
Variational data assimilation via sparse regularisation

By ARDESHIR M. EBTEHAJ1,2 , MILIJA ZUPANSKI3, GILAD LERMAN2 and

EFI FOUFOULA-GEORGIOU1*, 1Department of Civil Engineering, Saint Anthony Falls Laboratory,

University of Minnesota, Minneapolis, MN, USA; 2School of Mathematics, University of Minnesota,

Minneapolis, MN, USA; 3Cooperative Institute for Research in the Atmosphere, Colorado State University,

Fort Collins, CO, USA

(Manuscript received 18 June 2013; in final form 1 January 2014)

ABSTRACT

This paper studies the role of sparse regularisation in a properly chosen basis for variational data assimilation

(VDA) problems. Specifically, it focuses on data assimilation of noisy and down-sampled observations while

the state variable of interest exhibits sparsity in the real or transform domains. We show that in the presence

of sparsity, the ‘1-norm regularisation produces more accurate and stable solutions than the classic VDA

methods. We recast the VDA problem under the ‘1-norm regularisation into a constrained quadratic

programming problem and propose an efficient gradient-based approach, suitable for large-dimensional

systems. The proof of concept is examined via assimilation experiments in the wavelet and spectral domain

using the linear advection�diffusion equation.
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1. Introduction

Environmental prediction models are initial value problems

and their forecast skills highly depend on the quality of their

initialisation. Data assimilation (DA) seeks the best esti-

mate of the initial condition of a (numerical) model, given

observations and physical constraints coming from the

underlying dynamics (see, Daley, 1993; Kalnay, 2003).

This important problem is typically addressed by two

major classes of methodologies, namely sequential and

variational methods (Ide et al., 1997; Law and Stuart,

2012). The sequential methods are typically built on the

theory of mathematical filtering and recursive weighted

least-squares (WLS) (Ghil et al., 1981; Ghil, 1989; Ghil and

Malanotte-Rizzoli, 1991; Evensen, 1994a; Anderson, 2001;

Moradkhani et al., 2005; Zhou et al., 2006; Van Leeuwen,

2010, among others), while the variational methods are

mainly rooted in the theories of constrained mathemat-

ical optimisation and batch mode WLS (e.g. Sasaki,

1970; Lorenc, 1986, 1988; Courtier and Talagrand, 1990;

Zupanski, 1993, among others).

Although recent sequential methods have received a

great deal of attention, the variational methods are still

central to the operational weather forecasting systems.

Classic formulation of the variational data assimila-

tion (VDA) typically amounts to defining a (constrained)

WLS problem whose optimal solution is the best estimate

of the initial condition, the so-called analysis state.

This penalty function typically encodes the weighted

sum of the costs associated with the distance of the

unknown true state to the available observations and

previous model forecast, the so-called background state.

Indeed, the penalty function enforces the solution to be

close enough to both observations and background

state in the weighted mean squared sense, while the

weights are characterised by the observations and the

background error covariance matrices. On the other hand,

the constraints typically enforce the analysis to follow the

underlying prognostic equations in a weak or strong sense

(see, Sasaki, 1970; Daley, 1993, p. 369). Typically, when

we constrain the analysis only to the available observa-

tions and the background state at every instant of time,

the VDA problem is called 3D-Var (e.g. Lorenc, 1986;

Parrish and Derber, 1992; Lorenc et al., 2000; Kleist

et al., 2009). On the contrary, when the analysis is also

constrained to the underlying dynamics and available

observations in a window of time, the problem is called

4D-Var (e.g. Zupanski, 1993; Rabier et al., 2000; Rawlins

et al., 2007).
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Inspired by the theories of smoothing spline and Kriging

interpolation in geostatistics, the first signs of using

regularisation in VDA trace back to the work by Wahba

and Wendelberger (1980) and Lorenc (1986), where the

motivation was to impose smoothness over the class of

twice differentiable analysis states. More recently, Johnson

et al. (2005b) argued that, in the classic VDA problem, the

sum of the squared or ‘2-norm of the weighted background

error resembles the Tikhonov regularisation (Tikhonov

et al., 1977). Specifically, by the well-known connections

between the Tikhonov regularisation and spectral filtering

via singular value decomposition (SVD) (e.g. see Hansen,

1998; Golub et al., 1999; Hansen et al., 2006), a new insight

was provided into the interpretation and stabilising role

of the background state on the solution of the classic VDA

problem (see, Johnson et al., 2005a). Instead of using the

‘2-norm of the background error, Freitag et al. (2010)

and Budd et al. (2011) suggested to modify the classic VDA

cost function using the sum of the absolute values or

‘1-norm of the weighted background error. This assump-

tion requires to statistically suppose that the background

error is heavy tailed and can be well approximated by the

family of Laplace densities (e.g. Tibshirani, 1996; Lewicki

and Sejnowski, 2000). For DA of sharp atmospheric fronts,

Freitag et al. (2012) kept the classic VDA cost function

while further proposed to regularise the analysis state

by constraining the ‘1-norm of its first order derivative

coefficients.

In this study, inspired by our previous evidence on

sparsity of rainfall fields (Ebtehaj and Foufoula-

Georgiou, 2011; Ebtehaj et al., 2012), we extend the

previous studies (e.g. Freitag et al., 2012; Ebtehaj and

Foufoula-Georgiou, 2013) in regularised variational data

assimilation (RVDA) by: (a) proposing a generalised

regularisation framework for assimilating low-resolution

and noisy observations, while the initial state of interest

exhibits sparse representation in an appropriately chosen

basis; (b) demonstrating the promise of the methodology

in assimilation test problems using advection�diffusion
dynamics with different error structure; and (c) propos-

ing an efficient solution method for large-scale DA

problems.

The concept of sparsity plays a central role in this paper.

By definition, a state of interest is sparse in a pre-selected

basis, if the number of non-zero elements of its expansion

coefficients in that basis (e.g. wavelet coefficients) is sig-

nificantly smaller than the overall dimension of the state in

the observational space. Here, we show that if sparsity in a

pre-selected basis holds, this prior information can serve to

improve the accuracy and stability of DA problems. To this

end, using prototype studies, different initial conditions

are selected, which are sparse under the wavelet and spec-

tral discrete cosine transformation (DCT). The promise

of the ‘1-norm RVDA is demonstrated via assimilating

down-sampled and noisy observations in a 4D-Var

setting by strongly constraining the solution to the gov-

erning advection-diffusion equation. In a broader con-

text, we delineate the roadmap and explain how we may

exploit sparsity, while the underlying dynamics and observa-

tion operator might be nonlinear. Particular attention is

given to explain Monte Carlo driven approaches that

can incorporate a sparse prior in the context of ensemble

DA.

Section 2 reviews the classic VDA problem. In Section 3,

we discuss the concept of sparsity and its relationship

with ‘1-norm regularisation in the context of VDA

problems. Results of the proposed framework and com-

parisons with classic methods are presented in Section 4.

Section 5 is devoted to conclusions and ideas for future

research, mainly focusing on the use of ensemble-based

approaches to address sparse promoting VDA in nonlinear

dynamics. Algorithmic details and derivations are presented

in Appendix.

2. Classic VDA

At the time of model initialisation t0, the goal of DA can be

stated as that of obtaining the analysis state as the best

estimate of the true initial state, given noisy and low-

resolution observations and the erroneous background state,

while the analysis needs be to consistent with the under-

lying model dynamics. The background state in VDA is

often considered to be the previous-time forecast provided

by the prognostic model. By solving the VDA problem,

the analysis is then being used as the initial condition of

the underlying model to forecast the next time-step and

so on. In the following, we assume that the unknown

true state of interest at the initial time t0 is an m-

element column vector in discrete space denoted by

x0 ¼ x0;1; . . . ; x0;m

� �T2 R
m, the noisy and low-resolution

observations in the time interval t0; . . . ; tk½ � are yi 2 R
n,

i ¼ 1; . . . ; k, where n5m. Suppose that the observations

are related to the true states by the following observation

model

yi ¼ H xið Þ þ vi; (1)

where H : R
m ! R

n denotes the nonlinear observation

operator that maps the state space into the observation

space, and vi � N 0; Rið Þ is the Gaussian observation error

with zero mean and covariance Ri.

Taking into account the sequence of available obser-

vations, yi 2 R
n, i ¼ 0; . . . k, and denoting the back-

ground state and its error covariance by xb
0 2 R

m and

B 2 R
m�m, the 4D-Var problem amounts to obtaining
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the analysis at initial time as the minimizer of the following

cost function:

J 4Dðx0; x1; . . . ; xkÞ ¼
Xk

i¼0

1

2
yi �H xið Þ
�� ���� ��2

R�1
i

� �
þ 1

2
xb

0 � x0

�� ���� ��2
B�1 ;

(2)

while the solution is constrained to the underlying model

equation,

xi ¼M0; iðx0Þ; i ¼ 0; . . . ; k: (3)

Here, jxj jj2A ¼ xTAx denotes the quadratic-norm, while A is

a positive definite matrix and the functionM0; i : R
m ! R

m

is a nonlinear model operator that evolves the initial state

in time from t0 to ti.

Let us define M0,i to be the Jacobian ofM0;i and restrict

our consideration only to a linear observation operator,

that is H xið Þ ¼ Hxi, and thus the 4D-Var cost function

reduces to

J 4Dðx0Þ ¼
Xk

i¼0

1

2
yi �HM0; i x0

�� ���� ��2
R�1

i

� �
þ 1

2
xb

0 � x0

�� ���� ��2
B�1 :

(4)

By defining y ¼ yT0 ; . . . ; yTk
� �T2 R

N , where N ¼ nðk þ 1Þ,
H ¼ HM0; 0

� �T
; . . . ; HM0; k

� �Th iT
, and

R ¼

R0 0 � � � 0

0 R1
. .

. ..
.

..

. . .
. . .

.
0

0 � � � 0 Rk

266664
377775;

the 4D-Var problem (4) further reduces to minimisation of

the following cost function:

J 4Dðx0Þ ¼
1

2
jjy �Hx0jj2R�1 þ

1

2
jjxb

0 � x0jj
2
B�1 : (5)

Clearly, eq. (5) is a smooth quadratic function of the initial

state of interest x0. Therefore, by setting the derivative to

zero, it has the following analytic minimizer as the analysis

state,

xa
0 ¼ HTR�1Hþ B�1

� ��1
HTR�1y þ B�1xb

0

	 

: (6)

Throughout this study, we used Matlab built-in function

pcg.m, described by Bai et al. (1987), for obtaining classic

solutions of the linear 4D-Var in eq. (6).

Accordingly, it is easy to see (e.g. Daley, 1993, p. 39) that

the analysis error covariance is the inverse of the Hessian

of eq. (5), as follows:

E x0 � xa
0ð Þ x0 � xa

0ð ÞT
h i

¼ HTR�1Hþ B�1
� ��1

: (7)

It can be shown that the analysis in the above classic

4D-Var is the conditional expectation of the true state

given observations and the background state. In other

words, the analysis in the classic 4D-Var problem is the

unbiased minimum mean squared error (MMSE) estimator

of the true state (Levy, 2008, chap.4).

3. Regularised variational data assimilation

3.1. Background

As is evident, when the Hessian (i.e. HTR�1Hþ B�1) in the

classic VDA cost function in eq. (5) is ill-conditioned, the

VDA solution is likely to be unstable with large estimation

uncertainty. To study the stabilising role of the background

error, motivated by the well-known relationship between

the Tikhonov regularisation and spectral filtering (e.g.

Golub et al., 1999), Johnson et al. (2005a, b) proposed

to reformulate the classic VDA problem analogous to the

standard form of the Tikhonov regularisation (Tikhonov

et al., 1977). Accordingly, using a change of variable

z0 ¼ C�1=2
B x0 � xb

0ð Þ, letting B ¼ r2
bCB and R ¼ r2

r CR, where

CB and CR are the correlation matrices, the classic

variational cost function was proposed to be reformulated

as follows:

J 4Dðz0Þ ¼ j f �Gz0j jj22 þ lj z0j jj
2
2: (8)

where the ‘2-norm is jxj jj2 ¼ Rm
i¼1x2

ið Þ1=2
, l ¼ r2

r=r
2
b,

G ¼ C�1=2
R HC1=2

B , and f ¼ C�1=2
R y �Hxb

0

	 

.Hence, by solving

za
0 ¼ argmin

z0

J 4Dðz0Þf g;

the analysis can be obtained as, xa
0 ¼ xb

0 þ C1=2
B za

0. Having

the above reformulated problem, (Johnson et al., 2005a)

provided new insights into the role of the background error

covariance matrix on improving the condition number

of the Hessian in (5), that is the ratio between its largest

and the smallest singular values, and thus stability of the

classic VDA problem.

To tackle DA of sharp fronts, following the above

reformulation, Freitag et al. (2012) suggested to add the

smoothing ‘1-norm regularisation as follows:

za
0 ¼ argmin

z0

J R4Dðz0Þ þ k U C1=2
B z0 þ xb

0

	 
��� ������ ���
1

n o
; (9)

where the ‘1-norm is jxj jj1 ¼ Rm
i¼1 xij j, the non-negative l

is called the regularisation parameter, and F is proposed

to be an approximate first-order derivative operator as

follows:

U ¼
�1 1 0

. .
. . .

.

0 �1 1

24 35 2 R
ðm�1Þ�m:
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Notice that eq. (9) is a non-smooth optimisation as the

derivative of the cost function does not exist at the origin.

Freitag et al. (2012) recast this problem into a quadratic

programing (QP) with both equality and inequality con-

straints where the dimension of the proposed QP is three

times larger than that of the original problem. Note that by

quadratic programming we refer to minimisation or max-

imisation of a quadratic function with linear constraints.

It is also worth noting that, the reformulations in eqs. (8)

and (9) assume that the error covariance matrices

are stationary (i.e. B ¼ r2
bCB, R ¼ r2

r CR) and the error

variance is distributed uniformly across all of the pro-

blem dimension. However, without loss of generality,

a covariance matrix B 2 R
m�m can be decomposed as

B ¼ diag sð ÞCB diag sð Þ, where s 2 R
m is the vector of

standard deviations (Barnard et al., 2000). Therefore, while

one can have an advantage in stability of computation

in eqs. (8) and (9), the stationarity assumptions and

computations of the square roots of the error correlation

matrices might be restrictive in practice.

In the subsequent sections, beyond ‘1 regularisation of

the first order derivative coefficients, we present a general-

ised framework to regularise the VDA problem in a

properly chosen transform domain or basis (e.g. wavelet,

Fourier, DCT). The presented formulation includes

smoothing ‘1 and ‘2-norm regularisation as two especial

cases and does not require any explicit assumption about

the stationarity of the error covariance matrices. We recast

the ‘1-norm RVDA into a QP with lower dimension and

simpler constraints compared to the presented formulation

by Freitag et al. (2012). Furthermore, we introduce

an efficient gradient-based optimisation method, suitable

for large-scale DA problems. Some results are presented

via assimilating low-resolution and noisy observations

into the linear advection�diffusion equation in a 4D-Var

setting.

3.2. A generalised framework to regularise variational

data assimilation in transform domains

In a more general setting, to regularise the solution of the

classic VDA problem, one may constrain the magnitude of

the analysis in the norm sense as follows:

xa
0 ¼ argmin

x0

J R4Dðx0Þf g subject to Ux0j jj jpp� c; (10)

where c�0, U 2 R
m�m is any appropriately chosen linear

transformation, and the ‘p-norm is jxj jjp ¼ R xij j
pð Þ1=p

with

p�0. By constraining the ‘p-norm of the analysis, we

implicitly make the solution more stable. In other words,

we bound the magnitude of the analysis state and reduce

the instability of the solution due to the potential ill-

conditioning of the classic cost function. Using the theory

of Lagrange multipliers, the above-constrained problem

can be turned into the following unconstrained one:

xa
0 ¼ argmin

x0

1

2
jjy �Hx0jj

2
R�1 þ 1

2
jjxb

0 � x0jj
2
B�1 þ k Ux0j jj jpp

� �
:

(11)

where the non-negative l is the Lagrange multiplier

or regularisation parameter. As is evident, when l tends

to zero the regularised analysis tends to the classic analysis

in eq. (6), while larger values are expected to produce more

stable solutions but with less fidelity to the observations

and background state. Therefore, in eq. (11), the regular-

isation parameter l plays an important trade-off role

and ensures that the magnitude of the analysis is con-

strained in the norm sense while keeping it sufficiently

close to observations and background state. Notice that

although in special cases there are some heuristic ap-

proaches to find an optimal regularisation parameter

(e.g. Hansen and O’Leary, 1993; Johnson et al., 2005b),

typically this parameter is selected empirically via statistical

cross-validation in the problem at hand.

It is important to note that, from the probabilistic point

of view, the regularised eq. (11) can be viewed as the

maximum a posteriori (MAP) Bayesian estimator. Indeed,

the constraint of regularisation refers to the prior knowl-

edge about the probabilistic distribution of the state as

p xð Þ / exp �k Uxj jj jpp
	 


. In other words, we implicitly

assume that under the chosen transformation F, the state

of interest can be well explained by the family of multi-

variate generalised Gaussian density (e.g. Nadarajah,

2005), which includes the multivariate Gaussian (p�2)

and Laplace (p�1) densities as special cases. As is evident,

because the prior term is not Gaussian, the posterior

density of the above estimator does not remain in the

Gaussian domain and thus characterisation of the a

posteriori covariance is not straightforward in this case.

From an optimisation view point, the above RVDA

problem is convex with a unique global solution (analysis)

when p]1; otherwise, it may suffer from multiple local

minima. For the special case of the Gaussian prior (p�2),

the problem is smooth and resembles the well-known

smoothing norm Tikhonov regularisation (Tikhonov et al.,

1977; Hansen, 2010). However, for the case of the Laplace

prior (p�1), the problem is non-smooth, and it has received

a great deal of attention in recent years for solving sparse

ill-posed inverse problems (see Elad, 2010, and references

there in). It turns out that the ‘1-norm regularisation

promotes sparsity in the solution. In other words, using

this regularisation, it is expected that the number of non-

zero elements of Uxa
0 be significantly less than the observa-

tional dimension. Therefore, if we know a priori that a

specific F projects a large number of elements of the state
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variable of interest onto (near) zero values, the ‘1-norm

is a proper choice of the regularisation term that can yield

improved estimates of the analysis state (e.g. Chen et al.,

1998, 2001; Candes and Tao, 2006; Elad, 2010).

In the subsequent sections, we focus on the 4D-Var

problem under the ‘1-norm regularisation as follows:

xa
0 ¼ argmin

x0

1

2
jjy �Hx0jj

2
R�1 þ

1

2
jjxb

0 � x0jj
2
B�1 þ k Ux0j jj j1

� �
:

(12)

It is important to note that the presented formulation

in eq. (12) shares the same solution with the problem in eq.

(9) while in a more general setting, it can handle non-

stationary error covariance matrices and does not require

additional computational cost to obtain their square

roots. It is worth nothing that the ‘1-norm regularised

4D-Var in eq. (12) may be alternatively recast into the

following form:

xa
0 ¼ argmin

x0

Ux0j jj j1

 �

subject to J R4Dðx0Þ � c; (13)

where c > 0. This problem is a quadratically constrained

linear programing problem and is closely related to the

original formulation of the well-known basis pursuit

approach by Chen et al. (1998). In this problem formula-

tion, the ‘1-norm cost function assures that we seek an

analysis with sparse projection onto the subspace spanned

by the chosen basis, while the constraint enforces the

analysis to be sufficiently close to the available observations.

Conceptually, by adding relevant regularisation terms,

we improve the stability of the VDA problem and enforce

the analysis state to follow a certain regularity. Improved

stability of the regularised solution comes from the fact

that the regularisation term constrains the solution magni-

tude and prevents it from blowing up due to the possible ill-

conditioning of the VDA problem. In ill-conditioned

classic VDA problems, it is easy to see that the inverse of

the Hessian in (7) may contain very large elements which

can spoil the analysis. However, by adding a proper

regularisation term and making the problem well-posed,

we shrink the size of the elements of the covariance matrix

and reduce the estimation error. According to the law of

bias-variance trade-off, this improvement in the analysis

error covariance naturally comes at the cost of introducing

a small bias in the solution, whose magnitude can be kept

small by proper selection of the regularisation parameter l

(e.g. Neumaier, 1998; Hansen, 2010). Regularisation may

also impose a certain degree of smoothness or regularity on

the analysis state. For instance, if we think of F as a first

order derivative operator, using the smoothing ‘2-norm

regularisation (k Ux0j jj j22), we enforce the energy of the

analysis increments to be minimal, which naturally reduces

the analysis variability and makes it smoother. Therefore,

using the smoothing ‘2-norm regularisation in a derivative

space, is naturally suitable for continuous and sufficiently

smooth state variables. On the other hand, for piece-wise

smooth states with isolated singularities and jumps, it turns

out that the use of the ‘1-norm regularisation (k Ux0j jj j1)
in a derivative space is very advantageous. Using this

norm in a derivative space, we implicitly constrain the total

variation of the solution, which prevents imposing extra

smoothness over edges and jump discontinuities.

3.2.1. Solution method via QP. Due to the separability of

the ‘1-norm, one of the most well-known methods, often

called basis pursuit (see, Chen et al., 1998; Figueiredo et al.,

2007), can be used to recast the ‘1-norm RVDA problem

in eq. (12) to a constrained quadratic programming. Here,

let us assume that c0�Fx0, where x0 and c0 are in R
m and

split c0 into its positive u0�max (c0, 0) and negative

v0�max (�c0, 0) components such that c0�u0�v0.
Having this notation, we can express the ‘1-norm via a

linear inner product operation as c0j jj j1¼ 1T
2mw0, where

12m ¼ ½1; . . . ; 1�T 2 R
2m and w0 ¼ ½uT

0 ; vT
0 �

T
. Thus, eq. (12)

can be recast as a smooth constrained QP problem on non-

negative orthant as follows:

minimize
w0

1

2
wT

0

Q �Q

�Q Q

� �
w0 þ k12m þ

b

�b

� �� �T

w0

( )
subject to w0<0;

(14)

where, Q ¼ U�T HTR�1Hþ B�1
� �

U�1, b��F�T

HTR�1y þ B�1xb
0

	 

, and w0<0 denotes element-wise in-

equality.

Clearly, given the solution bw0 from eq. (14), one can

easily retrieve bc0 and thus the analysis state is xa
0 ¼ Ubc0.

Euclidean projection onto the constraint set of the QP

problem in eq. (14) is simpler than the formulation

suggested by (Freitag et al., 2012) and allows us to use

efficient and convergent gradient projection methods (e.g.

Bertsekas, 1976; Serafini et al., 2005; Figueiredo et al.,

2007), suitable for large-scale VDA problems. The dimen-

sion of the above problem seems twice that of the original

problem; however, because of the existing symmetry in

this formulation, the computational burden remains at

the same order as the original classic problem (see

Appendix). Another important observation is that, choos-

ing an orthogonal transformation (e.g. orthogonal wavelet,

DCT, Fourier) for F is very advantageous computation-

ally, as in this case U�1 ¼ UT.

It is important to note that, for the ‘1-norm regularisa-

tion in eq. (14), it is easy to show that the regularisa-

tion parameter is bounded as 0BkB bj jj j1; where the

SPARSE VARIATIONAL DATA ASSIMILATION 5



infinity-norm is xj jj j1¼ max x1j j; . . . ; xmj jð Þ. For those

values of l greater than the upper bound, clearly the

analysis state in eq. (14) is the zero vector with maximum

sparsity (see Appendix).

4. Examples on linear advection�diffusion
equation

4.1. Problem statement

The advection�diffusion equation is a parabolic partial

differential equation with a drift and has fundamental

applications in various areas of applied sciences and

engineering. This equation is indeed a simplified version

of the general Navier�Stocks equation for a divergence-free

and incompressible Newtonian fluid where the pressure

gradient is negligible. In a general form, this equation for a

quantity of x(s, t) is

@xðs; tÞ
@t

þ aðs; tÞrxðs; tÞ ¼ Er2xðs; tÞ;

xðs; 0Þ ¼ x0ðsÞ;
(15)

where a(s, t) represents the velocity and E � 0 denotes the

viscosity constant.

The linear (a�const.) and inviscid form (E ¼ 0) of eq.

(15) has been the subject of modelling, numerical simula-

tion, and DA studies of advective atmospheric and oceanic

flows and fluxes. For example, Lin et al. (1998) argued

that the mechanism of rain-cell regeneration can be well

explained by a pure advection mechanism, Jochum and

Murtugudde (2006) found that Tropical Instability Waves

(TIWs) need to be modelled by horizontal advection

without involving any temperature mixing length. The

nonlinear inviscid form (e.g. Burgers’ equation) has been

used in the shallow water equation and has been subject of

oceanic and tidal DA studies (e.g. Bennett and McIntosh,

1982; Evensen, 1994b). The linear and viscid form (E > 0)

has fundamental applications in modelling of atmospheric

and oceanic mixing (e.g. Lanser and Verwer, 1999; Jochum

and Murtugudde, 2006; Smith and Marshall, 2009, chap.

6), land-surface moisture and heat transport (e.g. Afshar

and Marino, 1978; Hu and Islam, 1995; Peters-Lidard

et al., 1997; Liang et al., 1999), surface water quality

modelling (e.g. Chapra, 2008, chap. 8), and subsurface

mass and heat transfer studies (e.g. Fetter, 1994).

Here, we restrict our consideration only to the linear

form and present a series of test problems to demonstrate

the effectiveness of the ‘1-norm RVDA in a 4D-Var setting.

It is well understood that the general solution of the linear

viscid form of eq. (15) relies on the principle of super-

position of linear advection and diffusion. In other words,

the solution at time t is obtained via shifting the initial

condition by at, followed by a convolution with the

fundamental Gaussian kernel as follows:

Dðs; tÞ ¼ ð4pEtÞ�1=2
exp

� sj j2

4Et

 !
; (16)

where the standard deviation is
ffiffiffiffiffiffi
2Et
p

. As is evident,

the linear shift of size at also amounts to obtaining the

convolution of the initial condition with a Kronecker delta

function as follows:

A s� atð Þ ¼ 1 s ¼ at

0 otherwise

�
: (17)

4.2. Assimilation set-up and results

4.2.1. Prognostic equation and observation model.

It is well understood that (circular) convolution in discrete

space can be constructed as a (circulant) Toeplitz matrix�
vector product (e.g. Chan and Jin, 2007). Therefore, in

the context of a discrete advection�diffusion model, the

temporal diffusivity and spatial linear shift of the initial

condition can be expressed in a matrix form by D0,i and

A0,i, respectively. In effect, D0,i represents a Toeplitz

matrix, for which its rows are filled with discrete samples

of the Gaussian Kernel in eq. (16), while the rows of A0,i

contain a properly positioned Kronecker delta function.

Thus, for our case, the underlying prognostic equation;

i.e. xi�M0,i x0, may be expressed as follows:

xi ¼ A0;iD0;i x0: (18)

In this study, the low-resolution constraints of the sens-

ing system are modelled using a linear smoothing filter

followed by a down-sampling operation. Specifically, we

consider the following time-invariant linear measurement

operator

H ¼ 1

4

1 1 1 1 0 0 0 0 � � � 0 0 0 0
0 0 0 0 1 1 1 1 � � � 0 0 0 0

..

. ..
. ..

. ..
.

0 0 0 0 0 0 0 0 � � � 1 1 1 1

2664
3775 2 R

n�m; (19)

which maps the higher dimensional state to a lower

dimensional observation space. In effect, each observation

point is then an averaged and noisy representation of the

four adjacent points of the true state.

4.2.2. Initial states. To demonstrate the effectiveness

of the proposed ‘1-norm regularisation in eq. (12), we

consider four different initial conditions which exhibit

sparse representation in the wavelet and DCT domains

(Fig. 1). In particular, we consider: (a) a flat top-hat

(FTH), which is a composition of zero-order polynomials

6 A. M. EBTEHAJ ET AL.



and can be sparsified theoretically using the first order

Daubechies wavelet (DB01) or the Haar basis; (b) a

quadratic top-hat which is a composition of zero and

second order polynomials and theoretically can be well

sparsified by wavelets with vanishing moments of order

greater than three (Mallat, 2009, p. 284); (c) a window

sinusoid (WS); and (d) a squared exponential function

which exhibits nearly sparse behaviour in the DCT basis.

All of the initial states are assumed to be in R
1024 and are

evolved in time with a viscosity coefficient E ¼ 4 ½L2=T� and
velocity a�1[L/T]. The assimilation interval is assumed to

be between 0 and T�500[T], where the observations are

sparsely available over this interval at every 125[T] time-

steps (Figs. 1 and 2).

4.2.3. Observation and background error. The observa-

tions and background errors are important components of

a DA system that determine the quality and information

content of the analysis. Clearly, the nature and behaviour

of the errors are problem-dependent and need to be

carefully investigated in a case-by-case study. It needs to

be stressed that from a probabilistic point of view, the

presented formulation for the ‘1-norm RVDA assumes that

both of the error components are unimodal and can be well

explained by the class of Gaussian covariance models.

Here, for observation error, we only consider a stationary

white Gaussian distribution, v � N 0; Rð Þ, where R ¼ r2
r I

(Fig. 2).

However, as discussed in (Gaspari and Cohn, 1999), the

background error can often exhibit a correlation structure.

In this study, the first and second order auto-regressive

(AR) Gaussian Markov processes, are considered for

mathematical simulation of a possible spatial correlation

in the background error; see Gaspari and Cohn (1999) for a

detailed discussion about the error covariance models for

DA studies.

The AR(1), also known as the Ornestein�Ulenbeck

process in infinite dimension, has an exponential covar-

iance function qðsÞ / e�a sj j. In this covariance function,

t denotes the lag either in space or time, and the parameter

a determines the decay rate of the correlation. The inverse

Fig. 1. Initial conditions and their evolutions with the linear advection�diffusion equation: (a) flat top-hat (FTH), (b) quadratic top-hat

(QTH), (c) window sinusoid (WS), and (d) squared-exponential (SE). The first two initial conditions (a, b) exhibit sparse representation in

the wavelet domain while the next two (c, d) show nearly sparse representation in the discrete cosine domain (DCT). Initial conditions are

evolved under the linear advection�diffusion eq. (15) with E ¼ 4 ½L2=T� and a�1[L/T]. The broken lines show the time instants where the

low-resolution and noisy observations are available in the assimilation interval.
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of the correlation decay rate lc�1/a is often called the

characteristic correlation length of the process. The covar-

iance function of the AR(1) model has been studied very

well in the context of stochastic process (e.g. Durrett, 1999)

and estimation theory (e.g. Levy, 2008). For example, it is

shown by Levy (2008, p. 298) that the eigenvalues are

monotonically decreasing which may give rise to a very

ill-conditioned covariance matrix in the discrete space,

especially for small a or large characteristic correlation

lengths. The covariance function of the AR(2) is more

complicated than the AR(1); however, it has been

shown that in special cases, its covariance function can be

explained by qðsÞ / e�a sj j 1þ a sj jð Þ (Gaspari and Cohn,

1999; Stein, 1999, p. 31). Note that, both of these

covariance models are stationary and also isotropic as

they are only a function of the magnitude of the correlation

lag (Rasmussen and Williams, 2006, p. 82). Consequently,

the discrete background error covariance is a Hermitian

Toeplitz matrix and can be decomposed into a scalar

standard deviation and a correlation matrix as B ¼ r2
bCb,

where

Cb ¼

qð0Þ qð1Þ � � � qðmÞ

qð1Þ qð0Þ . .
. ..

.

..

. . .
. . .

.
qð1Þ

qðmÞ � � � qð1Þ qð0Þ

266664
377775 2 R

m�m:

For the same values of a, it is clear that the AR(2)

correlation function decays slower than that of the

AR(1). Figure 3 shows empirical estimation of the condi-

tion number of the reconstructed correlation matrices

at different dimensions ranging from m�4 to 1024. As is

evident, the error covariance of the AR(2) has a larger

condition number than that of AR(1) for the same value of

the parameter a. Clearly, as the background error plays a

very important role on the overall condition number of the

Hessian of the cost function in eq. (5), an ill-conditioned

background error covariance makes the solution more

unstable with larger uncertainty around the obtained

analysis.

Figure 4 shows a sample path of the chosen error models

for the background error. Generally speaking, a correlated

error contains large-scale (low-frequency) components that

can corrupt the main spectral components of the true state

at the same frequency range. Therefore, this type of error

can superimpose with the large-scale characteristic features

of the initial state and its removal is naturally more difficult

than that of the white error via a DA methodology.

4.3. Results of assimilation experiments

In this subsection, we present the results of the proposed

regularised DA as expressed in eq. (12). We first present the

results for the white background error and then discuss the

correlated error scenarios. As previously explained, the first

two initial conditions exhibit sharp transitions and are

naturally sparse in the wavelet domain. For those initial

states (Fig. 1a, b) we have used classic orthogonal wavelet

transformation by Mallat (1989). Indeed, the rows of

U 2 R
1024�1024 in this case contain the chosen wavelet basis

that allows us to decompose the initial state of interest

into its wavelet representation coefficients, as c�Fx

(forward wavelet transform). On the other hand, due to

the orthogonality of the chosen wavelet FFT�I, columns

of FT contain the wavelet basis that allows us to

reconstruct the initial state from its wavelet representation

coefficients, that is, x�FTc (inverse wavelet transform).

0
50

100
150

200
250

0 100 200 300 400 500 600

0.5

1

1.5

2

t

s′

 y
i

Fig. 2. A sample representation of the available low-resolution (solid lines) and noisy observations (broken lines with circles) in every

125 [T] time-steps in the assimilation window for the flat top-hat (FTH) initial condition. Here, the observation error covariance is set to

R ¼ r2
r I with sr�0.08 equivalent to SNR ¼ 20 log rx0

=rr

	 

	 12 dB.
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We used a full level of decomposition without any

truncation of wavelet decomposition levels to produce a

fully sparse representation of the initial state. For example,

in our case where x 2 R
1024, we have used 10 levels of

decomposition.

For the last two initial states (Fig. 1c, d), we used

DCT transformation (e.g. Rao and Yip, 1990), which

expresses the state of interest by a linear combination of

the oscillatory cosine functions at different frequencies.

It is well understood that this basis has a very strong

compaction capacity to capture the energy content of

sufficiently smooth states and sparsely represent them via

a few elementary cosine waveforms. Note that this trans-

formation is also orthogonal (FFT�I) and contrary to the

Fourier transformation, the expansion coefficients are

real.

4.3.1. White background error. For thewhite background

and observation error covariancematrices (B ¼ r2
bI,R ¼ r2

r I),

we considered sb�0.10 ðSNR ¼ 20 logðrx0
=rrÞ ffi 10:5 dBÞ

and sr�0.08 SNR ffi 12 dBð Þ, respectively. Some results

are shown in Fig. 5 for the selected initial conditions. It is

clear that the ‘1-norm regularised solution markedly

outperforms the classic 4D-Var solutions in terms of the

selected metrics. Indeed, in the regularised analysis the error

is sufficiently suppressed and filtered, while characteristic

features of the initial state are well-preserved. On the other

hand, classic solutions typically over-fitted and followed the

background state rather than extracting the true state. As a

result, we can argue that for the white error covariance

the classic 4D-Var has a very weak filtering effect, which is

an essential component of an ideal DA scheme. This over-

fitting may be due to the redundant (over-determined)

Fig. 3. Empirical condition numbers of the background error covariance matrices as a function of parameter a and problem dimension

(m) for the AR(1) in (a) and AR(2) in (b). The parameter a varies along the x-axis and m varies along the different curves of the condition

numbers with values between 4 and 1024. We recall that j Bð Þ is the ratio between the largest and smallest singular values of B. In (a) the

covariance matrix is Bij ¼ e�a i�jj j and in (b) Bij ¼ e�a i�jj j 1þ a i � jj jð Þ, 1 � i; j � m. It is seen that the condition numbers of the AR(2) model

are significantly larger than those of the AR(1) model for the same values of the parameter a.

Fig. 4. Sample paths of the used correlated background error: (a) the sample path for the AR(1) covariance matrix with a�1�150, and

(b) the sample path for the AR(2) covariance matrix with a�1�25. The paths are generated by multiplying a standard white Gaussian

noise e � N 0; Ið Þ from the left by the lower triangular matrix L, obtained by Cholesky factorisation of the background error covariance

matrix, that is B�LLT. It is seen that for small a, the sample paths exhibit large-scale oscillatory behaviour that can potentially corrupt

low-frequency components of the underlying state.
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formulation of the classic 4D-Var; see Hawkins (2004) for a

general explanation on over-fitting problems in statistical

estimators and also see Daley (1993, p. 41).

The average of the results for 30 independent runs is

reported in Table 1. Three different lump quality metrics

are examined as follows:

MSEr ¼ xt
0 � xa

0

�� ���� ��
2
= xt

0

�� ���� ��
2

MAEr ¼ xt
0 � xa

0

�� ���� ��
1
= xt

0

�� ���� ��
1

BIASr ¼ xt
0 � xa

0ð Þ
��� ���= xt

0

�� �� (20)

namely, relative mean squared error (MSEr), relative mean

absolute error (MAEr), and relative Bias (BIASr). In eq.

(20), xt
0 denotes the true initial condition, xa

0 is the analysis,

and overbar denotes the expected value. It is seen that

based on the selected lump quality metrics, the ‘1-norm

R4D-Var significantly outperforms the classic 4D-Var. In

general, the MAEr metric is improved more than the MSEr

metric in the presented experiments. The best improvement

is obtained for the FTH initial condition, where the

sparsity is very strong compared to the other initial

conditions. The MSEr metric is improved almost three

orders of magnitude, while the MAEr improvement reaches

up to six orders of magnitude in the FTH initial condition.

We need to note that although the trigonometric functions

can be sparsely represented in the DCT domain, here

we used a WS, which suffers from discontinuities over the

edges and cannot be perfectly sparsified in the DCT

domain. However, we see that even in a weaker sparsity,

the results of the ‘1-norm R4D-Var are still much better

than the classic solution.

4.3.2. Correlated background error. In this part, the

background error B ¼ r2
bCb is considered to be correlated.

As previously discussed, typically longer correlation length

creates ill-conditioning in the background error covariance

matrix and makes the problem more unstable. On the other

hand, the correlated background error covariance imposes

Fig. 5. The results of the classic 4D-Var (left panel) versus the results of ‘1-norm R4D-Var (right panel) for the tested initial conditions in

a white Gaussian error environment. The solid lines are the true initial conditions and the crosses represent the recovered initial states or the

analysis. In general, the results of the classic 4D-Var suffer from overfitting while the background and observation errors are suppressed

and the sharp transitions and peaks are effectively recovered in the regularised analysis.
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smoothness on the analysis (see, Gaspari and Cohn, 1999),

improves filtering effects, and makes the classic solution to

be less prone to overfitting. In this subsection, we examine

the effect of correlation length on the solution of DA

and compare the results of the sparsity promoting R4D-

Var with the classic 4D-Var. Here, we do not apply any pre-

conditioning as the goal is to emphasise on the stabilising role

of the ‘1-norm regularisation in the presented formulation. In

addition, for brevity, the results are only reported for the top-

hat and WS initial condition, which are solved in the wavelet

and DCT domains, respectively.

a)Results for the AR(1) background error

As is evident, in this case, the background state is defined

by adding AR(1) correlated error to the true state (6a,d)

which is known to us for these experimental studies. Figure

6 demonstrates that in the case of correlated error,

the classic 4D-Var is less prone to overfitting compared

to the case of the uncorrelated error in Fig. 5. Typically in

the FTH initial condition with sharp transitions, the classic

solution fails to capture those sharp jumps and becomes

spoiled around those discontinuities (Fig. 6b). For the

trigonometric initial condition (WS), the classic solution is

typically overly smooth and cannot capture the peaks

(Fig. 6e). These deficiencies in classic solutions typically

become more pronounced for larger correlation lengths

and thus more ill-conditioned problems. On the other

hand, the ‘1-norm R4D-Var markedly outperforms the

classic method by improving the recovery of the sharp

transitions in FTH and peaks in WS (Fig. 6).

We examined a relatively wide range of applicable

correlation lengths, a�1 2 1; 10; 25; 50; 250; 1000f g, which
correspond to the condition number j Bð Þ of the back-

ground error covariance matrices ranging from 101 to 106

(see Fig. 3a). The assimilation results using different

correlation lengths are demonstrated in Fig. 7. To have a

robust conclusion about comparison of the proposed R4D-

Var with the classic 4D-Var, the plots in this figure

demonstrate the expected values of the quality metrics for

30 independent runs.

It can be seen that for small error correlation lengths

(a�1+25), the improvement of the R4D-Var is very

significant while in the medium range (25+a�1+50) the

classic solution becomes more competitive and closer to the

regularised analysis. As previously mentioned, this improve-

ment in the classic solutions is mainly due to the smoothing

effect of the background covariance matrix. However, for

larger correlation lengths (a�1H50), the differences of the

two methods are more drastic as the classic solutions

become more unstable and fail to capture the underlying

structure of the initial state of interest. In general, we see that

the MSEr and MAEr metrics are improved for all examined

background error correlation lengths. As expected, the

regularised solutions are slightly biased compared to classic

solutions; however, the magnitude of the bias is not

significant compared to the mean value of the initial state

(see Fig. 7). Figure 7 also shows a very important outcome of

regularisation which implies that the R4D-Var is almost

insensitive to the studied range of correlation length and

thus condition number of the problem. This confirms the

stabilising role of regularisation and needs to be further

studied for large-scale and operational DA problems.

Another important observation is that, for extremely

correlated background error, the classic 4D-Var may

produce analysis with larger biases than the proposed

R4D-Var (Fig. 7c). This unexpected result might be due to

the presence of spurious bias in the background state coming

from a strongly correlated error. In other words, a strongly

correlated error may shift the mean value of the background

state significantly and create a large bias in the solution

of the classic 4D-Var. In this case, the improved perfor-

mance of the R4D-Var may be due to its stronger stability

and filtering properties.

b) Results for the AR(2) background error

The AR(2) model is suitable for errors with higher order

Markovian structure compared to the AR(1) model. As is

seen in Fig. (4), the condition number of the AR(2)

covariance matrix is much larger than the AR(1) for the

same values of the parameter a in the studied covariance

Table 1. Expected values of the MSEr, MAEr, and BIASr, defined in eq. (20), for 30 independent runs

White background error

MSEr MAEr BIASr

R4D-Var 4D-Var R4D-Var 4D-Var R4D-Var 4D-Var

FTH 0.0188 0.0690 0.0099 0.0589 0.0016 0.0004

QTH 0.0152 0.0515 0.0083 0.0414 0.0030 0.0016

WS 0.0296 0.0959 0.0229 0.0771 0.0038 0.0022

SE 0.0316 0.0899 0.0235 0.0728 0.0018 4.26 e�5

The background and observation errors are white (B ¼ r2
bI, R ¼ r2

r I), where sb�0.10 (SNR ffi 10:5dB) and sr�0.08 (SNR ffi 12dB). The

initial conditions are: flat top-hat (FTH), quadratic top-hat (QTH), window sinusoid (WS), and squared-exponential (SE). The results are

reported for both the classic 4D-Var and the regularised 4D-Var (R4D-Var).
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models. Here, we limited our experiments to fewer char-

acteristic correlation lengths of a�1 ¼ 1; 5; 25; 50f g. We

constrained our considerations to a�1+50, because for

larger values (slower correlation decay rates), the condition

number of B exceeds 108 and almost both methods failed to

obtain the analysis without any preconditioning effort.

In our case study, for a�1+25, where jðBÞ+106, the

proposed R4D-Var outperforms the 4D-Var similar to what

has been explained for the AR(1) error in the previous subsec-

tion. However, we found that for 25+a�1+50, where

106+jðBÞ+108, without proper preconditioning, the used

conjugate gradient algorithm fails to obtain the analysis state in

the 4D-Var (Table 2). On the other hand, due to the role of the

proposed regularisation, the R4D-Var remains sufficiently

stable; however, its effectiveness deteriorated compared to the

cases where the condition numbers were lower. This observa-

tion verifies the known role of the proposed regularisation for

improving the condition number of the VDA problem.

4.3.3. Selection of the regularisation parameters. As

previously explained, the regularisation parameter l plays

a very important role in making the analysis sufficiently

faithful to the observations and background state, while

preserving the underlying regularity of the analysis. To the

best of our knowledge, no general methodology exists

which will produce an exact and closed form solution for

the selection of this parameter, especially for the proposed

‘1-norm regularisation (see, Hansen, 2010, chap. 5). Here,

we chose the regularisation parameter l by trial and error

based on a MMSE criterion (Fig. 8). As a rule of thumb,

we found that in general k+0:05 jbj jj1 yields reasonable

results. We also realised that under similar error signal-to-

noise ratio, the selection of l depends on some important

factors such as, the pre-selected basis, the degree of ill-

conditioning of the problem, and more importantly the

ratio between the dominant frequency components of the

state and the error.

5. Summary and discussion

We have discussed the concept of sparse regularisation

in VDA and examined a simple but important application

of the proposed problem formulation to the advection�

Fig. 6. Comparison of the results of the classic 4D-Var (b, ; e) and ‘1-norm R4D-Var (c, ; f) for the top-hat (left panel) and window

sinusoid (right panel) initial conditions. The background states in (a) and (d) are defined by adding correlated errors using an AR(1)

covariance model of qðsÞ / e�a sj j, where a�1/250. The results show that the ‘1-norm R4D-Var improves recovery of sharp jumps and

peaks and results in a more stable solution compared to the classic 4D-Var; see Fig. 7 for quantitative results.
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diffusion equation. In particular, we extended the classic

formulations by leveraging sparsity for solving DA pro-

blems in wavelet and spectral domains. The basic claim is

that if the underlying state of interest exhibits sparsity in a

pre-selected basis, this prior information can serve to

further constrain and improve the quality of the analysis

cycle and thus the forecast skill. We demonstrated that the

RVDA not only shows better interpolation properties but

also exhibits improved filtering attributes by effectively

removing small scale noisy features that possibly do not

satisfy the underlying governing physical laws. Further-

more, it is argued that the ‘1-norm RVDA is more robust to

the possible ill-conditioning of the DA problem and leads to

more stable analysis compared to the classic methods.

We explained that, from the statistical point of view,

this prior knowledge speaks for the spatial intrinsic non-
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Fig. 7. Comparison of the results of the proposed ‘1-norm R4D-Var (solid lines) and the classic 4D-Var (broken lines) under the AR(1)

background error for different correlation characteristic length scales (a�1). Top panel: (a�c) the chosen quality metrics for the top-hat

initial condition (FTH); Bottom panel: (d�f) the metrics for the window sinusoid initial condition (WS). These results, averaged over 30

independent runs, demonstrate significant improvements in recovering the analysis state by the proposed ‘1-norm R4D-Var compared to

the classic 4D-Var.

Table 2. Expected values of the MSEr, MAEr, and BIASr, defined in (20), for 30 independent runs

AR(2) � Background error

MSEr MAEr BIASr

a�1 R4D-Var 4D-Var R4D-Var 4D-Var R4D-Var 4D-Var

FTH 1 0.0254 0.0754 0.0162 0.0629 0.0023 0.0016

5 0.0328 0.0643 0.0212 0.0534 0.0043 0.0018

25 0.0722 � 0.0608 � 0.0187 �
50 0.0742 � 0.0582 � 0.0268 �

WS 1 0.0363 0.0887 0.0272 0.0715 0.0029 0.0012

5 0.0708 0.0906 0.0571 0.0529 0.0106 0.0017

25 0.0877 � 0.0710 � 0.0243 �
50 0.0898 � 0.0747 � 0.0361 �

The background and observation errors are modelled by the first order auto-regressive (B ¼ r2
bCB) and white (R ¼ r2

r I) Gaussian processes,

where sb�0.10 (SNR ffi 10:5dB) and sr�0.08 (SNR ffi 12dB). The parameter a denotes the correlation decay rate in the AR(2) covariance

function qðsÞ / e�a sj j 1þ a sj jð Þ. The studied initial conditions are: flat top-hat (FTH), and window sinusoid (WS) and the results are

reported for both the classic 4D-Var and the regularised 4D-Var (R4D-Var). The dash lines in the table denote that the classic method

failed to return a solution without any pre-conditioning.
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Gaussian structure of the state variable of interest, which

can be well parameterised and modelled in a properly

chosen basis. We discussed that selection of the sparsifying

basis can be seen as a statistical model selection problem

which can be guided by studying the distribution of the

representation coefficients.

Note that the examined initial conditions in this

study are selected under strict sparsity in the pre-selected

basis, which may be compromised under realistic condi-

tions. Additional research is required to reveal sparsity

of geophysical signals in the strict and weak sense. From

theoretical perspectives, further research needs to be

devoted to developing methodologies to: (a) characterise

the analysis covariance, especially using ensemble-based

approaches; (b) automatise the selection of the regularisa-

tion parameter and study its impact on various applications

of DA problems; (c) apply the methodology in an incre-

mental setting to tackle non-linear observation operators

(Courtier et al., 1994); and (d) study the role of precondi-

tioning on the background error covariance for very ill-

conditioned DA problems in RVDA settings.

Furthermore, a promising area of future research is that

of developing and testing ‘1-norm RVDA to tackle non-

linear measurement and model equations in a variational-

ensemble DA setting. Basically, a crude framework can be

cast as follows: (1) given the analysis and its covariance at

previous time-step, properly generate an ensemble of

analysis state; (2) use the analysis ensembles to generate

forecasts or background ensembles via the model equation

and then compute the background ensemble mean and

covariance; (3) given the background ensembles, obtain

observation ensembles via the observation equation and

then obtain the ensemble observation covariance; (4) solve

an ‘1-norm RVDA problem similar to that of eq. (12) for

each ensemble to obtain ensemble analysis states at present

time; (5) compute the ensemble analysis mean and covar-

iance and use them to forecast the next time-step; and (6)

repeat the recursion.
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7. Appendix

A.1 Quadratic Programming form of the ‘1-norm RVDA

To obtain the quadratic programming (QP) form presented

in eq. (14), we follow the general strategy proposed in the

seminal work by Chen et al. (2001). To this end, let us

expand the ‘1-norm regularised variational data assimila-

tion (‘1-RVDA) problem in eq. (12) as follows:

minimize
x0

1

2
xT

0 B�1 þHTR�1H
� �

x0

�
� B�1xb

0 þHTR�1y
	 
T

x0 þ kjjUx0jj1
�
: (A.1)

Assuming c0 ¼ Ux0 2 R
m, then the above problem can be

rewritten as,

minimize
c0

1

2
cT0 Qc0 þ bTc0 þ k jc0j jj1

� �
; (A.2)

where, Q ¼ U�T B�1 þHTR�1H
� �

U�1 and b��F�T

B�1xb
0 þHTR�1y

	 

. Having c0 ¼ u0 � v0, where u0�max(c0, 0)
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Fig. 8. The relative mean squared error versus the regularisation parameter obtained for the AR(1) background error for different

characteristic correlation length (a) a�1�1, and (b) a�1�50. FTH and WS denote the flat top-hat (FTH) and window sinusoid initial

conditions, respectively.
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2 R
m and v0 ¼ max �c0; 0ð Þ 2 R

m encode the positive and

negative components of c0, problem (A.2) can be repre-

sented as follows:

minimize
u0 ;v0

1

2
u0 � v0ð ÞTQ u0 � v0ð Þ þ bT u0 � v0ð Þ

�
þ k1T

m u0 þ v0ð Þ
�
subject tou0< 0; v0< 0 (A.3)

Stacking u0 and v0 in w0 ¼ ½uT
0 ; vT

0 �
T
, the more standard QP

formulation of the problem is immediately followed as:

minimize
w0

1

2
wT

0

Q �Q

�Q Q

� �
w0 þ k12m þ

b

�b

� �� �T

w0

( )
subject tow0< 0

(A.4)

Obtaining bw0 ¼ ½buT
0 ; bvT

0 �
T
R 22m as the solution of (A.4), one

can easily recover bc0 ¼ bu0 � bv0 and thus the initial state of

interest bx0 ¼ U�1bc0.

The dimension of the QP representation (A.4) is twice

that of the original ‘1-RVDA problem (A.1). However,

using iterative first order gradient-based methods, which

are often the only practical option for large-scale data

assimilation problems, it is easy to show that the effect of

this dimensionality enlargement is minor on the overall cost

of the problem; this is because one can easily see that

obtaining the gradient of the cost function in (A.4) only

requires to compute

Q �Q
�Q Q

� �
w0 ¼

Q u0 � v0ð Þ
�Q u0 � v0ð Þ

� �
;

which mainly requires matrix-vector multiplication in

R
m(e.g. Figueiredo et al., 2007).

A.2 Upper Bound of the Regularisation Parameter

Here, to derive the upper bound for the regularisation

parameter in the ‘1-RVDA problem, we follow a similar

approach as suggested for example by Kim et al. (2007).

Let us refer back to the problem (A.2), which is convex but

not differentiable at the origin. Obviously, ca
0 is a minimizer

if and only if the cost function J R4Dðc0Þ in (A.2) is sub-

differentiable at ca
0 and thus

0 2 @J R4Dðca
0Þ;

where, @J R4Dðca
0Þ denotes the sub-differential set at the

solution point or analysis coefficients in the selected basis.

Given that

@J R4Dðca
0Þ ¼ Qca

0 þ bþ k@ ca
0

�� ���� ��
1

	 

we have

�Qca
0 � b 2 k@ ca

0

�� ���� ��
1

	 

:

and thus for ca
0 ¼ 0m, 0m ¼ 0; . . . ; 0½ �T2 R

m, one can obtain

the following vector inequality

�k1m4� b4 k1m

which implies that bj jj j1� k. Therefore l must be less than

bj jj j1 to obtain nonzero analysis coefficients in problem

(A.2) and thus (A.1).

A.3 Gradient Projection Method

Gradient projection (GP) method is an efficient and

convergent optimisation method to solve convex optimisa-

tion problems over convex sets (see, Bertsekas, 1999, p.

228). This method is of particular interest, especially, when

the constraints form a convex set C with simple projection

operator. The cost function J R4Dðw0Þ in eq. (14) is a

quadratic function that needs to be minimised on non-

negative orthant C ¼ fw0j w0;i � 0 8 i ¼ 1; . . . ; 2mg as fol-

lows:

bw0 ¼ argmin J R4Dðw0Þf g
subject tow0< 0

(A.5)

For this particular problem, the GP method amounts

obtained the following fixed point:

w�0 ¼ w�0 � brJ R4Dðw�0Þ½ �þ; (A.6)

where b is a step-size along the descent direction and for

every element of w0

w0½ �
þ¼ 0 if w0 � 0

w0 otherwise;

�
(A.7)

denotes the Euclidean projection operator onto the non-

negative orthant. As is evident, the fixed point can be

obtained iteratively as

wkþ1
0 ¼ wk

0 � bkrJ R4Dðwk
0Þ

� �þ
: (A.8)

Thus, if the descent at step k is feasible, that is

wk
0 � bkrJ R4Dðwk

0Þ<0, the GP iteration becomes an ordin-

ary unconstrained steepest descent method, otherwise the

result is mapped back onto the feasible set by the projection

operator in (A.7). In effect, the GP method iteratively finds

the closest feasible point in the constraint set to the solution

of the original unconstrained minimisation.

In our study, the step-size bk was selected using the

Armijo rule, or the so-called backtracking line search, that is

a convergent and very effective step-size rule. This step-size

rule depends on two constants 0BnB0:5, 0B1B1 and is

assumed to be bk ¼ 1mk , where mk is the smallest non-

negative integer for which

J R4D wk
0 � bkrJ R4Dðwk

0Þ
� �

� J R4Dðwk
0Þ � nbkrJ R4Dðwk

0Þ
TrJ R4Dðwk

0Þ: (A.9)
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A closer look at this line search scheme shows that it

begins with a unit step-size in the direction of the negative

of the gradient and reduces it by the parameter 1 until the

stopping criterion in (A.9) is met. In our experiments, the

backtracking parameters are set to n ¼ 0:2 and 1 ¼ 0:5

(see, Boyd and Vandenberghe, 2004, pp. 464 for further

explanation). In our coding, the iterations terminate if
wk

0
�wk�1

0j jj j
2

wk�1
0j jj j

2

� 10�5 or if the number of iterations exceeds 100.
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