligned such that their maxima correspond to t = 0. Colors
correspond to the shape groups defined in section 4.1. Simples and
longs are well-distinguished but rounds exhibit significant variability.

4.2.2. Dynamic Trajectories
As an atom evolves in time, its dynamic
trajectory is recorded by the set of
dynamic measures describing its
evolution. Here we show how average
migration rate, centroid migration
rate, and length growth rate change in
time for individual atoms of each type
of cutoff shape (i.e., round, simple, or
long) and characterize the variability of
dynamic trajectories simulated by our
HIPS model. Despite a substantial vari-
ability in dynamic signals, a significant
connection is demonstrated between
cutoff geometry and dynamics.

Near inception, atom length growth rates(
dLa

dt

)
remain slow but increase until

eventually reaching a maximum growth
rate and then monotonically decreasing
(Figure 8a). The trends in the modeled
growth rate trajectories agree with both
field observations [Nanson and Hickin,
1983] and theoretical analyses [Seminara
et al., 2001]. Empirically, the amplitude
growth rate of real single bends typically
rises to a peak before decreasing, while
its migration speed decreases mono-
tonically [Nanson and Hickin, 1983].
Theoretically, the nonlinear solution of
the integrodifferential equation gov-
erning the planimetric evolution of a

periodic sequence of meanders indicates that early in a meander’s life, the fundamental harmonic (that is,
the sine-generated curve of Langbein and Leopold [1966]) grows linearly. After this phase, the third harmonic
(represented in the Kinoshita curve) is also excited leading to a nonlinear meander growth that progressively
retards. As a result, the meander growth rate increases slowly during the linear phase, attains a maximum
and then decreases as the third harmonic is activated. Additionally, the downstream-migration rate is found
to decrease to very small values before cutoff while the rate of bend amplification grows to a peak and
then decays slowly. As this evolution takes place, the meander progressively fattens and becomes skewed
upstream due to the growth of the third harmonic.

An atom’s average migration rate is greatest near its inception, but similar to growth rate, it monotonically
decreases after attaining a maximum (Figure 8b). The peaks in average migration rate trajectories occur
well before those in growth rate trajectories, rendering them useful metrics of historic dynamics. Note that
the time axes in Figure 8 are not identical; because inception and cutoff are not standard across all atoms,
the dynamic trajectories were aligned such that their peaks occur at t=0 to establish a benchmark for
meaningful comparisons between trajectories. Average migration rate trajectories for simple and long
atoms occupy distinct regions, with simples exhibiting higher rates. As with geometric variability, rounds also
display more dynamic variability than other atom shapes.

The irregularity of centroid migration trajectories prohibits meaningful presentation of their dynamic
trajectories as shown for average migration and length growth rates in Figure 8, but the centroid migration
rate nevertheless provides a different perspective on the connection between dynamics and geometry. This
rate (𝜑cen, Figure 9a) is evidently connected with the anatomy of an atom which is divisible into two distinct
parts: a head and tail(s). An atom’s head is the reach of atom containing the apex of the bend between
two inflection points. Heads roughly correspond to the classic notion of a meander bend as the reach of
a river between inflection points. Tails are simply the portions of the atom that are not its head. As shown
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Figure 9. The effect of tails shown via centroid migration rates 𝜑cen through time for the three atom centerlines. See
section 4.2.2 for interpretation. (a) Cutoff occurs at t∕𝜏o =42.0. (b–d) The planforms for each of the atoms of different
tail types are plotted at t=0. The solid black lines are the atoms and the continuing dashed line is the river centerline.
The black dots in (b–d) show the inflection points for each atom centerline, and the crosses mark the centroid of
each atom.

in Figures 9b– 9d, an atom may have zero, one, or two tails. The tails of an atom can contain the apex
of a less-developed (hence faster migrating, see Figure 8b) adjacent loop; the high curvatures of such
nearby loops induce faster migration of tails compared to their corresponding heads. The presence of tails
dramatically affects the centroid migration rate (Figure 9a) and generally acts to diminish 𝜑cen magnitudes.
For example, the tailless atom in Figure 9b has the fastest 𝜑cen among the three types; 𝜑cen diminishes
with an increased number of tails. This effect of tails is perhaps unsurprising, as tails add weight opposite
to the direction of apex growth thereby suppressing the outward migration of the centroid. Interestingly,
tails also influence 𝜑cen by imparting a local maximum into the signal (Figure 9a, single and double tails)
corresponding to their migration toward cutoff. As tails migrate toward each other, they begin to straighten.
The peaks in 𝜑cen correspond to the straightening of the tails (i.e., tails approaching smaller |C|avg) which
acts to significantly reduce the weight of the tails on the centroid location. Not only is the magnitude of 𝜑cen

dependent on tail behavior, the timing of its maximum (i.e., max
(
𝜑cen

)
) also depends on the number of

tails; more tails lead to earlier peaks (relative to time of cutoff).

The three dynamic measures show different aspects of an atom’s evolution, but they are not independent
of each other. Average migration rate peaks shortly after inception and then monotonically decreases until
cutoff, whereas the growth rate is small near inception and grows to a maximum value before decreasing
until cutoff. A typical simple atom (Figure 10) shows that the occurrence of these maximum or minimum
dynamic metrics is not simultaneous. Average migration and centroid migration appear correlated until the
tails of the atom begin affecting the centroid migration rate, causing its rise despite the decreasing overall
average migration rate. Despite some apparent correlation, each measure provides unique information
about the modes of planform migration.

4.3. Connecting Geometry and Historic Dynamics
A meander loop’s dynamics arise from the continuous feedbacks between the morphodynamic, hydrody-
namic, and geometric processes at play, and its planform shape bears the signature of their interaction. The
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Figure 10. How dynamic metrics simultaneously evolve for a single atom. (a) The evolution of a typical simple atom is
visualized through three dynamic measures changing in time: growth rate (solid line), average migration rate (dashed
line), and centroid migration rate (dotted line). Dynamic measures are nondimensionalized by the time and space scales
described in section 4.2. Vertical lines are drawn from each of the dynamic signals’ local maxima or minimum to their
times on the x axis. (b) The atom’s planform is shown plotted at each of these times (t4 corresponds to cutoff). The dot
inside each of the plotted atom centerlines shows the atom’s centroid. After t2 the left tail of the atom begins rapidly
migrating toward the right causing the rebound of 𝜑cen and the atom’s eventual cutoff.

relationship between a meander bend’s curvature and dynamics (i.e., migration rates) has been explored in
both real [Hickin, 1974; Hickin and Nanson, 1975; Hooke, 1987, 2007] and simulated [Crosato, 2009] channels,
but these studies only consider instantaneous relationships. If meander bends remember their formative
dynamics, a connection should exist between the bend’s current planform configuration and the dynamic
history that brought it to that state. This hypothesis, that the signature of formative dynamics remains in
cutoff shapes, is tested using the methodologies developed in the previous two subsections.

A simple linear correlation analysis between each atom’s maximum average migration rate and more than
30 metrics of cutoff atom geometry revealed the two strongest correlating variables are the efficiency ratio
Acut∕Lcut (Figure 11a), which refers to how efficient an atom’s centerline length at cutoff was in reworking
the floodplain, and the apex curvature at cutoff |C|max (Figure 11b). This is perhaps an unsurprising result
considering the work of Furbish [1988] who showed that within a HIPS-type model both curvature and
stream length are of similar importance to meandering river migration dynamics. The consideration of both
efficiency ratio and apex curvature improved predictions of maximum average migration rate (Figure 12).
Maximum growth rates and maximum centroid migration rates produce similar results to Figure 12; that
is, cutoff atom geometry predicts all three dynamic metrics well. However, because an atom’s maximum
average migration occurs very early in its life (see Figure 12), it provides the earliest measure of its dynamics
and implies that the geometry at the end of an atom’s life contains information about its dynamics near
the time of its inception. Furthermore, the signature of formative dynamics in cutoff shapes supports the
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Figure 11. Relationships between cutoff geometry and historic dynamics
for 552 simple cutoff atoms. (a) The efficiency ratios Acut∕Lcut normalized
by o for all cutoff atoms are plotted against their maximum average
migration rates (shown in Figure 8b). Efficiency ratio refers to the efficiency
of a given length of stream in reworking the floodplain. (b) Each cutoff
atom’s apex curvature normalized by B is plotted against its historic
maximum average migration rate.

notion of a critical period early in a
meander bend’s life when its dynamic
trajectory is most sensitive to pertur-
bation. Deviations from the apparent
trend in Figure 12 are mostly due
to cutoffs occurring immediately
upstream. Such cutoffs serve as
high-curvature perturbations that
may migrate downstream into the
upstream-tail of an atom, and the
maximum migration rate is amplified
when this perturbation coincides
with the peak growth rate of the
downstream atom. Consistent with
geometric and dynamic metrics,
rounds exhibit the most variability in
the predictive relationship between
cutoff geometry and dynamics.

5. Discussion

Figure 12. Connection between cutoff geometry and historic dynamics
revealed. Measurements of atom geometries (x and y axis) at the end of
each atom’s life and a measure of their dynamics (coloration) made early in
the atom’s life link an atom’s dynamic history with its cutoff shape. For each
atom the dimensionless efficiency ratio at cutoff Acut∕Lcut−1

o is plotted
against the dimensionless apex cutoff curvature max(|C|max)B and the
point is colored by the dimensionless historic maximum average migration
rate, max(𝜑avg)𝜏o∕o (i.e., the maxima of trajectories shown in Figure 8b).
The fastest migrating atoms correspond to those with the highest apex
curvatures and lowest efficiency ratios (top left) and vice versa.

The life story of meander bends
predicted by a HIPS formulation
is told through their extraction as
atoms. An atom undergoes a birth
and death, and its anatomy is com-
posed of a head corresponding to
the reach of centerline containing
the apex of the bend between two
inflection points and tails corre-
sponding to the lengths of stream
between the inflection points and
cutoff locations. The death of an atom
is marked by cutoff, and its timing
for a given atom depends on (i) the
atom’s dynamic history, (ii) nearby
perturbations, and (iii) the overall
river planimetric configuration. At
its birth an atom is usually a mere
squiggle of centerline (e.g., Figure 3b)
and therefore cannot be easily
visually detected. With respect to
each of the three dynamic measures,
simple atoms tend to migrate fastest
and hence reach cutoff sooner
than other geometries. Long atoms
migrate the slowest and therefore
live the longest before cutoff. The
variability in round geometries is also
seen in their dynamic trajectories,
reflecting the influence of randomly
timed nearby perturbations due
to cutoff. Conversely, simples and
rounds have dynamic trajectories that
cluster with smaller variability. Some
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atoms’ maximum growth rates (see slowest growing rounds, Figure 8a) are apparently achieved early in
their lives, suggesting that their cutoff geometry is set early in their life. This implies a critical period near
inception when perturbations are most critical to development.

In our HIPS model, model dynamics do not include physical mechanisms such as transitions from subreso-
nant to superresonant conditions as described by Frascati and Lanzoni [2009], and hence cutoff is the only
localized perturbation mechanism through which new meander bends may form. This property, along with
uniform treatment of post-cutoff centerline smoothing begs the question: how do the various observed
morphodynamics arise? An atom’s morphology is determined primarily by the local hydrodynamics driving
bank erosion (ub, equation (2)), but these local dynamics depend on both nonlocal and reach-wide condi-
tions that vary in time. For example, Uo, Do, and 𝜆o are reach-wide variables that affect the migration rate of a
single node. Furthermore, the convolution integral in equation (2) represents a nonlocal (yet nonreach wide)
dependence on upstream curvatures. The hydrodynamics of an atom incorporate the variability from each
of these scales and thus promotes variability in individual atom morphodynamics. In addition to variability
in local hydrodynamics, the atom deformation process itself imparts an intrinsic geometric nonlinearity
through the equations of migration (see Pittaluga and Seminara [2011]). The occurrence of cutoff imparts
yet another source of variability into the migrating meandering river.

Ultimately, the various emergent atom morphodynamics and morphologies reflect the nonlinear interac-
tions between the multiscale-dependent hydrodynamics, the migration equations, and the occurrence of
cutoffs. Even in a relatively simple modeling environment like ours, unraveling the contributions of each of
these to specific morphologic or dynamic variability presents a considerable challenge. A comparison of the
computed terms contributing to excess bank velocity ub reveals curvature effects are typically stronger than
the slowly varying reach-wide ones especially near cutoffs. That is, local curvature perturbations account
for more of the variability in the distribution of shapes shown in Figure 6d; the resulting discontinuity in
curvature after cutoff serves as the initial configuration of a new atom. Cutoffs sometimes also clearly affect
nearby well-developed atom dynamics through the nonlocal term, usually acting to “artificially” augment
migration rates (for example, the outliers in Figure 12). In the absence of localized perturbations, cutoff
geometries simulated by the HIPS model tend toward a uniform simple shape, suggesting an inherent
archetypal form embedded in the model dynamics.

The curvature, area, and length of a meander loop at cutoff can be used to predict historic maximum
rates of growth and migration as demonstrated by Figure 12. For example, Figure 6a shows oxbow lakes
along the Mississippi River that had already formed at the time of the earliest aerial photographs in 1937;
observations of their formative dynamics are unavailable. However, if this reach of the Mississippi River were
well-described by a HIPS modeling scheme, historic migration rates of each loop may be estimated from
their present-day oxbow cr ratios. Even without fully modeling the historic evolution of this reach of the
Mississippi River, relative migration rates of each oxbow may be inferred from a cursory analysis of their
geometries.

The results presented herein were made possible only because the entirety of an atom’s life is known,
including the cutoff. If the cutoff location and time are known, the rest of the atom’s evolution may then
be backtracked until its origins and initial conditions are known. The algorithm introduced here requires
highly temporally resolved centerline realizations to accurately track cutoff node histories. In principle this
algorithm could be applied to cutoff loops from a series of aerial images with sufficient temporal resolution
if a consistent method for gridding centerlines were established. Alternatively, adopting the classical notion
of a meander bend as the reach of stream between inflection points (i.e., atom heads) would permit the
technique’s application to real reaches that have not yet been cut off. In that case, the methodology here
is still useful because the heads are easily extracted from complete atoms while bypassing the previously
discussed problems associated with automatic inflection point detection.

6. Concluding Remarks and Future Work

The primary motivation of this work was to test the hypothesis that bend-scale cutoff geometry contains
information about its formative dynamics. Testing this hypothesis requires both a large number of meander
bends whose planimetric bend evolutions from inception until cutoff are well-resolved and a record of
nearby disturbances that might affect the geometric-dynamic predictive relationship due to the nonlinear
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growth of local instabilities. In the absence of sufficient observational data, we resorted to a long-time,
physically based numerical model that couples hydrodynamics, morphology, and cutoff and found that the
deterministic model dynamics do indeed show evidence that meander cutoff shape contains the signature
of formative meander migration dynamics. A necessary step for such an analysis requires the isolation of
individual bends through time, and this work presented a robust algorithm to automatically extract single
bends from long-time simulations of meander migration.

The ultimate objective, of course, is to apply these findings to real meander bends where “signature-
shredders” [Jerolmack and Paola, 2010] such as catastrophic floods or geologic activity may obscure or
erase this signature. A critical component of such studies lies in the ability to discern which dynamic and
geometric metrics might be most closely related. Limited observed meander dynamics data obscured by
natural heterogeneities renders identifying such metrics problematic. Within the sterile modeling envi-
ronment of this work, the apex curvature of cutoff meander bends and the efficiency ratio, defined as the
area of a cutoff bend divided by its length, emerge as powerful geometric metrics that retain information
about a bend’s dynamics in its formative (early) stage of life. Furthermore, maxima of dynamic trajectories
serve as suitable metrics characterizing atoms’ historic evolutions. Informed by these clues from numerical
modeling, future work will test the metrics and relationships developed here in real rivers such as highly
active meandering Amazonian rivers for which over 30 years of Landsat imagery is available. We are also
applying and refining our metrics to more complex numerical models which incorporate additional physics
and natural variability.

Notation

A slope factor = 𝛼 + 1.
Aa,Acut atom area [L2], atom cutoff area [L2].

B channel half width [L].
C, c curvature = 1∕R [L−1], nondimensional curvature = CRo.|C|avg mean absolute curvature [L−1].|C|max maximum absolute curvature between two inflection points (at bend apex) [L−1].
Cfo friction coefficient.

cr ratio of maximum curvature to mean curvature = |C|max∕|C|avg.

D,Do channel depth [L], reach-averaged channel depth =
(

Qo∕
(

2B
√

gso∕Cfo

))2∕3
[L].

dLa

dt
atom length growth rate (equation (10)) [LT−1].

Eo erodibility coefficient.
Fo reach-average Froude number = U2

o∕Dog.
g gravity acceleration [LT−2].

La, Lcut atom length [L], atom cutoff length [L].
o spatial scale governing long-time meander migration = B∕|𝜆o| [L].
m number of nodes comprising channel centerline.

N, n cross-stream distance [L], nondimensional cross-stream distance = N∕B.
Qo streamflow [L3T−1].

R, Ro radius of curvature (equation (5)) [L], minimum R for reach of interest [L].
S, s along-stream distance [L], nondimensional along-stream distance = S∕B.

so(t = 0), sv initial channel slope, valley slope.
t, tcut, tpeak time [T], time at cutoff [T], time of peak (or valley) in dynamic trajectory [T].

Ub, ub excess bank velocity (equation (2)) [LT−1], nondimensional excess bank velocity = Ub∕Uo.
Uo reach-averaged channel velocity = Qo∕2BDo [LT−1].
𝛼 transverse bed slope parameter.
𝛽 aspect ratio = B∕Do.
𝜁i migration rate at node i (equation (1)) [LT−1].
𝜃 angle between valley and streamwise directions (see Figure 1) [rad].
𝜅i curvature computed by ith method (see section 2.2.2) [L−1].
𝜆o characteristic exponent = −2𝛽Cfo.
𝜈o ratio of half width to radius of curvature= B∕Ro.
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𝜉 dummy variable for convolution integral (equation (2)).
𝜏o temporal-scale governing long-time meander migration = o∕EoUo [T].

𝜑, 𝜑cen, 𝜑avg migration rate (equation (7)) [LT−1], centroid migration rate (equations (7) and (9)) [LT−1],
average migration rate (equation (8)) [LT−1].
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