
Revisiting scaling laws in river basins: New considerations
across hillslope and fluvial regimes

Chandana Gangodagamage,1,2 Patrick Belmont,1,3 and Efi Foufoula‐Georgiou1

Received 2 March 2010; revised 4 April 2011; accepted 18 April 2011; published 7 July 2011.

[1] Increasing availability of high‐resolution (1 m) topography data and enhanced
computational processing power present new opportunities to study landscape
organization at a detail not possible before. Here we propose the use of “directed distance
from the divide” as the scale parameter (instead of Horton’s stream order or upstream
contributing area) for performing detailed probabilistic analysis of landscapes over a broad
range of scales. This scale parameter offers several advantages for applications in
hydrology, geomorphology, and ecology in that it can be directly related to length‐scale
dependent processes, it can be applied seamlessly across the hillslope and fluvial regimes,
and it is a continuous parameter allowing accurate statistical characterization (higher‐order
statistical moments) across scales. Application of this scaling formalism to three basins
in California demonstrates the emergence of three distinct geomorphic regimes of
divergent, highly convergent, and moderately convergent fluvial pathways, with notable
differences in their scaling relationships and in the variability, or spatial heterogeneity,
of topographic attributes in each regime. We show that topographic attributes, such as
slopes and curvatures, conditional on directed distance from the divide exhibit less
variability than those same attributes conditional on upstream contributing area,
thus affording a sharper identification of regime transitions and increased accuracy in
the scaling analysis.
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considerations across hillslope and fluvial regimes, Water Resour. Res., 47, W07508, doi:10.1029/2010WR009252.

1. Introduction

[2] The organization of landscapes and stream networks
influences many processes in hydrology, geomorphology,
and terrestrial/aquatic ecology. Many different approaches
have been developed to quantify the morphology and hier-
archical organizational structure of drainage basins and
understand how the physical attributes of a drainage basin
change as a function of scale [Horton, 1945; Hack, 1957;
Shreve, 1966; Shreve, 1967; Tarboton, 1992; Rodríguez‐
Iturbe et al., 1992; Ijjasz‐Vasquez and Bras, 1995; Tarboton,
1996; Rigon et al., 1996; Maritan et al., 1996; Banavar
et al., 1997; Rodríguez‐Iturbe and Rinaldo, 1997; Rigon
et al., 1998; Rinaldo and Rodriguez‐Iturbe, 1998; Banavar
et al., 2001; Dodds and Rothman, 2000a; Tucker and
Whipple, 2002; Veitzer et al., 2003; Mantilla et al., 2006;
Tarolli and Dalla Fontana, 2009]. Selection of the proper
scale parameter is critical for understanding the variability
and organization of basin morphology, identifying tran-

sitions in geomorphic processes shaping the landscape, and
ultimately for validating landscape evolution models across
a range of scales.
[3] The organizational structure of river networks has

been studied for several decades. Horton introduced the
notion of “stream order” (w), which organizes the fluvial
network into stream segments starting from the point of
channel initiation to the stream outlet [Horton, 1945]. This
ordering system was later modified by Strahler to better
represent the hierarchical structure of a branching network
(Horton’s original system gave the highest rank to the entire
mainstream, from outlet to headwaters, whereas Strahler
only gives the highest rank to the stream segment of the
mainstream below the confluence of the two next lower
order streams) and is known as Horton‐Strahler (HS)
ordering [Strahler, 1952, 1957].
[4] Horton’s laws refer to the scaling relationships of the

number of streams, average length of stream segments, and
average upstream contributing areas parameterized in terms
of the scale parameter w, where w is equal to or less than the
maximum basin order (W):

N !ð Þ / RW�!
B RB ¼ N !ð Þ

N !þ 1ð Þ ð1aÞ

‘s !ð Þh i / R!�1
Ls RLs ¼ ‘s !ð Þh i

‘s !� 1ð Þh i ð1bÞ

A !ð Þh i / R!�1
A RA ¼ A !ð Þh i

A !� 1ð Þh i ð1cÞ
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where N(w) is the number of order w streams; h‘s(wi is the
average segment length of order w; hA(w)i is the average
contributing area of order w streams; and RB, RLs, and RA are
the (scale‐independent) bifurcation ratio, length ratio, and
area ratio, respectively (collectively called Horton’s ratios).
For natural channel networks, RB typically ranges between 3
and 5, RLs between 2 and 3, and RA between 3 and 6 [e.g.,
Valdés et al., 1979; Abrahams, 1984; Dodds and Rothman,
2000b].
[5] The HS ordering system has been adopted as the most

common approach for quantifying scaling and for describing
the hierarchical structure of river networks. One of the
obvious limitations however of using w as the scale parameter
is the a priori assumption that channel initiation points can
be accurately identified. Despite considerable research on
this topic [e.g., Montgomery and Dietrich, 1988; Tarboton
et al., 1991; Dietrich and Dunne, 1993; Montgomery and
Foufoula‐Georgiou, 1993] (see also the recent developments
by Lashermes et al. [2007], Passalacqua et al. [2010], and
Pirotti and Tarolli [2010] for high‐resolution DEMs),
channel source identification from DEMs remains a chal-
lenge and often requires calibration with field observations.
Another limitation of using w as the scale parameter is that
the discreteness (integer values) of this parameter inherently
limits the “detail” with which scaling properties of a river
basin can be examined, and also the characterization of
these properties beyond average quantities. For example,
Peckham and Gupta [1999] attempted generalization of
Horton’s laws to study the scaling of whole probability
density functions (PDFs) of basin attributes. They used
empirical methods to compare cumulative distribution
functions and demonstrated simple scaling, meaning that the
PDFs can be rescaled from one stream order to another with
a single scaling exponent. However, the discrete nature of
stream order and the small number of subbasins of order
greater than 3 precluded an accurate analysis of multiscaling
properties. Yet, development and testing of realistic high‐
resolution landscape evolution models requires more detailed
and complete description of the spatial heterogeneity present
in landscapes (beyond first‐order statistical moments) and
better understanding of the processes that drive the observed
heterogeneity.
[6] The HS stream ordering system is typically applied

only in the fluvial portion of landscapes and scaling rela-
tionships that might exist in unchannelized areas or zero‐
order basins, are not typically considered, greatly inhibiting
study of the continuum of the hillslope‐fluvial system.
Previous research has documented that unchannelized
regions can be divided into a network of hollows, divergent
hillslope nose, and side slopes [Hack and Goodlett, 1960].
Hillslope hollows have been observed to be organized into
distinct, quasi‐connected flow paths [Dietrich et al., 1987]
that exhibit different topological characteristics compared to
the fluvial network. In terms of Horton’s laws, this regime
has been documented as exhibiting higher RB and higher RA

ratios along the hillslope compared to fluvial networks
[Hack and Goodlett, 1960]. The HS ordering scheme is
also limited in that it is difficult to apply quantitatively to
many physical, chemical, and biological processes that are
more directly related to characteristic length scales. Stream
metabolism and nutrient spiraling [Finlay et al., 2002; Lowe
et al., 2006], flood pulse propagation or attenuation [Moussa
and Bocquillon, 1996; Junk, 1999], and gravel bed load

transport [Schmidt and Ergenzinger, 1992] are just a few
examples of processes that are loosely related to stream
order, but are more properly defined in terms of length scale.
[7] Rinaldo and Rodriguez‐Iturbe [1998] emphasized the

limited power of Horton’s laws in discriminating among
different branching network topologies [see also Kirchner,
1993] and proposed using length or area‐based ordering
schemes. For example, Rigon et al. [1996] used contributing
area as the scale parameter to compute higher‐order statis-
tical moments of stream lengths, measured between a given
point in the channel network and its corresponding drainage
divide, and demonstrated the existence of simple scaling.
Using 30 m DEMs they confined their scaling analysis only
within the fluvial part of the landscape.
[8] With increasing availability of high‐resolution topog-

raphy data from lidar and ever increasing computational
processing capability, we are now in a position to begin
studying the detailed spatial organization of landscapes
more quantitatively, and seamlessly across hillslopes and
channels, at very fine (<1 m) resolution. The present paper is
a step in this direction and, building on previous develop-
ments, introduces two main innovations. First, we propose
the use of “directed distance from the divide,” ‘, as the scale
parameter (instead of Horton’s stream order or upstream
contributing area) and demonstrate its ability to probe down
to zero‐order unchannelized basins and quantify the statis-
tical heterogeneity of slopes, curvatures and upstream con-
tributing areas moving seamlessly across the hillslope and
fluvial regimes. Second, we show that topographic attributes
conditioned on directed distance from the divide exhibit
less variability than those same attributes conditioned on
upstream contributing area, affording thus a sharper identi-
fication of regime transitions and increased accuracy in the
scaling analysis.
[9] The paper is structured as follows. In section 2 we

define directed distance from the divide and discuss its use
as the scaling parameter. In section 3 we use simulated
networks to demonstrate that when the law governing the
flow path arrangement is the same at all scales, a single
scaling regime is found with a scaling exponent which
directly relates to Horton’s parameters. In section 4 we
analyze three nested river basins in northern California and
demonstrate the ability of the proposed framework to depict
transitions in geomorphic regime. In section 5, we quantify
in detail the statistical scaling properties in each regime
pointing to the distinctly different degrees of spatial het-
erogeneity in each regime. Finally, in section 6 we discuss
the advantage of using directed distance from the divide,
compared to contributing area, as the scale parameter for
topographic attributes (e.g., slope) and show that the former
results in less variability, allowing thus an easier depiction
of regime transitions and a tighter statistical characteriza-
tion. Concluding remarks are made in section 7.

2. Directed Distance From the Divide as the Scale
Parameter

[10] Directed distance from the divide (‘) is defined as the
length from a given pixel in the landscape to the drainage
divide measured along the longest topographically delin-
eated flow path. When two flow paths converge, the shortest
upstream flow path is terminated and the flow distance
continues along the main path. This definition is the same as
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that used by Rigon et al. [1996], who, however, adopted the
upstream contributing area as the scale parameter to study
the statistical characteristics of directed distance from the
divide; differences and similarities with that study will be
discussed more extensively in sections 3, 5, and 6.
[11] To compute directed distance, we assign a value to

every pixel within a river basin according to their location
along flow paths, beginning at pixels that receive no flow
from neighboring pixels (i.e., flow accumulation is zero),
which we consider source points. We use the D8 flow
direction algorithm [O’Callaghan and Mark, 1984] to select
the next pixel in the downstream direction. For a 1 m digital
elevation model (DEM), we compute the distance from pixel
i to pixel j as 1 m if the flow is along a row or column or
√2 m if flow proceeds along a diagonal path. If flow is
directed into pixel j from another pixel k, the flow path with
the higher length value at pixel j is used and the shorter flow
path terminates at pixel i or k. The algorithm for extracting
directed distance keeps track of all pixels along all flow
paths distributed throughout the basin and therefore permits
analysis of ensemble statistics of geomorphic attributes at
any value of ‘. For the purpose of illustration, Figure 1
demonstrates the method and defines the flow path topol-
ogy for different values of ‘, from ‘ = 50 m to ‘ = 600 m for
a tributary basin in the TR6 basin. We assume that the set of
points on the ridge lines that initiate the directed distance ‘
flow paths define the significant divides at scale ‘.
[12] Natural landscapes are subject to variability in envi-

ronmental conditions (e.g., geology, vegetation, and soil
type) and therefore spatial heterogeneity in morphological
attributes for a given value of ‘ is expected to exist. Using
directed distance from the divide as the scale parameter, one
can zoom down to an increasing range of scales ‘ and assess
how the PDFs of morphological attributes change as ‘
changes within or across river basins. We consider the PDF
of any basin attribute � (e.g., contributing area, number of
flow paths, local slope, or curvature), P(�(‘)), for a given

value of the scale parameter ‘ and denote by h�(‘)i the
ensemble average of the attribute (ensemble average area,
slope, or curvature, or summation of the number of flow
paths etc.) at distance ‘. We also compute higher‐order
statistical moments of those attributes, h�(‘)qi, and use them
to quantify how the entire PDF changes as a function of
scale.

3. Scaling Relationships in Simulated Networks

[13] In this section, we consider a number of synthetic
networks in order to illustrate that using directed distance
from the divide as the scale parameter correctly depicts the
expected scaling relationships and that no scaling break is
found since the generating rule is the same at all scales.
We consider two general classes of synthetic networks:
branching tree graphs and spanning tree graphs. Branching
tree graphs are line graphs that simply represent the topo-
logical arrangement of stream segments, so they differ from
spanning trees in that they do not simulate an entire basin
[Manna and Subramanian, 1996; Rinaldo and Rodriguez‐
Iturbe, 1998; Banavar et al., 1999; Banavar et al., 2001;
Flammini and Colaiori, 1996]. Simple network models such
as these are useful to demonstrate the essential statistical
properties that can also be observed in real river networks.
Spanning tree graphs are computed from grids that cover an
entire computational domain without forming loops, such as
to simulate transport of water or sediment downstream from
source areas to the basin outlet.
[14] Two key parameters can be defined to quantify the

flow path arrangement. The first parameter, g, is the expo-
nent of the power law decay relationship between the scale
parameter ‘ and the number of streams that exist at a given
value of the scale parameter, N(‘), [see also Rigon et al.,
1998]:

N ‘ð Þ / ‘�� ð2Þ

Figure 1. A new stream ordering system based on flow path distance ‘ called “directed distance from
the divide.” (a) Basic network of flow path segments for ‘ > 50 m. (b) Flow path segments with ‘ < 100 m
are eliminated from Figure 1a at their corresponding tributary junctions. (c) Flow path segments with
‘ < 200 m are eliminated from the network at their tributary junctions. Flow path segments ‘ less than
(d) 300 m, (e) 400 m, (f) 500 m, and (g) 600 m.
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This parameter applies to both branching and spanning
trees. The expected value of g can be written as

� ¼ logRB

logRLs
ð3Þ

This implies that using ‘ as the scale parameter one com-
bines the Hortonian length and bifurcation ratios into a new
scaling exponent g. The second parameter, H, is derived
from Hack’s law [Hack, 1957]. This parameter describes the
relationship between flow path length ‘ and its average
upstream contributing area hA(‘)i and is therefore only
applicable to spanning trees, which account for area within
the computational domain. This relation is not exactly the
same as Hack’s law, but can be reconciled with Hack’s
law as

Að‘Þh i / ‘H ð4Þ

where 1/H is approximately equal to the Hack exponent.
The expected value of H is

H ¼ logRA

logRLs
ð5Þ

Once again, we observe that using ‘ as the scale parameter
combines the Hortonian area and length ratios into a single
exponent H.

3.1. Branching Trees

[15] Branching tree networks are among the simplest of
network models defined by the topological arrangement of
stream segments. The simplest type of branching tree net-
work is a binary tree [e.g., see Shreve, 1966; Dodds and
Rothman, 2000a], in which two stream segments join at a
junction and generate a downstream segment. A perfect
binary tree is an idealized Hortonian network that assumes
symmetry in branching, and in which only equivalent stream
orders join (i.e., two first‐order streams come together to
form a second order, and two second‐order streams come
together to form a third order and so on, but a first‐order
stream never flows into a third‐order stream). Along the
network, w increases continuously up to the highest‐order W.
[16] Figure 2 (top left) shows a synthetic binary tree

where the depth of the tree extends up to ten levels. We
maintain the length ratio of the binary tree RL equal to 2 and
the angle between two links equal to 30°. This results in a
bifurcation ratio RB of 2 for our binary tree network, which
is much lower than that typically observed in real river
networks. Simple ternary trees (Figure 2, top right), where
three segments of the same order come together at each
junction have RB = 3, but such orientations are not common
in natural fluvial networks. Rather, the higher bifurcation
ratio observed in natural fluvial networks (typically between
3 and 5) is due to the side tributaries that join with a trunk
channel of higher order, and therefore do not change the
order of the trunk channel. For the binary and ternary
branching trees the scaling exponent g does not change as a
function of scale because the rules governing bifurcation are
consistent throughout the domain. Taken as the exponent of
the power law relationship of N(‘) as a function of ‘
(equation (2)), g is constant at 1.0 and 1.59 for binary and
ternary trees, respectively (see Table 1). It is noted that when

performing computations using ‘ (directed distance from the
divide) or ‘s (the Hortonian segment length), both approaches
converge to the same value of g, apart from small differences
at small scales, as shown in Figure 2.

3.2. Spanning Trees

[17] Spanning tree graphs add one layer of complexity on
top of the branching trees in that the entire spatial domain is
considered. We use a Scheidegger directed random network
model [Scheidegger, 1967; Takayasu et al., 1988; Huber,
1991; Marani et al., 1991; Nagatani, 1993a, 1993b;
Rinaldo and Rodriguez‐Iturbe, 1998; Banavar et al., 1999]
as one type of spanning tree graph to illustrate the compu-
tation of the scaling parameters g and H in these models that
apply a simple set of rules throughout the entire domain.
The Scheidegger network is developed according to the
simple rules that water flows from the top to the bottom of
the domain and flow direction at every pixel is chosen
randomly between two diagonal downstream directions with
0.5 probability. In this model, once flow paths converge,
they are not permitted to diverge downstream. For the
purpose of measuring ‘, upon convergence of two flow
paths, the shorter flow path is terminated and water and
sediment from that shorter flow path are contributed to the
stream with the longer upstream flow path. Periodic
boundary conditions are imposed on east and west bound-
aries, such that water flowing off one side of the grid
reenters the grid on the opposite side in the appropriate row.
[18] Figures 3a and 3b show the estimation of the scaling

parameters g and H using directed distance from the divide.
It is observed that (1) the estimated parameters are constant
for the entire range of directed distances because the rules
governing flow path arrangement do not change and (2) the
estimated values of the exponents are consistent with the
expected theoretical values. To quantify the way in which
the PDF of contributing area changes as a function of the
scale parameter (‘) we consider higher‐order statistical
moments:

A ‘ð Þqh i / ‘� qð Þ ð6Þ

where q is the order of the moment and t(q) is the spectrum
of scaling exponents which can be estimated from the slope
of the statistical moments plotted against the scale ‘ in a
log‐log plot. When t(q) is a linear function of q, the rela-
tionship can be written as t(q) = q(H), where H is the
scaling exponent that can be used to rescale the PDF from
one scale ‘ to another scale l‘, where l is a constant. A
linear relationship between t(q) and q is referred to as
simple scaling. However, t(q) is often found to be a non-
linear function of q (referred to as multiscaling), implying a
more complex renormalization of statistical moments which
needs more than one parameter to be quantified.
[19] Figure 3c shows the higher‐order statistical moments

of contributing area hA(‘)qi for q = 0.5 up to 5 at 0.5
intervals as a function of directed distance from the divide
for the Scheidegger network. Each statistical moment plots
linear in log‐log space, the slope of which is used to develop
the t(q) curve shown in Figure 3d. The linear relationship
observed between t(q) and q indicates simple scaling in the
way the PDF of area changes as a function of directed
distance. Simple scaling is to be expected in a basin where
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the rules governing flow path arrangement do not change
throughout the domain.

4. Depicting Regime Transitions in Real Basins

[20] In the synthetic networks considered in section 3, we
observed no scaling breaks because the rules governing
flow accumulation and flow path topology are consistent
throughout the domain. However, as documented below,
in real landscapes we observe distinct scaling breaks that
correspond to transitions in flow path topology and, by
inference, in the geomorphic process giving rise to that
topology. In the hillslope domain, between the drainage
divides and the stream network, the distributions of several
topographic attributes (e.g., slope, curvature, and upstream
contributing area) change at different rates as a function of
scale compared to those in the fluvial part of the network.
The question as to which topographic attributes might
exhibit the greatest sensitivity to differences in geomorphic
regime, and therefore can most effectively be used to

identify regime transitions, is of basic and practical interest.
To address this question we analyze changes in the number
of flow paths and the distributions of slopes and curvatures
as a function of our scale parameter ‘. We also compare
those results to the same analysis using the upstream con-
tributing area as the scale parameter similarly to the analysis
of Rigon et al. [1996].

Figure 2. (top left) A binary tree with RB = 2 and RLs = 2 and branching angle of 30°. (top right) A
ternary tree with RB = 3 and RLs = 2 and branching angle of 90°. (bottom) The number of streams with
length greater or equal to a given distance from the divide is plotted against the normalized segment
length (‘s) and the total normalized distance from the divide (‘). It is seen that a single scaling regime
is observed and that the estimated values of g agree with the expected theoretical values computed from
equation (3) except at very small scales (approximately four levels as indicated by the vertical line) where
the segment length (‘s) and total length (‘) differ slightly.

Table 1. Comparison of Parameters in Simulated River Networksa

Network
Scaling

Range (m) RB RLs RA

logRB

logRLs

logRA

logRLs g H

Binary 1–‘max 2.0 2.0 ‐ 1.000 ‐ 1.0 ‐
Ternary 1–‘max 3.0 2.0 ‐ 1.585 ‐ 1.6 ‐
Scheidegger 1–‘max ‐ ‐ ‐ ‐ ‐ 1.3 1.5

aRB and RLs are Horton’s ratios (see equations (1a) and (1b)); (log RB/
log RLs) and (log RA/log RLs) are the theoretically expected values of the
scaling exponents g and H; and g and H are the empirically estimated
values.
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[21] Using the D8 flow accumulation algorithm on high‐
resolution topography data we delineated the flow path
network throughout the entire basin, including hillslopes.
Although we recognize that the flow paths generated by the
D8 algorithm might not be exactly the actual overland flow
paths on hillslopes, the scaling analysis presented herein is
shown to be robust in that it clearly establishes physically
relevant regime transitions and correctly depicts the increased
heterogeneity in the geomorphic attributes in the unchan-
nelized part of the river basin, compared to the channelized
part.
[22] We selected three nested basins located in Mendo-

cino County, California, including the South Fork Eel River
basin (SF Eel), Elder Creek basin, which is a tributary to SF
Eel, and TR6, which is a tributary to Elder Creek (Figure 4).
The Horton ratios for the three river networks (delineated
using an area threshold of 105 m2) are given in Figure 5 (see
also Table 2). The nested basins allow us to examine the
statistics of the same landscape at three sequential scales of
observation. The basins have drainage areas of 354, 18, and
3 km2 and are underlain by Tertiary‐Cretaceous Coastal Belt
Franciscan clastic sedimentary rocks, primarily composed of
arkosic sandstone, pebble conglomerate, and mudstone. We
used the lidar topographic data (1 m grid resolution, 0.3 m
vertical accuracy) for the SF Eel collected in June 2004 and
processed by the National Center of Airborne Laser Map-

Figure 3. Scaling relationships for the Scheidegger network on a 33,000 × 2400 grid lattice. (a) Number
of flow paths versus directed distance from the divide. The exponent g of the power law characterizes
flow path convergence. (b) Average upstream contributing area plotted against directed distance from
the divide. The scaling exponent H quantifies the accumulation of contributing area as a power law func-
tion of flow path distance. (c) Moments of order q = 0.5–5, by 0.5 increments, of contributing area versus
distance from the divide. (d) The spectrum of scaling exponents t(q), computed from the slopes of the
log‐log plots of Figure 3c. It is observed that t(q) = qH, implying simple scaling, where H equals 1.5.

Figure 4. Three nested river basins in northern California
used in our analysis: South Fork Eel River (354 km2), Elder
Creek (18 km2), and TR6 (3 km2).
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ping (NCALM). The data are freely available for download
at http://www.ncalm.org.

4.1. Number of Flow Paths

[23] Within each of the three study basins we computed
the number of flow paths N(‘) that have distance from
their respective drainage divides equal to or greater than ‘.
Figure 6 shows plots of N(‘) versus ‘ for the three basins.
Three distinct zones in flow path topology, which we refer
to as regions A, B, and C are observed in each plot. The
changes in slope observed in these plots, contrary to what
we observed in the synthetic networks, are indicative of a
transition in geomorphic process, that is to say, a change in
the rules governing flow and sediment transport. Regions A
and B physically reside in the unchannelized part of the
basins and region C marks the transition to the fluvial net-
work, based on visual inspection. Region A does not exhibit
power law scaling throughout the region. The nonlinear
logarithmic change in the number of flow paths as a function

of ‘ in region A is indicative of the divergent or parallel flow
path topology in the upper, creep‐dominated portions of
hillslopes. The scaling exponent g varies from 2.87 to 3.15
and 2.12 to 2.22 for regions B and C, respectively. In the SF
Eel basin, scaling regions B and C extend from 80 to 250 m
and 270 to 6000 m, respectively (Table 2). It is remarkable
that the trends are so similar in the three basins which span a
wide range of sizes.
[24] Table 2 summarizes the computed values of RB, RLs,

and RA (Horton’s ratios) for the three networks as well as the
expected values (from equation (2)) and estimated values of
g from the log‐log plots of Figure 6. It is noted that the rate
of removal of flow paths is greater in region B than in region

Table 2. Comparison of Scaling Parameters in Three California
River Basins

Network
Scaling

Range (m) RB RLs RA

logRB

logRLs

logRA

logRLs g H

South Fork Eel River
Region A 1–79 ‐ ‐ ‐ ‐ ‐ 1.00
Region B 80–250 ‐ ‐ ‐ ‐ ‐ 2.87 3.06
Region C 270–6000 4.6 2.3 4.9 1.83 1.91 2.21 1.80

Elder Creek
Region A 1–83 ‐ ‐ ‐ ‐ ‐ ‐ 1.01
Region B 83–322 ‐ ‐ ‐ ‐ ‐ 3.15 3.01
Region C 323–1500 4.4 2.2 5.1 1.87 2.07 2.22 1.85

TR6 Tributary Basin
Region A 1–80 ‐ ‐ ‐ ‐ ‐ ‐ 1.05
Region B 81–270 ‐ ‐ ‐ ‐ ‐ 3.12 3.01
Region C 271–1500 4.1 2.1 4.9 1.901 2.14 2.12 1.87

Figure 5. Horton’s ratios for the South Fork Eel River.
The logarithmic slope of the number of streams as a function
of stream orderw is the bifurcation ratio, RB = 4.6 (diamonds).
The logarithmic slope of the ensemble average of the con-
tributing area as a function of stream order w is the area
ratio, RA = 4.9 (circles). The length ratio is computed as
the logarithmic slope of the ensemble average of stream
lengths as a function of stream order w, which yields RLs =
2.3 (squares).

Figure 6. Number of flow paths as a function of directed
distance from the divide in three tributary basins, (top)
South Fork Eel River, (middle) Elder Creek, and (bottom)
TR6. Three statistically distinct regions are observed in all
three basins. The exponents of the power law relationships
for regions B and C are shown in the plots.
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C, as indicated by the relatively higher exponent in hillslope
region B, gB, compared to that of the fluvial region, gc, in all
three basins (Table 2), indicating that region B is the most
convergent part of the landscape.

4.2. Contributing Area, Slope, and Curvature

[25] For all points in the basin at distance ‘ from the
divide, we computed the upstream contributing areas, the
local slopes and local (Laplacian) curvatures. Figure 7
shows the ensemble mean contributing area as a function
of directed distance from the divide. Three power law
scaling regimes can be observed which coincide with the
scaling regimes seen in the number of flow paths plot of
Figure 6 (see also Table 2). The scaling exponent H for
region A is nearly one, indicating that in this region, the
contributing area grows at essentially the same rate as dis-
tance from the divide, implying almost parallel flow paths.
The highest scaling exponent occurs in region B, where area
increases as length to the third power. Region C exhibits a
scaling exponent of 1.8, consistent with Hack’s law for
fluvial networks.
[26] Using the directed distance as the scale parameter we

also studied the organization of landscape attributes such as
local slope S and curvature C. Figure 8 shows the ensemble
averages of slope hSi, curvature hCi, and the slope‐curvature
relationship when both parameters are conditioned on ‘.
Again, all three landscape attributes exhibit three distinct
scaling regions that coincide reasonably well with the
scaling breaks observed in Figures 6 and 7, further con-
firming the distinctly different flow path topologies in the
channelized and unchannelized parts of a basin. An impor-
tant finding here is that the transitions are most abrupt in
Figure 8c (slope versus curvature), indicating that there are
systematic differences in the way slope and curvature
respond to changes in geomorphic regime. Exploiting these

Figure 7. Ensemble‐average contributing area for Elder
Creek and TR6 shown against the scale parameter ‘ mea-
sured from drainage divides. Three scaling regions are
observed as indicated by the vertical dashed lines from 1
to 50 m, 100 to 300 m, and 400 to ‘max m, where ‘max is
the mainstream length.

Figure 8. The ensemble‐average (a) slope, (b) curvature, and (c) slope‐curvature relationships for Elder
Creek. The distinct regions can be demarcated as A, B, and C on the basis of the changing trend of the
attributes as a function of ‘. These regions are consistent with those extracted from the number of flow
paths and contributing area plots of Figures 6 and 7.
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differences appears to be the most effective means by which
distinct regions can be delineated. This observation should
be explored further to determine if the same trend is repli-
cated in other landscapes.

5. Quantifying Spatial Heterogeneity
in Landscape Organization

[27] In Figure 7 the scaling of average contributing area as
a function of directed distance from the divide was docu-
mented and the scaling exponents in regions A, B, and C
were reported. Going to higher‐order statistical moments,
Figure 9 (top left) reports moments of order q = 0 to q = 3 in
increments of 0.5 for Elder Creek basin. Log‐log linear
relationships are observed between the scales marked with
dotted lines. The scaling ranges for regions B and C are
approximately 100–300 and 500–10,000 m, respectively.
Fitting straight lines to all moments and computing the
slopes results in the spectrum of scaling exponents t(q)
shown in Figure 9 (top right) for each regime. We recall
that a linear t(q) curve results in a single scaling exponent H
(H = dt(q)/dq) which can be used to renormalize the entire
PDF (all statistical moments) of contributing area as a
function of directed distance from the divide. However, a
nonlinear t(q) curve results in a range of scaling exponents

summarized in the D(h) spectrum, where D(h) is computed
from t(q) using the Legendre transform [Parisi and Frisch,
1985; Muzy et al., 1994]:

D hð Þ ¼ min
q

qh� � qð Þ þ 1½ � ð7Þ

The D(h) spectrum summarizes the range of fractal expo-
nents (h) needed to rescale the PDF of contributing area for
different values of ‘.
[28] The D(h) spectrum for regions A, B, and C is shown

in Figure 9 (bottom). In region A, a single scaling exponent
H = 1 is observed consistent with the almost parallel flow
paths in those parts of the landscape that are close (within
100 m length scale) to the divides. However, in region B,
extending from 100 to 400 m, hillslopes exhibit a wide D(h)
spectrum indicating that multiple exponents are needed to
rescale the PDF of contributing area as a function of ‘ in the
downstream direction along the flow paths. This suggests
that a larger spatial heterogeneity of flow path arrangement
exists in region B, requiring a more complex rescaling
transformation in that part of the landscape. The dominant
scaling exponent in this region is approximately 3.2. In the
fluvial region C we observe a very narrow D(h) spectrum
where h ranges between 1.7 and 1.87. (Note that these

Figure 9. (top left) Higher‐order structure functions, (top right) scaling exponent spectrum, and
(bottom) D(h) spectrum for regions A, B, and C for contributing area A(‘) for Elder Creek. The structure
functions exhibit three distinct scaling regimes as marked by dotted lines: region A (1–50 m), region B
(100–300 m), and region C (400–‘max m). Scaling exponent spectrum is linear for region A and nearly
linear for region C. Region B shows nonlinear behavior of t(q) as q increases. The range of scaling
exponents represented within each region is shown in the D(h) spectrum (bottom plot). Note the wide
multifractal spectrum observed in region B (an indication of the large spatial heterogeneity of flow path
organization in that region) and the much narrower range (i.e., h = [1.7, 1.87]) observed in the fluvial
region C.
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exponents correspond to values of 0.53–0.59 for the Hack’s
law exponents consistent with what is expected in the fluvial
regime). We note that the above results agree with and
extend beyond the fluvial regime the findings of Rigon et al.
[1996], who documented monofractal behavior of flow path
distances parameterized by contributing area in the fluvial
part (region C) of river basins (generalization of Hack’s
law). Repeating here for completeness the analysis of Rigon
et al. [1996] using 1 m data for the Elder Creek basin, we
observe log‐log linear scaling for region C with an exponent
equal to 0.53, consistent with Hack’s law and with our
results (see Figure 10). Two other scaling regions are also
observed in Figure 10 corresponding to the regimes depicted
by the directed distance analysis. One then wonders what, if
anything, is gained in this case by using distance versus
contributing area as the scale parameter. We argue that
although the regime transitions are identified in both cases,
directed distance offers a few distinct advantages for scaling
topographic attributes, as discussed in section 6.

6. Distance Versus Area as a Scale Parameter

[29] A single parameter cannot be expected to be uni-
versally applicable for scaling the wide range of processes
shaping landscapes and occurring in watersheds. But it is
instructive to consider which processes are better scaled
with area versus directed distance. In general, it should be
expected that processes that depend exclusively on flow
accumulation should be better scaled using upstream con-
tributing area. Processes that are dependent on linear dis-
tances, such as hillslope creep, should be better scaled using
directed distance.
[30] Two metrics can be used to argue that directed dis-

tance is a more relevant scaling parameter for topographic

attributes within the hillslope domain, at least for the basins
analyzed here. The first metric is the level of distinction with
which the transitions between geomorphic regimes can be
identified. As discussed in section 4.2 and observed in
Figure 8, the distinction between the geomorphic regimes is
greatest in the plot of local slope versus local curvature
when both variables are conditioned on directed distance
from the divide.
[31] The second metric in quantifying the effectiveness of

a scale parameter is the degree of variability observed in
related basin attributes (e.g., slope) throughout a landscape
conditioned on a specific value of the scale parameter.
Lower variability in the related basin attributes would
indicate greater suitability of the scale parameter. Figure 11
shows the coefficient of variation (standard deviation
divided by the mean) of local slope as a function of distance
from the divide, CV S(‘), and as a function of contributing
area, CV S(A), for Elder Creek basin and for distances
<1000 m. Several important observations can be made from
this plot. First, the CV S(‘) values are consistently lower
than those of CV S(A) for values of ‘ < 700 m, indicating
that the spatial variability of slopes conditioned on ‘ is
smaller compared to that conditioned on A throughout the
entire hillslope domain and the upper fluvial domain. In
simpler words, a hundred points in the landscape with the
same upstream area can have significantly different local
slopes (a large spread in the probability distribution of
slopes for the same exact area), while a hundred points in
the landscape with the same upstream length have a much
narrower range of variability in their corresponding local
slopes, allowing thus a more effective statistical character-
ization and a more physically relevant interpretation. Second,
the local minimum near ‘ = 70 m depicts the transition from
near‐parallel flow paths (region A) to highly convergent
flow paths (region B). The CV S(‘) values exhibit much

Figure 10. Application of the statistical framework of
Rigon et al. [1996] using 1 m data in Elder Creek. Note
the abrupt transition consistent with the scaling break
observed between regions A and B using directed distance
from the divide. The scaling break between regions B and C
is observed, but the transition is more diffuse compared with
Figure 8c.

Figure 11. Coefficient of variation (CV) for local slope
computed using directed distance as the scale parameter
for ‘ ≤ 1000 m (red) and using contributing area as the scale
parameter (blue). It is observed that the CV values for slope
computed using directed distance as a scale parameter are
consistently lower than those computed using area as the
scale parameter.
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higher sensitivity to that regime transition compared to the
values of CV S(A). Third, note that both directed distance
and contributing area provide evidence of the large spatial
heterogeneity in region B as witnessed by the increasing CV
with increasing scale [see also Gangodagamage et al.,
2007]. However, both CV S(‘) and CV S(A) stabilize for
‘ > 700 m to a constant value, which supports the finding of
a reduced spatial heterogeneity (simple scaling) of geo-
morphic attributes in the fluvial regimes as also documented
by Rigon et al. [1996].

7. Concluding Remarks

[32] Despite considerable progress over the past decades,
a challenging topic in geomorphology still remains the
development of methods to efficiently and comprehensively
analyze high‐resolution topography data in order to quan-
tify spatial variability and organization laws in landscape
attributes and make inferences about the hydrologic, geo-
morphologic and ecologic processes that imprinted their
signature on that landscape.
[33] We have demonstrated that directed distance from

the divide can be used as a scale parameter to understand
how flow path topology and basin attributes are organized in
both the hillslope and the fluvial portions of drainage basins.
We used directed distance to extract information about flow
path topology and the rate at which contributing area
accumulates in the downstream direction in several synthetic
networks. We demonstrated simple scaling relationships for
these hypothetical landscapes where the rules governing
flow do not change along the flow path continuum. In
contrast, in real river basins we observed two scaling breaks
(three scaling regions) in the relationships of the number of
streams, accumulation of contributing area, local slope, and
local curvature as a function of directed distance from the
divide. The observed scaling breaks infer transitions in
geomorphic processes that are likely driven by hydrology
and sediment dynamics and, at a finer scale, likely influence
and are influenced by, ecological dynamics. The scaling
breaks are most clearly distinguished in a plot of ensemble
averages of slope versus curvature when both attributes are
conditioned on directed distance from the divide. These
regime transitions are also observable using upstream con-
tributing area as the scaling parameter, but using directed
distance was shown to result in sharper transitions and less
variability in the ensemble statistics of topographic attri-
butes. This finding infers that the processes shaping hill-
slopes in our study landscape (regions A and B) are better
defined by mechanics related to length scale (e.g., creep)
rather than upstream accumulation of water (for which area
is a proxy). Last, we apply the directed distance method
within a multiscaling framework to quantify the way in
which the whole probability distributions (and not only the
average value) of contributing drainage area changes as a
function of the scale parameter. We observe the highest
degree of spatial heterogeneity of flow path organization
within the hillslope zone (region B), as evidenced by the
range of exponents needed to rescale the PDF of area for
different values of the scale parameter ‘.
[34] The ability to understand and quantify the spatial

heterogeneity of landscapes across the hillslope‐fluvial
continuum, as presented in this study, provides new oppor-
tunities to identify complex topographical and topological

signatures left behind by the physical process that shaped
the landscape. It also allows us to differentiate among
physically distinct regimes and to extend scaling laws
beyond average quantities and beyond river networks. Such
detailed understanding of landscape organization might be
helpful in guiding the development of more realistic land-
scape evolution models over a wider range of scales and
over diverse climatic, ecologic and geological settings.
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