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[1] The topology of river networks has been a subject of intense research in hydro-
geomorphology, with special attention to self-similar (SS) structures that allow one to
develop concise representations and scaling frameworks for hydrological fluxes. Tokunaga
self-similar (TSS) networks represent a particularly popular two-parameter class of self-
similar models, commonly accepted in hydrology but rarely tested rigorously. In this paper
we (a) present a statistical framework for testing the TSS assumption and estimating the
Tokunaga parameters; (b) present an improved method for estimating the Horton ratios
using the Tokunaga parameters; (c) evaluate the proposed testing and estimation
frameworks using synthetic TSS networks with a broad range of parameters; (d) perform
self-similar analysis of 408 river networks of maximum order Ω ≥ 6 from 50 catchments
across the US; and (e) use the Tokunaga parameters as discriminatory metrics to explore
climate effects on network topology. We find that the TSS assumption cannot be rejected in
the majority of the examined river networks. The theoretical expression for the Horton ratios
based on the estimated Tokunaga parameters in the TSS networks provides a significantly
better approximation to the true ratios than the conventional linear regression approach. A
correlation analysis shows that the Tokunaga parameter c, which determines the degree of
side-branching, exhibits significant dependence on the hydroclimatic variables of the basin:
storm frequency, storm duration, and mean annual rainfall, offering the possibility of
relating climate to landscape dissection. While other possible physical controls have been
neglected in this study, this result is intriguing and warrants further analysis.
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1. Introduction

[2] The branching structure of river networks has been
actively studied since the 1960s, to address a broad range
of hydrological, geomorphological, and environmental
problems. Specifically, the attention of the hydrologic com-
munity has been traditionally drawn by the connections
between the river network topology and the hydrologic
response. An extensive literature therefore exists in this area,
starting with the work of Kirkby [1976], and Rodriguez-Iturbe
and Valdes [1979] and followed by numerous other studies
reviewed in Rodriguez-Iturbe and Rinaldo [1997]. The river
network structures have also been shown to constitute a dom-
inant control for other observed natural processes, such as

stream biodiversity, riparian vegetation functioning, bed
load sediment size distribution, and food web structures
[e.g., Muneepeerakul et al., 2008; Power and Dietrich,
2002; Kiffney et al., 2006; Sklar et al., 2006; Stewart-Koster
et al., 2007].
[3] The ability to characterize a river network via its topo-

logical properties is a powerful tool to approach the above
problems. It allows one to quantitatively describe the connec-
tions between the network properties and various observed
processes that operate on the network, as well as to perform
comprehensive numerical simulations aimed at hypothesis
testing and improving the understanding of the network
dynamics. For example, the observed scaling relationships
between hydrologic (e.g., annual peak flow) and geomor-
phic (e.g., drainage area, width function peak) variables
have been frequently studied through ensemble simulations
of synthetic river networks [e.g.,Menadbe et al., 2001; Veitzer
and Gupta, 2001].
[4] A commonly accredited property of river networks,

based on empirical observations, is the so-called Tokunaga
self-similarity (TSS) [Tokunaga, 1966, 1978], which consti-
tutes a standard assumption in river network modeling. The
Tokunaga self-similar model has two assumptions: (1) the
mean number Tij of branches of order i that merge with a
randomly selected branch of order j does not depend on
the branch orders, only on the difference j-i; and therefore
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Ti(i+ k) = Tk for any i, k ≥ 1; and (2) the numbers Tk obey the
exponential relationship Tk= ac

k� 1 for two positive topo-
logical constants a and c. Since Peckham [1995a, 1995b],
the Tokunaga model has been gaining increasing popularity,
not limited to the hydrologic literature, and constitutes now
a ”benchmark criterion” for current network modeling
approaches [e.g., Tarboton, 1996; Newman et al., 1997;
Dodds and Rothman, 1999; Cui et al., 1999; McConnell and
Gupta, 2008].
[5] The Tokunaga self-similarity assumption of river

networks is generally accepted in the literature. However,
to the best of our knowledge, a data-based support for TSS
has been provided only in a few studies [i.e., Tokunaga,
1966; Peckham, 1995a, 1995b; Peckham and Gupta, 1999;
Tarboton, 1996] and for a very limited number of basins;
most of the subsequent works on the Tokunaga model refer
to these studies. Moreover, when the TSS property was
reported, data limitations often precluded a rigorous analysis
and hypothesis testing. For example, Peckham [1995a]
noted that the values of Tk from two real networks “appear
to fluctuate about fairly stable values”. While this observa-
tion suggested that the considered networks are self-similar,
no formal test was applied to investigate whether or not the
reported fluctuations were statistically significant.
[6] Studies that statistically confirm (or reject) the TSS

property over a range of different climatic and topographic
regions are still lacking. An important related question is
whether the Tokunaga parameters a and c show a characteris-
tic value or a range of values. For example, Cui et al. [1999]
argued that these parameters can be interpreted as representing
the effects of regional controls. Moreover, as noticed by
McConnell and Gupta [2008], it is reasonable to expect some
physical restrictions on the values of a and c, based on the
typically observed Horton ratios (i.e., common descriptors of
the topological structure of river networks based on a hierar-
chal ordering of their tributaries) [Horton, 1945]; however
such restrictions are yet to be explored.
[7] Motivated by this growing interest in the Tokunaga

model and by the lack of a rigorous, data-based testing
procedure for the Tokunaga self-similarity, the current study
has the following main goals: (1) To identify a set of formal
statistical methods, that allows to analyze the topology of the
river networks and to estimate the accuracy of these meth-
ods; (2) to evaluate, on the basis of an extensive dataset,
whether the Tokunaga self-similarity assumption for river
networks holds across different climatic and topographic
regions; (3) to evaluate the range of the Tokunaga parameters
(a,c) in the analyzed Tokunaga self-similar river networks; (4)
to investigate whether the distribution of side-branches is geo-
metric as suggested by previous theoretical [Burd et al., 2000]
and empirical [Troutman, 2005;Mantilla et al., 2010] studies;
and (5) to explore whether the Tokunaga parameters can serve
as discriminatory metrics to understand the controls on land-
scape dissection and river network topology. It should be clear
that the focus of this work is solely on the topology of river
networks, as we do not consider any geometrical characteris-
tics such as channel lengths or drainage areas. As extensively
discussed in section 2, when a river network is found to be
TSS, its topology can be completely characterized, in an
average sense, by the values of the two Tokunaga parameters,
which also define analytically the topological Horton ratios.
Moreover, if the distribution of side-branches is geometric

(or any other one-parameter distribution), the branching struc-
ture of the TSS networks admits also a rigorous probabilistic
characterization, based solely on the Tokunaga parameters.
Therefore, not only will these results improve our understand-
ing of the topological structure of river networks, but also they
will give more confidence (on the basis of the extensive data-
set analyzed) in the parameterization of current river network
models. As illustrated in section 3, the topological properties
are evaluated using well known statistical methods, whose
performance is studied using numerical simulations in section
4 to address goal 1. In particular, in section 4 we apply the
proposed tests to a set of synthetic TSS trees for which we
know a priori the true TSS parameters. We then assess the
ability of the proposed tests to accurately estimate these prop-
erties, as well as define the confidence level associated with
these tests. In section 5 the proposed statistical methodologies
are applied to 408 real river networks extracted from 50 catch-
ments across the continental United States (goals 2, 3, and 4).
[8] Recently,Mantilla et al. [2010] have analyzed 30 river

basins to test a particular form of statistical self-similarity
used in the Random Self-similar Network (RSN) model of
Veitzer and Gupta [2000], as well as to evaluate the range of
variability of the RSN parameters. The RSN and Tokunaga
models use different mechanisms of generating a self-similar
topology: the Tokunaga model uses an appropriate random
sampling of side branches [e.g., Cui et al., 1999], while
the RSN model uses an iterative replacement of randomly
sampled network generators [Veitzer and Gupta, 2000].
Our results hence complement those of Mantilla et al.
[2010] in building a solid empirical basis for the theoretical
results on river network topology.
[9] The rather wide range of the TSS parameter c found

from a large number of catchments across the US prompts
the question as to what physical parameters might affect the
topological structure of a river network and whether the
Tokunaga parameters can serve as metrics to explore this
question (goal 5). Although a complete answer to this question
would require extensive study of climatic, geologic, ecologic,
and soil properties of the catchments, we present in this study
(section 6) a preliminary analysis of the dependence of the
parameter c on a range of hydroclimatic variables and report
significant dependence. We interpret this result as encourag-
ing, prompting further study on the connection between
landscape forming processes and fluvial network topology.
Discussion of our results and suggestions for future research
are given in section 7.

2. Review of Horton and Tokunaga Self-Similarity

2.1. Horton-Strahler Orders and Tokunaga Indices

[10] A stream network is represented here by a planar
rooted tree T, as illustrated in Figure 1. It is composed of
sources (channel heads), vertices (stream junctions), edges
(stream links) and a root (basin outlet).
[11] The Horton-Strahler (HS) ordering of river tributaries

was initially outlined by Horton [1945] and later refined by
Strahler [1957]. The HS order is defined to be the same for a
stream junction and the immediate (unique) downstream
link. The HS ordering of the streams in a tree is performed
in a hierarchical fashion, from the sources to the outlet, as
follows [Horton, 1945; Strahler, 1957; Newman et al.,
1997; Burd et al., 2000]: (1) each source has order r
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(source) = 1; (ii) when two streams, c1, c2, of the same order
r meet, they form a stream p of order r(p) = r + 1; (iii) when
two streams of different orders meet, they form a stream p of
the highest order of the two. Figure 2a illustrates this defini-
tion, which can be formally written as
[12] A branch is defined as a union of connected links

with the same order. The branch junction nearest to the root

is called the initial junction, the junction farthest from the
root is called the terminal junction. The orderΩ(T) of a finite
network T is the order of its root, or, equivalently, the
maximal order of its links (or junctions). The magnitude mi

of a branch i is the number of sources upstream to its initial
junction. In what follows, Nr will denote the total number of
branches of order r, Mr the average magnitude of branches
of order r and Cr the average number of stream links in a
branch of order r in a finite tree T.
[13] The Tokunaga indexing [Tokunaga, 1966, 1978;

Peckham, 1995a, 1995b; Newman et al., 1997] extends the
Horton-Strahler ordering by cataloging side-branching, that
is the merging of streams of different orders; it is illustrated

in Figure 2b. Let t lð Þ
ij , 1 ≤ l ≤Nj, 1 ≤ i< j ≤Ω denote the num-

ber of branches of order i that join the nonterminal junctions

of the l-th branch of order j. We defineNij ¼
X

l
t lð Þ
ij , j> i as

the total number of branches of order i that join a branch of
order j in a tree T. In a finite tree of orderΩ ≥ j, the Tokunaga
index Tij is defined as the average number of branches of
order i< j per branch of order j:

Tij ¼ Nij

Nj
: (2)

2.2. Horton Self-Similarity

[14] The topological Horton laws, widely observed in
hydrological and biological networks [Turcotte et al., 1998;
Horton, 1945; Veitzer and Gupta, 2000;Dodds and Rothman,
2000], state, in their ultimate form, the equality of the ratios
of various branch statistics for two consecutive orders. For
instance, the commonly studied Horton laws include

Nr

Nrþ1
¼ RB;

Mrþ1

Mr
¼ RM ;

Crþ1

Cr
¼ RC ; (3)

for an appropriate range of orders r and some positive con-
stants RB,RM, and RC. Recall that Nr andMr are, respectively,
the total number and average magnitude of branches of order
r, and Cr is the average number of links within a branch of
order r in a finite tree of order Ω. The Horton laws imply,
in particular,

Nr � M�a
r as r ! 1; a ¼ logRB

logRM
; (4)

which explains why the Horton laws can also be called
Horton self-similarity.McConnell and Gupta [2008] empha-
sized the approximate, asymptotic nature of the empirical
statements (3) and the necessity to consider an appropriate
limit of the ratios of the branch statistics. Often, the Horton
laws are stated as the convergence of the ratios of the branch
statistics as the tree order increases [Peckham, 1995a;
McConnell and Gupta, 2008]:

Nr

Nrþ1
! RB > 0; as Ω� r ! 1; (5)

Mrþ1

Mr
! RM > 0; as r;Ω ! 1; (6)

Figure 1. A river basin (panel a) and its representation by a planar rooted tree (panel b).

Figure 2. Example of (a) Horton-Strahler ordering, and of
(b) Tokunaga indexing. Two order-2 branches are depicted
by heavy lines in both panels. The Horton-Strahler orders
refer, interchangeably, to the stream joints or to the immediate
upstream links. The Tokunaga indices refer to the entire
branches, and not to individual joints or links.

r pð Þ ¼ r c1ð Þ þ 1 if r c1ð Þ ¼ r c2ð Þ;
max r c1ð Þ; r c2ð Þf g if r c1ð Þ 6¼ r c2ð Þ:

�
(1)
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Crþ1

Cr
! RC > 0; as r;Ω ! 1: (7)

[15] Here the limit constants RB,RM,RC are called Horton
ratios. Notice that the convergence in (5) is seen for the
small-order branches, while the convergence in (6) and (7)
for large Ω and large-order branches.
[16] In a probabilistic set up, one considers a space of finite

binary trees with an appropriate probability measure [e.g.,
Burd et al., 2000; Veitzer and Gupta, 2000; Zaliapin and

Kovchegov, 2011]. Then the statistics Nr, Mr, Cr, t lð Þ
ij , Nij,

and Tij become random variables and the convergence in
(5) – (7) should be understood in a suitable probabilistic sense.

2.3. Tokunaga Self-Similarity

[17] In a deterministic setting, we call a tree T of order Ω a
self-similar tree if its side-branch structure is (1) the same
for all branches of a given order:

t lð Þ
ij ¼ Tij; 1 ≤ l ≤ Nj; 1 ≤ i < j ≤Ω; (8)

and (2) invariant with respect to the branch order:

Ti iþkð Þ :¼ Tk for 2≤ iþ k≤Ω: (9)

A Tokunaga self-similar (TSS) tree obeys an additional con-
straint first considered by Tokunaga [1978]:

Tkþ1=Tk ¼ c , Tk ¼ ack�1 a; c > 0; 1≤k≤Ω� 1: (10)

[18] Here, the pair (a,c) is called Tokunaga parameters.
[19] In a random setting, we say that a random tree T of

order Ω is self-similar if

E t jð Þ
i iþkð Þ

h i
:¼ Tk for 1≤ j≤Niþk ; 2≤ iþ k≤Ω: (11)

[20] A self-similar random tree is called Tokunaga self-
similar if, furthermore, the condition (10) holds.
[21] In a deterministic tree that satisfies both the Horton

and Tokunaga self-similarity laws, one has [Tokunaga,
1978; Peckham, 1995a]:

RB ¼
2þ cþ aþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ cþ að Þ2 � 8c

q
2

; (12)

RC ¼ c: (13)

[22] Peckham [1995a] has noticed that in a deterministic
Tokunaga tree of order Ω one has Nr=MΩ� r+ 1, which
implies that the Horton law (6) for magnitudes Mr follows
from the Horton law (5) for the counts Nr, and vice versa,
with RM=RB. He also conjectured that RC<RB. McConnell
and Gupta [2008] have demonstrated that both the asymp-
totic Horton laws (5), (6) with RB=RM follow from the
Tokunaga self-similarity (10).
[23] Given the random nature of natural processes, in

the analysis of real river networks it is appropriate to use
the probabilistic definitions of the Horton and Tokunaga
self-similarity. This means that a tree T that describes a
given stream network is considered as a random tree from

a space T of finite binary trees with some probability mea-
sure P. The next section describes the statistical inference
about random trees.

3. Statistical Inference About Random Trees

[24] This section introduces statistical tests for self-
similarity, Tokunaga self-similarity, and the distribution of

the side branch counts t lð Þ
ij in a finite random tree T as well

as the estimation procedures for the Tokunaga parameters
and Horton ratios.

3.1. Testing the Self-Similarity Hypothesis

[25] The definition (11) of self-similarity in a random tree

deals with the side-branch counts t lð Þ
ij , which may have a

joint distribution with distinct marginals and complicated
correlation structure. Accordingly, a direct statistical test of
(11) in a single tree will hardly have a reasonable power.
To address this issue in a practical fashion, we introduce
the following two assumptions:

• (A1) the side-branch counts t lð Þ
ij , for different values of the

triplet (i,j,l), are independent random variables;
• the side-branch counts t lð Þ

ij for a fixed pair (i,j) and 1 ≤ l ≤
Nj can be considered a sample (i.e., a set of independent
identically distributed random variables) from a random
variable that we denote by tij.

[26] Under the assumptions (A1)-(A2) the tree self-
similarity is equivalent to the null hypothesis

H0 : E tij
� � ¼: Tj�i; 1≤ i < j≤Ω; (14)

which can be tested using the analysis of variance (ANOVA)
framework. Specifically, the above composite null hypothesis
is composed of Ω� 2 individual hypotheses, each of which
corresponds to a fixed difference 1≤ j� i= k≤Ω� 2 and can
be verified by an ANOVA test with the P-value Pk:

H0;1 : E t12½ � ¼ E t23½ � ¼ . . . ¼ E t Ω�2ð Þ Ω�1ð Þ
� � ¼ E t Ω�1ð ÞΩ

� �
;

H0;2 : E t13½ � ¼ E t24½ � ¼ . . . ¼ E t Ω�2ð ÞΩ
� �

;

. . .

H0; Ω�2ð Þ : E t1 Ω�1ð Þ
� � ¼ E t2Ω½ �: (15)

[27] The case j� i=Ω� 1 includes a single random vari-
able t1Ω and hence is not tested.
[28] The overall decision in the above multi-comparison

test is based on the analysis of the multiple P-values, Pk,
k = 1, . . .,Ω� 2. Specifically, we fix the confidence level
0< bs< 1 and reject the null hypothesis if at least one
of the P-values is below bs, that is if at least one of
our individual hypotheses H0,k is rejected at level bs. In
short, the null hypothesis is rejected if minkPk<bs. This
procedure results in rejecting proportion as of true null
hypotheses, where as ≥ bs with equality attained only for
Ω = 3 when we work with a single null hypothesis H0,1.
In case of a composite null, Ω> 3, there exist various
approaches to find an appropriate corrected level bs for a
given level as. The simplest is the Bonferroni correction,
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which suggests bs= as/(Ω� 2); seeWestfall et al. [2011] and
references therein for an overview on multiple comparison
tests. In this study we will use simulations to find bs for a
given as. The qualitative conclusions of this study remain
valid when using Bonferroni or other conventional correc-
tions. For a tree that passes the above test, we will say
that the hypothesis of self-similarity cannot be rejected at
a confidence level as.
[29] A couple of comments are in order about the proper-

ties of the proposed test and the validity of its main assump-

tions. First, we notice that the random variables t lð Þ
ij may

have different variance for different l. This effect is called
heteroskedasticity, and it is known to affect the ANOVA
test. However, it is also known that ANOVA is robust with
respect to a mild heteroskedasticity [Turner and Thayer,
2001]. The results of Peckham and Gupta [1999], further-

more, support the assumption that the variance of t lð Þ
ij is

not varying much for a given (j-i).
[30] The proposed test relies on the validity of the

assumptions (A1)-(A2), which is hardly possible to test in
real basins. These assumptions, however, seem to be not
completely unrealistic in the light of the existing empirical
evidence [Peckham, 1995a; Peckham and Gupta, 1999;
Mantilla et al., 2010]. Moreover, in the above hypothesis
testing the primary concern is about the independence of
the samples within the same hypothesis H0,k. We notice that
those samples are always collected over distinct, physically
separated stream branches, which provides an intuitive
justification for our assumptions.
[31] Finally, our test is applied to discrete random vari-

ables, with approximately geometric distribution [see section
3.4 and Peckham and Gupta, 1999], while the classical
ANOVA test is designed for continuous Normal random
variables. Our experiments with synthetic SST trees with
geometric number of side branches in section 4 demonstrate
that the values of Pk are (1) independent and identically
distributed, so that each individual null hypothesis has the
same chance to be rejected, and (2) the nominal (bs) and

actual b̂s

� �
levels in each individual test are very close for

bs> 0.05, while for smaller values, bs< 0.05, the actual
levels are higher, b̂s > bs (not shown). In other words, the
numerical experiments produce a larger number of very
small P-values than expected in a Normally distributed
population. This effect is due to the discrete nature of
the distribution of side-branch numbers; it motivates us to
rely on numerically estimated significance levels bs in this
study.

3.2. Testing the Tokunaga Self-Similarity and
Estimating the Tokunaga Parameters

[32] If a tree T passes the self-similarity test described
above, the next question is whether the tree is also Tokunaga
self-similar, according to the condition (10). We notice that
even if the null hypothesis (14) is not rejected, one does
not know the values Tk of the Tokunaga coefficients. Hence,
testing the Tokunaga constraint (10) in a self-similar tree is a
complementary statistical problem. The first step to its
solution is the pooled estimation of the Tokunaga coefficients,
which will be done by the maximal likelihood method:

T̂ k ¼ 1

nk

XΩ�k

i¼1

Ni iþkð Þ ¼ 1

nk

XΩ�k

i¼1

XNiþk

l¼1

t lð Þ
i iþkð Þ; 1≤ k ≤Ω� 1; (16)

where nk ¼
XΩ

i¼kþ1
Ni is the number of branches of order

equal or larger than k + 1. The testing of the Tokunaga

constraint (10) is done here by analysis of the goodness of
fit of an additive linear model

log10T̂ k ¼ k � 1ð Þlog10ĉ þ log10â þ ek ; k ¼ 1; . . . ;Ω� 1

for a suitably chosen parameter estimation â; ĉð Þ. The good-
ness of fit is measured by the coefficient of determination

R2 ¼ 1�
X

k
e2kX

k
T̂ k � �T
� 	2 ; (17)

where

�T ¼ 1= Ω� 1ð Þ
XΩ�1

k¼1

T̂ k :

[33] The coefficient R2 can take values in the interval [0,1]
with R2 = 1 indicating a perfect linear fit.
[34] A tree T will be called Tokunaga self-similar if the

respective coefficient of determination R2 is above a pre-
defined value R2

0 , which is determined on the basis of
extensive numerical simulations of synthetic TSS trees, as
discussed in section 4.
[35] It seems natural to estimate the parameters (a,c) in the

above model by the least squares method (LSM), that is
minimizing the sum of squared residuals

X
k
e2k in the log-

log form of equation (10). However, as demonstrated below,
this results in dependent estimators â; ĉð Þ, which is inconsis-
tent with the Tokunaga self-similarity set-up. In fact, the
regular LSM gives the same weight to all the indices T̂ k ,
while the number of branches used to calculate the indices
according to (16) exponentially decreases with k.
[36] This motivates us to use a weighted least squares

method (WLSM), according to which the estimated â and
ĉ minimize the quantity

X
k
wke2k where wk is a weight de-

termined by the number zk of branches used to estimate T̂ k:

zk ¼
XΩ�k

i¼1

XNiþk

l¼1

1: (18)

[37] The application of this method to TSS trees (see
section 4) suggests that wk ¼ ffiffiffiffi

zk
p

represents a good choice
for the weights. It can be shown that these weights produce
the same result as the least square linear regression that would
use zk values T̂ k at point k. The respectiveWLSM significantly
reduces the dependence of the pair (̂a, ĉ) and leads to a smaller
variance of the estimated parameters than the one produced
with unweighted LSM.

3.3. Estimating the Horton Ratios

[38] The Horton ratios are commonly estimated [Peckham,
1995a; Peckham and Gupta, 1999; Furey and Troutman,
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2008], from the best linear interpolation to the logarithms of
the branching statistics. This approach is based on an alterna-
tive form of the Horton laws, which we give here only for Nr:

Nr � N0R
Ω�r
B ; Ω� r ! 1;

where xr� yr stands for limr!1xr/yr = 1. For instance, the
estimator of RB is constructed as R̂B ¼ 10b , where b is the
slope of the best least squares fit to the linear model

log10Nr ¼ A� br þ er:

[39] Here we also test an alternative approach that directly
uses the ratios of the branch statistics. We call this approach
sample average ratio method as we consider the following
estimators of the Horton ratios in a finite tree T of order Ω:

R̂B ¼ 1

Ω� 1

XΩ�1

r¼1

Nr

Nrþ1
; R̂M ¼ 1

Ω� 1

XΩ�1

r¼1

Mrþ1

Mr
;

R̂C ¼ 1

Ω� 1

XΩ�1

r¼1

Crþ1

Cr
: (19)

[40] Since the convergence happens for high orders
(equations (6), (7)), we expect these methods to be biased
as they use all the orders. Therefore, these estimated ratios
will be also compared with those theoretically predicted in
a TSS tree by the Tokunaga parameters according to the
equations (12), (13).

3.4. Testing the Distribution of Side-Branch Counts

[41] Beyond testing the river network topology, our analy-
sis is further extended to testing the distribution of the
number of side-branches. In particular, we test whether the

distribution of the side-branch counts t lð Þ
i iþkð Þ , for each fixed

order difference 1 ≤ k ≤Ω� 1, is geometric. The geometric
hypothesis is motivated by the works of Burd et al. [2000],
who proved that for the critical binary Galton-Watson tree,
also known as Shreve’s random topology model, the distri-
bution of side-branch count is geometric; Mantilla et al.
[2010], who have shown qualitatively that the number of
internal and external nodes of the branches in real stream
networks follows a geometric distribution; and Peckham
and Gupta [1999], who showed empirical distributions for
the side-branch counts in real rivers that are reminiscent of
the geometric distribution.
[42] The goodness of fit of the geometric distribution is

sometimes evaluated using the w2 test, which is known to
have low power, especially when sample sizes are small
[Bracquemond et al., 2011]. In this study, the hypothesis
of geometrically distributed side-branch counts is tested on
the basis of the generalized Smirnov transformation (GST)
[Nikulin, 1992], which allows the transformation of a geo-
metric sample into an exponential sample. This method
was applied by Bracquemond et al. [2011] to the goodness
of fit for the geometric distribution and can be summarized
as follows. The samples to be tested are first transformed us-
ing the GST, then the well-known Kolmogorov-Smirnov
test is applied to test the exponential null hypothesis in the
transformed samples. The Kolmogorov-Smirnov test is run
for each of the order differences, 1< k<Ω� 1, thus

producing (Ω� 1) individual P-values. The null hypothesis
is rejected when the smallest P-value is smaller than the cor-
rected level bg for a suitable significance level ag. The cor-
rected level bg is determined by numerical experiments in
SST trees with geometric number of side branches. The
qualitative conclusions of this study remain the same if one
will use the Bonferroni or any other conventional level
correction.

4. Monte Carlo Evaluation of the Statistical
Inference Methods

[43] This section applies the inference methods introduced
in section 3 to synthetic Tokunaga trees with geometric

distribution of the side-branch counts t lð Þ
ij . Our goal is to eval-

uate the statistical tests illustrated in section 3. To this end,
in what follows we will apply the statistical tests to the
synthetic TSS trees and evaluate the ability of the methods
to capture the analyzed properties (i.e., self-similarity,
Tokunaga self-similarity and geometric distribution of side-
branches). In this way, for each test we can also estimate
the actual significance level to be used in the analysis of real
river networks as well as determine the accuracy in the esti-
mation of the Tokunaga parameters and the Horton ratios.
[44] A synthetic TSS tree of order Ω with the Tokunaga

parameters (a,c) is constructed using the following recursive
procedure. A tree of order Ω = 1 consists of a single root ver-
tex and a root edge. To construct a tree of order Ω> 1, start
with a perfect binary tree of order Ω; this tree has 2Ω� 1

leaves of the same depth Ω� 1. Assign Horton-Strahler
orders to the vertices of this tree; in this simple case the order
r is related to the vertex depth d via r =Ω� d+ 1. Each
branch in this tree consists of a single edge. To each branch
of order 2 ≤Ω0 ≤Ω attach a random number of side-branches
of smaller orders Ω00 =Ω0 � k, k= 1, . . .,Ω0 � 1. The random
number of side-branches of order Ω0 � k is drawn from the
geometric distribution with mean Tk, which is given by
(10). The order of attachment of side-branches to a given
branch is random: all permutations of the side branches are
equally likely. Each side branch of order Ω00 <Ω is con-
structed using the same procedure. The ability to construct
a tree of order Ω = 1 ensures that this recursive procedure
is well defined.
[45] For this analysis we considered 70 pairs of the

Tokunaga parameters (a,c) that uniformly cover the range
0.9 ≤ a ≤ 1.3, 2 ≤ c ≤ 3.4. This range is chosen to surround
the values of the Tokunaga parameters found for the real
river networks: (a,c)� (1.0,2.5) [see Peckham, 1995a; Burd
et al., 2000; Peckham and Gupta, 1999; and section 5
below]. Contour plots shown in Figure 4 show how 70 pairs
of Tokunaga parameters are indeed enough to assess the
accuracy of the analyzed methods. For each pair of the
Tokunaga parameters we analyzed 1000 independent
Tokunaga trees, as for a higher number of trees the results
did not change significantly. It was observed that results
slightly vary with the order of the synthetic networks and
in particular the efficacy of the statistical tests increases with
the order, or, in other words, the larger the order the stricter
the test. This implies that for a conservative assessment of
the test efficiency we would need to use synthetic trees with
large order; however, given the small number of order 8 and
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9 river networks in our data set (see section 5) we used
synthetic trees of order Ω = 7, which was the order of the
majority of the catchments considered. During the self-
similarity analysis, in simulations as well as in observations,
we do not consider branch statistics related to the highest
tree order: NΩ, Nk,Ω, and Tk,Ω. Hence, instead of working
with a tree of order Ω = 7 we work with a forest of trees of
order Ω= 6. This truncation is motivated by the fact that
the branch of the largest order might behave statistically
different from the theoretical predictions because of the
finite-size effects.

4.1. Self-Similarity and Geometric Distribution

[46] The main goal here is to compare the nominal and
actual significance levels in testing the self-similarity and geo-
metric null hypothesis via the ANOVA and the Kolmogorov-
Smirnov approaches, respectively. Specifically, we used the
simulations to compare the nominal significance level a and
the actual proportion of experiments when the true null
hypothesis is rejected. For each Tokunaga pair (a,c) we
found the levels bs(a,c) and bg(a,c) that correspond to
rejecting the true null (multi-comparison) hypothesis in
5% of the examined trees (50 out of 1000). Recall that the
null is rejected when P0 =minkPk< b. Our simulations
resulted in a set of bs values (one for each pair of Tokunaga
parameters) with the average of �bs ¼ 0:0052 and sample
standard deviation of sbs ¼ 0:002; and a set of bg values
with the average of �bg ¼ 0:004 and sample standard devia-
tion of sbs ¼ 0:002. These levels are used in the data analy-
sis of section 5 for the tests on network self-similarity and
geometric distribution of side-branches, respectively.

4.2. Tokunaga Self-Similarity and Parameters

[47] We start by comparing the properties of the esti-
mates of the Tokunaga parameters using the least squares
method and weighted least squares method introduced in
section 3.2. Figure 3 shows the parameters (a,c) estimated
by the LSM (Figure 3a) and by the WLSM (Figure 3b). It
is clear that the LSM leads to a significant correlation

between the parameters, which is largely reduced with the
WLSM. Moreover, the plots show that WLSM clearly out-
performs the LSM in terms of accuracy. Further analyses
(not shown) suggested that the square root of the set sizes
considered to estimate the Tokunaga indices Tk (equation
(18)) is a suitable choice for the weights. In this study we
will therefore use the weighted least squares estimation
procedure.
[48] The mean errors< a� â > and< c� ĉ >, where< �

> indicates the sample average, were statistically indistin-
guishable from zero in all experiments. In particular, for all
the pairs of Tokunaga parameters the mean errors of â ranged
from� 3� 10� 4 to� 9� 10� 4, whereas the mean errors of ĉ
ranged from 1.6� 10� 2 to 2.2� 10� 2. The reported devia-
tions from zero are orders of magnitude smaller than the
respective standard deviations, shown in Figure 4. This sug-
gests that the proposed estimators are unbiased; or at least
asymptotically unbiased if one takes into account the fact that
all errors for each estimator have the same sign. Figure 4a
shows the sample standard deviation sâ of â, which is always
relatively small, regardless of the Tokunaga parameters (a,c).
We also notice that sâ seems to be independent of a and it
decreases as c increases. The sample standard deviation sĉ of
ĉ (panel b) is generally larger, ranging between 3% and 8%
of the true value of c. The standard deviation sĉ seems to
increase as a function of c-a.
[49] Figure 4c shows the threshold value of the coefficient

of determination,R2
0, that corresponds to the Monte Carlo con-

fidence level of 5%. This means that the rejection criterion
R2 < R2

0 resulted in rejecting the true null hypothesis about
the Tokunaga self-similarity in 5% of the examined trees (50
out of 1000). The threshold value varies between 0.6 and
0.9; it tends to increase as a+ c increases. This behavior of
R2
0 reflects the fact that smaller values of a and c correspond

to smaller sample sizes for t lð Þ
i iþkð Þ and hence to a larger scatter

of the estimated coefficients T̂ k . For the rejection criterion
applied to real river networks in section 5 we will refer to
R2
0 ¼ 0:8 as this was the average value calculated in these

numerical simulations.
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Figure 3. Estimation of the Tokunaga parameters (a, c) via the least squares method (panel a) and the
proposed weighted least squares method (panel b). The weighted least squares method significantly
reduces the dependence between a and c, as well as the variance in the estimations. True values of a = 1.1
and c = 2.5 were used for this simulation.
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4.3. Horton Ratios

[50] Figure 5 compares the distributions of the estimated
Horton ratios in the simulated networks with the respective
theoretical values. We used here the three estimation meth-
ods described in section 3.3: regression estimation, sample

average ratio estimation, and prediction from the estimated
Tokunaga parameters. For this simulation we used 1000
Tokunaga networks with a single Tokunaga pair a = 1.1
and c = 2.5.
[51] The regression and average ratio methods seem to be

equally effective and they both underestimate the theoretical
Horton ratios. At the same time, the Horton ratios predicted
from the estimated parameters â and ĉ are significantly more
accurate. This suggests that if a river network passes the TSS
test, more accurate estimates of the Horton ratios of this
network can be obtained by equations (12) and (13) than
the conventional log-log regression.
[52] Figure 6 shows the estimated ratios Nr+1/Nr,Mr+1/Mr,

and Cr+1/Cr as functions of the order r, for the 1000 synthetic
Tokunaga networks. The figure illustrates that the uncertainty
in the Horton ratios varies with the order r and clearly shows
the bias in the estimation of RM and RC for low orders. As
pointed out before, this bias is expected, since the convergence
to these Horton ratios happens for high orders, see (6), (7).
However, as noticed also by Peckham [1995a], the actual rate
of convergence in the Horton laws is fast, and the limiting
value is reached as fast as for r≥ 3. The deviations of the
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Figure 5. Distribution of the estimated Horton ratios for
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estimated RC from the theoretical values for large orders is
explained by the fact that the number of high-order branches
is too small to produce sufficiently large samples of branch
statistics. This effect further contributes to the uncertainty in
the estimation of the Horton ratios.
[53] Results produced by these simulations will guide

the calculation of the Horton ratios for real river networks
(section 5). In particular, we will compare the Horton ratios
obtained on the basis of the Tokunaga parameters with those
obtained with the regression method as the sample average
estimated method is shown to produce similar results.

5. Analysis of Real River Networks

5.1. Data

[54] We have analyzed 50 watersheds whose locations
sample different climatic and geographic regions of the
continental United States, as illustrated in Figure 7. The drain-
age areas of the examined basins range from 290 km 2 to 7200
km 2, and the Horton-Strahler orders of their stream networks
range from 6 to 9. All the catchments belong to the MOPEX
database; more information can be found at ftp://hydrology.
nws.noaa.gov/pub/gcip/mopex/. For each watershed, we
extracted the stream network from the 30 m Digital Elevation
Models (DEMs) available at http://seamless.usgs.gov/.
[55] Gesch [2007] estimated a mean relative accuracy of

1.64 meters, based on 13,000 high precision survey points
in the National Elevation Dataset. However, the relative
accuracy for the DEMs we used was not reported except for
a few cases. Studies have shown that, as the resolution of the
DEM increases, so does the uncertainty of the elevation
heights [e.g., Thompson et al., 2001; Erskine et al., 2007].
Therefore, while a higher resolution may increase the ability
to capture small-scale terrain features, the uncertainty in their
estimation may increase due to DEM’s errors. Besides, high
resolution DEMs (e.g., from LiDAR) are not available yet
for the large number of watersheds used in this study,
rendering such a detailed analysis infeasible. In the follow-
ing analysis it is shown that the extraction of topological
characteristics of river networks does not require the identi-
fication of small-scale landscape features, such as channel
heads, and that the estimated Tokunaga parameters are
pretty robust to the DEM’s resolution.
[56] The river network extraction was obtained by applying

the well-known criterion of the minimum contributing area
threshold [e.g., Tarboton et al., 1991], which determines
whether a pixel corresponds to hillslope or stream depending

0 2 4 6 8
2

2.5

3

3.5

4

4.5

5

ORDER 

ST
R

E
A

M
 R

A
T

IO
S

Nr /N r+1

Mr +1/Mr

Cr +1/Cr

THEORETICAL R
B

THEORETICAL R C

Figure 6. Estimated ratios Nr/Nr+ 1,Mr+ 1/Mr, and Cr+ 1/Cr

as functions of the order r, for 1000 simulated Tokunaga
networks with a = 1.1 and c = 2.5.

1
2

4

19

3

5

6

7

8

9

20

50

10

11

12

13

14

15

16

17

18

49

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Figure 7. Location of the examined catchments. The spatial variability of the underlying climatic
regimes is schematically represented through the mean annual precipitation. The map was obtained from
The National Atlas of the United States of America, http://nationalatlas.gov/. Climatic and geographic
characteristics for each catchment are reported in the supplementary material.

ZANARDO ET AL.: TOKUNAGA SELF-SIMILARITY

174



on whether its contributing area exceeds a fixed threshold. This
method is generally accepted for determining channel heads
from 30 m DEMs [e.g., O’Callaghan and Mark, 1984; Band,
1986; Mark, 1988; Tarboton et al., 1991; Gardiner et al.,
1991]. However, especially when higher resolution DEMs
are available, other methods have also been used to account
for other geomorphological characteristics such as terrain slope
and curvature [e.g., Peucker and Douglas, 1975; Montgomery
and Dietrich, 1992; Montgomery and Foufoula-Georgiou,
1993; Orlandini et al., 2003; Passalacqua et al., 2010]. The
main challenge with these methods is to predict the exact loca-
tion of channel heads on the basis of certain thresholds, that
vary both in space and time and whose estimation has been
proven daunting. To test the effect of different thresholds on
our study we repeated the analysis for threshold areas ranging
from 0.05 to 0.5 km 2. Interestingly, we found that our results
are only slightly affected by the area threshold, therefore we
will show here only the results relative to a threshold of 0.1
km 2, while results relative to other thresholds can be found
in the auxiliary material. The consistency of our results across
a range of thresholds may be attributable to the fact that our pri-
mary focus is on the river network topology; therefore we do
not necessarily need the exact location of channel heads, but,
for our purposes, it suffices to capture channelized valleys re-
gardless of where exactly the channels begin. Moreover, while
it is reasonable to expect that random gain (or loss) of extracted
low-order channels due to the variation of a threshold might af-
fect the identification of the analyzed network properties, it
should be noticed that the gain (or loss) due to the variation
of the area threshold is not completely random, given the docu-
mented scaling of the drainage area distribution in river basins
and its relationship with numerous network characteristics,
such as Horton-Strahler order and magnitude [e.g., Rodri-
guez-Iturbe and Rinaldo, 1997]. Indeed, the properties we are
analyzing (i.e., Tokunaga self-similarity, Tokunaga para-
meters, distribution of side-branches) are average scaling
properties and our analysis shows that their estimation is ro-
bust to the scale (threshold area) used to define the first-or-
der basins.

5.2. Results

5.2.1. Self-Similarity
[57] The self-similarity test was applied to each river

network extracted from all the basins or subbasins of order
Ω ≥ 6. Overall we analyzed 408 basins, of which 305 have
order Ω= 6, 78 have order Ω= 7, 22 have order Ω = 8, and
3 have order Ω = 9. Figure 8a shows the distribution of the
minimal P-values, P0, obtained in the ANOVA test of the
self-similarity hypothesis.
[58] Accordingly, approximately 96% of the examined

stream basins can be considered self-similar. The detailed
test results are reported in Table 1; the values are obtained
using the simulated corrected significance levels. It is interest-
ing to note that as we increase the area threshold the fraction of
networks that can be considered self-similar slightly increases
(see also the auxiliary material).
5.2.2. Tokunaga Self-Similarity
[59] The networks that passed the ANOVA self-similarity

test were further tested for the Tokunaga self-similarity.
Figure 8b shows the distribution of the values of the coeffi-
cient of determination, R2. The rejection threshold was set to
R2
0 ¼ 0:8 as this was the average value calculated from the
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Figure 8. Empirical cumulative distribution function of (a)
the P-values obtained in the ANOVA test of self-similarity,
(b) the coefficients of determination, R2, obtained in the test
for Tokunaga self-similarity, and (c) the P-values obtained
with the Kolomogorv-Smirnov test of geometric side-branch
counts. Results are reported separately for different network
orders. The acceptance thresholds (ACC. THRESH. in the
legend), shown in vertical dash-dotted lines, were obtained
from the numerical simulations of TSS synthetic networks
(with Ω = 7) and were chosen as the 5th percentile of the
statistics (i.e., ANOVA p-values, R2, and K-S p-value)
calculated from the simulated networks.

Table 1. Number and Percentage of Self-Similar (SS) and Tokunaga
Self-Similar (TSS) Networks, According to the Tests Described
in Section 3

# total # SS # TSS # SS # TSS

Order 6 305 298 247 98 83
Order 7 78 71 63 91 89
Order 8 22 20 16 90 80
Order 9 3 3 2 100 67
All orders 408 392 328 96 84
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numerical simulations (see section 4 and Figure 4c). The
detailed results of the test are summarized in Table 1. Anal-
ogously to the results on the self-similarity, the condition of
TSS was accepted for a large percentage of the self-similar
networks (approximately 84 %).
5.2.3. Tokunaga Parameters
[60] The Tokunaga parameters â and ĉ, estimated using the

weighted least squares method for the networks that have
passed the Tokunaga self-similarity test, are shown in Figure 9;
the respective mean and the standard deviation are reported in
Table 2. The variability of the estimators is relatively low for
the parameter a, which shows a standard deviation signifi-
cantly lower than that of c. Moreover, as the basin order
increases, the variability in the estimation of both a and c
decreases. Values of a and c do not vary significantly as the
area threshold changes (see auxiliary material) and, on
average, we consistently observed a value of a around 1.1
and a value of c ranging between 2.6 and 2.7, although the
spread around the mean value of c is larger for smaller-order
basins. These are consistent with the few values reported in
the literature; for example, Tarboton [1996] found (a=0.98;
c= 2.89) for the Buck Creek (NC) and Peckham [1995a]
found (a=1.2; c= 2.4) and (a= 1.2; c=2.7) for the Kentucky
River (KY) and the Powder River (WY), respectively.

5.2.4. Distribution of Side-Branch Counts
[61] Figure 8c shows the distribution of the P-values

obtained with the Kolmogorov-Smirnov test for the geomet-

ric distribution of the side-branch counts t lð Þ
ij . It is interesting

to observe that the fraction of networks with geometrically
distributed side-branches clearly decreases as the order of
the network increases. This result may be due to spatial
restrictions that come into play in large river basins, where
physical constraints may be encountered, thus producing
larger heterogeneity in sub-basin network topology. More-
over, the elongation of the basin which, according to the
well known Hack’s law [Hack, 1957], occurs as the drainage
area increases, might also limit the free development of
network side-branching.
[62] It should be pointed out that, in the majority of the

networks analyzed, the lowest P-value corresponds to the
count n1 and in many cases this was the only P-value lower
than the selected threshold, while all the other side-branch
counts of the network successfully passed the Kolmogorov-
Smirnov test. Therefore, if the count n1 was to be neglected,
significantly more networks would pass the test. Indeed, as
we increase the area threshold in the network extraction,
which generally implies the removal of the smaller-order
links, we observe that for a larger number of networks the
hypothesis of geometrically distributed side-branches is
satisfied (see the auxiliary material). Table 3 summarizes the
results of the Kolmogorov-Smirnov test. This result is impor-
tant as it implies that, for the majority of the river networks,
the only difference in the distribution of side-branches is
attributable to the Tokunaga parameters. Moreover, this
observation justifies the use of a geometric distribution of
side-branches for the simulation of synthetic river networks.
5.2.5. Horton Ratios
[63] For the networks that passed the Tokunaga self-

similarity test, we estimated the Horton ratios RB, RM and RC

using the regression approach (the sample average estimated
method was shown to produce similar results to the regression
approach, thus it will not be used here, see section 3.3) and
compared these estimates with the ratios computed from the
estimated Tokunaga parameters using (12) and (13). The
distributions of the ratio estimates with the two methods are
shown in Figure 10.
[64] As expected from the numerical simulations, the

regression-based estimates tend to be lower than those com-
puted from the parameters â and ĉ. The latter, according to
the simulations, are closer to the true values of the ratios,
that is the values that are computed from equations (12)
and (13) using the assigned values of a and c.
[65] Based on this analysis, the most reliable ranges for

the stream ratios (i.e., the ones produced by the Tokunaga
parameters) are 3.7 ≤RB =RM ≤ 5.7 and 1.8 ≤RC ≤ 4.2. It is
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Figure 9. Parameter space of the estimated Tokunaga
parameters â and ĉ for the 50 catchments considered.
Estimates are stratified by network order and the results
indicate that as the order increases the parameter space reduces
to a narrower range.

Table 2. Mean and Standard Deviation (in Parentheses) of the
Tokunaga Parameters â and ĉ

â ĉ

Order 6 1.1(0.1) 2.7(0.40)
Order 7 1.1(0.06) 2.7(0.26)
Order 8 1.1(0.07) 2.6(0.20)
Order 9 1.1(0.01) 2.6(0.08)

Table 3. Number and Percentage of Networks With Geometrically
Distributed Side-Branches (NGDS)

# total # NGDS % NGDS

Order 6 305 301 99
Order 7 78 71 91
Order 8 22 18 82
Order 9 3 0 0
All orders 408 390 96
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interesting to compare our ranges to those estimated by
Mantilla et al. [2010] using the expressions obtained by
Veitzer and Gupta [2000] and Troutman [2005] in their
random self-similar model for river stream networks. The
ranges reported by Mantilla et al. [2010] (i.e., 4.3 ≤RB ≤ 4.8,
2.3 ≤RC ≤ 2.7), which are based on 30 networks of orders 7
and 8 across the US, are comparable with ours. The larger
variability of our estimators is possibly due to the fact that
we considered a larger number of networks and also many
networks of order Ω = 6, which have been shown to bear a
larger topological variability. If we remove the 6-order
networks from our analysis the ranges of the stream ratios
become 4.2 ≤RB=RM ≤ 5.1 and 2.1 ≤RC ≤ 3.5. The mean of
RB=RM is 4.64 with a standard deviation of 0.19 and the
mean of RC is 2.67 with a standard deviation of 0.27.

6. Climatic Dependence of Tokunaga Parameters

[66] A question of significant interest is what physical
properties of a basin determine the river network structure.
While some studies have addressed this question focusing
on geometric characteristics of river networks such as the
drainage density [e.g., Leeder, 1993; Tucker and Bras,
1998], no studies so far have reported relations between
physical properties of a basin and river network topology.

Indeed, different basin properties may affect how river
networks are topologically structured such as topography,
geology, soil composition, vegetation, and climate. A full
exploration of these controls requires an analysis that is
beyond the goals of this paper. However, given the availabil-
ity of extensive climatic data for the MOPEX catchments, in
this section we explore whether a correlation exists between
climate and the Tokunaga parameters.
[67] A major effort of the MOPEX project has been to

assemble high quality historical hydrometeorological data-
sets for a wide range of river basins [Schaake et al., 2006].
The selected basins had to fulfill rigorous requirements and
a critical aspect was to have research quality estimates for
mean areal precipitation; for example, a minimum number
of rain gauges, as a function of the basin area, was defined
according to Schaake et al. [2000]. The trustworthiness of
this data-set is further strengthened by its use in many recent
studies [e.g., Zanardo et al., 2012 and references therein].
[68] The hydro-climatic properties we focus on in this

analysis are the average basin wetness at the mean annual
scale and the climatic storminess at the storm-event scale.
The following indicators were used as surrogates for these
hydro-climatic characteristics: (1) the mean annual rainfall
volume, P; (2) the mean storm frequency, l (i.e., the inverse
of the average number of days between the beginning of
consecutive storm events); and (3) the mean storm duration,
Δ. These quantities were computed for each basin using
40-50 years of daily rainfall series available in the MOPEX
data-set for each of the catchments considered.
[69] Interestingly, it was found that the parameter a did not

exhibit significant correlation with any of these climatic
indicators. This is not surprising given that a (i.e., the mean
number of k-order branches that drain into (k + 1)-order
branches) expresses only the 1-order difference between
merging channels (i.e., the most basic and robust property
of a directional hierarchical tree), and that it varies within a
pretty narrow range even for the large range of networks
analyzed (see Figure 9 and Table 2).
[70] On the contrary, the parameter c expresses the dis-

proportionality between the number of low- and high-order
channels, and it thus represents both the small- and large-
scale features of the network. It is important to note that a
large value of c indicates a large number of low-order chan-
nels with respect to the number of high-order channels and
therefore it characterizes a more “feathered” network. Given
the importance of the lower-order channels in the value of c
and given that their configuration involves smaller time
scales and is more dependent on external forcing compared
to that of higher order channels, it is reasonable to expect a
dependence between c and the hydro-climatology of the
basin, which is what our analysis indicates. Specifically,
Figure 11 shows the relationship between each of the
examined hydro-climatic indicators and the Tokunaga
parameter c estimated for all the analyzed basins. The results
were stratified to depict (a) only networks where the TSS
hypothesis was accepted with an R2 larger than 0.98, (b)
only networks where the TSS was accepted with R2> 0.9,
and (c) all the networks that exhibited Tokunaga self-
similarity in our analysis (based on the threshold of 0.8
identified in the simulations). This was done to differentiate
between three levels of confidence with which the TSS
hypothesis was accepted. It should also be noted that for this
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analysis we only considered 6-order networks. Given that
there is only one rainfall data-set for each basin, each point
in the plots of Figure 11 represents the average c among
the values computed for all the 6-order sub-basins in each
basin. This choice is motivated by the fact that larger
networks are more likely to encounter physical constraints
but also to cover different geological or tectonic regions,
which might somehow cloud the climatic control that is
explored in this analysis.
[71] Figure 11 suggests that c might have a nonnegligible

correlation with the three hydro-climatic variables P, l and
Δ. Table 4 reports the values of the Pearson’s linear correla-
tion coefficient for each of the cases considered as well as
the associated P-values, which express the probability of

obtaining the observed nonzero correlation coefficient in the
case when the correlation is actually zero. The coefficients
were found to be significant at 5% level for all the cases
considered except for the dependence on l in the networks
with R2> 0.98. Interestingly, as the confidence in the TSS of
the network increases (i.e., as we increase the lower bound
of R2), the correlation increases.
[72] While the correlation values are not extremely high,

further statistical tests show that they are in fact considerably
robust. In particular, the significance of these correlations
was confirmed using the following three approaches: (1)
bootstrap, (2) permutation, and (3) randomization analysis.
Details of this analysis are given in Appendix 1 and attest
the statistical significance as well as the robustness of the
reported correlations.
[73] It should be noticed that, in general, climate can have

a long term-effect on topographic characteristics, such as
slope and elevation, which, in turn, might affect the river net-
work topology. Therefore, the observed correlation between
climate and network topology might in fact include, or act as
a surrogate, of the possible dependence of network topology
on topography. To isolate the direct effect of topography on
topology, we explored the dependence of the parameter c on
six catchment-averaged topographical characteristics. The
six characteristics used are: mean, standard deviation and
maximum value of elevation and slope. Results are reported
in the auxiliarymaterial. Interestingly, while these topographic
indicators are correlated with the climatic variables, their
correlations with the parameter c are smaller (and less signifi-
cant) than those of the climatic variables. This further suggests
that climate may leave its distinct signature not only on the
average features of a landscape but also on the finer dissection
of the landscape as expressed by the topological structure of
river networks.
[74] It is important to point out that the highest values of

the correlation coefficients (ranging from 0.44 to 0.8) are
obtained using the area threshold of 0.09 km 2 for the
network extraction. As the area threshold increases, these
values tend to decrease and eventually, for the area threshold
larger than 0.3 km 2, no apparent correlation is observed
between c and the climatic variables considered. This is
not surprising as the effect of climate on topology is more
likely associated with the organization of channels at the
smaller (say 1 to 3 order watersheds) rather than larger
spatial scales; a large threshold misses these small scales
and makes it hard to discern possible climatic controls.
[75] The presented results are in agreement with one’s

intuitive expectations. Indeed, the results show that in the
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Table 4. Pearson’s Linear Correlation Coefficients, r, and the
Associated P-values (in Parentheses) for the Tokunaga Parameter
c and the Three Climatic Variables Considered: Mean Annual
Rainfall Volume, P; Mean Rainfall Frequency, l; and Mean Storm
Duration, Δa

P l Δ

R2> 0.80 0.51(0.001 ) -0.41(0.012) 0.40(0.013)
R2> 0.90 0.53(0.004) -0.51(0.005) 0.57(0.002)
R2> 0.98 0.58(0.037) -0.51(0.072) 0.59(0.03)

aThe correlation coefficients are computed after progressively refining the
dataset for an increasing value of the coefficient of determination, R2,
calculated to test the TSS hypothesis (section 3.2).
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catchments where rainfall is distributed in a few strong
events we observe higher values of c compared to the catch-
ments with less rainfall that is more uniformly distributed
in time. Recall now that as c increases, the number of low-
order branches that merge to the high-order branches also
increases; this creates an enhanced “feathering” of the
network. We find it reasonable that a more regular climatic
forcing generates a more regular landscape while scattered
strong events may cause a disproportional hierarchy of the
network branching.
[76] To better illustrate the concept of feathering described

by the parameter c we show in Figure 12 the comparison
between a 6-order network with c= 1.8, located within the
Kickapoo river basin (catchment number 29 in Figure 7,
WI), and a 6-order network with c = 4.9, located within
the Methow river basin (catchment number 15 in Figure 7,
WA). The climatic variables are Δ=3.8 d, l =0.15 d � 1, and
P=830 mm for the former, and Δ=6.5 d, l =0.1 d � 1,
and P = 916 mm for the latter. We chose this pair of net-
works because their difference is readily visible, however,
this difference is probably attributable not only to climate.
Indeed the two landscapes have also different physical
characteristics: the former, which is underlain by sedimentary
rock, is relatively flatter and with lower elevation than the
latter, which is underlain by plutonic rock and has steeper
slopes. We can observe two general features common to many
of the networks considered: (a) the merging angle between
two branches is usually wider for larger c’s and (b) when the
values of c are higher, there is usually more space between
branches of the same order. Both these observations suggest
that when c is large, the branches of the same order that run
relatively parallel and close to each other are rare. Therefore,
according to the observed relationship between c and the
climatic variables it is reasonable to make the hypothesis that

strong storm events, in the long term, might cause (or be one
of the causes for) channels that run by each other to collapse,
so that only one survives and the room left by the other one
is filled by smaller order channels, which in turn increases
the value of c. A comprehensive understanding of these effects
as well as proving (or disproving) this hypothesis might
require analysis of landscape evolution under controlled
laboratory experiments [e.g., Bonnet and Crave, 2003] or
numerical experiments via landscape evolution models, which
is beyond the scope of this study.

7. Discussion and Conclusions

[77] The study was motivated by the growing interest in the
Tokunaga model for river network topology. This model,
while commonly accepted, usually lacks a proper justification
based on formal tests and extensive data analysis. We propose
here (i) rigorous tests for self-similarity and Tokunaga self-
similarity of a tree, and (ii) accurate estimation procedures
for the Horton ratios and the Tokunaga parameters (a,c). The
proposed tests are based on the classical concepts of the anal-
ysis of variance (ANOVA) [Turner and Thayer, 2001] and the
least squares goodness-of-fit. To the best of our knowledge
this is the first time a formal set of techniques is suggested
(and validated in synthetic tree simulations) for analysis
of essential topological properties of trees including the
Horton laws, topological self-similarity, and the Tokunaga
self-similarity. Our results are thus not limited to hydro-
geomorphic applications, but they are readily applicable
to a wide range of phenomena that obey the Tokunaga
self-similarity. Such phenomena include, but are not
limited to, vein structure of botanical leaves [Newman
et al., 1997; Turcotte et al., 1998], diffusion limited aggrega-
tion [Ossadnik, 1992;Masek and Turcotte, 1993], percolation
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[Turcotte et al., 1999; Yakovlev et al., 2005; Zaliapin et al.,
2006a, 2006b], branching processes [Burd et al., 2000], as
well as nearest-neighbor clustering in Euclidean spaces and
tree representation of time series [Zaliapin and Kovchegov,
2011, and references therein].
[78] In this work, we used the proposed statistical method-

ologies to evaluate the assumptions of self-similarity (SS)
and Tokunaga self-similarity (TSS) and estimate several
topological properties for 50 catchments across the continen-
tal United States. At each catchment, we analyzed all basins
and sub-basins of orders equal or higher than Ω = 6. Overall,
we analyzed 408 individual networks. An important result of
this study is that both the SS and TSS hypotheses cannot be
rejected for the majority of the examined networks and the
levels of acceptability of the SS and TSS hypothesis are
independent on the network order. On the other hand, the anal-
ysis of the side-branch distribution shows that the percentage
of networks with geometrically distributed side-branches
clearly decreases as the order increases. A similar observation
was reported by Jarvis and Sham [1981], who consistently
detected a downstream change in network structure in all the
networks they analyzed. As they argued, this kind of pattern
reflects the spatial requirements of different tributary sizes:
in large networks, the competition between tributaries of
different sizes becomes an important control parameter in the
development of a network. Moreover, the basin elongation
prescribed by the Hack’s law, might itself constitute a signifi-
cant limitation to the free development of side-branches as the
area of the basin increases.
[79] The estimated Tokunaga parameters â; ĉð Þ demonstrate

a relatively low variability, which increases as the basin order
decreases. The variability of â is significantly smaller than
that of ĉ . Recall that a is the mean number of side-branches
of order i that merge with a branch of order (i+1); its relative
constancy across a large number of networks suggests that a
represents a “global” property of river networks, as opposed
to the parameter c, which seems to be more related to local
characteristics. In particular we showed how the value of c
defines the “feathering” property of river networks, which is
well illustrated in Figure 12. While this property is not related
to the network geometrical features, such as the network
shape, the parameter c can be used to classify river networks
on the basis of their topology.
[80] Our results may be useful for improving current

numerical network modeling. For instance, the Random
Self-similar Network (RSN) model introduced by Veitzer
and Gupta [2000] is probably the most versatile among
the existing models. Based on recursive local replacement
of the network generators, it reproduces a broad range of
network properties, including, under particular conditions,
the Tokunaga self-similarity. However, in the Tokunaga
networks simulated by the RSN model, the Tokunaga para-
meters are constrained by the relationship c� a = 1 [Veitzer
and Gupta, 2000]. It is therefore important to observe that,
according to our analysis, (i) the difference c� a does not
seem to be constant, and (ii) the average difference between
the Tokunaga parameters is approximately 1.55.
[81] We have found that for a relatively high percentage of

the networks analyzed, the hypothesis of geometric distribu-
tion of side-branch counts cannot be rejected. This finding
appears particularly important from the perspective of
stochastic network modeling. Cui et al. [1999] proposed a

stochastic generalization of the deterministic Tokunaga model
by assuming a random number of side-branches extracted
from a negative binomial distribution (NBD), which is a gen-
eralization of the geometric distribution.While the mean of the
NBD is completely defined by the Tokunaga parameters, the
distribution also depends on a third parameter which, accord-
ing to Cui et al. [1999], represents the spatial variability in
the network topology. The fact that a geometric distribution
(completely specified by a single parameter) of side-branches
is not inconsistent with the majority of the examined networks
is indeed promising as, under the geometric assumption, the
modeling framework is completely characterized by the two
Tokunaga parameters.
[82] We tested the relationship between climate and the

topological properties of the river networks and found sta-
tistically significant correlations between certain hydro-
climatic variables (namely, mean annual rainfall, mean storm
frequency, and mean storm duration) and the Tokunaga pa-
rameter c. Correlation values are not very high (r� 0.4� 0.6)
but various numerical tests establish their high statistical
significance. Moreover, the interpretations of the observed
correlations are in agreement with one’s physical intuition. It
is worth noticing that this is a preliminary result that shows
the possibility of the Tokunaga parameters to serve as
metrics for establishing connections between processes
forming the landscape and the topology of the developed
fluvial networks. This certainly calls for further analysis,
as for example in this study we did not consider other
controls such as tectonics, geology or soil composition,
which possibly have a competing effect to climate forcing
on the resulting river network topology.
[83] The reported correlations between the topological

structure of river networks and climate might have a direct
application in problems where climatic data are not avail-
able whereas landscape data are. An outstanding example
is the so-called asymmetric seasonality between Titan’s
hemispheres hypothesized by Aharonson et al. [2009]. In
particular the authors suggest that a difference in the satel-
lite’s climate (wetter in the Northern hemisphere and drier
in the Southern hemisphere) might be the cause of the
observed different geomorphology of the two hemispheres.
Presence of drainage networks has been repeatedly observed
in images collected by the Huygens probe [Tomasko et al.,
2005] as well as by the Cassini spacecraft [Elachi et al.,
2005]. Given our results, a topological analysis of these drain-
age networks as suggested by the present study might provide
further insight onto Aharonson et al.’s [2009] hypothesis.

Appendix A: Tests on the Significance of the
Correlations Between c and the Climatic Variables

[84] To further confirm the significance of the correlations
between the TSS parameter c and the climatic variables con-
sidered, we performed simulations via three approaches: (1)
bootstrap, (2) permutation, and (3) randomization analysis.
Specifically, let ci and Vi, denote, respectively, the estimated
Tokunaga parameter ĉ and a particular climatic variable Vi

for the i-th basin, and rV = corr(ci,Vi) be the respective esti-
mated correlation, for i = 1, . . .,N, N being the number of
basins considered.
[85] Bootstrap analysis estimates the uncertainty of the

observed correlations [Efron and Tibshirani, 1994]. A set of
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Nboot = 10, 000 random paired samples of size N is constructed
by random drawing with replacement from the observed pairs
(ci,Vi). The random samples hence deviate from the original
one in that they might have some repeating pairs (ci,Vi). The
correlation rbootj , j=1, . . .,Nboot, is computed for each simu-
lated bootstrap sample. The sample variance of the bootstrap
sample, Var rbooti

� 	
, is a good approximation for the variance

of the correlation rV. Figure 13a shows the histogram of the
bootstrap correlations for the mean storm frequency. The
95% confidence interval of the bootstrap correlations is well
separated from 0. This suggests that the observed correlation
r=0.4 is significant.
[86] Permutation analysis evaluates how likely it is to obtain

the observed correlation by chance. A set of Nperm = 10, 000
random paired samples of size N is constructed by randomly

matching the values of ci and Vi, i=1, . . .,N. The correlation
rpermj , j= 1, . . .,Nboot, is computed for each simulated permuta-
tion sample. Since this method destroys possible relationships
between the paired values (ci,Vi), the average permutation
correlation should be zero. Figure 13b shows the histogram
of the permutation correlations for the mean storm frequency.
The probability of obtaining the permutation correlation rperm

greater than the observed correlation r=0.4 is 0.08; the 95%
confidence interval for the permutation correlation is well
separated from the observed value. This suggests that the
observed correlation r=0.4 is significant.
[87] The uncertainties (variances) of the bootstrap and

permutation correlation help one to evaluate how likely it
is to obtain the observed correlation ri by chance in a situa-
tion when ci and Vi are in fact independent. Both analyses
suggest that such a possibility is negligible.
[88] Randomization analysis evaluates the effect of the

uncertainty in the estimation of the Tokunaga parameter c
on the correlation ri. For each basin we generated Nrand = 10,
000 values for c from a Normal distribution with the mean
equal to the observed value ci and standard deviation
estimated from the numerical simulations in section 2, and
evaluated the correlation of such values with the climatic
variable. Figure 13c shows the histogram of the randomized
correlations for the mean storm frequency. The 95%
confidence interval for the randomized correlation is well
separated from 0; this interval, moreover, does cover the
observed correlation value r= 0.4.
[89] The results for other examined climatic variables are

very similar to those shown in Figure 13 for the mean storm
frequency, therefore they are not shown.
[90] The results of Figure 13, which suggest that the

observed correlations are statistically significant and can be
explained neither by sample fluctuations (bootstrap and
permutation analyzes) nor by the uncertainties in the estima-
tion of ci (randomized analysis). We hence assume that the
correlation are due to the actual dependence between the
Tokunaga parameter and the climatic characteristics. While
the observed correlations are not extremely high (especially
when considering all the TSS networks), they are quite
robust thus providing a solid justification for a climatic
effect on river network topology.
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