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Abstract This paper considers the problem of spatiotemporal bed topography evolution and sediment
transport estimation in rivers with migrating bed forms of different types and sizes, in statistical equilibrium
conditions. Instead of resorting to bed form classification, we propose to evaluate the evolution of
multiscale bed topography as the integral of unit contributions defined through a space-time Fourier
decomposition of bed elevations. Using joint 2-D spectra in the frequency and wave number domain, a
functional relationship between the length scales and the timescales in which migrating bed forms are
decomposed is proposed and developed into a dimensionless expression for scale-dependent convection
velocities. This formulation highlights the violation of Taylor’s hypothesis for migrating bed forms,
confirming statistically that larger bed forms travel slower as compared to smaller bed forms. This
phenomenological description leads to a spectral extension of the Simons et al. (1965) formula for sediment
transport to incorporate a range of multiscale migrating features. Both the scaling of convection velocities
and the spectral estimate of sediment transport rate were validated through extensive bed elevation data
from laboratory experiments conducted at the St. Anthony Falls Laboratory, for a range of Froude numbers
0.2 < Fr < 0.5, under varying discharge and bed material composition.

1. Introduction
Estimating sediment transport rate in the presence of bed forms has been challenging researchers for many
decades since the early work of Bagnold [1946]. The wide range of bed form types and geometries, as well
as their dynamic interactions, has always been a challenge to a generalized statistical approach to estimat-
ing sediment transport under varying discharge and grain size distributions. Large-scale bed forms such as
alternate bars, for instance, obey specific scaling relationships and mechanisms of instability, as emphasized
by a number of studies [Ikeda, 1984; Colombini et al., 1987; Seminara, 2010, and references therein]. These are
different from those of dunes [Engelund and Fredsoe, 1982; Kennedy, 1963; Best, 2005; Venditti et al., 2005a;
Coleman et al., 2006; Colombini and Stocchino, 2011], ripples, chevrons, or antidunes [Stegner and Wesfreid,
1999; Betat et al., 1999; Fourriere et al., 2010; Andreotti et al., 2012]. Some of these contributions employed
linear stability analysis to explore how different bed form types result from the amplification of specific
initial perturbations starting from flatbed conditions and how, for each bed form type, a key length scale
(e.g., scaling with the channel width or depth) can be derived corresponding to the most unstable perturba-
tion. These theoretical predictions have been validated by laboratory experiments reporting the dominant
bed form wavelength and height [Guy et al., 1966; Jaeggi, 1984; Colombini et al., 1987, and references
therein]. In many realistic conditions, however, different bed form types and sizes were observed to over-
lap, interact and/or merge into complex migrating bed forms [see, e.g., Jerolmack and Mohrig, 2005; Venditti
et al., 2005b;Martin and Jerolmack, 2013].

In addition, bed forms of the same type can exhibit a significant variability and thus display a wide range
of wavelengths and heights [Hino, 1968; Nikora et al., 1997; van der Mark et al., 2008; McElroy and Mohrig,
2009; Singh et al., 2011, among others]. The statistical variability in bed form shape and size and the pos-
sible superimposition of different bed form types suggest that several length and timescales need to be
accounted for in capturing the evolution of complex riverbed topography in natural environments [Allen,
1968; Rubin and McCulloch, 1968]. While studying the initial growth of competing perturbations of differ-
ent sizes poses several theoretical challenges, the evolution of multiscale bed topography can be addressed
rather simply, once bed forms have reached a statistically steady state. We consider herein the case of
migrating bed forms in a straight flume in dynamical equilibrium conditions, and we focus on their spa-
tiotemporal evolution and their effect on sediment transport. We specifically explore a framework in which
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bed form classification and extraction is not strictly necessary to quantify their contribution to sediment
transport. Instead of working in the physical domain to estimate individual bed form heights and lengths,
we decompose bed elevation series into a space-time wave number, frequency domain, and integrate over a
range of scales to capture the contribution of the multiscale migrating features of complex bed topography
to the total sediment transport.

Since the early work of Simons et al. [1965] the connection between sediment transport rate and bed form
characteristics has been expressed based on a geometric formulation, as

qs = q0 +
(1 − p)VbHb

2
(1)

where qs is the transport rate per unit width, p is the porosity of the bed material, Vb and Hb are the velocity
and height of the statistically dominant, or average, bed form, respectively. The factor 2 in the right-hand
side of equation (1) comes from the assumption of a triangular bed form shape, and q0 represents the con-
tribution to bed load transport that does not enter into the propagation of bed forms. Equation (1) can also
be derived from the integration of the Exner equation [Paola and Voller, 2005] assuming that, in equilibrium
condition, bed forms do not deform while migrating; q0 appears then as an integration constant which is
neglected here [see, e.g.,McElroy and Mohrig, 2009].

Equation (1) requires only estimates of the average values of Vb and Hb which can be provided using any
bed form extraction technique able to identify period and wavelength of each bed form [van der Mark et al.,
2008;McElroy and Mohrig, 2009; Singh et al., 2011]. Nevertheless, the spatial (or temporal) variability in the
bed form geometry, e.g., measured by the standard deviation of an ensemble of bed form heights and
wavelengths extracted from the bed topography, is not incorporated in the Simons et al. [1965] formulation,
which accounts only for the average values. In addition, the coexistence of various sizes of topographic fea-
tures and types of bed forms, e.g., ripples superimposed on dunes, makes the Simons et al. [1965] approach
too simplistic, as large bed forms are known to travel slower than smaller bed forms [Hino, 1968; Nikora et al.,
1997; Coleman and Melville, 1994; Giri and Shimizu, 2006; Schwämmle and Herrmann, 2004; Singh et al., 2011].
This induces a second element of dynamic variability which adds to the intrinsic spatial variability of bed
forms, resulting in a modulated temporal evolution of the bed topography. Bed form-dependent propa-
gation velocities are therefore needed to include the effects of spatiotemporal bed form variability and
evolution and ultimately extend the Simons et al. [1965] approach to the case of complex erodible riverbed
topographies with multiscale topographic features and migrating bed forms. By treating any migrating
surface feature as a combination of Fourier modes, we introduce a generalized approach to calculating
propagation velocities avoiding bed form classification. The propagation velocities of different size bed fea-
tures are statistically described here in terms of spectral convection velocities CV = 𝜔∕k, where k and 𝜔

are the wave number and frequency of the different scale Fourier modes in which the evolving topography
is decomposed.

Similar ideas have been used in the turbulent boundary layer community where a spectral approach has
been pursued to estimate scale-dependent convection velocities to test the applicability of Taylor’s hypoth-
esis of frozen turbulence [Morrison et al., 1971; Erm and Joubert, 1991; Krogstad et al., 1998; Dennis and
Nickels, 2008; Chung and McKeon, 2010; LeHew et al., 2011, among others]. Essentially, Taylor assumed that
turbulent flow structures on average move with the local (i.e., at fixed height) mean velocity, implying that a
velocity signal recorded in time can be projected in space via a simple renormalization with no information
loss. Testing Taylor’s hypothesis requires that the convection velocity of different turbulent structures can be
estimated. Since those structures are not easily identifiable in the physical domain, the spectral approach is
pursued using velocity measurements simultaneously obtained in time and space. Time-resolved particle
image velocimetry measurements were used for this specific purpose in LeHew et al. [2011] in the case of
a flat plate turbulent boundary layer flow. Scale-dependent convection velocities were then estimated by
means of two-dimensional spectra in the frequency and wave number(s) domain. We propose here a simi-
lar approach to quantify the scale-dependent velocities of migrating bed forms based on measurements of
evolving surface topography z = z(x, t), instead of flow velocity spatiotemporal series v = v(x, t). Note that
a quantification of the propagation velocities of bed forms of different scales was performed by Singh et al.
[2011] using only temporal elevation data and employing a wavelet-based correlation analysis. That study
suggested that smaller bed forms move faster than larger ones.
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a)

b)

Figure 1. Conceptual model for the estimate of sediment transport rates qs extending Simons et al. [1965] approach (a) to a
Fourier-based model (b) accounting for multiscale bed forms with scale-dependent convection velocities and arbitrary shape; (𝜆(k),
CV(k) and A(k) are the wavelength, convection velocity, and amplitude, respectively, of the Fourier mode k in which bed forms
are decomposed).

Experimental observations of large bed forms statistically propagating slower than smaller bed forms
[Coleman and Melville, 1994; Giri and Shimizu, 2006; Schwämmle and Herrmann, 2004; Singh et al., 2011;
Martin and Jerolmack, 2013] can be interpreted as the result of smaller bed forms merging into larger ones.
This mechanism suggests that (i) the evolution of bed topography is the result of the coupling between bed
form advection and deformation processes; therefore, (ii) Taylor’s assumption of a single convective velocity
is not expected to represent correctly migrating bed forms in nature, and ultimately, (iii) Simons et al. [1965]
approach may not provide an accurate estimate of sediment transport rate in complex topographic con-
ditions. These observations suggest the possibility of extending Simons et al. [1965] model to include
multiscale bed form migration and deformation processes through the introduction of scale-dependent
convection velocities. Such a conceptual framework is shown in Figure 1, where different size bed forms
are represented by different sinusoids: note that as the bed form height is conventionally defined from
trough-to-crest, the corresponding sinusoid amplitude must be doubled and its specific sediment discharge
contribution is proportional to A(k)CV(k). We stress that multiscale bed forms are intended here to account
for the multiscale variability of the evolving bed topography, including as special cases the coexistence of
different bed form types as well as the spatiotemporal variability within each bed form type.

The first goal of this paper is to propose a spectral description of evolving surface bed elevations, in both the
frequency and wave number domain, and provide a method to estimate scale-dependent convection veloc-
ities for migrating topographic features. The second goal is to identify, for the case of migrating bed forms
in equilibrium conditions, a scaling relationship between the period and wavelength of the Fourier decom-
posed bed forms, propose a set of normalizing variables and a dimensionless description of convection
velocities. Finally, we pursue a generalization of the Simons et al. [1965] approach toward the formulation of
a sediment transport rate model that explicitly acknowledges the presence of space-time topographic fea-
ture of multiple scale. Measurements of evolving bed elevations, z = z(x, t), were obtained by a partially
submerged sonar mounted on a computer-controlled cart, covering the flume’s central longitudinal tran-
sect of 5 m every 13–20 s (depending on the run), for a total of approximately 20 h. Two different sets of
experiments were conducted under varying flow discharges using sand (set 1) and fine gravel (set 2) as bed
material, in a range of Froude numbers 0.2 < Fr < 0.5.

The paper is structured as follows. The experimental setup is described in section 2. Spectral analysis is intro-
duced in section 3.1, while scale-dependent convection velocity and key scaling arguments are discussed
in section 3.2. An expression for estimation of sediment transport rate in the presence of bed forms is pro-
posed in section 3.3, whereas an alternative scaling option is discussed in section 4. Finally, concluding
remarks are given in section 5.
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Figure 2. Measurements of bed surface elevation (zb) and free surface elevation (zw ) along the channel centerline for (a, c) QL = 70 L s−1

and (b, d) QL = 115 L s−1, corresponding to experiments in Table 1 (columns b and d). Bed surface elevation contours (z[m]) in the
spatiotemporal domain (x (m), t (h)) are shown in Figure 2c and Figure 2d for the two case studies, respectively.

2. Experimental Setup

Experiments were conducted in the tilting flume of the St. Anthony Falls Laboratory at the University of
Minnesota. The flume is 0.9 m wide and 18 m long and is equipped with a sediment recirculation pump sys-
tem that ensures the rapid establishment of morphodynamic equilibrium conditions: The sediment supply
upstream is equal to the transport rate downstream resulting in a rapid stabilization of the mean longitu-
dinal slope. In addition to the bed and water surface slope, bed form characteristics were also monitored
in time along the channel centerline, during data acquisition. The standard deviation of bed elevations was
computed at different time periods and at different portions of the test section to ensure statistical steady
conditions and streamwise homogeneity.

The flume is equipped with a computer controlled cart able to precisely move a set of instruments along the
5 m longitudinal transect. This is the test section that we consider, located between x = 6 m to x = 11 m,
sufficiently far from the inflow (x = 0 m) and outflow (x = 18 m) conditions. The moving sensors consist
of a submerged sonar for bed elevation zb and a second probe for water surface elevation zw . Measure-
ments were taken every 0.01 m in the longitudinal direction, and repeated in time. Therefore, our spatial
and temporal resolutions are dx = 10−2 m and dt = 13–20 s, respectively. At a fixed position upstream
of the test section, a Vectrino acoustic Doppler velocimeter profiler is used to monitor the inflow condi-
tions and to provide an independent estimate of the Reynolds stresses 𝜌 < −u′w′ > (where u′ and w′ are
the streamwise and vertical velocity fluctuations, respectively, and 𝜌 is the fluid density). We recall that the
shear velocity u∗ is a key velocity scale near the surface, controlling both bed form formation and transport
rate. By means of a direct measurement u∗ can be estimated of velocity fluctuations u∗ =< −u′w′ >1∕2, or
it can be indirectly obtained by the mean momentum equation in uniform flow, u∗ =

√
gRSw , where g is

the acceleration due to gravity, R is the hydraulic radius, and Sw is the slope of the water-free surface. The√
gRSw estimator was preferred, as the water surface slope was observed to be extremely steady during the

runs. The other scales of interest are the water depth D, obtained by subtracting the bed elevations from
the water surface measurements, and the sediment diameter ds. The two sediment mixtures used in these
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Figure 3. Two-dimensional laser scan of bed topography at the end of the experiment: sand experiments with (a) QL = 60 L s−1, (b)
QL = 70 L s−1, (c) QL = 80 L s−1; gravel experiments with (d) QL = 115−1 and (e) QL = 135−1 (see Table 1).

experiments have nearly uniform grain size distributions with a median grain size ds = 0.0008 m for the
sand experiment and dg = 0.0018 m for the fine gravel experiment, respectively. We acknowledge that
sediments with diameter larger than 2 mm are nominally defined as gravel. However, the grain size distri-
bution showed about 35% of the material in the range between 2 mm and 3.5 mm. In order to distinguish
the two sets of experiments and recognize the different roughness contributions, this substrate material
is referred to as gravel. The flow discharge, estimated through a calibrated triangular weir located at the
downstream end of the flume, was varied from 60 to 135 L s−1. Each experiment started with a flat topog-
raphy and was concluded with a full topographical scan z = z(x, y). An example of the spatiotemporal
measurements z = z(x, t) is provided in Figure 2 (contour plot), while results from the full topographical
scans are shown in Figure 3. Experimental conditions are summarized in Table 1. Note that bed form char-
acteristics were obtained from an average of 20+ bed forms tracked visually and using the quantitative bed
form extraction method of Singh et al. [2011] in space and time for each flow discharge. The calculated mean
bed form velocities compare well with the lower range values of dune celerities reported by Simons et al.
[1965] (below 0.1ft/min in their original report).

3. Results
3.1. One-Dimensional Topography Spectra
Bed elevation data z(x, t) were used to compute the surface topography spectra in the wave number and
frequency domains [see, e.g., Nordin and Algert, 1966; Hino, 1968; Nikora et al., 1997; Aberle et al., 2010; Singh
et al., 2011]. SpatialΦk and temporalΦf spectra were computed on linearly detrended longitudinal transects
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Table 1. Experimental Conditions and Averaged Bed Form Characteristics

Sand Gravel

Experiments a b c d e

Flow discharge QL (L s−1) 60 70 80 115 135
Water surface slope Sw 7.9 ⋅10−4 7.5 ⋅10−4 9.1 ⋅10−4 15 ⋅10−4 19 ⋅10−4

Shear velocity u∗ (ms−1) 0.038 0.037 0.044 0.053 0.062

Median sediment diameter ds (mm) 0.8 0.8 0.8 1.8 1.8

Froude number F 0.26 0.31 0.29 0.48 0.5

Mean bed form height Hb (m) 0.020 0.024 0.028 0.023 0.04

Mean bed form length Lbedform (m) 0.29 0.39 0.48 1.02 1.03

Mean bed form period Tbedform (min) 62.9 43.4 45.7 36.1 29.3

Mean propagation velocity Vb (cm/min) 0.46 0.91 1.06 2.82 3.51

z(x) and time series z(t), respectively, using Fast Fourier Transform (hereafter FFT) and a Hanning window to
prevent aliasing. Power spectra were normalized imposing

𝜎2
x
(z) = ∫

kmax

0

Φkdk; 𝜎2
t
(z) = ∫

fmax

0

Φfdf , (2)

where k=2π∕𝜆 is the wave number (𝜆 is the wavelength), f is the frequency, 𝜎2
x
(z), and 𝜎2

t
(z) are the variance

of the bed elevations of the spatial and temporal series, respectively. The maximum (Nyquist) frequency
fmax = fs∕2 is based on the sampling frequency, defined as the inverse of the transect repetition timescale;
thus, fs = 1∕Δt. Similarly, the maximum wave number kmax = 2π

2Δx
depends on the spatial resolution of the

longitudinal scans (Δx = 0.01 m). The 1-D power spectra of the spatial transects were normalized by the
sediment grain size, as shown in Figure 4a. The normalization of the frequency spectra requires, instead,
a timescale, which can be obtained by dividing the mean grain diameter by the shear velocity (ds∕u∗) as
shown in Figure 4b. As suggested by other studies [e.g., Hino, 1968; Nikora et al., 1997; Singh et al., 2011,
and references therein] we confirm that the slope of the topography spectra is steeper in the wave num-
ber domain as compared to the frequency domain. This can be interpreted as an effect of scale-dependent
convection velocities, as discussed in section 3.2. The clear scaling regimes in the spatial and temporal
spectra confirm that both the spatiotemporal resolution (Δx, Δt), as well as the transect length and the
total duration of the experiment, were sufficient to describe the full range of space-time fluctuations of the
bed elevations.

3.2. Two-Dimensional Spatiotemporal Topography Spectra
The 2-D spectra are computed following the procedure described in LeHew et al. [2011] applying a 2-D FFT
over the full matrix z = z(x, t): the spectraΦk,𝜔 are computed in the wave number (k), and angular frequency
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Figure 4. Dimensionless (a) wave number and (b) frequency 1-D spectra: sand experiments are reported in red, while gravel experiments
are in blue. The −3 and −2 power scaling parameters (slopes) are plotted for reference.
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Figure 5. (a) Two-dimensional power spectral density of bed elevation z(x, t) computed in the frequency-wave number domain and
plotted as a function of the wave length 𝜆 and the period T . Scale-dependent convection velocities CV are estimated fitting a power
law (straight black line) to the ridge of the 2-D power spectrum in the 𝜆, T domain. The obtained trend for the convection velocities
is plotted as a function of the (b) period T and (c) wave length 𝜆, respectively. These data are from the sand experiment (Table 1,
column c).

domain (𝜔 = 2πf ). Every point on the ridge of the contour can be identified by a specific wavelength 𝜆 =
2π∕k and period T = 2π∕𝜔, and thus by a specific (scale-dependent) convection velocity CV = 𝜔∕k (see
Figure 5).

Interestingly, a power law can be used to fit the points on the ridge of the spectra, as shown in Figure 5. The
power law defines a functional relationship between 𝜆 and T that can be expressed as 𝜆 = BTn, with the B
and n parameters obtained from the fit. It was observed that the exponents n did not vary significantly in
the set of experiments analyzed here and could then be assumed to be constant, n = 1∕2. The dimensional
coefficient B however varied significantly among the different experiments, in the range between 0.002 and
0.02 (ms1∕2). From dimensional analysis we worked out a dimensionless form of this functional relationship
based on u∗ and ds, i.e., the two meaningful scales that we identified in the spectral normalization. We pro-
pose that the scaling coefficient B can be defined as B = C

√
u∗ds, with C assumed, for now, constant C = 2

(we note that by relaxing the constraint on the constant C, we could infer a weak dependency C = C(u∗)
that will be addressed in future investigations in the form of C = C(Re∗) with Re∗ = u∗ds∕𝜈). Combining the
above, the functional relationship between 𝜆 and T reads

𝜆

ds

= C

(
Tu∗

ds

)1∕2

. (3)

We present the spatiotemporal spectra plotted in dimensional variables in Figure 6 and in the dimensionless
variables 𝜆

ds
and Tu∗

ds
in Figure 7. In contrast to the observed 𝜆 ∝ T1∕2 relationship, a unique scale-independent

convection velocity CV = 𝜔∕k = 𝜆∕T = constant in line with Taylor’s hypothesis, would imply a 𝜆 ∝ T
relationship. The overlap of the different contours in Figure 7 is, to some extent, satisfactory for confirming
the representativeness of the chosen scaling quantities and the violation of Taylor’s hypothesis. We however
acknowledge that the 2-D spectra contour for the lowest discharge case (60 L s−1) does not fit the proposed
functional relationship as well as those from the higher discharge experiments. More laboratory or field
experiments are needed to confirm the proposed scaling relationship for a wide range of conditions (the
exponent n in 𝜆 = BTn and the constant C in equation (3) may weakly vary with the discharge and/or bed
material compositions).

The functional relationship between wavelength and period revealed by the data indicates that Taylor’s
hypothesis is not applicable for the case of migrating bed forms, as different scales move with different
convection velocities. Specifically, larger scales move slower than smaller scales, possibly as a result of bed
forms merging and/or surface deformation processes. Following equation (3), scale-dependent convection
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𝜆 = C
√
u∗dsT

1∕2 with C = 2.

velocities can be expressed as CV(T) = C
√

u∗ds
T

or alternatively CV(𝜆) = C2 u∗ds
𝜆
. Figures 6 and 7 support the

validity of the proposed scaling arguments and the above conclusion. It is noted that the proposed scaling
for scale-dependent convection velocities is consistent with the observed steeper slope of the 1-D wave
number spectra of bed elevation as compared to the frequency spectra (Figure 4). The formal relationship
between frequency and wave number spectra is provided in the following section.

3.3. Frequency to Wave Number 1-D Spectra Transformation
The scaling regime of the bed elevation spectrum in the angular frequency domainΦ

𝜔
(𝜔) is derived here

as a function of the corresponding spectrum in the wave number domainΦk(k) and of the scale-dependent
convection velocity. Starting from Φk(k)dk = Φ

𝜔
(𝜔)d𝜔 and the scale-dependent velocity CV = 𝜔∕k we

derive:

Φ
𝜔
(𝜔) = Φk(k)

dk
d𝜔

=
Φk(k)

CV(k) + k dCV (k)

dk

(4)

Consistent with the observed power law spectra Φk(k) and Φ𝜔(𝜔) within a range of scales, a power law
expression for CV is assumed in the form CV(k) ∝ k𝛽 , with 𝛽 > 0 in agreement with field and labora-
tory results showing small bed forms (high k) traveling faster (high CV ) than larger bed forms. Then we can

express k = 𝜔
1

𝛽+1 , and by substitutingΦk(k) ∝ k−𝛼 we obtain

Φ
𝜔
(𝜔) ∝ k−𝛼

k𝛽 + k𝛽k𝛽−1
= 1

1 + 𝛽
𝜔−𝛾 where 𝛾 = 𝛼 + 𝛽

𝛽 + 1
(5)

If Taylor’s hypothesis holds, in the transformation from frequency to wave number topography spectra we
would have 𝜆 ∝ T → CV = 𝜆∕T ∝ 𝜆0 = constant (𝛽 = 0). In such a case 𝛾 = 𝛼 ensuring that ifΦk(k) ∝ k−2 →
Φ

𝜔
(𝜔) ∝ 𝜔−2 (same slope).
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Figure 7. Dimensionless representation of the 2-D power spectra from all experiments: Note that each case is represented by a single
contour line with value equal to 2⋅(k ⋅ 𝜔)Φk𝜔 averaged in both k, 𝜔. The solid black line of slope 1∕2 indicates the proposed power law
scaling giving rise to the dimensionless form 𝜆∕ds = C( Tu∗

ds
)1∕2 with C = 2. The dashed line of slope 1 represents the 𝜆 ∝ T relationship

valid for Taylor’s hypothesis.

If Taylor’s assumption is violated and the propagation velocity CV is replaced by an expression for
scale-dependent convection velocities, as, e.g., the one proposed here CV(𝜆) = C2 u∗ds

𝜆
∝ k (𝛽 = 1), we obtain

that a wave number spectrumΦk(k) ∝ k−3 (𝛼 = 3) is transformed into a frequency spectrumΦ
𝜔
(𝜔) ∝ 𝜔−2

(𝛾 = 2, different slope). Note that the estimated −3 power scaling exponents in the wave number domain is
in agreement with those observed and predicted by Hino [1968] and Nikora et al. [1997]. However, only one
scaling regime is observed and predicted herein in the frequency domain, with a −2 exponent correspond-
ing to the scaling regime of Hino [1968] (in the low-frequency range) and to the scaling regime of Nikora et
al. [1997] (in the high-frequency range).

3.4. Generalized Expression for Scale-Dependent Convection Velocities
The ability of equation (3) to represent the 2-D contour of (k⋅𝜔)Φk𝜔 (Figures 6 and 7) could be explored using
an exponent different from n = 1∕2, which so far was assumed to govern the spatiotemporal conversion 𝜆 =
BTn. The resulting dimensionless expressions for scale-dependent convection velocities and spatiotemporal
conversion of the topography spectra assume the general form

B = Cun
∗d

1−n
s

; 𝜆

ds

= C

(
Tu∗

ds

)n

; CV = B1∕n𝜆
n−1
n ∝ k𝛽 , with 𝛽 = 1 − n

n
(6)

which, for the specific case n = 1∕2, recovers equation (3). Note that the general exponent n does not
modify directly the relationship CV ∝ u∗ between the scale-dependent convection velocity and the shear
velocity. However, for each n, the value of C resulting from the fit of (k ⋅ 𝜔)Φk𝜔 will change, with relevant
implication for the spectral estimate of sediment transport (since CV ∝ C1∕n).

3.5. Wave Amplitude and Convection Velocity: Estimate of Sediment Transport Rate
Since each topographic scale is characterized by a specific amplitude (obtained from the 1-D spectrum) and
is propagating with a specific scale-dependent velocity (obtained from the 2-D spectrum), the estimate of its
(scale-dependent) contribution to sediment transport rate is possible. We propose that each surface wave,
composed of moving sediment grains, gives a mass flux contribution that depends on the wave height (or
amplitude) and on its propagating (or convection velocity). Hence, the total sediment transport rate can be
expressed as (see Figure 1)

qs = (1 − p)∫
kmax

kmin

AkCV(k)dk (7)

where kmin and kmax are the lower and upper limits, respectively, of the scales contributing to the sediment
flux (an issue we come back later to, in this section). This model can be interpreted as a scale-dependent,
generalized version of Simons et al. [1965] model. The amplitude Ak of each spatial scale 𝜆 (or wave
number k) is obtained from the 1-D power spectrum, while its convection velocity CV(k) is estimated using
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Figure 8. (a–e) Fourier amplitude Ak , normalized with the mean bed form height Hb plotted as a function of the scale-dependent con-
vection velocities CV (k), normalized by the mean bed form velocity Vb for all cases. CV (K) is estimated using a case-specific fitted Cvar

(dashed line) and a constant C = 2 (solid line). Integral velocity scales are reported as vertical solid lines in each plot, while vertical
dashed lines indicate the limit of integration in formula (7).

equation (6). Results, for each flow discharge and bed material composition, include the cases of constant
C or variable Cvar obtained by fitting the 2-D spectra. The relationship between Ak and CV(k) are plotted in
Figure 8 for all the experiments. Note that the scaling relationships, presented in section 3.3,Φk ∝ k−𝛼 and
CV(k) ∝ k𝛽 , lead to Φk ∝ CV(k)−𝛼∕𝛽 = CV(k)−3 (for the particular case of 𝛼 = 3, 𝛾 = 2, 𝛽 = 1, n = 1∕2).
Consistent with Figures 6 and 7 the proposed spatiotemporal relationship (6), for a constant value of C, does
not adequately reproduce the lowest discharge experiment, leading to an overestimate of the convection
velocities and, as we will observe, of the sediment transport rate.

By integrating the observed curves in the CV(k),Ak domain we obtain (i) an integral convection velocity
(conceptually similar to the integral time/length scale in turbulent flows), and most importantly, (ii) the over-
all sediment transport contribution given by the full range of propagating scales. Because our analysis is
carried out assuming homogeneity in the spanwise direction (i.e., perfectly 2-D bed forms), the contribution
calculated above, in fact, is equal to the sediment discharge per unit width, usually defined as qs [m

2 s−1].
This procedure assumes that no sediment transport occurs as a wash load or in suspension. The estimated
sediment transport rate results thus from only the passage of bed forms, consistent with the assumptions
of Simons et al. [1965]. It is important to mention that the limits of integration of equation (7), kmin and
kmax, were defined by the largest resolved wavelength (kmin), and as corresponding to a spectral amplitude
A(k) < (ds∕2) (kmax), thus neglecting the noise plateau observed in Figure 4. In theory, these limits should
reflect the range of validity of the scaling relationship of equation (3). However, even in the absence of spa-
tiotemporal information, the largest scale should comprise at least a few dominant wavelengths to make
sure that bed form spatial variability can be accounted for. When more than one bed form type is observed,
in equilibrium conditions, the lower limit kmin should be defined to include the largest migrating feature
(including alternate bars, if observed). Note that in general the relative influence of the very large migrat-
ing scales included in the integration is reduced by a low-spectral amplitude A(k) (expected for scales larger
than the dominant wavelength) and by a low convection velocity CV(k) (always decreasing with increas-
ing 𝜆). Given these assumptions, the results from the proposed spectral approach are compared in Figure 9
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Figure 9. (a) Comparison between total sediment transport rates (QS = b ⋅ qs where b is the channel width) obtained by Simons et al.
[1965] method and by the proposed spectral approach (with variable Cvar and constants C = 1.8 and C = 2.2, and different exponents
n = 0.5–0.6); (b) the effect of varying C = 1.8 (solid line) and C = 2.2 (dashed line), while keeping n = 0.5, and varying exponent
n = 0.6, C = 0.6 (dash-dotted line) is reflected in the different power laws representing the (k ⋅ 𝜔)Φk𝜔 spectra.

to those using Simons et al. [1965] formula with the average bed form velocities and heights reported in
Table 1.

We explore two different cases and illustrate our results in Figure 9:

1. For the sake of validating the proposed spectral method, we explore the case of variable C = Cvar,
obtained by fitting, for each discharge, the 2-D spectra shown in Figure 6. We first varied the exponent
n between 0.45 and 0.7, obtained in each case by the best fitted B corresponding to a range of Cvar (e.g.,
varying between 0.7 and 2.3 for n = 0.5). In such conditions, the closest agreement with Simons et al.
[1965] results (< 7% difference) was obtained with n = 0.47, thus very close to the value n = 1∕2 sug-
gested above and included in Figure 9. This procedure proves that the spectral method provides reliable
sediment transport rate estimates, once spatiotemporal measurements are available to optimize Cvar for
each discharge. This however implies that a single expression for dynamic scaling, as the one proposed as
a solid line in Figure 7 is not possible.

2. For the sake of testing predictive capabilities of the spectral method, we fixed n = 1∕2 and kept C con-
stant for all the discharges. We found that a value C = 2 reasonably reproduces Simons et al. [1965]
method estimates (with an average 25% difference), while overlapping with the (k ⋅ 𝜔)Φk𝜔 spectral con-
tour of Figure 7. For n = 0.5, C values in the range of 1.8–2.2 are acceptable in terms of transport rate
prediction (differences < 30%) and spatiotemporal spectra (Figures 9a and 9b). Note that with a slightly
different exponent n = 0.6, we may reproduce better the trend in the spatiotemporal spectra; how-
ever, the resulting lower value of C = 0.6 leads to an underestimate of the sediment transport rate for
all discharges.

The analysis presented above was for the purpose of exploring the predictive power of the proposed
method to uncertainties in the involved parameters n and C. Since unfortunately we do not have sedi-
ment flux data for our experiments, inferences about the accuracy of our method by comparison to the
results using Simons et al. [1965] formula must be done with caution. Several factors may contribute to the
observed discrepancies between the two methods: (i) the statistical variability of bed form heights and
propagation velocities ignored in Simons’ formula; (ii) the subjectivity behind the bed form identification
and bed form extraction characteristics procedures; (iii) the lack of phase information in the proposed spec-
tral method; (iv) the assumption that all scale, from the grain size to the largest topographic feature, are
contributing to the net transport of mass; and (v) high frequencies/wave numbers contribution resulting
from the nonsinusoidal shape of migrating features. Both the spectral and Simons et al. [1965] sediment
flux estimates were also compared with those provided by Meyer-Peter-Müller formulation [Meyer-Peter
and Müller, 1948], a typical sediment transport formula well suited for gravel bed or coarse sand (with no
bed forms), recently revisited byWong and Parker [2006]. The Meyer-Peter-Müller sediment transport for-
mula over-predicted both the bed form-based methods (spectral and Simons) by at least a factor 3 for all
discharges. The major reason is that Meyer-Peter-Müller’s formula was developed for flatbed conditions,
implying that a relevant portion of the total drag, specifically the form drag induced by the bed form, is not
contributing to transport.
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It is noted that our spectral method considers only 1-D (streamwise) movement of bed forms. However, it
can be extended to include explicitly lateral movement by expanding the topography z(x, y, t) in the full
(kx ,ky ,𝜔) domain, as it was done in the boundary layer case study presented by LeHew et al. [2011]. A full
description of bed topography z = z(x, y, t)may also shed some light on surface deformation processes that
are not accounted for here.

4. Discussion

The presence of many topographic scales of motion in a riverbed, evidenced in Figure 7, is not accounted
for in Simons et al. [1965] assumption of a dominant bed form type and size, migrating at a constant veloc-
ity. In this respect, a new formulation is introduced here which can incorporate the systematic deformation
of different size bed forms and topographic features and translate their spatiotemporal variability into a
contribution to sediment flux. The evidence for violation of Taylor’s hypothesis implies that, statistically, a
range of scale-dependent convection velocities is required to correctly project temporal information onto
the streamwise axis, and, physically, that bed forms on average modify their shape and size while traveling
downstream. This is not the result of a random deformation process acting on the amplitude, period, and
size of the bed forms but rather of a systematic trend showing larger bed forms propagating slower than
smaller bed forms and leaving its signature on the different slopes between spatial and temporal topog-
raphy spectra (see section 3.3). This phenomenon can be attributed to bed form merging and∕or to the
decrease of the shear stress on top of large bed forms, causing both a spatial redistribution of the local sed-
iment transport rate and a growth of the bed form in the cross-stream direction, with the consequence of
decreasing its propagation velocity. Alternatively, in the case of coexisting bed form types, such as dunes
superimposed on bars, or ripples on dunes, the smaller bed form type is the one experiencing most of the
turbulent shear stresses (consistently with the Bagnold assumptions), likely sheltering the underlying larger
bed form from erosional processes, and ultimately slowing down its propagation velocity.

The violation of Taylor’s hypothesis suggests also that Simons et al. [1965] formula should not be applied
using independently averaged values of bed form velocity Vb =< Vbf > and height Hb =< Hbf > but rather
the average < HbfVbf >. In our approach we bypass the problem of explicitly estimating Hbf and Vbf for each
bed form, and then averaging over their joint variability, by working directly in the 2-D frequency wave num-
ber domain (where the spatiotemporal variability is reflected in the 2-D shape, e.g., elongated versus wide,
of the Φk,𝜔 spectra). To provide a statistical measure of the spatiotemporal bed form variability, we com-
pare in Figure 10 the average periods Tbedform and wavelengths Lbedform of more than 20 bed forms (visually
detected in the z(x, t) domain, for each run and extracted using the Singh et al. [2011] method), with those
resulting from the peak of the 2-D spectra, and we include vertical bars denoting the standard deviation of
Lbedform and Tbedform for each run. Because these statistics suffer from the subjectivity of bed form classification
and identification, the space-time 2-D FFT operator is inferred to be a more robust and objective estima-
tor for topographic variability. Thanks to the 𝜆, T dynamic scaling relationship proposed here, a simplified
approach is possible using the 1-D topography spectrum, for example, from one fixed sonar measuring in
time, to account for bed form size, type, and shape variability and CV(𝜆) = C2 u∗ds

𝜆
to account for the bed

form size-dependent propagation velocity. In summary, our method has several advantages compared to
Simons et al. [1965] formula: (i) it accounts for the bed form spatiotemporal variability, not only for their aver-
age values, (ii) it does not need the implementation of bed form extraction techniques and the degree of
subjectivity that is required to identify a bed form from bed elevation data, and (iii) using the expression for
scale-dependent convection velocity, it only needs temporal or spatial time series of bed elevations with no
assumptions other than the empirically derived constant C = 2. We infer that in natural rivers with complex
topographic features, sediment transport is expected to be better described through the proposed spectral
based model.

4.1. Alternative Scaling Option
Using the shear velocity u∗ and the mean sediment diameter ds in the spectra normalization and in the
expression for the convection velocities has some implications for the spatiotemporal scaling of the
observed bed forms. This, however, does not imply that a unique scaling regime should exist or that a model
for topography spectra should be only a function of u∗ and ds. In analogy with wall turbulence, the choice of
u∗ and ds as scaling quantities can be interpreted as a frictional or inner scaling normalization, emphasizing
the role of the single grain as the building block of bed forms or simply as the smallest scale of topographic
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Figure 10. Comparison of the averaged (left) bed form period T and (right) bed form wavelength L with the period and wavelength
corresponding to the peak in the 2-D spectra. Error bars represent 1 standard deviation, estimated over approximately 20 identified bed
forms in the z(x, y) domain. Experiments are marked according to Table 1.

variations. A possible alternative is provided by using an outer scale quantities such as the flow depth or the
mean cross-sectional velocity. Questioning the correct normalization scale implies assessing if, at increased
discharge and/or channel size, we would observe (i) a wider range of convection velocities, (ii) a change in
the scaling exponent, and (iii) a change in the constant C (thus a different slope and/or offset in the solid line
of Figure 7). In Figure 11 we plot the spatially and temporally averaged bed form characteristics (period and
length) in the same dimensionless domain proposed in Figure 7, including additional results obtained from
two experiments performed in a 3 times larger flume (data from Singh et al. [2011, 2012a, 2012b, SAFL Main
Channel]). Figure 11 deserves a thorough interpretation:

1. When compared to the contour of the normalized 2-D spectra, bed form statistics allow for the estimate of
a mean bed form propagation velocity but not of a range of scale-dependent convection velocities. Bed
form variability, which partially contributes to the Φk𝜔 spectra is indeed lost while averaging over many
identified bed forms. Therefore, from those data points, only the velocity of the statistically dominant
bed form, assumed as a single length scale waveform rigidly translating, can be obtained and inferred to
provide an indication of the peak of the 2-D spectra not of its shape.

T * u
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s
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Figure 11. Selected contours from dimensionless 2-D power spectra according to inner scale normalization (see details in Figure 7).
Black and red filled circles indicate the averaged bed form length L and periods T for the sand and gravel experiments, respectively.
Blue diamonds indicate L, T obtained from the SAFL Main Channel experiments [Singh et al., 2011, 2012a, 2012b]. The solid black line
indicates the proposed power law scaling taking the dimensionless form 𝜆∕ds = C(Tu∗∕ds)1∕2. The dashed line represents the 𝜆 ∝ T
relationship valid for Taylor’s hypothesis.

GUALA ET AL. ©2014. American Geophysical Union. All Rights Reserved. 135

http://dx.doi.org/10.1002/2013JF002759


Journal of Geophysical Research: Earth Surface 10.1002/2013JF002759

2. The larger and slower bed forms obtained in the Main Channel (with a flow depth varying from 0.44
to 0.65 m) do not seem to obey pure inner scaling as the data fall slightly outside the range of the
investigated spatiotemporal spectra. A possible reason for this behavior could be the marked three
dimensionality of bed forms at higher discharge and the scaling of bed forms with flow depth rather than
the grain size. Without spatiotemporal data however a direct comparison between the two experiments
is not possible as the evolution and deformation of the large bed forms, and thus their contribution in the
Fourier decomposed 𝜆, T domain, cannot be assessed. Dynamic scaling may still hold, in the form we pro-
posed, but with an adjustment of the proportionality constant that may exhibit a weak dependency on u∗

or the flow depth.

We acknowledge that the choice of the normalizing scaling quantities remains an open question and that
the extension of the proposed dynamic scaling to rivers or large-scale channels is not straightforward.
However, just estimating bed form characteristics will not solve the scaling ambiguity. Fully resolved spa-
tiotemporal measurements are necessary to validate our method for a wider range of flow discharges and
channel geometry, and especially for a wide range of bed form types. Outer scaling, replacing the sediment
diameter with the mean flow depth and/or substituting the shear velocity with the mean cross-sectional
velocity, is an alternative option that, at the present stage, we cannot embrace or dismiss. Future research
will be devoted to extending measuring capabilities in the SAFL Main channel to obtain time-resolved
topographies z = z(x, y, t) allowing for a systematic study of the above questions.

5. Conclusions

A spectral description of evolving bed forms obtained in a laboratory flume under a specific range of flow
discharges and with two different bed materials is provided in the temporal and spatial domain. Exper-
iments are characterized by a variety of bed forms, typical of a laboratory scale flume, including ripples,
dunes, and bed load sheets. Scale-dependent convection velocities are computed and larger structures
were confirmed to propagate slower than smaller structures, thus violating the (analogue of) Taylor’s
hypothesis of frozen turbulence. This conclusion is reached based on a multiscale statistical analysis in the
spectral domain on experimental data of bed elevation series, with no assumptions on specific bed form
types or any required classification. It is further supported by a scaling functional relationship between

scale-dependent wave lengths 𝜆 and periods T : specifically 𝜆

ds
= C

(
Tu∗
ds

)1∕2
, where ds is the mean sediment

diameter, u∗ is the shear velocity, and C ≃ 2 is a model parameter. We acknowledge that the above expres-
sion is consistent with the normalization of the topography spectra using the mean grain size and the shear
velocity. Such a choice points at the single grain as the building block of bed forms and as the smallest scale
of topographic variation. It does not imply that full similarity must be achieved across the entire spectrum,
in the same way Kolmogorov scaling is not expected to satisfy the whole turbulent velocity spectrum.

The present work also leads to a generalization of Simons et al. [1965] approach, allowing for an estimate of
sediment transport rate in the occurrence of a range of migrating surface features. Such estimate is based
on a Fourier decomposition of the migrating multiscale bed topography that bypasses the problem of bed
form extraction, classification, and typology-based analysis. We also explored how different power law expo-
nents n ≠ 1∕2, and constant versus variable C, in the proposed spatiotemporal scaling 𝜆 = Cun

∗d
1−n
s

Tn,
influence the spectral estimates of sediment transport. In the range of investigated conditions, a constant C
led to deviation up to 30% from Simons formula. Indications from experiments performed in a much larger
facility, suggest that Cmay be weakly dependent on u∗ or on the flow depth, opening up a whole subject for
future work.

We acknowledge that the repeated longitudinal transects providing z = z(x, t) do not allow us to resolve
the full 3-D spectra of bed elevations (in the kx, ky, 𝜔 streamwise, spanwise wave numbers, and frequency
domain), implying that all the observed migrating bed forms are in fact treated as spatially two dimensional,
translating in the longitudinal direction only, and thus excluding 3-D deformation processes such as the
amalgamation of bed forms due to lateral movement. Three-dimensional bed topography evolution under
a wider range of flow discharges and bed form sizes and types, from differently scaled facilities or from field
measurements, are needed to further extend the proposed formalism in the lateral direction and assess its
importance in the estimation of sediment flux.
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