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Abstract The increasing availability of precipitation observations from space, e.g., from

the Tropical Rainfall Measuring Mission (TRMM) and the forthcoming Global Precipita-

tion Measuring (GPM) Mission, has fueled renewed interest in developing frameworks for

downscaling and multi-sensor data fusion that can handle large data sets in computationally

efficient ways while optimally reproducing desired properties of the underlying rainfall

fields. Of special interest is the reproduction of extreme precipitation intensities and gra-

dients, as these are directly relevant to hazard prediction. In this paper, we present a new

formalism for downscaling satellite precipitation observations, which explicitly allows for

the preservation of some key geometrical and statistical properties of spatial precipitation.

These include sharp intensity gradients (due to high-intensity regions embedded within

lower-intensity areas), coherent spatial structures (due to regions of slowly varying rainfall),

and thicker-than-Gaussian tails of precipitation gradients and intensities. Specifically, we

pose the downscaling problem as a discrete inverse problem and solve it via a regularized

variational approach (variational downscaling) where the regularization term is selected to

impose the desired smoothness in the solution while allowing for some steep gradients

(called ‘1-norm or total variation regularization). We demonstrate the duality between this

geometrically inspired solution and its Bayesian statistical interpretation, which is
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equivalent to assuming a Laplace prior distribution for the precipitation intensities in the

derivative (wavelet) space. When the observation operator is not known, we discuss the

effect of its misspecification and explore a previously proposed dictionary-based sparse

inverse downscaling methodology to indirectly learn the observation operator from a data

base of coincidental high- and low-resolution observations. The proposed method and ideas

are illustrated in case studies featuring the downscaling of a hurricane precipitation field.

Keywords Sparsity � Inverse problems � ‘1-norm regularization � Non-smooth

convex optimization � Generalized Gaussian density � Extremes � Hurricanes

1 Introduction

Precipitation is one of the key components of the water cycle and, as such, it has been the

subject of intense research in the atmospheric and hydrologic sciences over the past

decades. While it still remains the most difficult variable to accurately predict in numerical

weather and climate models, its statistical space–time structure at multiple scales has been

extensively studied using several approaches (e.g., Lovejoy and Mandelbrot 1985; Lovejoy

and Schertzer 1990; Kumar and Foufoula-Georgiou 1993a, b; Deidda 2000; Harris et al.

2001; Venugopal et al. 2006a, b; Badas et al. 2006). These studies have documented a

considerable variability spread over a large range of space and timescales and an orga-

nization that manifests itself in power law spectra and more complex self-similar structures

expressed via nonlinear scaling of higher-order statistical moments (e.g., Lovejoy and

Schertzer 1990; Venugopal et al. 2006a). Stochastic models of multi-scale rainfall vari-

ability have been proposed based on inverse wavelet transforms (Perica and Foufoula-

Georgiou 1996), multiplicative cascades (Deidda 2000), exponential Langevin-type

models (Sapozhnikov and Foufoula-Georgiou 2007), among others.

The small-scale variability of precipitation (of the order of a few kms in space and a few

minutes in time) is known to have important implications for accurate prediction of

hydrologic extremes especially over small basins (e.g., Rebora et al. 2006a, b) and for the

prediction of the evolving larger-scale spatial organization of land–atmosphere fluxes in

coupled models (Nykanen et al. 2001). This small-scale precipitation variability, however,

is not typically available in many regions of the world where coverage with high-resolution

ground radars is absent or in mountainous regions where spatial gaps are present due to

radar blockage. It is also missing from climate model predictions that are typically run at

low resolution over larger areas of the world. As a result, methods for downscaling pre-

cipitation to enhance the resolution of incomplete or low-resolution observations from

space or numerical weather/climate model outputs continue to present a challenge of both

theoretical and practical interests.

To date, multiple passive and active ground-based (i.e., gauges and radars) and

spaceborne sensors (i.e., geostationary, polar and quasi-equatorial orbiting satellites) exist

that overlappingly measure precipitation with different space–time resolutions and accu-

racies. Sparsely populated networks of rain gauges provide relatively accurate point

measurements of precipitation continuously over time, while ground-based radars detect

precipitation in fine enough spatiotemporal scales (e.g., *6 min at 1 9 1 km) but over

limited areal extents. The ground-based radar data are among the most accurate and high-

resolution estimates of spatial rainfall. However, this source of information is subject to
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various shortcomings such as instrumental errors, beam blockage by orographic features,

and overshooting range effects (Krajewski and Smith 2002). The only civilian active

spaceborne Tropical Rainfall Measuring Mission-Precipitation Radar (PR) sensor (TRMM-

PR) provides high-resolution reflectivity of rainfall fields (i.e., *4 9 4 km) over a narrow

band in the tropics with relatively low temporal revisiting frequency compared to the other

passive spaceborne sensors of lower resolution. The forthcoming Global Precipitation

Measuring (GPM) Mission, a constellation of nine satellites, promises to deliver obser-

vations of high precision precipitation and cloud dynamics at a global scale (3-h revisiting

time) and over varying resolutions and create opportunities for improving climate mod-

eling and hazard prediction at local scales (Flaming 2004).

Precipitation observations from space are especially valuable in regions where no

ground observations are available either from rain gauges or from ground radars, such as

over the oceans or in underdeveloped regions of the world. It is over these regions,

however, that some extreme tropical storms develop for which high-resolution information

would provide important means for hazard prediction and warning as well as detailed

information on extremes, which could be used in nested models or in a data assimilation

setting. These tropical storms have distinct geometrical and statistical structures, as shown

below, posing extra demands on the methodologies of precipitation downscaling, data

fusion, and data assimilation.

As an illustrative example, Fig. 1 shows a snapshot of the two-dimensional rainfall

intensity patterns and the three-dimensional structure of precipitating clouds for typhoon

Neoguri, the first typhoon of the 2008 season in the western Pacific Ocean, on April 17,

2008, as observed by the TRMM-PR and the TRMM Microwave Imager (TMI). One

notices the geometrically structured precipitation bands embedded within the larger two-

dimensional storm system and the localized ‘‘towers’’ of high-intensity rainfall spatially

embedded within lower-intensity rainfall background. These localized high-intensity cells

and the steep sporadic gradients of precipitation intensity in such a storm are more clearly

demonstrated via a one-dimensional cross section as shown in Fig. 2. Specifically, Fig. 2b

Fig. 1 Left panel rainfall pattern of typhoon Neoguri in the western Pacific Ocean, on April 17, 2008. The
dark red bands indicate regions of the most intense rain. Rainfall rates in the inner swath are from TRMM’s-
PR, while in the outer swath from the TRMM Microwave Imager (TMI); Right panel the three-dimensional
structure of precipitating clouds for typhoon Neoguri as observed by the TRMM-PR. This figure illustrates
the need for a downscaling scheme that has the ability to reproduce steep rainfall gradients embedded within
the storm. Source: NASA’s Earth Observatory, available online through the TRMM extreme event image
archives (http://trmm.gsfc.nasa.gov)
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demonstrates how the typical circular bands of high rainfall intensity manifest themselves

into an almost piece-wise linear structure in the 1D cross section. How is this geometrical

structure to be reproduced in downscaling lower resolution and noisy observations of

tropical storms, say available at 10-km resolution, down to 1- or 2-km resolution products?

Moving from a geometrical description to a statistical description, we note that coherent

precipitation intensity areas (similar intensity in nearby pixels) will result in almost zero

values in a derivative space, while the abrupt changes in rainfall intensity (large gradients

and discontinuities) will project as high values. In other words, we expect to see a prob-

ability distribution in the derivative space that has a large mass close to zero and a few

large positive and negative values. Figure 3a shows the histogram of the derivatives of

precipitation intensities of hurricane Claudette in the horizontal (zonal) direction (com-

puted via a redundant orthogonal Haar wavelet transform, which is equivalent to using a

first-order difference discrete approximation). It is obvious that this histogram is consid-

erably different than a Gaussian probability distribution function (PDF) with a larger mass

around zero (capturing the large number of nearby pixels with similar intensity) and much

heavier tails than Gaussian (capturing the occasional very steep gradients). How can such a

statistical structure be explicitly incorporated in a precipitation downscaling scheme,

specifically for hurricanes and tropical storms?

The purpose of this paper is to present a new framework for precipitation downscaling

casting the problem as a discrete inverse problem and solving it via a variational
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Fig. 2 a A high-resolution (HR) snapshot of hurricane Claudette, 07-15-2003, 11:51:00 UTC as monitored
by NEXRAD station over Texas at resolution 1 9 1 km and b the field of the computed horizontal first-
order derivative using the Sobel filter. A horizontal cross section through the storm is shown in (c). One
observes how the particular geometrical structure of hurricane precipitation projects itself onto an almost
piece-wise linear one-dimensional function with sporadic large gradients embedded within regions of almost
constant rainfall
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regularization approach, which imposes constraints on the specific degree of smoothness

(regularity) of the precipitation fields. The proposed regularization is selected to allow the

preservation of large gradients while at the same time impose the desired smoothness on

the solution. The paper is structured as follows. In Sect. 2, the need for regularization is

explained with special emphasis on a total variation regularization scheme (‘1-norm in the

derivative space) in order to reproduce steep gradients and to preserve the heavy-tailed

structure of rainfall. In this Section, the statistical interpretation of the variational ‘1-norm

regularization is also explained. In particular, it is elucidated that the downscaled rainfall

fields obtained via ‘1-norm regularization in the derivative domain is equivalent to the

Bayesian maximum a posteriori (MAP) estimate with a Laplace prior distribution in the

precipitation derivatives, a special case of the generalized Gaussian distribution pðxÞ /
expð�kjxjaÞ with a = 1 (Ebtehaj and Foufoula-Georgiou 2011). Section 3 presents insights

into the problem of an unknown downgrading observation operator or kernel that ‘‘con-

verts’’ the high-resolution rainfall to the lower-resolution observations and discusses an

alternative methodology, dictionary-based sparse precipitation downscaling (SPaD),

developed in (Ebtehaj et al. 2012). In Sect. 4, we present a detailed implementation of our

variational downscaling (VarD) methodology in a tropical (hurricane) storm and compare

the results of VarD with those of the SPaD method. Finally, concluding remarks and

directions for future research are presented in Sect. 5.

2 Precipitation Downscaling as a Regularized Inverse Problem

2.1 Basic Concepts in the Continuous Space

Consider the true state (or signal) f(t) that is not known but is observed indirectly via a

measuring device, which imposes a smoothing on the original state and returns the

observation g(s). Let f(t) and g(s) relate via the following linear transformation:
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Fig. 3 a Histogram of the derivatives in the horizontal direction of the hurricane snapshot shown in Fig. 2.
The derivative coefficients are obtained by the Sobel operator that produces a second-order discrete
approximation of the field derivative. b Same histogram plotted on a log-probability scale showing the
empirical PDF (circles), the fitted generalized Gaussian PDF with parameter a = 0.85, the Gaussian PDF
(a = 2.0), and the Laplace density (a = 1.0) for comparison. Note that the assumption of a Laplace density
for the rainfall derivatives is theoretically consistent with the proposed ‘1-norm variational downscaling
framework
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Z1

0

Kðs; tÞf ðtÞdt ¼ gðsÞ 0; t� 1; ð1Þ

where K(s, t) is a known kernel, which downgrades the true state by damping its high-

resolution components and making it smoother. The problem of recovering f(t) knowing

the observation g(s) and the kernel K(s, t) is a well-studied inverse problem, known as the

Fredholm integral equation of the first kind. Inverse problems are by their nature ill-posed,

in the sense that they do not satisfy at least one of the following three conditions: (1)

existence of a solution, (2) uniqueness of the solution, and (3) stability in the solution, i.e.,

robustness to perturbations in the observation. It can be shown that the above inverse

problem is very sensitive to the observation noise, since high frequencies are amplified in

the inversion process (so-called inverse noise) and they can easily spoil and blow up the

solution (see Hansen 2010). In this sense, even a small but high-frequency random per-

turbation in g(s) can lead to a very large perturbation in the estimate of f(t). This is relevant

to the problem of reconstructing small-scale features in precipitation fields (downscaling)

from low-resolution noisy data, when the noise can be of low magnitude but high fre-

quency, e.g., discontinuities in overlapping regions of different sensors or instrument noise.

Therefore, naturally, if we define the distance between the observations and the true

state by the following residual Euclidean norm:

Rðf Þ ¼
Z 1

0

Kðs; tÞ f ðtÞ dt � gðsÞ
����

����
2

; ð2Þ

then minimizing R(f) alone does not guarantee a unique and stable solution of the inverse

problem. Rather, additional constraints have to be imposed to enforce some regularity (or

smoothness) of the solution and suppress some of the unwanted inverse noise components

leading to a unique and more stable solution. Let us denote by S(f) a smoothing norm,

which measures the desired regularity of f(t). Then, obtaining a unique and stable solution

to the inverse problem amounts to solving a variational minimization problem of the form

f ðtÞ ¼ argmin
f

Rðf Þ2 þ k2Sðf Þ
n o

; ð3Þ

The value of k (called the regularization parameter) is chosen as to provide a balance

between the weight given to fitting the observations, as measured by the magnitude of the

residual term R(f), and the degree of regularity of the solution measured by the smoothing

norm S(f). Common choices for S(f) are ‘2-norms of the function f(t) or its derivatives, i.e.,

Sðf Þ ¼ f ðdÞ
�� ��2

2
¼
Z1

0

f ðdÞðtÞ
�� ��2dt; d ¼ 0; 1; . . . ð4Þ

where f(d) denotes the dth order derivative of f. Another smoothing norm of specific interest

in the present study is the ‘1-norm of the gradient of f, that is,

STVðf Þ ¼ fk k1¼
Z1

0

f ð1ÞðtÞ
�� �� dt; ð5Þ

known as the Total Variation (TV) of the function f(t). Both the S(f) and STV(f) norms yield

robust solutions with desired regularities but the STV(f) penalizes local jumps and isolated
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singularities in a quite different way than the ‘2-norm of S(f). It is important to demonstrate

this point as it plays a key role in the proposed downscaling scheme.

Let us consider a piecewise linear function:

f ðtÞ ¼
0; 0� t\ 1

2
1� hð Þ

t
h
� 1�h

2h
; 1

2
1� hð Þ� t� 1

2
1þ hð Þ

1; 1
2

1þ hð Þ\t� 1

8<
: ; ð6Þ

as shown in Fig. 4. It can be shown that the smoothing norms associated with the ‘1 and ‘2-

norms of f(1)(t) satisfy:

f ð1Þ
�� ��

1
¼
Z 1

0

f ð1ÞðtÞ
�� ��dt ¼

Zh

0

1

h
dt ¼ 1 ð7Þ

while

f ð1Þ
�� ��2

2
¼
Z1

0

f ð1ÞðtÞ
�� ��2dt ¼

Z h

0

1

h2
dt ¼ 1

h
: ð8Þ

It is observed that the TV smoothing norm STVðf Þ ¼ f ð1Þ
�� ��

1
is independent of the slope

of the middle part of f(t) while the smoothing ‘2-norm is inversely proportional to h and, as

such, it severely penalizes steep gradients (when h is small). In other words, the ‘2-norm of

f(1) will not allow any steep gradients and will produce a very smooth solution. Clearly, this

is not desirable in solving an inverse problem associated with the reconstruction of small-

scale details in precipitation fields, such as in the hurricane storm shown in Fig. 2.

2.2 Discrete Representation

Writing Eq. (1) in a discrete form, the problem of downscaling amounts to estimating a

high-resolution (HR) state, denoted in an m-element vector as x 2 R
m, from its low-

resolution (LR) counterpart y 2 R
n, where m� n. It is assumed that this LR counterpart
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Fig. 4 A piecewise linear function f(t) with a slope f(1) = 1/h at the non-horizontal part. As it is easily

shown (see text), for this function, the ‘1(total variation)-norm f ð1Þ
�� ��

1
is constant and independent of

h while the ‘2-norm f ð1Þ
�� ��2

2
¼ 1=h goes to infinity as h goes to zero (i.e., for a very steep gradient). As a

result, the ‘2-norm solutions do not allow steep gradients, while the ‘1-norm does
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relates to the high-resolution (HR) state via a linear downgrading (e.g., a linear blurring

and/or downsampling1) operator H 2 R
m�n as follows:

y ¼ Hxþ v; ð9Þ

where v�N 0;Rð Þ is a zero-mean Gaussian error with covariance R. Due to the fact that

the dimension of y is less than that of x, the operator H is a rectangular matrix with more

columns than rows and thus solving problem (9) for x is an ill-posed inverse problem (an

under-determined system of equations with many solutions). As discussed above, we seek

to impose a proper regularization to make the inverse problem well posed.

Following the developments presented above in a continuous setting and replacing f(1)

with a discrete approximation derivative operator L, the choice of the smoothing ‘2-norm

regularization for S(x) becomes Lxk k2
2 while for the ‘1-norm becomes Lxk k1, where in

discrete space xk k2
2¼ Rm

i¼1 xij j2 and xk k1¼ Rm
i¼1 xij j.

Thus, the solution (HR state x) can be obtained by solving the following regularized

weighted least squares minimization problem:

x̂ ¼ argmin
x

1

2
y�Hxk k2

R�1þkSðxÞ
� �

; ð10Þ

It is clear that the smaller the value of k, the more weight is given to fitting the

observations (often resulting in data over-fitting), while a large value of k puts more weight

into preserving the underlying properties of the state of interest x, such as large gradients.

The goal is to find a good balance between the two terms. Currently, no closed form

method exists for the selection of this regularization parameter and the balance has to be

obtained via a problem-specific statistical cross validation (e.g., Hansen 2010). Note that

the problem in (10) with SðxÞ ¼ Lxk k1 is:

x̂ ¼ argmin
x

1

2
y�Hxk k2

R�1þk Lxk k1

� �
; ð11Þ

that is, a non-smooth convex optimization problem as the regularization term is non-

differentiable at the origin. As a result, the conventional iterative gradient methods do not

work and one has to use greedy methods (Mallat and Zhang 1993) or apply the recently

developed non-smooth optimization algorithms such as the iterative shrinkage thresholding

method (Tibshirani 1996), the basis pursuit method (Chen et al. 1998, 2001), the con-

strained quadratic programming (Figueiredo et al. 2007), the proximal gradient-based

methods (Beck and Teboulle 2009), or the interior point methods (Kim et al. 2007). In this

work, we have adopted the method suggested by Figueiredo et al. (2007).

2.3 Geometrical Versus Statistical Interpretation of the ‘1-Norm Regularized

Downscaling

As was discussed in the introduction, the motivation for introducing a new downscaling

framework lies in the desire to reproduce some geometrical but also some statistical

features of precipitation fields. Specifically, the question was posed as to how a down-

scaling scheme could be constructed that can reproduce both the abrupt localized gradients

1 Here, by downsampling, we mean to reduce the sampling rate of the rainfall observations by a factor
greater than one.
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and also the characteristic probability distribution of the precipitation intensity gradients

such as that displayed in Fig. 3a.

It can be shown that the solution of (10) obtained via ‘2-norm regularization (i.e.,

SðxÞ ¼ Lxk k2
2) is equivalent to the Bayesian maximum a posteriori (MAP) estimator where

the transformed variable Lx is well explained by a Gaussian distribution. On the other

hand, considering SðxÞ ¼ Lxk k1, the ‘1-norm regularized solution of (10), i.e., the solution

of Eq. (11), is the MAP estimator where Lx is well explained by the multivariate Laplace

distribution (the generalized Gaussian family with a = 1). In other words, the ‘1-regu-

larization implicitly assumes that the probability of Lx goes as exp �k Lxk k1

� �
(Lewicki

and Sejnowski 2000; Ebtehaj and Foufoula-Georgiou 2013). We note that for the storm of

Fig. 2, the estimated tail parameter a is 0.85 (see Fig. 3), which denotes that the pdf of Lx

goes as exp �k Lxk kaa
� �

, where xk kaa¼ Rm
i¼1 xij ja. This value of a implies that the Laplace

distribution (a = 1) is only an approximation of the true distribution of the analyzed

precipitation (see Fig. 3b for comparison), making thus the proposed ‘1-norm regulariza-

tion solution only an approximate solution in a statistical sense. Finding a solution via

regularized inverse estimation that satisfies a prior probability for (Lx) with a\ 1 requires

solving a non-convex optimization, which may suffer from local minima and may be hard

to solve for large-scale problems. For this reason, we limit our discussion to the ‘1-

regularization recognizing the slight sub-optimality of the solution for precipitation

applications but also its superiority relative to the Gaussian assumption about the rainfall

derivatives.

3 Working with an Unknown Downgrading Operator (H)

In the above formulation of the downscaling problem as an inverse problem, the down-

grading operator H is assumed to be linear and known a priori. A mathematically con-

venient form for the downgrading operator is to assume that it can be represented via a

linear convolution followed by downsampling. In other words, one may assume that the

low-resolution (LR) observation is obtained by applying an overlapping box (weighted)

averaging over the HR field and keeping one observation only, typically at the center, per

averaging box (downsampling). However, the downgrading operator is not generally

known in practice and its characterization might be sensor-dependent. Also often, this

operator is highly nonlinear (e.g., the relationship between the radiometer-observed

brightness temperature and the precipitation reflectivity observed by the radar) and its

linearization may introduce large estimation errors. This nonlinearity may also pose severe

challenges from the optimization point of view and may give rise to a hard non-convex

problem with many local minima (Bertsekas 1999).

To deal with the problem of an unknown downgrading operator, Ebtehaj et al. (2012)

proposed a dictionary-learning-based methodology that allows to implicitly incorporate the

downgrading effect via statistical learning without the need to explicitly characterize the

downgrading operator. In this methodology, the downgrading operator is being learned via

a dictionary of coincidental HR and LR observations (e.g., in practice, TRMM-PR, and

ground-based NEXRAD or TMI and NEXRAD). The methodology is explained in detail

by Ebtehaj et al. (2012) and is only briefly summarized herein.

In simple terms, the idea is to reconstruct a HR counterpart of the LR rainfall field based

on learning from a representative data base of previously observed coincidental LR and HR

rainfall fields (e.g., TRMM-PR and NEXRAD observations). As is evident, due to different
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underlying physics, the shape and patterns of rainfall intensities, viewed in a storm-scale

field of view, might be drastically dissimilar. However, the small-scale patterns of rainfall

when viewed over smaller windows might be repetitive and ‘‘similar’’ within different

regions of the same storm or within different storms. Therefore, the central idea is to

(a) collect a representative set of coincidentally observed LR and HR rainfall fields, with

some similarities in their underlying physics; (b) zoom down into small-scale patterns

(patches) of the given LR rainfall field; (c) for each patch, find few but very similar LR

patches in the collected data base; (d) for those similar LR patches, obtain the corre-

sponding HR patches in the data base and then reconstruct the HR counterparts of the LR

patch of interest based on an optimality criterion; and (e) repeat this procedure for all

possible patches and obtain a HR estimate for the observed LR rainfall field.

To be more specific, let us consider that the representative training set of N coincidental

pairs of LR and HR rainfall fields are denoted by Zi
l

� 	N

i¼1
and Zi

h

� 	N

i¼1
, respectively. As

previously explained, for each patch yl of the given LR rainfall field, we need to find a few

very similar patches in Zi
l

� 	N

i¼1
, where similarity is defined in terms of localized rainfall

fluctuations and not in the mean values of the rainfall patches. To this end, all of the LR

fields are projected (i.e., Zi
l ! Zi

h

� �0
) onto a redundant orthogonal basis (called feature

space) to capture the rainfall local fluctuations including horizontal and vertical edges (i.e.,

zonal and meridional) and curvatures. This was performed by Ebtehaj et al. (2012) via an

undecimated orthogonal Haar wavelet, which basically performs a high-pass filtering in

each direction using first- and second-order differencing. Then, all of the constituent

patches of the transformed LR fields in the data base were extracted, vectorized in a fixed

order, and then stored as columns of a matrix W, the so-called empirical LR-dictionary.

Clearly, for each coincidental pair Zi
l;Zi

h

� �
, a set of ‘‘residual fields’’ can be formed by

subtracting the LR fields from their HR counterparts via Ri
h ¼ Zi

h �QZi
l, where Q is a

readily available interpolation operator (e.g., a nearest-neighbor or bilinear, bicubic

interpolator). Notice that, these residual fields contain the rainfall variability and high-

frequency (fine spatial-scale) components that are not captured by the LR sensor and need

to be recovered. Therefore, all of the constituent patches rh of the residual fields can also be

collected, vectorized in a fixed order, and then stored in the columns of a matrix U, the so-

called HR-dictionary. Note that, by the explained construction, the empirical LR and HR

dictionaries share the same number of columns while there is a one-to-one correspondence

between them. In other words, while the columns of the W contain LR rainfall features, the

columns of the U contain the corresponding HR residuals, needed for the reconstruction of

the HR field.

The premise is that the local variability of any LR patch yl, denoted by y0l, in any storm

can be well approximated by a linear combination of the elements of the LR dictionary as

follows:

y0l ¼ Wcþ v; ð12Þ

where c is the vector of representation coefficients in the LR dictionary and v�N 0;Rð Þ
denotes the estimation error that can be well explained by a Gaussian density.

By analyzing a sample of 100 storms over Texas, it was documented by Ebtehaj et al.

(2012) that the vector of representation coefficients c in the LR dictionary is very sparse. In

other words, any desired local rainfall variability in the given LR field can be approximated

by a linear combination of only a few columns of the LR empirical dictionary (of the order
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of 3–5 elements). To impose this sparsity (called ‘‘group sparsity’’) in solving (12) for c,

the solution needs to be constrained via an ‘1-norm regularization as follows:

ĉ ¼ argmin
c

1

2
y0l �Wc
�� ��2

R�1þk ck k1

� �
: ð13Þ

Using the representation coefficients obtained from (13), one can recover the corre-

sponding residual fields (the details missed by the LR sensor) as follows:

r̂ ¼ Uĉ: ð14Þ
Having the estimated residual fields, the HR patch can be obtained as x̂ ¼ Qyl þ r̂.

Applying the same estimation methodology for all of the patches of the given LR rainfall

field, we can recover the entire HR rainfall field (see Ebtehaj et al. 2012). The most

important implication of the above framework is that we characterized the pair of ðW;UÞ
empirically without explicit access to the structure of the downgrading operator H, which

is the main advantage of this dictionary-based rainfall downscaling method versus the

previously explained approach. Since advantage was taken of the rainfall group sparsity

(and also implicitly of the sparsity of the precipitation fields themselves), the dictionary-

based downscaling methodology was termed SPaD.

4 Results from a Case Study

To demonstrate the proposed downscaling methodology, we have chosen a specific tropical

storm, hurricane Claudette, which occurred in July 2003. Claudette began as a tropical

wave in the eastern Caribbean on July 8, 2003 and moved quickly westward to the Gulf of

Mexico. It remained a tropical storm until just before making landfall in Port O’Conner,

Texas, when it quickly strengthened to a category 1 hurricane. Although Claudette pro-

duced moderate rainfall across southern Texas, peaking at approximately 6.5 inches

(165 mm), it maintained a tropical storm intensity for over 24 h after landfall with winds

gusting to 83 mph (134 km/h) at Victoria Regional Airport, Texas. The storm caused

excessive beach erosion and damages estimated at 180 million dollars. For this storm, we

have available data from a NEXRAD station in Houston, Texas, for which a snapshot at

11:51:00 (UTC) on July 15, 2003 is shown in Fig. 2.

The issues we want to examine here are the following: (1) the ability of the proposed

variational downscaling (VarD) scheme to reproduce the steep gradients in precipitation

intensities as evidenced by reproducing the tails of the PDF of intensity gradients; (2) the

effect of an unknown kernel (smoothing and downsampling operation imposed on the true

HR field by a sensor) on the downscaling scheme performance using the proposed

methodology; (3) a comparison of the VarD method with a local dictionary-based meth-

odology based on sparse representation (SPaD) as discussed in the previous section; and

(4) insights into the ability of the proposed VarD methodology and SPaD to reproduce not

only the extreme gradients but also the extreme rainfall intensities, i.e., the tails of the

rainfall intensity probability distribution functions (PDFs).

The original HR data at 1 9 1 km (Fig. 5a) were downgraded to 8 9 8 km LR

observations via a coarse-graining filter consisting of a simple box averaging of size 8 9 8

followed by downsampling with a factor of 8 (i.e., keeping one observation per box of

8 9 8 km). The resulting LR field is shown in Fig. 5b and is considered to be the field that

would be available to us from a satellite sensor. Figure 5c, d shows the results of

Surv Geophys (2014) 35:765–783 775

123



downscaling the 8 9 8 km field to 1 9 1 km resolution using the VarD and SPaD

methodologies with ku0:05 L�THTR�1y
�� ��

1 in the original formulation of the problem

(11), where xk k1¼ max x1j j; . . .; xmj jð Þ. Note that in all of our experiments, we empirically

found that 0\k� 0:10 L�THTR�1y
�� ��

1 works well for rainfall downscaling in both
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Fig. 5 a Original HR base reflectivity snapshot at resolution 1 9 1 km over TX (hurricane Claudette,
08-16-2003, UTC 11:51:00); b The synthetic LR observation obtained by coarse graining of the field up to
scale 8 9 8 km (smoothing with an average filter of size 8 9 8 followed by downsampling by a factor 8);
c result of the downscaled field at resolution 1 9 1 km using the variational downscaling (VarD) method;
and d results of the dictionary-based sparse precipitation downscaling (SPaD) method at resolution
1 9 1 km; e intensities averaged over a bandwidth of 8 km centered at a cross section A-A in (a), displaying
the true HR field, the LR coarse-grained field (observations), and the two downscaled fields
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methods, while it can be shown that the solution of problem (11) is zero for all

k� L�THTR�1y
�� ��

1.

As discussed before, VarD assumes the downgrading operator H to be known. In our

case, we used as H the ‘‘true’’ operator, i.e., the same operator we used to coarse grain the

HR (1 9 1 km) reflectivity field to the LR (8 9 8 km) one. It is observed that the VarD

downscaled field has a smoother appearance than the original field (it does not have the

1 9 1 km pixelized appearance of the original HR field), which is not unexpected given

that the ‘1-regularization promotes smoothness in the solution while allowing for some

steep gradients as demonstrated in the illustrative example of Fig. 4. A one-dimensional

cross section shown in Fig. 5e confirms this observation and shows that the downscaled

field is much closer to the true field compared to the LR field.

Suppose now that the true filter H is not known and only the LR field is given without

guidance as to what ‘‘filtering’’ the sensor did to the HR field to return the LR observations.

As discussed in the previous section, and in Ebtehaj et al. (2012), we demonstrated that this

filter can be ‘‘learned’’ implicitly and locally using coincidental high- and low-resolution

images available for a number of similar storms. In that study, a sample of 100 HR summer

storms over Texas was used to construct a set of coincidental LR storms (using again a

simple box averaging and a downsampling operator). This hundred storm sample was then

used to compute the LR and HR dictionaries, which formed the basis of the SPaD method

as explained in the previous section. This same dictionary was used herein to recover the

1 9 1 km HR rainfall field of the Claudette storm from 8 9 8 km observations. The

results are shown in Fig. 5d.

In general, it is expected that the SPaD method will outperform the VarD method when

the operator H is not known at all or is locally varying, due, for example, to instrument

range effects or cloud interference or different performance of an instrument in low- versus

high-resolution rainfall intensities. However, it is noted that, since in our data base the LR

and HR fields relate to each other with a simple box averaging operator H (by construc-

tion), we expect that the dictionary-learning SPaD downscaling will perform comparably

to the VarD method. Extra information in SPaD will be gained by the localized nature of

the estimation methodology, which might reproduce extra high-frequency (small-scale)

features, obtained from the available dictionaries that may not be recovered in the VarD

approach.

To more quantitatively compare the two downscaled fields to the true underlying HR

field and to each other, we compare in Fig. 6 the PDF of the derivatives in the horizontal

direction in terms of their q–q plot (quantiles of the variable of interest vs. standard normal

quantiles). We observe that both methods are able to reproduce the heavy tails of the PDF

of the precipitation gradients, which are much thicker than those of the Gaussian PDF, and

thus, both methods are able to reproduce high gradients in the HR recovered field. VarD is

seen to slightly outperform SPaD in reproducing high positive gradients, not surprisingly

since, in VarD, the H operator was customized to this specific storm, while, in SPaD,

information from a suite of other storms was also used.

Turning our attention to the preservation of the statistics of the precipitation field itself,

we show in Fig. 7 the comparison of the PDFs of the LR rainfall field with that of the true

HR field and the downscaled fields. We recall that although the preservation of the thicker-

than-Gaussian (Laplace) tails in the PDF of precipitation intensity gradients is explicitly

incorporated in the ‘1-norm VarD downscaling methodology, no explicit preservation of

the extreme rainfall intensities themselves is accounted for. However, it is clear from

Fig. 7 that VarD performs satisfactorily in reproducing extreme rainfall intensities in the
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downscaled field and is able to enhance substantially the tails of the low-resolution rainfall

fields. One of the reasons for reproducing extreme rainfall intensities is that typically

extreme gradients are collocated with high rainfall intensities. This was observed and

documented by Perica and Foufoula-Georgiou (1996) and is also documented for the

Claudette storm in Fig. 8. So, indirectly, VarD is bound to preserve satisfactorily the tails

of the PDF of precipitation intensities. From Fig. 7, it is apparent that SPaD outperforms

VarD in preserving extreme rainfall. This is attributed to the fact that, in SPaD, the

operator is learned directly on the precipitation intensities, and not on the gradients,

allowing thus for a more direct reconstruction of extreme intensities, provided that such

extremes are available in the data base.

Table 1 presents a comparison of the downscaling methodologies in terms of several

quantitative metrics: the mean square error: MSE ¼ x� x̂k k2
2= xk k2

2, the maximum abso-

lute error: MAE ¼ x� x̂k k1= xk k1, the peak signal-to-noise ratio:

PSNR ¼ 20 log10 max x̂ð Þ=std x� x̂ð Þ½ 	, and the Kullback–Leibler divergence:

KLD pxjjpx̂ð Þ ¼ Ri ln pxðiÞ=px̂ðiÞ½ 	pxðiÞ or relative entropy metric, where px(i) and px̂ðiÞ are

the discrete probabilities of the true and estimated rainfall, respectively. The KLD is a non-

negative measure that represents a relative degree of closeness of two PDFs in terms of

their entropy, while smaller values signify a stronger degree of similarity. It can be seen

from Table 1 that both downscaling methods produce HR fields that are closer to the true

field compared to the LR field and that the VarD and SPaD methods considerably out-

perform the ‘‘naı̈ve’’ simple downscaling methods such as the result obtained by the

bicubic interpolation scheme. SPaD is seen to outperform VarD in terms of the entropy

metric (smaller KLD value) further speaking for the better reproduction of very extreme

rainfall intensities.

It is worth presenting here some extra insight into the effect of a misdiagnosed

observation filter H on the downscaled field. As shown in the illustrative example of Fig. 9,

when the observation operator is smoother (a Gaussian filter) as compared to the operator

used in the VarD downscaling (a box average filter), the downscaled field exhibits a
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blockiness coming from the mismatch between the assumed and true filters. In fact, this

blockiness provides a qualitative diagnostic of the filter mismatch, in that it picks up the

fact that the underlying true observation filter (the Gaussian in this case) was smoother than

the one used for recovery. Apart from the visual inspection of the downscaled field, Fig. 9

(caption) provides the comparison metrics that show the underperformance of this

downscaled field relatively to the one obtained using the correct filter (compare values with

those in Table 1). The possibility of developing a methodology to learn properties (e.g.,

smoothness and nonlinearity) of the underlying observation filter in the case that no

coincidental LR and HR data sets are available to apply the dictionary-based methodology

is appealing and warrants further exploration.
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5 Concluding Remarks

The problem of downscaling climate variables remains of interest as more spaceborne

observations become available and as the need to translate low-resolution (LR) climate

predictions to regional and local scales becomes essential for long-term planning purposes.

Of special interest are downscaling schemes that can accurately reproduce not only overall

statistical properties of rainfall but also specific features of interest, such as extreme

rainfall intensities and abrupt gradients. In this paper, such a precipitation downscaling

scheme was introduced using a formalism of inverse estimation and solving the (ill-posed)

inverse problem by imposing certain constraints that guarantee stability and uniqueness of

the solution while also enforcing a certain type of smoothness that allows for some abrupt

gradients. Mathematically, this inverse problem is solved via what is called an ‘1-norm or

total variation regularization. We showed the equivalence of the proposed total variation

regularized solution to a statistical maximum a posteriori (MAP) Bayesian solution, which

has a Laplace prior distribution in the derivative domain. We demonstrated the
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Table 1 Error statistics obtained by comparing the HR precipitation reflectivity image of Hurricane
Claudette (true) with the LR one, the downscaled fields via Bicubic interpolation, the VarD, and the SPaD
methodologies (see text for definition of these metrics)

Quality metrics

MSE y MAE PSNR KLD

Low. res. 0.305 0.260 17.834 0.089

Bicubic 0.275 0.246 18.742 0.113

VarD 0.194 0.172 22.539 0.065

SPaD 0.209 0.177 22.015 0.044

y MSE mean squared error, MAE mean absolute error, PSNR peak signal-to-noise ratio, KLD Kullback–
Leibler divergence
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performance of the proposed downscaling scheme on a tropical storm and concluded that it

was able to capture adequately both the extremes of rainfall intensities and gradients.

A practical challenge faced in applying the proposed methodology is that the obser-

vation operator (which relates the true unknown HR field to the LR observations) might not

be known. In fact, it might be even changing locally due to sensor properties as affected,

for example, by range or precipitation intensity and composition. If coincidental high- and

low-resolution fields are available in a data base, the data-driven dictionary-based meth-

odology introduced by Ebtehaj et al. (2012) offers promise and, although more compu-

tationally intensive, it might offer advantages in capturing more faithfully local details and

extremes. However, a lot more work is needed to understand the sensitivity of the dic-

tionary-based methodology to the selection of a data base from environments different than

the storm of interest, as well as when the observation filter relates nonlinearly to the

underlying field as is the case in problems of retrieval, i.e., estimation of precipitation

intensity from radiances recorded by the TRMM microwave imager.

The presence of statistical self-similarity (scaling) in spatial rainfall, manifesting in log–

log linearity in the Fourier or wavelet power spectra and also in higher-order statistical

moments, has been well documented by now (see discussion in the introduction). This

structure, often explained in the context of mono or multifractal formalisms, has guided the

development of several stochastic downscaling methodologies (e.g., Rebora et al. 2006a,

b; Perica and Foufoula-Georgiou 1996, among many others). The downscaled precipitation

fields produced by these models are, by construction, respecting the rainfall scaling laws;

however, they are not unique as multiple realizations of plausible high-resolution rainfall

fields with the same input parameters can be produced without following a specific opti-

mality criterion. On the other hand, the proposed downscaling methodologies produce

unique high-resolution rainfall fields based on the aforementioned optimality criteria that

also allow us to partially preserve the underlying non-Gaussian structure of the rainfall

fields. An important question that arises then is whether statistical scaling in rainfall fields,
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Fig. 9 VarD result for downscaling precipitation reflectivity from scale 8 9 8 to 1 9 1 km with a ‘‘wrong’’
observation operator. In this experiment, the imposed observation operator was a Gaussian filter of size
8 9 8 with standard deviation 2 while in downscaling, we assumed a uniform average filter of the same size.
It is clear from the result that the quality of downscaling is blocky and is severely deteriorated because of the
misspecification of the observation operator in the downscaling scheme. The selected quantitative measures
are as follows: MSE = 0.244; MAE = 0.220; PSNR: 22.0; and KLD = 0.075 (see Table 1)

Surv Geophys (2014) 35:765–783 781

123



although not prescribed in our method, arises as an emergent property. The answer to this

question is not obvious. Our preliminary results (not reported herein) demonstrate that

statistical scaling indeed arises in both the ‘1-norm variational downscaling (VarD) and the

SPaD schemes. However, the power law exponents (of the variance of the wavelet coef-

ficients as a function of scale) and the variance of the wavelet coefficients at the smallest

scale (similar to the analysis in Perica and Foufoula-Georgiou 1996) seem to be lower than

those of the original fields. This might be due to the fact that, although our scheme is able

to accurately capture, much better than other statistical schemes, the magnitude of the

infrequent localized large gradients in precipitation fields, it might under-produce the

variability of the smaller gradients, reducing thus the overall variance. This is an issue that

is currently explored both from a theoretical perspective and via simulation, as in most

applications one is interested to preserve both the localized extremes but also the overall

variance of the smaller magnitude fluctuations.

The work presented herein falls within a larger research direction of using variational

regularization approaches or equivalently, Bayesian MAP estimators with heavy-tailed priors

in the derivative domain, for estimation problems in hydro-climatology, such as downscaling,

multi-sensor data fusion, retrieval, and data assimilation (see Ebtehaj and Foufoula-Georgiou

2013). A relatively small number of abrupt gradients within the field of interest or heavy-

tailed PDFs in the derivative domain are associated with the notion of sparsity, that is, the fact

that, when the state is projected in a suitable basis, most of the projection coefficients are close

to zero and only a few coefficients carry most of the state energy. Estimation problems of

sparse states (posed in an inverse estimation setting or in a variational setting of minimizing a

functional) require the use of ‘1-norm regularization, which results from imposing extra

constraints on the solution to enforce sparsity. Motivated by the need to preserve sharp

weather fronts in data assimilation of numerical weather prediction models, an ‘1-norm

regularized variational data assimilation methodology was recently proposed by Freitag et al.

(2012) and demonstrated in a simple setting using the advection equation for the state evo-

lution dynamics. In Ebtehaj and Foufoula-Georgiou (2013), data assimilation in the presence

of extreme gradients in the state variable was further analyzed using as illustrative example

the advection–diffusion equation that forms the basis of many hydro-meteorological prob-

lems, such as those dealing with the estimation of surface heat fluxes based on the assimilation

of land surface temperature (e.g., see Bateni and Entekhabi 2012). Application of these new

non-smooth variational methodologies in real data assimilation problems, and also in com-

bining data assimilation with downscaling of the state, is only in its infancy and is certain to

occupy the geophysical community in the years to come.
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