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A b s t r a c t  

Quantification of river bedform variability and complexity is  
important for sediment transport modeling as well as for characterization 
of river morphology. Alluvial bedforms are shown to exhibit highly non-
linear dynamics across a range of scales, affect local bed roughness, and 
vary with local hydraulic, hydrologic, and geomorphic properties. This 
paper examines sediment sorting on the crest and trough of gravel bed-
forms and relates it to bed elevation statistics. The data analysed here are 
the spatial and temporal series of bed elevation, grain size distribution of 
surface and subsurface bed materials, and sediment transport rates from 
flume experiments. We describe surface topography through bedform 
variability in height and wavelength and multiscale analysis of bed eleva-
tions as a function of discharge. We further relate bedform migration to 
preferential distribution of coarse and fine sediments on the troughs and 
crests, respectively, measuring directly surface and subsurface grain size 
distributions, and indirectly the small scale roughness variations as esti-
mated from high resolution topographic scans.  

Key words: bedforms, roughness, grain sorting, power spectral density, 
sediment transport. 
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1. INTRODUCTION 
Bedforms present on the bed surface of a gravel-bed river are highly variable 
and strongly depend on the local bed shear stress and grain size distribution 
of bed material (Nordin 1971, Paola and Borgman 1991, Powell 1998, 
Buffington and Montgomery 1999, Lanzoni 2000, Kleinhans et al. 2002, 
Blom et al. 2003, Blom and Parker 2004, van der Mark et al. 2008, Singh et 
al. 2011). They evolve as a result of the complex interaction between turbu-
lent flow field, sediment transport and underlying fluvial bed topography 
(Jerolmack and Mohrig 2005, Best 2005, Venditti et al. 2005, Venditti 2007, 
Singh et al. 2010, Singh and Foufoula-Georgiou 2012). Quantification of 
their formation and evolution is essential towards understanding their inter-
action with flow turbulence and particle transport, interpretation of sedimen-
tary structure, developing predictive models for sediment transport, river 
management as well as river habitat dynamics (Simons et al. 1965, Nelson et 
al. 1993, 1995, Yarnell et al. 2006, ASCE 2002, Best 2005, McElroy and 
Mohrig 2009, Wilcock 1998, Leclair 2002). 

Several studies have focused on characterizing bedform variability using 
both numerical, theoretical and empirical approaches (Paola and Borgman 
1991, Coleman and Melville 1994, Lanzoni and Tubino 1999, Blom et al. 
2003, Jerolmack and Mohrig 2005, Coleman et al. 2006, Van der Mark et al. 
2008, Singh et al. 2011). For example, Jerolmack and Mohrig (2005) devel-
oped a nonlinear stochastic surface evolution model which reproduces labor-
atory observations of evolution of bedforms and their long term dynamical 
behavior as observed in natural systems. Van der Mark et al. (2008) used 
controlled laboratory and field studies to characterize variability in bedform 
geometry and suggested that bedform variability can be represented by an 
exponential function for the coefficient of variation. 

For a bed with a wide grain size distribution, as in the case of real rivers, 
bedform variability results in preferential movement and deposition of sedi-
ment causing significant changes in the local bed roughness (see e.g., 
Lanzoni and Tubino 1999, Blom et al. 2003, Blom 2008). Traditionally, to 
characterize gravel bed roughness, percentiles of the grain size distribution 
of the surface patches are used (e.g., Nikora et al. 1998). However, it has 
been argued that the roughness characteristics of a bed cannot be only  
approximated with a single parameter, say d84, since other factors, e.g., parti-
cle shape, orientation, structural arrangement of the particles and bedform 
geometry are also important. More recently, statistical approaches, such as 
variograms and higher order structure function analysis have been explored, 
using high resolution surface elevations, as an alternative to describe the bed 
roughness (see e.g., Butler et al. 2001, Nikora and Walsh 2004, Aberle and 
Nikora 2006). 
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In gravel bed rivers, to the best of our knowledge, statistical properties of 
bedform-dominated beds have not been related to the observed grain size 
distribution, except in the study of Blom et al. (2003). Blom et al. (2003)  
related the observed probability density function of the bed elevation, specif-
ically bedform trough elevation, to the vertical sorting within the bedform. 
More recently, Blom et al. (2008) proposed a morphodynamic model which 
reproduces time evolution of the vertical sorting profile and grain size distri-
bution of bed load transport. In contrast to the bedform-dominated beds, on 
plane-beds, only recently, a few studies have focused on multiscale statisti-
cal characterization of bed elevation fluctuations and their relation to  
observed grain size distribution (Nikora et al. 1998, Butler et al. 2001, 
Aberle and Nikora 2006). 

The goal of this study is to understand and quantify how an initial grain 
size distribution of bed material is redistributed preferentially within the 
macroscale structures (crest and trough of bedforms) of the bed, both on the 
surface and in the subsurface layers in bedform-dominated gravel bed rivers. 
The data analysed are the high resolution spatial and temporal bed elevation 
series, grain size distribution of surface and subsurface layers, and the sedi-
ment transport rates collected in a large-scale experimental channel. Specifi-
cally, we relate small-scale roughness due to grain sizes to the large-scale 
roughness due to bedforms. We also perform multi-scale statistical charac-
terization of bed elevation fluctuations obtained under different flow condi-
tions. 

The paper is organized as follows. In Section 2 we briefly describe the 
experimental setup and the data collected in two laboratory experiments  
under low and high flow conditions. Section 3 focuses on physical character-
istics of bed topography, while Section 4 discusses multiscale statistics of 
bed elevations. In Section 5, an analysis on grain size distribution is per-
formed whereas the relation between observed grain size distribution and 
bed elevations of patches of crest and trough is explored in Section 6. Sec-
tion 7 focusses on discussion of the results obtained whereas Section 8 pre-
sents summary and the concluding remarks. 

2. EXPERIMENTAL  SETUP  AND  DATA  COLLECTED 
The experiments reported here were conducted in a large-scale experimental 
channel, called Main Channel, at the St. Anthony Falls Laboratory, Univer-
sity of Minnesota. These experiments were the follow-up of previous  
experiments conducted in the spring of 2006 known as StreamLab06 (Singh 
et al. 2012b). The Main Channel is 84 m long, 2.75 m wide, and has a maxi-
mum depth of 1.8 m with a maximum discharge capacity of 8000 l/s. Only 
the first 55 m long upstream reach of the channel was used in these experi-
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ments. The sediment was partially recirculated while the water, taken  
directly from the Mississippi River, was fed to the channel without recircula-
tion. 

The channel was filled with a 0.45 m thick layer of sediment, composed 
of a mixture of gravel and sand with density about 2650 kg/m3, with a medi-
an particle size diameter d50 = 7.7 mm, and an overall grain size distribution 
(hereafter GSD) characterized by  d16 = 2.2 mm  and  d84 = 21.2 mm. 

To achieve dynamic equilibrium in transport and slope adjustment for 
both water surface and sediment bed, a constant water discharge Q was fed 
into the channel prior to the data collection. This dynamic equilibrium state 
was evaluated by checking the stability of the 60 min average total sediment 
flux at the downstream end of the test section. Continuous data collection 
occurred for about twenty hours after the channel had reached dynamic equi-
librium. 

The data presented here are the spatial and temporal series of bed eleva-
tion, grain size distribution, and the sediment transport rates. The spatial  
series of bed elevations were collected by a three-axis positionable data  
acquisition (DAQ) carriage, capable of traversing the entire 55 × 2.74 m test 
reach and positioning probes with an accuracy of 1 mm along all the three 
 

 
 
Fig. 1. Schematic of the 
Main Channel showing the 
location of sonars used to 
measure temporal bed ele-
vations, of sediment pans 
used to monitor sediment 
transport rates and of the 
patches considered for 
sampling of sediment used 
to determine surface and 
subsurface grain size distri-
butions. Spatial bed eleva-
tions were sampled by laser 
scanner mounted on a po-
sitionable data acquisition 
carriage that can move 
along the 55 m long test 
section. The dashed line 
represents the centerline of 
the channel while the direc-
tion of the flow is from bot-
tom to the top of the figure. 
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axes. The sampling resolution of the spatial bed elevation was 1 cm in both 
streamwise and spanwise direction. The temporal bed elevations were meas-
ured through submersible sonar transducers of 2.5 cm diameter, deployed 
0.3 m (on average) below the water surface, at the downstream end of the 
investigated reach (Fig. 1). The sampling interval of temporal bed elevation 
measurements was 5 s with a vertical precision of 1 mm. 

Bedload traps located at the downstream end of the test reach, consisting 
of 5 weighing pans of equal size that spanned the width of the channel, were 
used for measuring sediment transport rates (Fig. 1). The weight of bedload 
sediment falling into the weigh pans was automatically recorded every 1.1 s. 
To remove the negative, unphysical values that sometimes appeared in the 
record of sediment transport rate sequence, a moving average window of 
2 min was used (see Singh et al. 2009). A typical series of 2 min averaged 
sediment transport rates is shown in Fig. 2 for the discharges of 1500 l/s 
(Fig. 2a) and 2800 l/s (Fig. 2b). After the weigh pans filled with a maximum 
of 40 kg of sediment, their base tipped to release the sediment and reset the 
weigh pan. The released sediment was re-circulated and returned back into 
the channel at the upstream end of the 55 m test reach, to maintain equilibri-
um conditions through a closed system. 

In order to study the GSD of surface and subsurface composition of the 
bed material, the channel was drained at the end of each experiment and 
 

 
Fig. 2. Two minutes averaged sediment transport rates for the discharges of:  
(a) 1500 and (b) 2800 l/s.  
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Fig. 3. Photographs of the patches of bed surfaces obtained at the end of the experi-
ments carried out with discharges of: (a) 1500 and (b) 2800 l/s. Note that marks 1 
and 2 are located in the correspondence of bedform crests and troughs, respectively. 

surface layers of 30 × 30 cm patch size were painted, after identifying the 
patch location on the bedform crest and trough (Fig. 1). The surface layers of 
these patches were carefully extracted for determining the surface GSD;  
a 10 cm deep layer of bed material was then excavated in order to determine 
the subsurface GSD. Figure 3 shows the marked patches on the crest and the 
trough of bedforms observed at the end of runs carried out for discharges of 
1500 (Fig. 3a) and 2800 l/s (Fig. 3b). 

Although measurements were taken over a range of discharges corre-
sponding to different bed shear stresses, here, for the sake of brevity we con-
sider only the data collected at discharges of 1500 l/s (low flow) and 2800 l/s 
(high flow), corresponding to Shields stress of 0.049 and 0.099, respectively 
(for details about the hydraulic conditions see Table 1). The critical Shields 
stress ( cτ

∗ ), determined on the basis of the median grain size of the mixture 
d50 = 7.7 mm, was assumed to be 0.03 as suggested by Buffington and 
Montgomery (1997) and references therein. The aspect ratio (channel width/ 
flow depth) corresponding to the investigated flows were 6.4 and 4.3 for the 
discharges of 1500 and 2800 l/s, respectively. 

Table 1  
Hydraulic conditions and statistics of spatial bed elevation 

Q 
[l/s] 

D 
[m] 

V 
[m/s] Sw hR 

[m] bτ
∗  std(h(x)) 

[mm] 
1500 0.43 1.27 0.0019 0.33 0.049 16.19 
2800 0.64 1.59 0.0029 0.44 0.099 39.28 

Explanations: Q – water discharge, D – average flow depth along test reach, 
V – average flow velocity, Sw – water surface slope, hR – hydraulic radius, 

bτ
∗  – dimensionless shields stress (computed using hydraulic radius), 

std(h(x)) – standard deviation of spatial bed elevation. 
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3. BED  TOPOGRAPHY 
3.1  Physical characteristics 
The bedforms formed within the channel consisted mainly of bedload sheets 
at the low discharge (1500 l/s) and of three-dimensional dunes at the high 
discharge (2800 l/s). Figure 4 shows the bed elevation profile at the flume 
centerline for the two discharges here considered. It can be seen that the low 
flow run (Fig. 4a) produced a channel bed with only limited topographic 
variation, i.e., without obvious large-scale bed structures: the standard devia-
tion of the detrended (linear trend removed) bed elevation being 16.19 mm 
as compared to a d50 grain size of 7.7 mm. Conversely, the high flow run 
(Fig. 4b) generated substantial bed variability (std. dev. = 39.28 mm) at large 
scale in the form of dunes, with intermediate to grain-scale fluctuations  
superimposed on them (Table 1). In particular, the standard deviation of the 
detrended bed elevation roughly doubled (from 16.19 to 39.28 mm) by  
increasing the discharge from 1500 to 2800 l/s, suggesting that bed fluctua-
tions are more variable at higher discharge. 
 

 
Fig. 4. Longitudinal transects of the spatial bed elevation sampled at the channel 
centerline at a resolution of 10 mm after the end of the experiment for the discharges 
of: (a) 1500 and (b) 2800 l/s. Note that the zero bed elevation (h(x) = 0) does not 
correspond to the base of the flume but corresponds to the lowest bed elevation (ref-
erence point) below which no elevation fluctuations were observed for a given dis-
charge. A linear trend was removed from the above shown transects to compute the 
standard deviation of detrended bed elevation (see the statistics of detrended bed  
elevation in Table 1). 
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3.2  Bedform extraction 
The geometric characteristics of bedforms were extracted from the longitu-
dinal spatial transects of bed elevation, obtained at distances of 0.5 m apart 
across the width of the flume, using the methodology described in Singh et 
al. (2011). From these transects, first, the high-wavenumber fluctuations 
(wavenumber > 10–2 mm–1, corresponding to wavelengths smaller than 10 cm) 
induced by small scale bedforms or grain-scale variations were filtered out 
using the Fourier transform of the signal and then the signal was recon-
structed with all wavenumbers < 10–2 mm–1 (note that the filtered wavenum-
bers correspond to the high wavenumbers in the power spectral density of 
bed elevation, discussed later in Section 4, where the transition in the slope 
of the power spectral density occurs). Then, after determining the local 
maxima and minima in the filtered signal, the differences between consecu-
tive minima and maxima were computed. Finally, the bedform heights above 
a certain threshold (threshold = 2 d50) were extracted. Figure 5 shows the 
probability density function (hereafter pdf) of the extracted bedform heights 
for the discharges of 1500 (Fig. 5a) and 2800 l/s (Fig. 5b), whereas Fig. 6 
shows the corresponding pdfs of bedform lengths for the discharge of 1500 
(Fig. 6a) and 2800 l/s (Fig. 6b). The statistics of the extracted bedform 
heights and lengths are summarized in Table 2 which indicates that the mean 
and the standard deviation of bedform heights increases with increasing dis-
charge, while an opposite behaviour is exhibited by bedform lengths. A simi-
lar trend is followed by the coefficient of variation, CV (standard deviation/ 
mean), which shows that with increasing discharge the CV for the bedform 
height increases, suggesting a wider range of bedform heights at higher  
  

 

Fig. 5. Probability density function of the normalized bedform heights for the dis-
charges of: (a) 1500, and (b) 2800 l/s. The dotted curve shows the fitted Gamma  
distribution with k as the shape parameter and θ as the scale parameter. 
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Fig. 6. Probability density function of the normalized bedform lengths for the dis-
charges of: (a) 1500 and (b) 2800 l/s. The dotted curve shows the fitted Gamma  
distribution with k as the shape parameter and θ as the scale parameter. 

Table 2  
Bedform statistics extracted from spatial and temporal bed elevations 

Q 
[l/s] 

Spatial bed elevation Temporal bed elevation  

bfH< >  
[mm] 

std( )bfH
[mm] 

CV
(Hbf)

bfL< >

[m] 
std( )bfL

[m] 
CV
(Lbf) 

AR bfH< >

[mm] 
std( )bfH
[mm] 

CV 
(Hbf) 

1500 32.6 12.2 0.37 3.92 2.43 0.62 120 33.8 9.8 0.29 
2800 74.5 44.0 0.59 3.29 1.28 0.38 44 82.3 27.9 0.34 

Explanations: bfH< > , std( )bfH  – mean and standard deviation of bedform height 
obtained from the ensemble of bedform heights extracted from different transects of 
spatial bed elevations measured at the end of a run and from different probe loca-
tions from temporal bed elevations; bfL< > , std( )bfL  – mean and standard deviation of 
bedform length obtained from the ensemble of bedform lengths extracted from dif-
ferent transects of spatial bed elevations measured at the end of a run; CV – coeffi-
cient of variation of bedform height and bedform length, AR – aspect ratio 
( bf bfL H= < > < > ). 

discharge, whereas the CV for the bedform length decreases suggesting  
a narrower range of bedforms lengths at higher discharge. Similarly, the ratio  
of mean bedform length Lbf  to mean bedform height Hbf  (aspect ratio)  
decreases with increasing discharge (Table 2), i.e., with increasing bedform 
height bedform length decreases. 

Previous literature has suggested that bedform heights and lengths can be 
represented with a Gamma distribution (e.g., van der Mark et al. 2008 and 
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references therein). The pdf of a Gamma distributed random variable x can 
be defined as 

 11( , , ) ,
( )

x
k

kf x k x e
k

θθ
θ

−−=
Γ

 (1) 

where k is the shape parameter and θ is the scale parameter. Gamma distribu-
tions were fitted here to the normalized bedform height and length and are 
shown in Figs. 5 and 6 for reference. These fitted distributions were tested 
for goodness of fit using the chi square test and the null hypothesis of data 
coming from Gamma distribution was accepted with a p-value ranging from 
0.06 to 0.83. The estimated parameters of the fitted Gamma distribution  
(estimated using maximum likelihood estimation and shown in Figs. 5  
and 6) suggest that both the shape parameter, k, and scale parameter, θ, 
change with increasing discharge (k decreases while θ increases) for the bed-
form heights, whereas for the bedform lengths k increases while θ remains 
constant. Similar results for the bedform heights were obtained from the 
temporal series of bed elevations (Table 2), as already partially noted by 
Singh and Foufoula-Georgiou (2012) and Singh et al. (2012a).  

4. MULTISCALE  STATISTICS  OF  BED  TOPOGRAPHY 
River bed topography and its evolution are found to exhibit variability across 
a range of scales. One common way to characterize this variability is via 
plotting the power spectral density (hereafter PSD). For a discrete signal 
F(x), the PSD can be defined as 

 
2 *ˆ ˆ1 ( ) ( )( ) ( ) ,

2π2π
i t F FS F x e ω ω ωω

∞
−

−∞

= =∑  (2) 

where ˆ ( )F ω  is the discrete Fourier transform of F(x), *ˆ ( )F ω  is its complex 
conjugate and ω is the wavenumber. Here we place special emphasis on 
identifying spectral scaling ranges, i.e., ranges of scales over which log-log 
linearity is observed in the power spectral density. 

Figure 7 shows the PSD of the spatial bed elevation series for the dis-
charges of 1500 (lower spectrum) and 2800 l/s (upper spectrum). It can be 
seen that the PSDs follow a power law-decay with a slope ~1.7 for the dis-
charge of 1500 l/s and ~2.3 for the discharge of 2800 l/s, suggesting the 
presence of statistical scaling in the bed elevation series. Note that these 
slopes were estimated for the same range of scales (see Table 3). The largest 
length scale of bedform observed from these PSDs is of the order of 10 m for 
both discharges. Similar results of increasing slope of PSDs with increasing 
discharge are observed from the analysis of temporal bed elevation series. 
For example, the slope of the PSD for the discharge of 1500 l/s is ~1.9, 
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Fig. 7. Power spectral density of spatial bed elevation for the discharge of 1500 
(lower spectrum: broken line) and 2800 l/s (upper spectrum: solid line). Note that the 
spectrum at higher discharge (2800 l/s) is displaced vertically by one order of mag-
nitude. 

Table 3  
Multiscale statistics of bed elevations 

Q 
[l/s] 

Spatial bed elevation Temporal bed elevation 

Spec-
tral 

slope 

Spectral 
scaling 
range 

Multi-
fractal  

parameters

Multi-
fractal 
scaling 
range 

Spec-
tral 

slope

Spectral 
scaling 
range 

Multi-
fractal  

parameters

Multi-
fractal 
scaling 
range c1 c2 c1 c2 

1500 1.68 8 cm  
   – 5 m 0.43 0.05 2 cm –

   1.5 m 1.87 15 s –  
   55 min 0.48 0.09 0.5-8 

min 

2800 2.28 8 cm  
   – 5 m 0.69 0.10 2 cm –

   1.4 m 2.18 20 s –  
   25 min 0.55 0.13 0.5-7 

min 
 

whereas for 2800 l/s it is about 2.2. The increase of spectral slope (temporal 
PSD) with increasing discharge, along with the reduction in scaling regime 
(Table 3), suggests that the bedforms of comparable energy (height) move 
faster at higher discharge, as expected.  

It is important to note that the PSD characterizes how the second order 
moment (variance) in the signal changes with scale/frequency and, as such, it 
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Fig. 8. Quantile-quantile plots of bed elevation increments for the discharges of 
1500 and 2800 l/s. The dash lines in the qq-plots represent the Gaussian pdfs. Note 
that tails of the pdf at higher discharge are thicker than tails at lower discharge. 

fully characterizes only a Gaussian pdf over scales (Singh et al. 2011). Fig-
ure 8 shows the quantile-quantile plots (qq-plot) of Δh(x), the bed elevation 
increments, (Δh(x) = h(x + Δx) – h(x), where Δx is the resolution of the 
measurement, i.e., 10 mm) for the investigated discharges. Negative incre-
ments of the bed elevation series, Δh(x) < 0, correspond to depositional 
events (i.e., an increase of elevation at the point of measurement during an 
interval Δx) whereas positive values, Δh(x) > 0, to erosional events. The  
qq-plots of bed elevation increments reported in Fig. 8 show significant  
deviation from the Gaussian distribution (dashed lines). 

As a consequence, it is important to test for scaling in higher order statis-
tical moments. For this, a higher-order structure function analysis which 
quantifies the manner in which higher order statistical moments of the local 
fluctuations in the bed elevation series change with scale was performed. In 
particular, a statistical analysis was performed on the differences (or incre-
ments) of the bed elevation time series h(x) at different scales a, denoted by 
Δh(x, a), and defined as 
 ( , ) ( ) ( ) ,h x a h x a h xΔ = + −  (3) 

where x is the length and a is the scale. The qth order statistical moment  
estimates of the absolute values of the increments at scale a, M(q, a), are  
defined as 
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1

1( , ) ( , ) ,
N

qM q a h x a
N

= ∑  (4) 

where N is the number of data points of the series (increments) at scale a. As 
an extension to second order (spectral) scaling, higher order statistical scal-
ing, or scale-invariance, requires M(q, a) to be a power law function of the 
scale a, that is 
 ( )( , ) ~ ,qM q a aτ  (5) 

where τ(q) is called the scaling exponent function. The most basic form of 
scaling, known as simple scaling or mono-scaling, occurs when the scaling 
exponents are a linear function of the moment order, i.e., when  τ(q) = Hq. In 
this case, the single parameter H, known as the Hurst exponent, describes 
how the whole pdf changes over scales. If τ(q) is a nonlinear function of q, 
more than one parameter is required to describe the behavior of the pdf 
changes over scale and the investigated series is called multi-fractal (Cas-
taing et al. 1990, Venugopal et al. 2006, Singh et al. 2009). The simplest, 
but not the unique, way to parameterize the nonlinear dependence of τ(q) on 
q is via a quadratic approximation defined as 2

1 2( ) 2q c q c qτ = − , where c1 
and c2 are the coefficient of roughness and the coefficient of intermittency, 
respectively. The parameter c1 is a measure of the average “roughness” of 
the series whereas the parameter c2 gives a measure of the inhomogeneous 
arrangement of the local fluctuations in the series. The reader is referred to 
Singh et al. (2011) for more details about the structure function analysis. 

Figure 9 shows the τ(q) curves computed from the slopes of the log-log 
plots of the moments M(q, a) (not shown here for brevity) within the scaling 
range for the bed elevations at the discharges of 1500 and 2800 l/s, respec-
tively (see Table 3). It can be seen from Fig. 9 that the τ(q) has a nonlinear 
dependence on q, which is an indication of the presence of multi-fractality. 
A summary of the computed multifractal parameters c1 and c2 along with the 
scaling ranges for both the discharges of 1500 and 2800 l/s can be seen  
in Table 3, along with the multiscale statistics of temporal bed elevation. 
It is interesting to note that both the roughness coefficient c1 and the inter-
mittency coefficient c2 increase with increasing discharge.  

The increase of c2 with increasing discharge suggests a faster rate of 
change of the pdf’s shape across a range of scales (statistical interpretation) 
and a more inhomogeneous arrangement of abrupt bed elevation fluctuations 
over space (geometrical interpretation), whereas the increase of roughness 
parameter c1 with increasing discharge suggests that bed elevation fluctua-
tions are smoother overall at higher discharge than at lower discharge. Note 
that the “smoothness” in the signal at higher discharge is associated with the 
higher Hurst exponent, whereas the abruptness of local, very infrequent fluc- 
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Fig. 9. Scaling exponents τ(q) estimated from the log-log linear regressions within 
the scaling regions of statistical moments of spatial bed elevation for discharges of 
1500 l/s (bottom curve) and 2800 l/s (top curve). Notice the deviation of τ(q) from 
the linear line establishing the presence of multifractality. 

tuations is not captured by H. This property is captured with the intermit-
tency parameter c2 which is higher for higher discharge, indicating that sharp 
elevation increments due to the passing of steep bedforms or sub-bedforms 
facies are not homogeneously arranged in the signal (partly due to the fact 
that bedforms of a wide range of sizes are present at high discharge). Also 
note that in case of a mono-fractal (c2 = 0), the shape of pdf of the incre-
ments does not change with scales and that the slope of the second moment 
of the structure functions is related to the slope of the PSD via the relation 
(β = 2H + 1), where β is the slope of power spectrum, and H is the Hurst  
exponent. Similar trends of increasing c1 and c2 with increasing discharge are 
observed from the multiscale analysis of temporal bed elevation (see  
Table 3). 

5. GRAIN  SORTING  IN  BEDFORMS 
At the end of each run, bedforms were visually identified on the channel bed 
surface and their crests and troughs were located (Figs. 1 and 3). Patches 
with dimension of 30 × 30 cm were marked on both crest and trough (Fig. 3) 
and their surface (top layer corresponding to one grain size) and sub-surface 
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Fig. 10. Typical sketch of investigated bedforms showing the location of patches of 
surface and subsurface samples, bedform height Hbf  and bedform length Lbf. The 
subscript i  represents patch number, whereas the subscript s and ss represent surface 
and subsurface, respectively. C and T denote bedform crest and trough, respectively. 

  
Fig. 11. Grain size distribution obtained from the material sampled at the crest and 
trough of bedforms for the surface (top panel) and the subsurface (bottom panel) for 
the discharges of 1500 (left panel) and 2800 l/s (right panel). Ci and Ti (i = 1, 2) 
curves refers to crest and trough samples, respectively. 

(10 cm deep material) GSDs were obtained. Figure 10 shows a typical sketch 
of the observed bedforms and of the sampling locations, whereas Fig. 11 
shows the GSDs of both surface (upper panel) and subsurface (bottom 
 

Author 

Author 

Author c
opy

co
py

co
pyFig. 10. Typical sketch of investigated bedforms showing the location of patches of 

co
pyFig. 10. Typical sketch of investigated bedforms showing the location of patches of 

and bedform length 

co
pyand bedform length L

co
pyLbf

co
pybf. 

co
py. bf. bf

co
pybf. bf The 

co
pyThe 

ss

co
pyss represent surface 

co
py represent surface 

e bedform crest and trough, respectively. 

co
pye bedform crest and trough, respectively. 

co
py



A. SINGH  et al. 
 

1622

Table 4  
Statistics of grain size distribution 

Q 
[l/s] Patch 

Surface Subsurface 

d16 
[mm] 

d50 
[mm] 

d84 
[mm] 

Sand 
[%] 

d16 
[mm] 

d50 
[mm] 

d84 
[mm] 

Sand 
[%] 

1500 

C1 4.38 8.86 16.54 0.99 4.19 9.25 15.79 5.21 
C2 4.61 8.44 14.94 0.14 2.05 7.97 15.48 2.9 
T1 6.39 15.19 22.69 1.37 1.19 8.15 19.35 14.32 
T2 7.35 14.34 24.67 0.43 1.30 4.61 18.50 13.29 

2800 

C1 5.35 14.18 23.70 0.99 1.21 5.52 15.49 13.25 
C2 4.41 7.35 14.37 0.11 4.49 7.23 12.85 0.01 
T1 12.12 20.20 28.62 1.13 0.51 2.89 12.23 31.63 
T2 7.67 19.56 29.95 1.50 0.87 4.41 9.22 18.44 

 
panel) samples for the discharges of 1500 (left panel) and 2800 l/s (right 
panel), while a synthesis of their statistics is reported in Table 4. Below, we 
characterize the statistics of surface and subsurface GSD as a function of 
crest and trough for both low and high flow conditions. 

5.1  Surface GSD 
Figure 11 (top panel) shows the GSDs of the surface patches for the crests 
and the troughs for the discharges of 1500 (Fig. 11a) and 2800 l/s (Fig. 11b), 
whereas Table 4 shows the statistics of these patches as a function of dis-
charge. From Fig. 11a it can be seen that for the low discharge the GSDs of 
the two crests coincide with each other as also do the GSDs of the two 
troughs. However, for a high discharge the GSDs change their shape consid-
erably (Fig. 11b). The median diameters d50, obtained from different bed-
forms, for the crests as well as for the troughs are similar for different crests 
and troughs and increase with increasing discharge (Table 4). Similar trends 
are observed for d16 and d84. 

To further compare the GSDs of crests and troughs as a function of dis-
charge, we show in Fig. 12 the average of the crests GSDs (C = (C1 + C2)/2) 
versus the average of the troughs GSDs (T = (T1 + T2)/2) for the discharges 
of 1500 (Fig. 12a) and 2800 l/s (Fig. 12b). Clearly, sorting effects associated 
with bedforms are enhanced as the bedform amplitude grows and, conse-
quently, the grain size distribution gets wider. For example, the differences 
between the surface composition at troughs and crests, summarized by the 
variations in d16, d50, and d84 percentiles, are equal to 2.34, 6.11, and 
7.93 mm for the discharge of 1500 l/s, whereas they are 5.01, 9.11, and 
10.25 mm for 2800 l/s discharge (see Table 5).  

Author 
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Fig. 12. Comparison of the initial grain size distribution with averaged grain size 
distribution resulting from surface samples collected at bedform crest and trough for 
the discharges of (a) 1500 and (b) 2800 l/s.  

Table 5  
Averaged GSD over bedform crests and troughs 

Q 
[l/s] Patch 

Surface Subsurface 

d16 
[mm] 

d50 
[mm] 

d84 
[mm] 

d16 
[mm] 

d50 
[mm] 

d84 
[mm] 

1500 C 4.5 8.65 15.74 3.32 7.69 15.54 
T 6.87 14.76 23.68 1.24 6.37 18.92 

2800 C 4.88 10.76 19.03 2.85 6.37 14.17 
T 9.89 19.88 29.98 0.68 3.65 10.73 

 
The averaged GSDs shown in Fig. 12 indicate a departure of the surface 

grain size distribution with respect to the initial bed composition that, as 
a consequence of the preferential entrainment of finer particles, is particular-
ly pronounced in bedform troughs. All the representative grain sizes d16, d50, 
and d84 (see Tables 4 and 5) are invariably larger than those characterizing 
the initial sediment distribution (approximately equal to 2, 8, and 21 mm, re-
spectively) and increase as the discharge increases. An appreciable departure 
from the shape of the initial GSD is also observed on bedform crests, espe-
cially for the lower discharge: the bed composition tends to get coarser ow-
ing to a lack in finer fractions (both d16 and d50 are larger than those of the 
initial GSD) which compensate the concurrent reduction in coarser fractions 
(embodied by the decrease of d84 from 21 to 15.7 mm). For the higher dis-
charge, this reduction is significantly attenuated (d84 = 19 mm) while the 
lack in finer fraction still persists. The recovering, with respect to initial sed-
iment composition, of the upper GSD shape when increasing the discharge is 
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likely associated with the establishment of a sediment transport condition 
much closer to equal mobility. On the other hand, the deficiency of finer 
fractions, that is observed independently of the discharge, is partly related to 
the winnowing of finer grains from the surface as well as the movement of 
finer grains into the pores of bed subsurface and partly to the recirculation 
feeding system, whereby the composition of transported sediment is signifi-
cantly affected not only by dynamic armor, but also by the intense longitudi-
nal and vertical sorting due to bedform dynamics (Lanzoni 2000). 

5.2  Subsurface GSD 
The GSDs of the subsurface material sampled at crests and troughs are 
shown in the bottom panel of Fig. 11 for the discharges of 1500 (Fig. 11c) 
and 2800 l/s (Fig. 11d) along with their statistics in Table 4, whereas their 
average GSDs over the bedforms crests and troughs are shown in Fig. 13 for 
the discharges of 1500 (Fig. 13a) and 2800 l/s (Fig. 13b). The crucial role 
that bedform migration has on the reworking of the bed and, hence, on  
determining the composition of the active layer, is clearly attested by the lar-
ger variability of GSD curves as the bedform amplitude increases (i.e., at the 
higher discharge). Although a significant fining of both crests and troughs 
material, with respect to the initial bed composition, generally characterizes 
the subsurface samples, the effects are more pronounced at the higher dis-
charge (Fig. 13). Moreover, the material collected below bedform crests is 
coarser than that sampled below the troughs (Tables 4 and 5). This coarser 
material results from the inclusion in the bedform body, as a consequence of 
bedform migration, of the coarser grains previously entrapped in bedform 
troughs. The pattern of sorting is less clear at the lower discharge (i.e., for 
 

Fig. 13. Comparison of the initial grain size distribution with averaged grain size 
distribution resulting from subsurface samples collected at bedform crest and trough 
for the discharges of (a) 1500 and (b) 2800 l/s. 
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smaller bedforms). In this case, only the values attained by the d84 are  
invariably smaller than those characterizing the initial GSD, while the trends 
exhibited by the d16 and d50 are not univocal. 

5.3  Surface, subsurface GSD: comparison of quantiles 
The upper 10 percentiles of the observed GSDs of the crests for the surface 
samples, in general, for both the discharges, show finer trend than the initial 
GSD, whereas troughs show coarser (Fig. 12). For the subsurface, both 
crests and troughs are finer than the initial GSD for both the discharges (see 
Fig. 13). A better visual comparison of quantiles of GSDs of crests and 
troughs as a function of discharge is shown in Fig. 14 for the surface 
(Fig. 14a) and the subsurface (Fig. 14b) material. Comparing the two crests,  
 

 
Fig. 14. Comparison of percentiles of GSDs obtained from (a) surface and (b) sub-
surface sampling at the crests and troughs of the bedform for discharges of 1500 and 
2800 l/s. 
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C1 and C2, within the same discharge for the surface material, it can be seen 
from Fig. 14a that the crests are more variable at higher discharge. For  
example, the range of d16 to d84 is 5.35-23.74 mm for C1, while for C2 it is 
4.41-14.73 mm. For the low discharge these ranges are 4.38-16.54 mm and 
4.61-14.91 mm for C1 and C2, respectively. The higher variability in crest’s 
grain sorting at higher discharge is due to the fact that at higher discharge 
bedform heights are more variable (see Table 2). In fact, it is noticed that the 
bedform heights, extracted from spatial bed elevation series, corresponding 
to the C1 and C2 for the high discharge are 10.21 and 18.81 cm, while for 
low discharge they are 4.91 and 5.36 cm, suggesting a higher elevation dif-
ference between sampled patches at higher discharge. This difference in C1 
and C2 at higher discharge can also be noticed from the difference of mean 
elevation between C1 and T1, and C2 and T2, which are 3.59 and 9.46 cm, 
respectively. In contrast to the crests, the troughs do not show significant dif-
ferences in the sampled patches for both the discharges of 1500 and 2800 l/s 
(Fig. 14a). 

5.4  Integrated GSD 
Figure 15 shows the grain size distribution obtained after the integration of 
GSDs of crests and troughs extracted from surface and subsurface layers for 
the discharges of 1500 and 2800 l/s. It appears that the integrated GSD re-
covers most of the grains present in the initial GSD. For example, the d50 
 
 

 
Fig. 15. GSD obtained after the integration of GSDs of crests and troughs belonging 
to surface and subsurface for the discharges of 1500 and 2800 l/s. Dashed line repre-
sents the initial GSD of  the be material. 
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for the initial GSD and for the integrated GSDs corresponding to the two  
investigated discharges are 7.7, 9.8, and 8.58 mm, respectively. The small 
discrepancies emerging from Fig. 15 can be attributed partly to the slope of 
the bedform stoss side and partly to the distance between the sampled 
patches. A smaller slope and a closer distance between the patches, associ-
ated with smaller bedforms occurring at lower discharge, will produce less 
distinct differences between the initial GSD and that measured at the end of 
each experiment. 

6. BED  ELEVATION  STATISTICS  OF  SAMPLED   
AND  VIRTUAL  PATCHES 

The bed elevations corresponding to the sediment patches sampled at bed-
form crests and troughs (Fig. 3) for both low and high discharges were  
extracted and their statistics were computed. Figure 16 shows the pdfs of the 
crests and troughs elevation for the discharge of 1500 (Fig. 16a) and 2800 l/s 
(Fig. 16b), respectively. It can be seen from these figures that while the pdfs 
of the bed elevation of both crests and troughs are qualitatively similar (i.e., 
partially overlapping) for the lower discharge, the pdfs observed at the 
higher discharge are quite different, especially for the crests as also seen in 
the case of grain size distribution curves (see Figs. 11a-b) (note that here 
similarity in pdfs is referred to the similarity in the statistics, for, e.g., mean 
and standard deviation, of the pdfs). The corresponding statistics (mean and 
standard deviation) reported in Table 6, suggest that bed roughness (meas-
ured by the standard deviation of linearly detrended bed elevation) is higher 
for the troughs than the crests for both discharges. For example, the average 
standard deviation of the crest and the trough elevations is 3.36 and 4.3 mm, 
respectively, for the discharge of 1500 l/s, whereas it is 3.34 and 5.97 mm, 
respectively, for the discharge of 2800 l/s. Moreover, for the higher dis- 
 

 
Fig. 16. Probability density functions of bed elevations corresponding to the sampled 
patches for GSD for the discharges of (a) 1500 and (b) 2800 l/s.  
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Table 6  
Statistics of digital elevation model (DEM) of patches 

Q 
[l/s] 

Patch 
[mm] 

Observed patch h (x,y) Virtual patch h (x,y) 

C1 C2 T1 T2 Crest Trough 

1500 Mean 59.33 62.24 43.75 47.64 49.38 39.01 
Std. dev. 3.36 3.36 4.07 4.52 3.44 3.80 

2800 Mean 150.41 169.19 114.47 74.53 109.23 84.24 
Std.dev. 4.09 2.58 5.08 6.87 3.49 4.22 

 
charge the crest roughness decreases as the bedform height increases (see the 
differences in mean elevation for C2 and T2 in Table 6).  

The higher discharge is also associated with larger variability in the bed 
topography, higher complexity and three-dimensionality, essentially related 
to the wider variety of bedforms that form at this discharge. While the visual 
selection of crest and trough was still possible, as assessed by the compara-
tive analysis in grain size distribution, its statistical characterization turns out 
to be more difficult as the bedform topography becomes more complex.  

In order to substantiate statistically the results obtained on the analysed 
patches and provide evidence of sorting effects at the full channel scale, we 
expand our analysis to virtual patches. As GSD was observed to depend on 
the specific location of the (sub)surface samples within the bedform (crest or 
trough), we identify on the digital elevation model (DEM) topography  
regions with the same size and characteristic location of the crest and trough 
studied above. The sediment distribution on these virtual patches is obvious-
ly unknown but the signature of the coarser grains is expected to survive on 
the standard deviation of bed elevation computed on each linearly detrended 
virtual patch, using only DEM data. In other words, the bedform modulation 
of surface GSD resulting from grain size analysis performed on visually 
identified patches is expected to hold when comparing small scale roughness 
over virtual patches. To achieve this goal and further investigate the rough-
ness of sediment patches over crests and troughs, the elevations correspond-
ing to several virtual patches of dimensions 30 × 30 cm were extracted from 
the bed profile (Fig. 17). Figure 17 shows the stepwise procedure for extract-
ing virtual patches from the bed elevation profiles for the discharge of 1500 
(left column) and 2800 l/s (right column). 

Panels (a) and (f) of Fig. 17 show the transects of the bed elevation  
obtained from the DEM of the bed topography passing through patch 1 for 
the discharges of 1500 (Fig. 17a) and 2800 l/s (Fig. 17f). Panels (b) and (g) 
of Fig. 17 show the location of local maxima and local minima superim-
posed on the filtered (using Fourier transform) bed elevation series; 
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Fig. 17: (a, f) Bed elevation profile, (b, g) location of local maxima (star) and local 
minima (dot) superimposed on filtered bed elevation using Fourier transform, (c, h) 
extracted bedform heights after threshold, (d, i) crest elevations, (e, j) trough eleva-
tions in mm corresponding to the virtual patch of 30 × 30 cm. Left column repre-
sents 1500 l/s discharge and right column represents 2800 l/s discharge.  

Figs. 17c and h show the extracted bedform heights after thresh-holding (see 
Singh et al. 2011) for details about bedform extraction and thresh-holding), 
whereas panels (d), (i) and (e), (j) of Figs. 17 show the crest elevation and 
the trough elevation, respectively. The statistics (mean and standard devia-
tion) of the extracted virtual patches can be seen in Table 6. As noticed from 
the sampled patches, the standard deviation (roughness) of the trough eleva-
tion is higher than the crest elevation. Blom et al. (2003) observed a similar 
relation, i.e., the trough surface is coarser than the crest surface. They attrib-
uted this to the mechanism of winnowing of fines from the trough surface. 

7. DISCUSSION 
As discussed in the previous sections, the roughness of the gravel bed is usu-
ally characterized by the percentiles of the GSD. However, in the presence of 
bedforms the roughness of the bed significantly changes. In fact, bedforms 
change the flow conditions, i.e., the flow becomes unsteady and non-uniform 
locally, especially in shallow channels, a characteristic of gravel channels. 
Moreover, in the presence of graded sediment, longitudinal and vertical pat-
terns of sorting form as a consequence of the non-uniform bed shear stress 
distribution along the bedform profile and of the bedform migration. For 
steady uniform flow and plane bed condition, turbulence (for quantifying 
sediment transport rates) can be fully characterized by the local bed shear 
stress (Nelson et al. 1995, Schmeeckle and Nelson 2003). However, for  
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locally non-uniform flow conditions typically occurring in the presence of 
bedforms, not only the skin friction varies along the bedform surface, but 
a form drag contribution to the total shear stress also arises (see Wiberg and 
Nelson (1992) and references therein), which is specifically modulated by 
the presence of bedforms. Hence in such flows sediment transport modeling 
generally requires more information than just the total boundary shear stress 
(Nelson et al. 1995, Sumer et al. 2003, Singh et al. 2012a), since one has to 
know a priori the characteristics of both small scale roughness elements, i.e., 
grain scale roughness, and large scale roughness due to bedforms. 

From the statistics of grain sizes and elevation of sampled patches and 
from the extracted virtual patches, it was observed that the crests present 
a typically finer surface grain distribution as compared to troughs (Fig. 14a). 
Coarser particles then tend to accumulate at bedform troughs under the  
action of winnowing, forming a coarser matrix that, however,  is progres-
sively covered by new material as bedforms migrate downstream. This sort-
ing process is governed by the spatial bed shear stress distribution associated 
with bedform shape and by the differential entrainment capacity of the flow 
regions above the troughs (characterized by a lower mean velocity) as com-
pared to the flow regions above the crests. These observations are consistent 
with the observations of Singh and Foufoula-Georgiou (2012) where it was 
shown that with increasing discharge the bedform height increases, which 
creates more space for ejection events in the trough of the bedform. Due to 
higher ejection events and low velocity in trough of the bedforms, sediment 
in trough is preferentially entrained, i.e., smaller particles get entrained thus 
rendering trough surface coarser. As a consequence of the increased variabil-
ity in bed topography, flow turbulence and grain entrainment with increasing 
discharge, also the sediment transport is more variable at higher discharge 
than at lower discharge. For example, in the present experiments, the stand-
ard deviation of the 2 min averaged sediment transport rates changes from 
~6.8 to ~25.5 kg/m/min as the discharge (and hence bedform height)  
increases from 1500 to 2800 l/s. 

The comparative analysis of surface grain distribution over crests and 
troughs is not qualitatively affected by the increasing discharge and thus by 
the sediment transport process. The surface material over the trough is invar-
iably coarser than that found over the crests, the variability of the grain dis-
tribution curves tending to increase with bedform size (i.e., discharge). On 
the other hand, subsurface grain distributions show an opposite trend: the 
subsurface grain size statistics of the crests (specifically d16 and d50) point at 
a coarser composition with respect to the trough material and the difference 
increases with increasing discharge (Fig. 14a). A similar trend is observed 
for d84 at the higher discharge, whereas for the low discharge d84 of the crests 
is finer than that over the troughs (see Fig. 14b). While at the low discharge 
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subsurface distributions differ only in the very fine sediment fraction, for the 
high discharge the grain size distributions between subsurface layers below 
crest and trough are observed to vary in the whole range of grain sizes (see 
Fig. 14b). Why do we observe this strong variability? This could be due to 
the following reason: the typical bedform height at the low discharge is 
about 4 cm with a standard deviation of roughly 1 cm. This implies that the 
subsurface layer (10 cm deep excavation) is statistically below the region  
intercepted by the moving bedform. It is thus reasonable to expect that sub-
surface grain size distribution should not exhibit significant differences,  
regardless of the presence of a crest or trough above them. For larger dis-
charge the mean bedform height is about 7 cm with a standard deviation of 
4 cm. Therefore, the subsurface layers are still within the propagating 
bedforms for the crests. As coarse grain sizes tend to accumulate in the 
trough with little chance to get entrained or transported away, since in the 
trough the flow velocity is comparatively low, they get buried by the evolv-
ing bedforms. Subsurface grain distributions within a still active layer in 
terms of transport and sorting mechanisms are in fact expected to show vari-
ability in the GSD and thus present differences based on the above topogra-
phy (crest or trough).  

An interesting observation from our experiments is that the troughs at 
higher discharge for the subsurface material are significantly finer than the 
initial distribution (compare d50 of 2.89, 4.41 mm versus 7.7 mm for T1, T2 
and initial distribution, respectively). What creates this re-organization? We 
suggest that this is due to the variability in bedform height (bedform height 
corresponding to C1 is about 10 cm whereas bedform height corresponding 
to C2 is approximately 18 cm). The higher bedform follows a low elevation 
trough (see the comparison of crests and troughs mean elevation in Table 6): 
due to this geometry the recirculation zone is bigger (taller) and the flow  
velocity is lower. As a result, finer material entrained from the following 
crest and the other upstream bedforms may get settled on the trough and 
work through the sediment pores to become a part of subsurface, causing the 
subsurface material to be finer. However, new experiments on flow veloci-
ties above gravel bedforms are needed to verify this hypothesis.  

It is interesting to note that variability in bed elevation series can be rep-
resented as the sum of the small scale roughness (grain scale roughness) and 
the large scale roughness (bedform scale roughness). It is noticed that for the 
low discharge, grain scale features contribute about 25% whereas bedform 
contribute about 75% to the total roughness measured as the standard devia-
tion of the bed elevation series. However, for the higher discharge, the 
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Fig. 18. Predictive relationship between bed elevation standard deviation and d84 of 
grain size distribution of the sampled patches for both the discharges of 1500 and 
2800 l/s. Note that the dotted line represents a linear fit.  

For modeling accurately the flow field and the sediment transport rates 
over bedform-dominated river beds, it is required to have a priori knowledge 
of both grain scale roughness and the roughness due to bedforms. Currently 
available hydrodynamic models, for example, Large Eddy Simulation mod-
els, require this information as boundary conditions for improved predictive 
modelling of flow and sediment transport. The results of this study may pro-
vide a better understanding of grain size distribution and roughness parame-
terization in the presence of bedforms. Figure 18 shows a predictive relation 
between the standard deviation of the bed elevation and the 84th percentile 
(d84) of GSD of the sampled patches, whereas Fig. 19 shows the percentage 
deviation (trough to crest) for the grain sizes (d84) of the sampled patches as 
a function of percentage deviation in the standard deviation of bed elevation 
for the same sampled patches, suggesting that local small scale roughness 
variations measured by the high resolution topography scan can be related to 
the actual variation in the d84, typically chosen as the parameter controlling 
frictional roughness effects. A similar behavior, i.e., a high correlation  
between standard deviation of bed elevation and d84 of grain size distribution 
was observed in Aberle and Nikora (2006), however in that study the 
bedforms were absent. Figure 20 shows the probability density function of 
percentage deviation between the crest and the trough for the virtual patches 
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Fig. 19. Percentage deviation (tough to crest) for the grain size (d84) of the sampled 
patch as a function of percentage deviation of the bed elevation standard deviation of 
the same sampled patch for the discharges of 1500 and 2800 l/s. Parameters d84,T and 
d84,C in the y axis represent 84th percentile of GSD of trough and crest patches,  
respectively, whereas σT and σC in the x axis represent the standard deviation in the 
elevation of the sampled patch at trough and crest, respectively. 

Fig. 20. Probability density functions of percentage deviation in between crests and 
troughs of virtual patches obtained from the DEM of topography for the discharge of 
(a) 1500 and (b) 2800 l/s. Note that the dotted line in the pdfs corresponds to the 
value of percentage deviation (RPatch-DEM) obtained for the sampled patches (see 
Fig. 19) whereas the solid line represents mean of the distribution. 

extracted from the bed elevation series  for the discharge of 1500 (Fig. 20a) 
and 2800 l/s (Fig. 20b). The mean percentage deviation obtained for the vir-
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tual patches is about 15% for the low discharge, whereas it is approximately 
30% for the higher discharge (Table 7).  We acknowledge that the percent-
age deviations for virtual patches are highly variable and also show some 
negative deviations (Fig. 20). This could be due to the fact that the sorting 
mechanisms may not always respond to a strong variability in bedform ge-
ometry (e.g., in the case of merging or superimposed bedforms). 
 
  
 

Table 7  
Statistics of percentage deviation between crest and trough  

for sampled GSD, sampled patch, and virtual patch 

Q 
[l/s] 

Rdg 
[%] 

Rpatch-DEM  
(observed patch) 

[%] 

Rv-patch-DEM 
(virtual patch)  

[%] (mean) 

1500 31.34 19.11 14.77 49.13 29.44 

2800 18.81 21.59 29.83 70.31 90.79 
 

8. SUMMARY  AND  CONCLUDING  REMARKS 
This paper investigates the effect of bedform geometry on the particle  
organization on the surface and subsurface of the crest and trough of the bed-
form. The data used in this study are the high resolution spatial and temporal 
bed elevation and grain size distribution of surface and subsurface bed  
materials of crest and trough of bedforms for low flow and high flow condi-
tions. The experiments were conducted in a large experimental channel at the 
St. An-thony Falls Laboratory, University of Minnesota. The main results of 
this study can be stated as follows: 

 Statistics of extracted bedform characteristics suggest that the mean 
and standard deviation of bedform heights increase with increasing dis-
charge, whereas for bedform lengths, the mean and standard deviation  
decrease with increasing discharge. 

 With increasing discharge, bed elevation fluctuations become 
smoother as suggested by the increasing slope of the power spectral density 
and the c1 (multifractality parameter). However, as the variability in 
bedforms increases, the inhomogeneity in the bed elevation, measured with 
the intermittency parameter c2, increases resulting in the more variable grain 
size distribution on the crest of the bedform and a stronger sorting effect 
both in the surface and subsurface layers.  

 Bedform migration is observed to induce a preferential grain size 
distribution (GSD) along the bedform wavelength. In particular, coarser  
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(finer) sediments were observed to predominantly accumulate in the trough 
(crest). Sorting effects due to bedform evolution can be interpreted as a scale 
interaction mechanism where small scale roughness (scaling at the grain 
scale) is modulated by large scale roughness (scaling at the bedform scale). 

 Sorting effects in the subsurface layers were observed to depend  
on bedform height distribution, suggesting that sorted surface layers are  
progressively buried creating layers of coarse and fine materials in the stra-
tigraphy. 

 At high discharge, the statistics of GSD on the crests are more varia-
ble than the corresponding ones at low discharge, whereas the GSD at the 
troughs do not show significant deviations at both discharges, suggesting 
that the dominant sorting mechanism is due to the entrainment potential  
rather than to preferential depositional processes. 

 Comparison between sampled and virtual patches shows that small 
scale roughness variations estimated by the local standard deviation of sur-
face elevation at the patch scale are consistent with the variations in the grain 
size distribution. High-resolution surface topography measurements can be 
thus used to identify crest and trough regions, to estimate directly the varia-
tion in small scale roughness and indirectly the key grain size parameters 
controlling transport and frictional drag (d50, d84). 

 In terms of total roughness, while bedform heights provide the dom-
inant contribution, the variation in small scale roughness, e.g., d84, still con-
tributes significantly to the total roughness. Local small scale roughness 
variation between crest and trough suggests that a realistic model of surface 
topography must resolve both large scale roughness features consistent with 
the expected bedforms and small scale roughness characteristics consistent 
with bedform modulated sorting (varying local d84 along the bedforms).  
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