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[1] To estimate precipitation intensity in a Bayesian framework, given multiple sources of
noisy measurements, a priori information about the multiscale statistics of precipitation
is essential. In this paper, statistics of remotely sensed precipitation reflectivity imageries
are studied using two different data sets of randomly selected storms for which coincident
ground‐based and spaceborne precipitation radar data were available. Two hundred
reflectivity images of independent storm events were collected over two ground validation
sites of the Tropical Rainfall Measurement Mission (TRMM) in the United States.
Comparing ground‐based and spaceborne images, second‐order statistics of the
measurement error is characterized. The average spectral signature and second‐order
scaling properties of those images are documented at different orientations in the Fourier
domain. Decomposition of images using band‐pass multiscale oriented filters reveals
remarkable non‐Gaussian marginal statistics and scale‐to‐scale dependence. Our results
show that despite different physical storm structures, there are some inherent statistical
properties which can be robustly parametrized and exploited as a priori information
for parsimonious multiscale estimation of precipitation fields. A particular mixture of
Gaussian random variables in the wavelet domain was found to be a suitable probability
model that can reproduce the non‐Gaussian marginal distribution as well as the scale‐to‐
scale joint statistics of precipitation reflectivity data, important for properly capturing
extremes and the coherent multiscale features of rainfall fields.
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scale mixtures in the wavelet domain: A formalism for reproducing extremes and coherent multiscale structures, J. Geophys. Res.,
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1. Introduction

[2] In the past decades, a considerable research effort has
been devoted to developing parsimonious stochastic models
of space‐time rainfall [e.g., Lovejoy and Mandelbrot, 1985;
Gupta and Waymire, 1990, 1993; Veneziano et al., 1996;
Deidda, 2000; Deidda et al., 2006; Lovejoy and Schertzer,
2006; Venugopal et al., 2006; Mandapaka et al., 2010].
The related theories of multiscale process representation, e.g.,
in Fourier or wavelet domains, have proven to be useful for
quantifying the rainfall variability at multiple scales. A large
body of these developments has exploited the way that the
second‐order statistics of the rainfall process vary across
different scales (i.e., 1/f spectra). Beyond this, observing non‐

Gaussian characteristics of precipitation fields and scaling in
higher‐order statistical moments, the theory of Multifractals
and Multiplicative Random Cascades has extensively been
used to capture these distinct properties of the rainfall fields
[e.g., Lovejoy and Schertzer, 1990; Gupta and Waymire,
1990, 1993]. Simultaneously, it has been shown that ori-
ented subband encoding of precipitation fields using wa-
velets can lead to an efficient and rich multiscale
representation of spatial rainfall [e.g., Kumar and Foufoula‐
Georgiou, 1993a, 1993b]. Subsequently, an appreciable
amount of work has been devoted to extracting the depen-
dency of the parameters of those stochastic models to the
underlying physics of the storm [e.g., Over and Gupta, 1994;
Perica and Foufoula‐Georgiou, 1996; Harris et al., 1996;
Badas et al., 2006; Nykanen, 2008; Parodi et al., 2011].
[3] The purpose of this paper is to: (1) demonstrate that

precipitation reflectivity images exhibit some remarkably
regular multiscale statistical characteristics, mainly related
to non‐Gaussian (heavy tail) marginals and scale‐to‐scale
dependency, and (2) introduce a new modeling framework
based on Gaussian Scale Mixtures (GSM) on wavelet trees
which can be explored towards non‐Gaussian, multiscale/
multisensor data fusion of precipitation fields. In section 2,
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we present basic statistics from a diverse array of precip-
itation reflectivity images collected coincidentally from
ground‐based NEXRAD and the spaceborne Precipitation
Radar (PR) abroad the TRMM satellite for two TRMM
Ground Validation (GV) sites in Texas and Florida. In
section 3, an extensive analysis and comparison of these
images in the Fourier domain is undertaken. In section 4,
the marginal and joint statistics of these precipitation
reflectivity images in the wavelet domain (using an
advantageous Undecimated Orthogonal Discrete Wavelet
transform) are presented. A novel model based on the GSM
onwavelet trees is introduced in section 5, and its potential for
reproducing the observed heavy tail and covariance of the
rainfall wavelet coefficients at multiple scales is demon-
strated. The potential application of this model is also briefly
discussed. Finally, section 6 presents conclusions and direc-
tions for future research.

2. Precipitation Data and Elementary Statistics

[4] A major portion of the available remotely sensed
precipitation data is acquired via imaging in the microwave
band of the electromagnetic spectrum. For active microwave
sensors, such as ground or spaceborne radars, the precipi-
tation fields are retrieved via physical or statistical rela-
tionship from the reflectivity images obtained as a result of
the detected back‐scattered energy of microwave signals
emitted from the precipitation radar. On the other hand, for
passive microwave sensors such as the TRMM Microwave
Imager (TMI), the precipitation fields are retrieved indirectly
via conditional inversion of the observed “brightness tem-
perature” [e.g., Kummerow et al., 1996]. In this study, we
use coincidental reflectivity data of the spaceborne TRMM
precipitation radar (PR) and the land‐based NEXRAD radar
to demonstrate that despite different physical structures of
the studied storms, the near‐surface images of precipitation
reflectivity exhibit remarkably regular and stable statistical
properties, which can be explicitly characterized within a
novel formalism based on GSM in the wavelet domain.
[5] Specifically, the data set used in this study is populated

by near‐surface reflectivity images from 200 independent

storms coincidentally observed by TRMM and NEXRAD
precipitation radars. The TRMM‐2A25 and NEXRAD
(level III) long‐range reflectivity products over two
TRMM‐GV sites: Houston, Texas (HSTN), and, Melbourne,
Florida (MELB), were collected on the basis of the TRMM
overpass information provided by the GV Office at the
Goddard Space Flight Center, Maryland. Using orthodromic
distance, the NEXRAD product provides reflectivity at an
horizontal resolution of about 1 km and up to the range
of 460 km with minimum reflectivity detection of 5 dBZ.
The TRMM, 2A25 product provides an orbital track that
spans a swath of 250 km at nadir with a resolution of about
4–4.5 km and minimum detection sensitivity of 17 dBZ. A
lucid explanation of the TRMM‐GV sites and the available
data at each site are provided by Wolff et al. [2005]. Note
that as the quantitative comparison of the two sensors is of
interest in this research, the NEXRAD near‐surface long‐
range reflectivity product was selected to maximize the
coincidental coverage between the two sensors. Obviously,
rainfall rate estimation from this single level reflectivity
product via a Z‐R relationship needs to be limited to lower
ranges (e.g., <230 km) to minimize the range effect esti-
mation errors.
[6] The data set used in our study comprises reflectivity

images of 95 and 105 storm events from both sensors over
the HSTN and MELB sites from 1998 to 2010, respectively
(see Figure 1). Concerning the sufficiency of the data for
robust statistical inference, the images were carefully selected
from storm events with adequate areal coverage during the
TRMMoverpasses. The data set spans a wide range of storms
with different physical structures and geometrical shapes
ranging from highly localized convective storms to frontal
and synoptically induced hurricane systems (see Figures 2
and 3). It is emphasized that no attempt was made to
convert these reflectivity images to precipitation intensity
values, a task that would be a research topic by itself, given
the diversity of storms and the ground‐based radar range‐
dependent estimation issues. In the rest of the paper we refer to
these reflectivity fields as “precipitation reflectivity images”
or “precipitation images.”

Figure 1. For statistical analysis, a total of 200 independent storms were selected from the TRMM‐PR
and the NEXRAD reflectivity data set at the TRMM ground validation (GV) sites of Houston, Texas
(HSTN), and Melbourne, Florida (MELB). The distribution of these events by year is shown.
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[7] Focusing on characterization of the error variance, these
sensors were compared over the intensity range detectable by
both. Accordingly, the mean reflectivity (in dBZ) of the
TRMM images was compared with the mean of the corre-
spondingNEXRAD images, conditioned on reflectivity values
exceeding 17 dBZ; see Figure 4. For this case, the standard
bias was found to be −2% and −1.8% for the HSTN and
MELB sites, respectively. This indicates that the TRMM‐PR
overestimates the reflectivity intensity in the range that both
of the sensors can detect reflected echoes. This bias is not
unexpected and is mainly due to the inherent differences in
the way that the two sensors interrogate the vertical profile
of the atmosphere. The variance of error is estimated and
reported in Table 1 based on two different definitions of
signal‐to‐noise ratio metric. This characterization has an
important implication in the context of linear multisensor
fusion of precipitation products [e.g., see Chou et al., 1994;
Gorenburg et al., 2001; Tustison et al., 2002;Willsky, 2002].
To this end, the bias was adjusted to zero via enforcing
the regression line to pass through the origin, and also the
data pairs with normalized residual values (by the standard
deviation) beyond the interval [−2, 2] were excluded from
the estimation process (see Figure 4). The latter treatment
makes the estimation more robust to probable outliers.
[8] The Kullback‐Leibler (KL) divergence, also known as

the relative entropy, was also studied to characterize the

degree of proximity of the marginal densities of the
observations, provided by the two sensors. The KL diver-
gence is defined as

KL p1jp0ð Þ ¼
X
x

log
p1
p0

� �
p1; ð1Þ

where pj = p(x∣Hj) is the conditional marginal density of
the precipitation reflectivity values under different mea-
surement hypotheses with j = 0,1 corresponding to TRMM
and NEXRAD observations, respectively. The KL diver-
gence is a positive quantity which is equal to zero if and
only if the compared densities are equal almost everywhere
in their domain. The KL is not a conventional distance
since it is not symmetric and does not satisfy the triangle
inequality for three arbitrary densities. Yet, it has been shown
to be a useful measure of density mismatch in statistical
modeling [Levy, 2008]. As can be seen from Table 1, this
metric demonstrates a statistically significant deviation from
zero for both GV sites implying a deviation of the marginal
densities. This particular observation along with the least
squares analysis of the data set (see summary in Table 1)
indicates that on the average the overall quality of the selected

Figure 2. The collected data sets summarized in Figure 1 span a wide range of storms with different
spatial structures and geometrical shapes. The NEXRAD reflectivity images for four selected storms
are shown above; they are labeled according to the GV site, date (yyyymmdd), and time in UTC:
(a) MELB_19980217_131700, (b) HSTN_19981113_000200, (c) HSTN_20020620_172600, and
(d) MELB_20040926_045000.
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TRMM‐PR overpass observations in the MELB site is
superior to that of the HSTN site.

3. Spectral Signature

[9] Several studies [e.g., Lovejoy and Schertzer, 1990;
Harris et al., 1996, 2001; Menabde et al., 1997; Morales
and Poveda, 2009; Lovejoy et al., 2010; Ebtehaj and
Foufoula‐Georgiou, 2010] have reported the presence of
scale invariance in the form of f −b average Fourier spectrum
(i.e., E[∣F ( f )∣2]) in precipitation fields. The Fourier trans-
formation, as an approximation to the Karhunen‐Loève
expansion, allows us to decouple the correlation structure of
the rainfall fields into a set of almost uncorrelated Fourier
coefficients with a nearly diagonal covariance matrix. There-
fore, knowing that the inner product in L2(R) is conserved
under the Fourier transformation (i.e., Parseval’s Theorem),
the one‐dimensional representation of the average power

spectrum E[∣F ( f )∣2] = Af −b is indeed diagonalization of
the covariance in the frequency domain. Besides the infor-
mation content of the spectral decay rate as depicting the
second‐order scaling law and degree of differentiability
(smoothness) of a field, this diagonal representation of the
covariance yields a computationally more efficient least
square optimal filtering in the Fourier domain which also
might be useful for filtering of high‐dimensional strongly
correlated rainfall fields [see, e.g., Simoncelli and Adelson,
1996; Gonzalez and Woods, 2008].
[10] By construction, the Fourier spectrum of an image is

insensitive to spatial translation, but it is not rotation invariant
and can explain the anisotropy of a field. Accordingly, in
addition to the energy distribution of the intensity values in
the frequency domain, the 2D spectrum depicts the orienta-
tion of the edges and regions of sharp gradients in a 2D field.
For instance, it has been reported that as horizontal and ver-
tical edges are dominant in man‐made scenes (e.g., cities),

Figure 3. (a) The geographic locations of the study sites (MELB and HSTN) and the orbital track 61698
of the TRMM satellite which captured a hurricane storm over Texas on 13 September 2008. (b) Reflec-
tivity images of the storm captured by ground‐based NEXRAD at 11:16:00 UTC and (c) the coincidental
TRMM‐2A25 overpass.
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Figure 4. TRMM versus NEXRAD reflectivity values in (a) HSTN and (c) MELB sites. The data pairs
are the spatially averaged reflectivity values of coincidental pairs of images computed over the range of
intensity values which is detectable by both sensors (≥17 dBZ). The solid line is the best least squares
fitting and the broken line is the 1:1 line. The (b) HSTN and (d) MELB normalized regression residuals,
with the [−2, 2] lines, marked to indicate the values that fall outside the ±2 times standard deviation of
residuals.

Table 1. Standardized Error Variance in Terms of Two Signal‐to‐Noise Ratio (SNR) Metrics and Kullback‐Leibler (KL) Divergence of
the Marginal Histograms of the TRMM and NEXRAD Coincidental Reflectivity Observationsa

HSTN MELB

NEXRAD TRMM NEXRAD TRMM

SNR1 11.9 (10.4–12.9) 13.0 (11.6–13.6) 12.4 (11.2–13.6) 13.6 (13.0–14.4)
SNR2 8.4 (5.8–9.75) 13.0 (11.6–13.6) 9.0 (7.45–10.0) 7.9 (6.5–9.6)
KLb 1.0488 (0.7959–1.5681) 1.0488 (0.7959–1.5681) 0.6749 (0.6108–0.7494) 0.6749 (0.6108–0.7494)

aValues in parentheses indicate the 95% quantile range of estimation. The two different metrics of SNR are: SNR1 = 10 log10 (ms/sn) and SNR2 = 10 log10
(ss/sn), where ms and ss are the mean and standard deviation of the signal and sn is the noise standard deviation.

bKL is a mutual property between NEXRAD and TRMM. Therefore the entries repeated here are actually shared between NEXRAD and TRMM.
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the spatial distribution of the spectrum of these images is
more elongated along the vertical and horizontal orienta-
tions [Torralba and Oliva, 2003]. In light of this, studying
the spatial distribution, orientation and total energy of the
precipitation reflectivity images in the spectral domain
might be useful not only for exploring scale invariance and
optimal estimation but also for studying the regional orga-
nization of storm systems for retrieval applications.
[11] To this end, we compute here a more general repre-

sentation of the mean spectral signature of the precipitation
images at different orientations �,

E F f ; �ð Þj j2
h i

¼ A �ð Þf �� �ð Þ; ð2Þ

where F (·) denotes the Fourier transformation in polar
coordinates, A(�) is a prefactor and b(�) is the dropoff rate
of the spectrum at angle �. Using discrete Fourier transform,
the square of the absolute values of the Fourier coefficients
were calculated to obtain the 2D power spectrum for each

individual image. This provides a set of Fourier power
spectra which can be averaged over the entire data set for
each site (i.e., 95 images over HSTN and 105 images over
MELB) to obtain the so‐called ensemble power spectrum;
see Figures 5c and 5d. Using the least squares regression in
a log‐log scale, the power spectral model in the form of
equation (2) can be fitted at different orientations to each
individual or ensemble 2D spectra. The regressions were
performed in the radial frequency interval of [0.03,0.50]
cycle/pixel [c/p] corresponding to the pseudo spatial scale
(i.e., Euclidian distance) of 2–32 km. Table 2 reports the
results of directional estimation of power spectral slopes for
the NEXRAD data sets. It is observed that the estimated
spectral slopes vary between 2.35 and 2.75 for the HSTN site
and between 2.45 and 2.85 for the MELB site. By averaging
a 2D power spectrum over all angles, a one‐dimensional
representation can also be obtained in which the parameters
in equation (2) are independent of orientation. Figures 5a
and 5b show the radially averaged ensemble spectra for
the NEXRAD data sets. The estimated dropoff rate of
the radially averaged ensemble spectra in the two sites is

Figure 5. Radially averaged spectra for the ensemble of NEXRAD reflectivity images at the (a) Houston
and (b)MelbourneGV sites. The 2D ensemble spectra for (c) Houston and (d)MelbourneGV sites depicting
directional anisotropy at small scales (large frequencies).
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about 2.70–2.75, which implies that the precipitation ima-
ges are globally much smoother than many other natural
images (e.g., b ≈ 2) [Ruderman, 1994]. Interestingly,
despite the different geographic locations of the two sites
and different physical structures of the storms, the statistics
of the spectral parameters vary within a very narrow range;
see Table 2. This observation implies that the spectral sig-
nature (i.e., spatial correlation structure) of the near‐surface
reflectivity images may not be a discriminatory measure of
the physical structure of the storms. On the other hand, this
universal behavior gives us a priori knowledge about the
correlation structure of these type of rainfall images which
can be useful for noise removal and optimal estimation of
precipitation data in the Fourier domain.
[12] As mentioned before, the shape of the spectrum can

also speak for the regional organization of the rain cells.
Pronounced abrupt changes in the spatial domain intensity
values (i.e., horizontal edges) cause spectral skewness
(elongation) in the perpendicular direction (i.e., vertical
direction) at the frequency domain [Gonzalez and Woods,
2008]. In the collected storm images, for the low frequency
components of less than 0.1 [c/p], the spectral signature
shows a more dense and isotropic behavior, meaning that
on average the large‐scale features of the storms do not
have any particular spatial orientation. However, for high‐
frequency components (i.e., small‐scale features) the
ensemble power spectra are tilted and more elongated
towards the northeast (NE) and southwest (SW) directions
(see Figures 5c and 5d). This similar asymmetric signature in
both sites may mainly arise due to a regionally governing
synoptic meteorological condition that gives rise to a direc-
tionally dominant formation of the rain patches with a length
scale smaller than 10 km.
[13] Due to the limited swath width and flight orientation,

the TRMM‐PR orbital observations often cannot capture the
entire spatial extent of the storm events. TRMM‐PR products
often provide a cropped version of the whole storm with
abrupt changes of intensity values on the swath boundaries.
These artificial edges contaminate the spectral signature and
give rise to some spectral leakages (see Figure 6), which do
not allow us to properly study the directional organization of
the rain cells (i.e., edges) from this product. Although this
boundary effect may be handled, for instance by padding the
TRMM‐PR images with mirror reflection of themselves
across the boundaries, this obviously does not add any new
information that can be exploited to study the spatial orga-
nization of the rain cells. However, the decay rate of the

radially averaged ensemble spectrum at similar frequency
bands confirms that the reflectivity images of the TRMM
sensor exhibit slightly weaker correlation structure (more
irregular) compared to the NEXRAD products.

4. Statistics of Subband Components
in the Wavelet Domain

[14] Natural processes exhibit variability over a broad
range of scales, often manifesting itself in isolated singular-
ities in the form of edges or nested areas of intense activity.
The decay of the Fourier spectrum captures the global dis-
tribution of variance without providing information about
the local distribution of the process variability at different
scales. Using a set of multiscale band‐pass filters at different
orientations has been found to be extremely useful for
extracting the information content of the local jump dis-
continuities and abrupt fluctuations of these fields [e.g.,
Kumar and Foufoula‐Georgiou, 1993a, 1993b; Perica and
Foufoula‐Georgiou, 1996; Huang and Mumford, 1999; Lee
et al., 2001; Mallat, 2009]. Spatial precipitation fields are
highly clustered and exhibit strong correlation along with
sparseness (zeroes) in the real domain, mainly recognizable
as the presence of oriented edges between rain and no‐rain
areas. Consequently, precipitation images often exhibit a
stronger sparseness condition in the wavelet domain as the
coherent cells and broad homogeneous areas would map
into near‐zero wavelet high‐pass coefficients. This often
manifests itself in the marginal histogram of the wavelet
subbands having a sharp peak at the center (i.e., around
zero) and extended heavy tails which cannot be modeled in
a Gaussian framework. As a simple treatment to overcome
this leptokurtic behavior, Perica and Foufoula‐Georgiou
[1996] proposed a Gaussian density model for the so‐
called “standardized rainfall fluctuations”, defined as the
high‐pass orthogonal wavelet coefficients divided by their
corresponding low‐pass coefficients. Although that treat-
ment can partially model the observed thick tail behavior, it
cannot flexibly account for the cusp singularity or large
mass of the wavelet coefficients around the center of the
distribution.
[15] In this study, we demonstrate that the Generalized

Gaussian (GG) density which has been widely used for
statistical modeling of the high‐pass wavelet subbands of
natural images [e.g., Huang and Mumford, 1999; Lee et al.,
2001] can be employed to fully characterize the marginal
statistics and heavy tail properties of the precipitation
reflectivity images. As the rainfall imageries generally suffer
from a considerable number of zero intensity values at the
background (nonrainy areas within the field of view), a
method is also presented to allow characterization of only
the “relevant zeroes”, i.e., the zeroes that correspond to
small isolated dry areas within the storm domain and to
those corresponding to the storm edges [see also Kumar
and Foufoula‐Georgiou, 1994]. In addition, it is shown
that despite the decorrelation capacity of the wavelet trans-
formation [e.g., see Wornell, 1990], the wavelet coefficients
of the rainfall images exhibit a weak correlation structure
and a considerably regular higher‐order scale‐to‐scale
dependence, which needs to be addressed for proper multi-
resolution modeling of precipitation imageries.

Table 2. Estimated Parameters of the Spectral Model in
Equation (2) for NEXRAD Data at Multiple Directionsa

HSTN MELB

log [A (�)] b (�) log [A (�)] b (�)

� 5.18(0.18) 2.68 (0.12) 5.11(0.19) 2.75(0.10)
� = 0.0° 4.86(0.22) 2.66 (0.22) 4.80(0.27) 2.72(0.26)
� = 90° 5.02(0.25) 2.71 (0.27) 4.92(0.25) 2.80(0.21)
� = 135° 4.50(0.19) 2.75 (0.22) 4.46(0.22) 2.85(0.21)
� = 45° 4.85(0.20) 2.35 (0.20) 4.75(0.19) 2.45(0.19)

aSee Figure 5. The values in parentheses are the standard deviations. The
parameters reported for � denote those obtained from the radially averaged
ensemble spectra.
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4.1. Wavelet Decomposition and Marginal Statistics

[16] The Orthonormal Discrete Wavelet Transformation
(OWT) [Mallat, 1989] decomposes a 2D signal f (x,y) of size
K × L into a pair of almost uncorrelated expansion coeffi-
cients dm,k,l

i (called wavelet coefficients) and orthonormal
basis functions ym,k,l

i (x, y) in the form of

 i
m;k;l x; yð Þ ¼ 2m=2 i 2mx� k; 2my� lð Þ

f x; yð Þ ¼ 1ffiffiffiffiffiffi
KL

p
X

i¼H ;V ;D

Xm¼þ∞

m¼�∞

XK�1

k¼0

XL�1

l¼0

dim;k;l 
i
m;k;l x; yð Þ; ð3Þ

where ym,k,l
i (x, y) is the wavelet basis function at subband

i = {H, V, D} (i.e., Horizontal, Vertical and Diagonal direc-
tions in this study), m denotes the scale level and (k, l) are
translation indices (see also detailed exposition byKumar and
Foufoula‐Georgiou [1993a]). This representation uses the
orthogonal wavelet bases functions ym,k,l

i (x, y) in a “critically

sampling rate” (meaning that the size (N) of the input
signal is equal to the total size of the output subbands).
Owing to the orthogonality of the bases and critical sampling
rate, the inverse transformation allows a perfect reconstruc-
tion with a computational complexity of the order of O(N).
However, this critical sampling rate makes the wavelet rep-
resentation shift variant and imposes significant aliasing in
each individual subband. Although the aliasing artifacts will
cancel out in the reconstruction phase, this would be trouble-
some for processing and parametrization of each individual
subband [e.g., Nason and Silverman, 1995; Simoncelli and
Freeman; 1995].
[17] In this study, a shift‐invariant Undecimated Orthog-

onal Discrete Wavelet Transform (UOWT) [Nason and
Silverman, 1995] is used for decomposition of the precipi-
tation reflectivity images and statistical characterization of
their wavelet coefficients. This decomposition produces nearly
alias‐free and overcomplete subband information. The latter
property is another great advantage over the conventional

Figure 6. Radially averaged spectra for the ensemble of TRMM‐PR reflectivity images in the (a) Houston
and (b) Melbourne GV sites. The smaller values of the spectral slopes compared to those of the correspond-
ing NEXRAD reflectivity images of Figure 5 imply that the reflectivity images produced by the spaceborne
TRMM‐PR exhibit a weaker spatial correlation than those produced by the ground‐based NEXRAD. The
2D ensemble spectra of the TRMM‐PR data at (c) HSTN and (d) MELB sites indicate similarity to the
corresponding NEXRAD spectra but also show significant spectral leakage due to the artificial edge effects
introduced by the swath boundaries (see text for more explanation).
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OWT in which the size of the signal is downsampled by a
factor of 2 at each level of decomposition, giving rise to
inferential problems in subband parametrization of rainfall
images with small wetted area. Obviously, the advantages of
this overcomplete frame expansion come at the expense of a
higher computational complexity of the order of O(N log N).
[18] It is noted that in the wavelet domain, background

zeroes will remain zeroes at consecutive scales in both high
and low‐pass subbands, while a range of zero intensity
values within the storm domain (i.e., those zero intensity
pixels which define the boundaries of the wetted areas of the
storm from the background zeros) will become nonzeroes
from fine‐to‐coarse scales. This observation provides an
efficient means of eliminating the background zeroes while
keeping the zeroes of interest (and their locations). In this
study, to resolve this issue, the conditional marginal densities
of high‐pass subbands are estimated given that the low‐pass
coefficients at the same location and scale are positive (see
Figure 7).
[19] Figure 8b shows the marginal distribution of the

wavelet coefficients (in log‐probability scale) computed, as
discussed above, from the NEXRAD reflectivity data of a
June 2007 storm over the Melbourne site (see Figure 8a). A
highly leptokurtic behavior is observed which is in contrast,
for example, with the Gaussian marginal distributions of the
wavelet coefficients of a fractional Brownian surface, as
shown in Figures 8c and 8d (note that a Gaussian density is
an inverted parabola in a log‐probability scale). It is important
to note that both the 2D fractional Brownian surface (the slope
of its power spectrum is 2H + 2, where 0 < H < 1 is the self‐
similarity index) and the precipitation image exhibit similar
power law spectrum (i.e., 1/f law) but their marginal sta-
tistics are drastically different.
[20] The Generalized Gaussian (GG) family, also known

as the Generalized Laplace, has often been used to model
the marginals of the wavelet coefficients in the context of
natural images [e.g., Huang and Mumford, 1999; Lee et al.,
2001]. The early form of this class of density functions was
first presented by Subbotin [1923]; however, it can be con-
sidered as a subclass of a more flexible family, the so‐called
Generalized Gamma density functions [Stacy, 1962; Choy
and Tong, 2010]. The zero‐mean parameterization of this
family can be described by a shape a 2 (0, ∞) and a width
parameter s 2 (0, ∞) as [e.g., Nadarajah, 2005],

fx x; �ð Þ ¼ �

2sG 1=�ð Þ exp
x

s

��� ����� �
; ð4Þ

where � 2 {s,a} and G(·) denotes the standard gamma
function G(a) =

R
0
∞ e−t t a−1 dt, a > 0. This parameterization

allows a concise characterization of a symmetric proba-
bility continuum spanning a wide range of distributions,
including the Dirac delta function (a → 0) to the uniform
density (a → ∞) in the limiting case. The tail probability
of this family is summable and admits the classical central
limit theorem. Therefore, it is only a suitable probability
model for signals with finite energy in L2(R) inner product
space. It is worth noting that as this family is a subclass
of the generalized gamma density function, Walker and
Gutiérrez‐Peíra [1999] and Martín and Pérez [2009] proposed

Figure 7. (a) NEXRAD reflectivity image of a storm over
the HSTN site at 15 January 2007 at original resolution of 1
km. (b) First level low‐pass subband image of the storm
using an Undecimated Orthogonal Wavelet Transform
(UOWT). (c) Pixel‐wise difference of Figures 7b and 7a.
At each level of the wavelet decomposition, as a result of
the convolution of the field with the wavelet scaling func-
tion, a set of zero values next to the edges of the wetted
areas becomes nonzero and subsequently the areas of non-
zero pixels progressively grow from fine‐to‐coarse scales.
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a gamma mixture representation which allows a pseudo
random number generation scheme for this family. Letting
G be a gamma random variate G ∼ G (shape = 1 + 1/a,
scale = 1), the GG random variables in equation (4) can be
generated by X ∼ sG1/a U, where U is a uniform density
function on [−1, 1].
[21] Given a set of sample wavelet coefficients dj 2 (dm,1

i ,
dm,2
i , .., dm,n

i )T of precipitation reflectivity images at subband
i and scale m, where j = 1, 2, .., n correspond to the spatial
locations of these coefficients, the parameters of the fitted
GG probability density can be estimated using the Method
of Moments (MOM) or the Maximum Likelihood (ML)
estimation method. The density of the GG distribution in the
form of equation (4) can be fully characterized given the
second‐ and fourth‐order central moments of the sampled
data,

E d2j

h i
¼ s2G 3=�ð Þ

G 1=�ð Þ
E d4j

h i
¼ s4G 5=�ð Þ

G 1=�ð Þ :

ð5Þ

Accordingly, the shape parameter a can be estimated from
the sample kurtosis of the wavelet coefficients as defined

above, by numerically solving the following nonlinear
equation,

� dj
� 	 ¼ G 1=�ð ÞG 5=�ð Þ

G2 3=�ð Þ ; ð6Þ

and knowing the shape parameter, the width parameter can
be estimated using equation (5). A closed form set of equa-
tions is also derivable to estimate the parameters in a ML
sense. Specifically, maximizing the log‐likelihood function

�ML ¼ Argmax
�

log
Yn
j¼1

f dj; �

 �" #( )

ð7Þ

yields the following set of nonlinear equations that can be
solved numerically [Nadarajah, 2005],

� n

s
þ �

s�þ1

Xn
j¼1

dj
�� ��a¼ 0

n

�

1

�
Y

1

�

� �
þ 1

� 
�
Xn
j¼1

dj
s

����
���� log dj

s

����
���� ¼ 0;

ð8Þ

where Y (·) the is the digamma function Y (a) = d
da log G (a).

Figure 8. (a) NEXRAD reflectivity image of a storm over the MELB site on 5 July 2007 at 20:00:00 UTC
and (b) the associated histogram of the wavelet coefficients normalized by the standard deviation. Sharper
peak and heavier tail than the Gaussian case is a typical statistical feature of the rainfall images in the
wavelet domain. (c) Positive part of a 2D fractional Brownian surface with self‐similarity index of 0.5,
and (d) the associated Gaussian marginal histogram of the normalized horizontal wavelet high‐pass
coefficients.
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[22] Employing the ML estimation method, Figure 9
depicts the fitted Generalized Gaussian distribution to the
average histogram of the first horizontal subband coefficients
for all precipitation images in the Texas and Melbourne
sites. It can be observed that the GG density can explain
impressively well the heavy tail non‐Gaussian features of
the rainfall fields in the wavelet domain. As the GG density
can be fully characterized knowing the second‐ and
fourth‐order statistical moments in equation (5), the evolution
of the density at multiple scales can also be studied via
characterization of the scaling properties of these moments.
[23] As an orthogonal overcomplete wavelet representa-

tion is used in this study, the Parseval’s theorem guarantees
that the 2‐norm is conserved in the transformed domain.
Hence, as expected from spectral analysis, the scaling of the
second‐order statistics in the wavelet domain shall remain a
power law. Observations (see Figure 10) also demonstrate
that the fourth‐order moment of the wavelet coefficients
obeys a power law scaling, which allows us to derive
parametric expressions to describe the evolution of the GG
density at multiple scales of interest. This can be further
formalized in the framework of a stochastic multifractal
representation [e.g., Mandelbrot et al., 1997; Abry et al.,
2004] in which, the qth‐order moment of the wavelet
coefficients in a particular subband can be explained as

E dm; j
�� ��q� 	 ¼ cq2

m�q ; ð9Þ

where cq is a prefactor and tq characterizes the scaling law
of the process in a finite range of scales. In the case that the
scaling exponent tq can be uniquely expressed as tq= qH, with
the self‐similarity index H independent of q, the process is
called monofractal. In this case, the tail thickness of the
marginal distribution of the process remains scale‐invariant.
[24] Decomposing all of the precipitation reflectivity

images at four levels of decomposition (m = 1 to 4, spatial
scales of 2 to 16 km), tq is estimated in a least squares sense
for q 2 {2, 4}; see Figure 10. The estimated values of t2 and
t4 are summarized in Table 3 for all of the subband coef-
ficients. It can be observed that the value of t4 − 2t2 is not
equal to zero as one would obtain for a monofractal process.
Instead, it is found that t4 − 2t2 < 0, implying that the
kurtosis of the coefficients shrinks from fine‐to‐coarse
scales. This can be seen from the kurtosis evolution at dif-
ferent scales given as

� dm; j

 � ¼ c4

c2ð Þ2 2
m �4�2�2ð Þ: ð10Þ

This multiscale behavior of the kurtosis implies a multi-
fractal scaling law of the wavelet coefficients. However, this
nonlinear scaling (i.e., shrinkage of the tail) can be consis-
tently studied via a linear (in log‐log scale) characterization
of the second‐ and fourth‐order moments, individually.
Accordingly, given any prior information about the scaling
exponents and the wavelet coefficients at any particular
scale (from which the GG parameters can be directly esti-
mated), the evolution of the marginal density in terms of the
parameters of the GG distribution can be fully explained at
any scale of interest.

Figure 9. The empirical log histogram of the horizontal
subband coefficients normalized by the standard deviation,
at one level of decomposition in (a) HSTN and (b) MELB.
The dots show the empirical histogram averaged over all
storms in each site (see Figure 1), and the solid line is the
Maximum Likelihood fitted GG distributions. The shape
parameter for the average histogram is calculated consis-
tently around 0.7 for both sites. The dashed lines present the
95% quantiles associated with the estimated parameters for
each individual data set.
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4.2. Joint Statistics of the Wavelet Coefficients

4.2.1. Scale‐to‐Scale Dependence
[25] Similar to the Fourier expansion, it is theoretically

proven [Wornell, 1990] that the discrete orthogonal wavelet
transform for 1/f processes is an approximate Karhunen‐

Loève‐like expansion that can decompose a correlated
process into a set of uncorrelated expansion coefficients and
orthogonal bases functions. For a 1D Gaussian scaling
process, such as fractional Brownian motion with self‐
similarity index H, it has been theoretically shown [Tewfik
and Kim, 1992] that the covariance of wavelet coefficients
decays in the order of

E dm;kd
T
r;l

h i
� O 2mk � 2rlj j2 H�Rð Þ

� �
; ð11Þ

where m and r denote different scales, (k, l) are translation
indices and R is the number of vanishing moments of the
chosen wavelet (i.e.,

R
xpym,k(x) = 0, p = 0, 1, .., R − 1).

Obviously, according to equation (11), the decorrelation is
not perfect for nearby coefficients and the decay rate also
depends on the order of the vanishing moments of the selected
wavelet; the larger the number of vanishing moments, the
larger the decorrelation rate. Moreover, due to the presence of
multioriented edges and strong local dependencies of the
intensity values in precipitation images, this whitening effect is
more complicated especially in an overcomplete representation.
[26] Although the Haar wavelet has the least number of

vanishing moments, i.e., R = 1, it has some appealing fea-
tures especially for analyzing the 1/f scaling and interpreting
the rainfall wavelet coefficients as simple first‐order incre-
ment of the field [e.g., Perica and Foufoula‐Georgiou, 1996;
Riedi et al., 1999]. For practical implementation on finite
domain images, this wavelet has the shortest support among
all of the wavelets and thus it does not need a periodic
extension of the analyzed signal [Zhang et al., 2004]. Due to
the presence of the pronounced edges in the rainfall images
separating the rainy areas from the background zeros, this
naturally implies that the distribution of the high‐pass coef-
ficients of the Haar wavelet with finite support has the least
amount of cusp singularities at the center, which makes it
more tractable for statistical parametrization. In addition,
selection of the Haar wavelet is consistent with the assump-
tion that the retrieved precipitation product is the arithmetic
average representation of the highly irregular precipitation
process at a particular scale (the low‐pass filter corre-
sponding to the Haar wavelet is like a box averaging filter;
see Kumar and Foufoula‐Georgiou [1993a] for an intro-
ductory exposition). Obviously, using the Haar wavelet, there
exist more pronounced intrascale and scale‐to‐scale depen-
dency, which needs to be characterized for proper stochastic
modeling of the rainfall images.
[27] The 2D joint and conditional histograms of the Haar

wavelet coefficients of the precipitation reflectivity images
have been estimated to study the scale‐to‐scale dependence
of the rainfall wavelet subbands at two adjacent scales. The
relationships of the coarse and next finer scale coefficients
are studied under the name of parent and child dependency.
Figure 11 shows the average 2D joint and conditional his-
tograms of the wavelet coefficients for the MELB data set.
The conditional histogram is just a remapped version of the
2D joint histogram in which, given the parent value, every
nth vertical bin is independently normalized into a proba-
bility scale such that ∑n p(child∣parent) = 1.
[28] The shape of the joint histograms (Figures 11a

and 11b) clearly denotes that the conditional probability
of the children given the parent is not uniform all over
the domain and there exists higher‐order dependency that

Figure 10. The average moment scaling law of the high‐
pass horizontal subband coefficients (wavelet coefficients)
in the (a) HSTN and (b) MELB sites. Here m = 1,…, 4
denotes the spatial scales of 2 to 16 km. This information
can be exploited to characterize the evolution of the Gen-
eralized Gaussian (GG) density across a range of scales of
interest. It appears that the scaling laws can be estimated
consistently for both sites. The shaded areas denote the
95% quantile range of estimation. See Table 3 for estimated
values of the scaling exponents.
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cannot be completely eliminated under the wavelet trans-
formation. Indeed, the shape of the computed conditional
histograms (Figures 11c and 11d) denotes that the variance of
the children depends on the parent magnitudes and larger
parents give rise to children with larger variance. The tilted
bow tie shape of the vertical subband (see Figures 11b and

11d) also signifies the presence of off‐diagonal nonzero
elements on the covariance matrix of the parent and child
coefficients. All of these confirm that the wavelet transfor-
mation cannot completely eliminate the scale‐to‐scale corre-
lation and higher order dependence in the rainfall fluctuations.
We remind the reader that the analysis in the reflectivity

Figure 11. The average joint histogram of the (a) diagonal and (b) vertical high‐pass wavelet coeffi-
cients at the MELB site are shown along with (c, d) the corresponding conditional histograms. The
bow tie shape of the conditional histograms manifests the scale‐to‐scale dependence, and the tilted shape
indicates the presence of a nondiagonal covariance structure.

Table 3. Estimated Scaling Exponents of the Second‐ and Fourth‐Order Statistical Moments for the NEXRAD Data Set at Different
Orientations in the Range of Scales of Interest 2 to 16 kma

HSTN MELB

H V D H V D

t2 1.01 (0.88–1.10) 1.00 (0.87–1.10) 0.91 (0.80–0.99) 1.03 (0.91–1.11) 1.02 (0.90–1.11) 0.93 (0.85–0.99)
t4 1.89 (1.68–2.10) 1.86 (1.629–2.03) 1.69 (1.47–1.90) 1.91 (1.74–2.08) 1.88 (1.70–2.06) 1.75 (1.57–1.88)

aOrientations: H, horizontal; V, vertical; D, diagonal.

EBTEHAJ AND FOUFOULA‐GEORGIOU: STATISTICS OF PRECIPITATION IMAGES D14110D14110

13 of 21



domain is related to analysis in the log‐rainfall domain, and
thus “rainfall fluctuations” here and in the sequel literally
refer to fluctuations of the log‐transformed rainfall fields.
This kind of statistical dependencies are also observed for the
HSTN‐NEXRAD data set (not shown here) for all nearby
wavelet coefficients at all orientations.
4.2.2. Intrascale Dependence
[29] In addition to the fact that the wavelet transform does

not completely decorrelate (globally) the precipitation images
across scales, in this part we show that the wavelet coefficients
of the precipitation images also exhibit a local intrascale
dependence structure. Figure 12b shows the absolute value
of the vertical high‐pass subband of the storm image in
Figure 12a. Although it seems that the coefficients are not
strongly correlated in a global sense, they are locally struc-
tured, especially near the major edges. The estimated local
covariance matrices of a 5 × 5 neighborhood of the wavelet
coefficients for all orientations are shown in Figures 12c, 12d
and 12e. These covariance matrices are estimated using a
bootstrap resampling scheme. Blocks of the neighborhood
coefficients dm,k,l

i are sampled with replacement, then for
each jth sampled block, the djdj

T is computed, where here dj
is the column‐wise vectorized version of dm,k,l

i in a fixed
order. For n‐bootstrap samples, the covariance matrix Sd is
estimated as follows:

Sd ¼ 1

n

Xn
j¼1

djd
T
j : ð12Þ

For sufficiently large n, this estimate guarantees convergence
in probability to the true population value [e.g., Lunneborg,
2000].
[30] The off‐diagonal nonzero elements of the estimated

covariance matrices signify the imperfect local intrascale
whitening effect of the wavelet transformation (see
Figures 12c–12e), which is more significant for the vertical
and horizontal subbands.
[31] All of these findings corresponding to the existence

of a dependent structure among the wavelet coefficients
challenge most of the available stochastic spatial rainfall
models [e.g., see Perica and Foufoula‐Georgiou, 1996] in
which an uncorrelated reconstruction scheme is proposed to
explain the high‐frequency features of the field. Note that the
uncorrelated reconstruction schemes do not offer a means for
controlling the tail evolution of the high‐frequency features

and, naturally, cannot accurately reproduce the small‐scale
extreme fluctuations in the precipitation images. For appli-
cations such as stochastic downscaling or multiresolution
fusion in the wavelet domain, the results reported herein
imply that one has to consider a probability model for the
wavelet coefficients, or say small‐scale features of precipi-
tation images, which can reproduce a heavy tailed spatially
correlated process with higher‐order scale‐to‐scale statistical
dependence. In section 5, we propose a formalism within
which the intrascale correlation, scale‐to‐scale higher‐order
dependence and heavy tail marginals can be simultaneously
and parsimoniously reproduced in the wavelet domain.

5. GSM for the Wavelet Coefficients
of Rainfall Images

[32] In this section a stochastic model is introduced which
allows us to capture the laid out features of the rainfall images
in the wavelet domain. Basically, this model is capable of
reproducing a class of heavy tail multiscale processes with a
desired covariance structure together with a specific signature
of higher‐order scale‐to‐scale dependence on the conditional
histogram. To this end, the basic idea is to exploit the con-
struction proposed by Wainwright et al. [2001] in which the
high‐pass wavelet coefficients are modeled via a mixture of
Gaussian random variables on a tree‐like structure. Specifi-
cally, it will be shown that the wavelet coefficients can be
decoupled into a mixture of two different Gaussian processes
in which one controls the covariance and second‐order
scaling, while the other one takes into account the tail and
higher‐order scale‐to‐scale dependence.

5.1. Cascade of Gaussian Scale Mixtures
on Wavelets Trees

[33] Andrews and Mallows [1974], West [1987] and
Wainwright et al. [2001] showed that a set of heavy
tailed symmetric density functions including the Laplace,
t‐distribution, logistic, standard power exponential and even
stable distribution, can be generated as a mixture of Gaussian
random variables, called Gaussian Scale Mixtures (GSM),

d ¼d ffiffi
z

p
u; ð13Þ

where ¼d stands for equality in distributions, z is a positive
independent scalar random variable, the so‐called mixing
random variable or the multiplier, u is a zero‐mean Gaussian

Figure 12. (a) NEXRAD image of a storm over MELB on 26 September 2004 at 04:50:00 (UTC) and
(b) the associated vertical subband image. Images of the covariance matrices of a 5 × 5 neighborhood for
the (c) horizontal, (d) vertical, and (e) diagonal subband images signify the presence of an intrascale
dependence structure in the wavelet coefficients.
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vector with a given covariance matrixSu and d is the family
of Gaussian Scale Mixtures (GSM). In particular, knowing
that the z and u are independent, the n‐dimensional GSM has
the following density function which can be specified with
different choices of the random variable z:

fD dð Þ ¼
Z∞
0

fdjz djzð Þ fz zð Þdz

¼
Z∞
0

1

2�ð Þn2 zSuj j1=2
exp � dT zSuð Þ�1d

2

 !
fz zð Þdz: ð14Þ

The discrete version of equation (14) resembles the statistical
concept of estimating a symmetric distribution by summing
zero mean Gaussian kernel densities whose covariances have
been randomized by a positive random variable z. For
instance, choosing z from the family of exponential density
functions yields a representation of the family of Laplace
distributions. Several classes of heavy tailed distributions
can be produced in the context of the GSM; however, for
the GG family with 0 < a < 1, a closed form expression for
the density of the mixing random variable z does not exist
[e.g., Wainwright et al., 2001].
[34] By construction, one of the key properties of the

GSM is

Sd ¼ E z½ �Su; ð15Þ

which implies that the covariance structure of the GSM can
be fully explained by the covariance matrix Su and the
mean of the multiplier process. Therefore, without loss of
generality setting E[z] = 1, the whole covariance structure of
the GSM can be explained by the covariance of the u.
Accordingly, to generate a GSM with a desirable covari-
ance, similar to that of the rainfall wavelet coefficients, we
need to adopt a mechanism which allows us to efficiently
generate a (weakly) correlated Gaussian random field in a
multiscale framework. For this purpose, the general class of

multiresolution linear Gauss‐Markov processes defined on a
regular tree‐like structure (Figure 13) is of particular interest
[e.g., Chou et al., 1994; Willsky, 2002],

x sð Þ ¼ A sð Þx s�ð Þ þ B sð Þw sð Þ; ð16Þ

where x(s) is the state of the process at node s and s� is the
parent node to which x(s) is connected at the next coarser
scale, A(s) is the transition matrix, specified at each node of
the tree and determining the coarse‐to‐fine scale dynamics
of the process, w(s) ∼ N (0, I) and B(s)w(s) is a Gaussian
white noise with covariance Q(s) = B(s)B(s)T. The random
vector x(s) at each node of the tree has a Gaussian distri-
bution N (0, Sx(s)) with the following coarse‐to‐fine scale
dynamics for the evolution of the covariance:

SxðsÞ ¼ A sð ÞSx s�ð ÞA sð ÞT þQ sð Þ; ð17Þ

known as the discrete Lyapunov equation. According to this
recursion, the strength of the scale‐to‐scale dependence is
determined by the value of the transition matrix A(s). When
this prefactor tends to zero, the Markovian structure of the
tree weakens and the process would be roughly uncorrelated
from scale‐to‐scale with a nearly diagonal covarianceSx(s)ffi
Q(s). This construction provides a very flexible multiscale
covariance structure, within which the special case of scale‐
to‐scale stationarity can also be achieved by setting A(s) = A,
B(s) = B, Sx(s) = Sx(s�) in equation (17) and adjusting A and
B accordingly. However, due to the observed second‐order
scaling of the wavelet coefficients of the rainfall images, the
nonstationary scale‐to‐scale construction of u(s) is of
interest in this study. To this end, a stationary process x(s) ∼
N (0, Sx(0)) can be generated according to the dynamics in
equation (16), where Sx(0) is the covariance at the root
node, and then the scale‐to‐scale nonstationarity can be
imposed by setting

u sð Þ ¼ 2�j sð Þ�2x sð Þ; ð18Þ

where j(s) represents the scale level on the wavelet tree from
coarse‐to‐fine scales and t2 represents the geometric decay
rate of the variance of the wavelet coefficients across dyadic
scales (see equation (9) and Figure 10).
[35] Recalling that Sd(s) = Su(s), this geometric decay rate

indeed guarantees the scaling law of the variance of the
wavelet coefficients,

diag Sd sð Þ

 � ffi 2�j sð Þ�2diag Sd 0ð Þ


 �
; ð19Þ

which leads to the presence of dyadic self‐similarity and
1/f spectrum in the reconstructed field [e.g., Daniel and
Willsky, 1999].
[36] In addition to the scale‐to‐scale dependence, due to

the tree‐like Markovian construction, the nearby nodes at
the same scale also exhibit a dependent structure as long
as they share the same parent. Consequently, according to the
proposed construction, this framework also allows us to
capture not only the observed global scale‐to‐scale statistical
structure, but also the local intrascale correlation among the
wavelet coefficients. However, in the simplest case, one

Figure 13. Schematic of a multiresolution regular quad
tree, where each node on the cascade x(s) is connected
to a unique parent x(s�) node. On a quad tree, node (s)
indeed represents a 3‐tuple including the scale level and
the pair of spatial positions.
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may still decide to just assume completely uncorrelated
wavelet coefficients (i.e., A(s) = 0) and pursue a white
reconstruction phase accordingly.
[37] Furthermore, simulating a GSM random variable

with a desirable marginal density naturally requires a priori
information and optimal estimation of the multiplier density
function from the available data. Focusing on the marginal
density of the GSM model, equation (13) can be written as
[Portilla et al., 2001],

log d sð Þj j ¼ 1=2 log z sð Þ½ � þ log u sð Þj j: ð20Þ

Knowing that the convolution of two functions in the real
space is equivalent to the product of their Fourier transforms
in the frequency domain, the density of log[z(s)] can be
computed nonparametrically, given a set of observations of
the d(s). The density of log[d(s)] is indeed the convolution
of the densities in the right‐hand side of equation (20) and
hence a rescaled version of the log[z] distribution can be
estimated by deconvolving the density of log[d(s)] from the
empirical histogram of the log[d(s)]. Note that in our case,
d(s) will be the wavelet coefficients obtained from the
wavelet transformation of the precipitation reflectivity images
as discussed earlier. Figure 14a displays the results of the
deconvolution problem for the MELB data set horizontal
subbands at one level of decomposition. The log histogram
of the log[z(s)] is an inverted parabola and remarkably
Gaussian which implies that the multiplier can be well

explained by a scalar log‐normal random variate z(s) ∼
LN (mz (s), sz (s)), where mz (s) and sz (s) are the mean and
variance of the log [z(s)]. As anticipated, numerical simula-
tion of the GSM random variables in equation (13) using a
log‐normal multiplier shows that this mixture can reproduce
reasonably well the GG density (see Figure 14b) in close
resemblance to the histogram of the rainfall wavelet coeffi-
cients (e.g., compare to Figure 9).
[38] At a particular scale, knowing that E[d(s)4] =

E[z(s)2]E[u(s)4] and E[u(s)4] = 3{E[u(s)2]}2 a closed form
expression for the kurtosis of the wavelet coefficients is
derivable, � [d(s)] = 3E[z(s)2]. Assuming E[z(s)] = 1 leads
to mz(s) +

	z sð Þ2
2 = 0, which yields

� d sð Þ½ � ¼ 3 exp 	z sð Þ2
h i

: ð21Þ

Equating equations (21) and (6), Figure 15 provides the
relationship between the tail of the GG distribution and the
variance of the log multiplier. Assuming the GG density as a
parametric model for the marginal histogram of the wavelet
coefficients, this tells us that the tail of the GSM can be fully
controlled by the variance of the log[z(s)]. Accordingly, ob-
taining the sample kurtosis of the wavelet coefficients, the
distribution of the multiplier can be fully characterized. It
is worth noting that, according to equation (21) and the
positivity of sz(s), the proposed GSM construction does
not allow a thinner tail than the Gaussian case and therefore
this model is only suitable for generating GG marginals

Figure 14. (a) Estimated densities (dashed lines) of the logarithm of the multiplier for the horizontal sub-
band coefficients of the MELB data are well approximated by a Gaussian distribution (inverted parabola
in log probability). Note that the variance of the coefficients is normalized to one before performing the
deconvolution. The solid circles show the N (0,1), and the solid line is the average histogram of the data.
(b) Simulated marginal of the GSM random variables using a lognormal multiplier is shown versus the
fitted Generalized Gaussian (GG) density with a = 0.7 as found from precipitation reflectivity data
(see Figure 9). The Gaussian density is also shown for comparison.
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with 0 < a ≤ 2. On the other hand, the scale‐to‐scale
evolution of sz(s) can be further expressed in terms of the
multifractal properties of the rainfall fields manifested on
the kurtosis statistic in equation (10).

	2z sð Þ ¼ log
c4

3 c2ð Þ2
 !

þ m �4 � 2�2ð Þ log 2ð Þ: ð22Þ

This shows that the GSM log multiplier allows us to collapse
the scaling information content of the second‐ and fourth‐
order moments of the process into a single parameter of the
log multiplier, which eventually controls the thick tail prop-
erties of the marginal and higher‐order scale‐to‐scale
dependence. In other words, in this construction u(s) captures
second‐order statistics and the associated scaling of the
wavelet coefficients, independent of z(s) which addresses the
heavy tail statistics and higher‐order dependency.
[39] Figure 16 shows the results of a numerical experi-

ment that demonstrates how the proposed construction can
generate similar statistical signatures to those found for the
wavelet coefficients of precipitation images. To this end,
assuming the identity matrix as the normalized covariance
of the wavelet coefficients at the root node, a cascade of
stationary multiscale processes x(s) is generated by setting
A(s) = hI and B(s) =

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 
2

p
I. Subsequently, the second‐

order scaling law of the process is imposed on the cascade
according to equation (18). The strength of the scale‐to‐
scale correlation can be adjusted by h. For example, a
nearly uncorrelated scale‐to‐scale construction can be
achieved by sending h to zero and on the contrary, while h
tends to unity the Markovian property is much stronger
and the cascade produces a highly correlated field. Indeed,
a larger value of the h increases the off‐diagonal entries of
the parent and child covariance matrix and gives rise to a
tilted joint histogram.
[40] Note that the heavy tail property of the marginal

density and the higher‐order scale‐to‐scale dependence in
terms of the observed bow tie shape of the joint histogram,

only depend on the variance of the log multiplier process
which characterizes the shape of the tail. Empirically, it seems
that the type of dependence in the conditional histogram
(shape of the bow tie) is tightly related to the thickness of the
tail, meaning that, for heavier tail (i.e., larger sz (s)) the high‐
order parent‐to‐child dependency is more pronounced; see
Figure 16.
[41] This stochastic formalism requires estimation of a set

of parameters for each subband including: the geometric
decay rate of the variance (t2), the evolution of the sample
kurtosis (sz), and the transition coefficients (h) which can be
estimated by computing the sample covariance of the high‐
pass wavelet coefficients across different scales. Due to the
particular structure of the log multiplier in the presented
GSM model, these parameters can be estimated easily from
a set of available rainfall images and be exploited as a priori
estimates for stochastic modeling. As an example applica-
tion, Figure 17 provides preliminary results of the down-
scaled version of a precipitation reflectivity image over the
HSTN site using the explained formalism. To this end, using
a nonoverlapping convolution with a box average filter, the
original image at resolution 1 km was upscaled to an 8 km
resolution and then, by learning from the whole data set of
the HSTN site, a high‐resolution version at 1 km was syn-
thetically generated. Obviously the parameters used here are
priori information reflecting an average representation of the
HSTN data and do not fully represent this particular storm
environment. However, visual comparison of Figures 17b
and 17c shows that due to the explicit consideration of the
heavy tail nature and dependent structure of the wavelet
coefficients of rainfall reflectivity data, the presented model
can reproduce the specific spatial correlation of the rainfall
images while accounting for the heavy tail features and edges.
Note that the presented algorithm uses only the mathematical/
statistical structure of the precipitation images and not other
larger‐scale physical storm structure. As such, its capacity to
properly recover the high‐resolution geometric and statistical
features of the precipitation images from coarser resolution
data might be limited. This issue along with storm‐specific
parameterization need to be examined carefully for different
storm regimes and is a topic for further research.

5.2. GSM on Wavelet Trees Versus Multiplicative
Random Cascades

[42] Multiplicative random cascades, in their canonical
form, have been of central importance to stochastic simula-
tion of geophysical processes and especially precipitation
data [Gupta and Waymire, 1993]. This class of stochastic
models, with the coarse‐to‐fine scale recursion described
below, allows us to generate multifractal measures with
similar statistical properties as those typically observed in
rainfall across a finite range of scales,

x sð Þ ¼ x s�ð Þ� sð Þ; ð23Þ

where z(s) represents an independent identically distributed
(iid) random multiplier at each node s of the tree with
E[z(s)] = 1, also known as the cascade generator. The
multiplicative structure of this model is a key factor which
imposes the desired multifractal properties [e.g., Mandelbrot
et al., 1997] and the parent‐to‐child scale dynamics in the
sense that the larger parents are more potent to generate larger

Figure 15. The relationship between the shape parameter a
of the Generalized Gaussian (GG) density and the log mul-
tiplier standard deviation sz.
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Figure 16. Marginal and joint statistics of simulated GSM cascades for various choices of parameters
(h,sz). A larger variance of the multiplier sz increases the thickness of the tail (smaller a) and the sig-
nificance of the scale‐to‐scale dependence and h controls the directionality of the bow tie shape of the
joint histogram. (a, b) h = 0.01, sz = 2.0 (a = 0.3); (c, d) h = 0.01, sz = 1.2 (a = 0.7); (e, f) h = 0.01,
sz = 0.5 (a = 1.5); and (g, h) h = 0.5, sz = 1.2 (a = 0.7).
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children, a property that has been amply documented in the
precipitation fields. However, this construction is nonlinear
by its nature and hence the state estimation of equation (23)
given a set of noisy observations, even in the form of an
affine observation equation,

y sð Þ ¼ x sð Þ þ w sð Þ; ð24Þ

wherew(s) ∼N (0, R(s)), is not a trivial task. At first glance, it
seems that by working in the log space to linearize the model
equation,

log x sð Þ½ � ¼ log x �sð Þ½ � þ log � sð Þ½ �; ð25Þ

where, E{log[z(s)]} = 0, the linear estimation theory of
additive Markovian multiscale models [see, e.g., Gorenburg
et al., 2001; Tustison et al., 2002] can be invoked, while
preserving the multiscale properties of the multiplicative
random cascade. We need to note that although the mean is
conserved in this log transformation, the higher‐order parent‐
to‐child dependency is not preserved, given that z(s) is a
sequence of iid random variates. For instance, it is easy to
check that the conditional variance of x(s) given x(�s) in
equation (23) depends linearly on the magnitude of x(�s)
while in equation (25) this variance is only characterized by
the noise term z(s). In other words, a proper additive con-
struction requires the derivation of an appropriate noise term
that can take into account this high‐order dependency (e.g., a
correlated noise), which cannot be definitely explained by an
iid z(s). A very important implication of this deduction is
that using multiplicative random cascades, implementation
of the linear state estimation theory for precipitation data in
log‐transformed space cannot fully capture the distinct sta-
tistical signature of the rainfall process.
[43] On the contrary, the GSM cascade on the wavelet tree

has an additive construction, which allows a subtle and
explicit characterization of the wavelet detail coefficients to
properly account for the statistical structure of these fields.
Indeed, given an estimate of z(s), the density of d(s) is
Gaussian (see equations (13) and (14)) and hence the con-
ditional estimation of the wavelet coefficients becomes a

linear problem. This is a great advantage of the GSM con-
struction in the wavelet domain which eventually permits
exploiting the well established linear estimation techniques.

6. Conclusions

[44] Statistical properties of the near‐surface precipitation
reflectivity images were extensively studied for a set of
200 coincidentally observed independent storm events over
the two ground validation sites (in Texas and Florida) of
TRMM. Despite the fact that the analyzed precipitation
images were the near‐surface reflectivity of storms with
diverse physical origins and spatial organizations, our results
signified that there are some common mathematical sig-
natures in all of the precipitation images that can be robustly
characterized and exploited for parsimonious rainfall
modeling over a broad range of scales of interest. Power law
scaling of the Fourier coefficients in the form of 1/f spectrum
showed a regular and stable behavior. Beyond the second‐
order statistics, the non‐Gaussian structure of the rainfall
fields at multiple scales was explored in the wavelet
domain. It was revealed that the heavy tail distributions of the
wavelet coefficients of these precipitation reflectivity images
can be well explained by the class of Generalized Gaussian
(GG) distributions. We demonstrated that the wavelet high‐
pass coefficients exhibit a multifractal behavior and hence a
nonlinear scaling law. A new class of multiresolution sto-
chastic processes, namely the Gaussian Scale Mixtures
(GSM), was introduced to capture important characteristic
features of the precipitation images in the wavelet domain.
The proposed GSM model using a log‐normal multiplier,
allows one to effectively decouple the precipitation subband
images into a set of two Gaussian processes: one controlling
the dependence structure (intrascale and scale‐to‐scale spatial
covariance) and the other the heavy tail features. Embedding
a multiscale linear Gauss‐Markov process in the GSM con-
struction, results into a multiresolution model that can capture
efficiently the correlation, the nonlinear scaling law (includ-
ing the 1/f spectrum), the heavy tail marginals and higher
order scale‐to‐scale dependence, simultaneously. The GSM

Figure 17. (a) The upscaled representation at scale 8 km of (b) a rainfall reflectivity image in original
resolution of 1 km observed on 28 June 1998 at 18:13:00 UTC over the HSTN site. Upscaling was done
using a nonoverlapping convolution of the original field with a box averaging filter of size 8 km. (c) A
stochastic coarse‐to‐fine GSM downscaling of the image in Figure 17a. All of the parameters of the cas-
cade are learned from the fine‐to‐coarse scale analysis of the HSTN data set.
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cascade is conditionally linear, meaning that given the mul-
tiplier process, the density of the GSM is Gaussian. This
property is extremely desirable, because it allows one to
exploit the linear filtering techniques (e.g., Kalman Filter,
Wiener Filter) for multiscale optimal estimation and merging
of multisensor precipitation products, while preserving the
extreme rainfall intensities via addressing the tail statistics
properly.
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