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[1] Rainfall intensity and spatiotemporal patterns often show a strong dependence on the
underlying terrain. The main objective of this work is to study the statistical signature
imprinted by orography on the spatial structure of rainfall and its temporal evolution
at multiple scales, with the aim of developing a consistent theoretical basis for conditional
downscaling of precipitation given the topographic information of the underlying
terrain. The results of an extensive analysis of the high‐resolution stage II Doppler
radar data of the Rapidan storm, June 1995, over the Appalachian Mountains is reported
in this study. The orographic signature on the elementary statistical structure of the
precipitation fields is studied via a variable‐intensity thresholding scheme. This signature
is further explored at multiple scales via analysis of the dependence of precipitation fields
on the underlying terrain both in Fourier and wavelet domains. The generalized normal
distribution is found to be a suitable probability model to explain the variability of the
rainfall wavelet coefficients and its dependence on the underlying elevations. These results
provide a new perspective for more accurate statistical downscaling of orographic
precipitation over complex terrain with emphasis on preservation of extremes.
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1. Introduction

[2] There is evidence to suggest that the small‐scale
space‐time structure of intense mountainous storms (sub-
kilometer and subhour scales) has important hydrologic
and geomorphic implications both in the short‐term (e.g.,
triggering landslides and flash floods) and in the long‐term
evolution of landscapes [Montgomery et al., 2001; Roe,
2005]. Also the consequences of extreme mountainous
storms are often disastrous for the local and regional econ-
omy. For instance, the storm of 27 June 1995 over Madison
County in Virginia caused a peak rainfall accumulation
exceeding 600 mm in 6 h [Smith et al., 1996] which pro-
duced flash flooding and triggered massive shallow land-
sliding and destructive debris flows across the region. Three
fatalities and a total loss of property exceeding 200 million
dollars [Pontrelli et al., 1999] were reported. During the
event of 28 July 1997, the city of Fort Collins in Colorado
experienced a catastrophic flash flood that caused five
fatalities and more than 200 million dollars in damage.
Maximum accumulated rainfall for that storm exceeded
254 mm within 6 h [Lin et al., 2001].
[3] In the long‐term average, it is well known that the

windward side of a mountainous range perpendicular to the

moist wind flow receives more precipitation than the
leeward side and leaves the dried air parcels to descend,
resulting in a moisture‐depleted region downslope called
the rain shadow. This precipitation regime causes distinct
climatic differences across the divide. This phenomenon is
the first order and the most straightforward effect of the
orographic signature on the spatial precipitation pattern.
However, the full interaction of orography and rainfall
spatiotemporal distribution is actually more complex and
involves a variety of physical mechanisms. Forced lifting,
differential advection of moist air aloft, convective currents
initiated by mountain valley thermal gradients and cooling
of warm moist air over snow covered mountains, individu-
ally or in combination, may enhance the intensity of rainfall
production [e.g., Barros and Kuligowski, 1998]. Roe [2005]
categorized the mechanisms of orographic precipitation as:
(1) stable upslope ascent, (2) partial blocking of the imping-
ing air mass, (3) down‐valley flow induced by evaporative
cooling, (4) leeside convergence, (5) convection owing
to mechanical lifting above the level of free convection, and
(6) seeder and feeder mechanism.
[4] Orographic terrains fuel the storm by intensifying the

destabilizing forces and accelerating the updraft movement
of moist‐laden air masses. A significant number of the most
heavy and disastrous precipitation events has been observed
during the warm seasons over mesoscale mountainous
ranges with several hundred kilometers in width such as the
Rockies and the Appalachians in the United States and the
Alps in Europe. Based on the analysis of several extreme
storms in the United States (i.e., Black Hill flood, SD.,
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1972; Big Thompson Canyon, CO., 1976; Fort Collins, CO.,
1997; Madison County, VA., 1995), it can be concluded
that the occurrence of such extreme events emerges from
the coincidence of some common synoptic and mesoscale
hydrometeorological mechanisms. Coexistence of a low‐
level and efficient moist airflow, steep gradient and strong
quasi‐stationary convective systems are common features
in summer time orographically accelerated extreme storms
[Lin et al., 2001; Bousquet and Smull, 2003]. In such cases,
most commonly, an area of intense pressure gradients is
formed across the region under a quasi‐stationary synoptic
system which develops a low‐level strongly moist upslope
airflow. Orographic lifting provides the required energy to
release the conditional instability and trigger a heavy rain-
fall. The quasi‐stationary nature of the synoptic system
develops a slow motion storm and magnifies more the
hydromorphologic responses such as flash flooding and
landsliding. Interestingly, studies of such storms in the United
States show that a high value of the convective potential
energy (CAPE) is not consistently observed in the storm
environment [Lin et al., 2001].
[5] In parallel to studying the driving physical mechan-

isms of precipitating systems, in recent decades considerable
efforts have been expanded in understanding and quantify-
ing the statistical structure of precipitation over different
spatiotemporal scales [e.g., Lovejoy and Mandelbrot, 1985;
Lovejoy and Schertzer, 1985; Gupta and Waymire, 1990,
1993; Kumar and Foufoula‐Georgiou, 1993a, 1993b; Perica
and Foufoula‐Georgiou, 1996a, 1996b; Veneziano et al.,
1996; Deidda, 2000; Deidda et al., 2004, 2006; Badas et al.,
2006]. Optimal parameterization and modeling of the multi-
scale behavior of rainfall fields often requires understanding
of the conditional dependence of the statistical scaling para-
meters on some measures of the underlying physical pro-
cesses. Along these lines,Over and Gupta [1994] investigated
how the structure of rainfall at the mesoscale varies with time
according to the large‐scale dynamical forcing. Perica and
Foufoula‐Georgiou [1996a, 1996b] established predictive
relationships between statistical characteristics of mesoscale
rainfall and thermodynamics of the storm environment.
Harris et al. [1996], Purdy et al. [2001], Nykanen and Harris
[2003] and Badas et al. [2006] investigated the spatial struc-
ture of orographic rainfall in the context of multifractal anal-
ysis. To advance the previous findings and to gain insight
toward a practical conditional parameterization of statistical
downscaling schemes over complex terrains, the main goal
of this work is to present the results of an extensive study on
quantifying the scaling structure of an orographic precipita-
tion system and relating it to the underlying topography in
Fourier and wavelet domains. The rainfall data of an extreme
storm over Madison County, Virginia (latitude 37.9859°N
to 38.8763°N, longitude −77.8341°W to −78.9714°W) on
27 June 1995 are used in this study. The precipitation fields at
1 km × 1 km resolution (100 × 100 bins) are derived from the
Sterling WSR‐88D volume scan reflectivity data at
every 6 min, using the Z‐R conversion relationship R = aZb

with a = 0.0425 and b = 0.71 [see Smith et al., 1996]. The
underlying topographic elevations of the studied area at the
same scale range between 66 and 1130 m above the mean
sea level (see Figure 1a).
[6] In section 2, a concise description of the storm phys-

ical environment and the orographic precipitation mecha-

nism is presented. In section 3, we establish a pyramidal
variable‐thresholding method for tracking the signature of
orographic features especially on precipitation tail statistics.
In section 4, the statistics and spatial scaling properties of
the studied rainfall event are presented and discussed in real
space, and in Fourier and wavelet domains. In section 5, it is
shown that the shape of the distribution of wavelet coeffi-
cients and their spatial scaling law exhibit a systematic
dependence on the underlying topography, providing thus
the basis for more accurate parameterization. Some con-
cluding remarks are made in section 6.

2. Storm Environment

[7] In this section, we briefly describe the mesoscale
atmospheric conditions and the associated hydrologic and
geomorphic responses of the Madison County storm of 27
June 1995. The reader is referred to Pontrelli et al. [1999]
and Smith et al. [1996] for a comprehensive study of the
storm environment and the measured hydrologic response,
respectively. The activity of this storm can be divided into
three main phases: “prestorm phase” from 0000 UTC to
0500 UTC, “storm phase” from 0500 to 2000 UTC and the
“poststorm phase” which extends from 2000 to 2400 UTC.
It needs to be mentioned that the “storm phase” consists of
two major convective activities across the region: the first
and larger one in spatial extent took place over the Piedmont
plains and moved toward Madison County from 0500 to
1000 UTC; the second and larger one in intensity initiated
near 1200 UTC, moved very slowly over the Madison county
and produced flash flooding and massive debris flows.
[8] During the prestorm phase, a high‐pressure system

was positioned over New England pushing cold air south-
eastward into a warm low‐pressure system centered off
the coast of the Carolinas. Establishment of the synoptic
high‐ and low‐pressure systems over the region initiated a
pronounced easterly cool and moist maritime airflow, imping-
ing the eastern flank of the Appalachians. The lifted index
value for the surface layer was slightly negative and the CAPE
was relatively small (∼150 J kg−1) across the region. Atmo-
spheric sounding at Sterling Radar Station (VA), indicated that
the entire troposphere was near saturation [Smith et al., 1996;
Pontrelli et al., 1999]. A high‐pressure system built more
southward, pressing the cold front into northern Virginia.
Eventually, the easterly wind component and geographic
features of the region in the Piedmont plains and Madison
County triggered the first convective system around 0700 UTC.
This front advanced southward and left the Madison County
nearly rain‐free and dissipated at 1100 UTC. This stage of
the storm did not produce a major flash flooding but just
increased the soil moisture content and left the region more
vulnerable to excess precipitation. Around 1200 UTC, sound-
ing information from the Sterling radar station signified that
another strong convection was imminent. The level of free
convection estimated at around 337m above the ground level,
CAPE increased nearly to 600 J kg−1, the lifted index lowered
slightly to −2, and the precipitable water was about 50 mm
[Pontrelli et al., 1999]. Triggered by orography, the second
strong convective system formed across the region during
the late morning and early afternoon and prolonged to near
2000 UTC. This part of the storm was characterized by intense
and slow moving rainy cells (∼ 1.2 m s−1) that produced a
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peak discharge of 3000 m3 s−1 at 1845 UTC in the Rapidan
watershed near Ruckersville station [Smith et al., 1996] and
mobilized hundreds of shallow landslides into massive debris
flows [Wieczorek et al., 2004]. By 1800 UTC, the storm
overtook the southern border of the Madison County and
finally around 2000 UTC, the areal extent of the precipita-
tion decreased and the system dissipated significantly. Some
scattered convective activities were observed, but by 2400 UTC
these activities disappeared completely. The most striking
feature of this storm was its interaction with the underly-
ing orography which along with other meteorological fac-
tors made the storm intense and very stationary [Smith
et al., 1996].

3. Statistical Signature of Orography
on Rainfall Cells

[9] Several observations of spatial rainfall [e.g., LeCam,
1961; Gupta and Waymire, 1990] support the fact that the
spatial organization of rainfall possesses a hierarchal struc-

ture: during the storm, small clusters of intense rainy cells
are embedded inside the less intense and larger extent
clusters of rain cells. In this section, we propose a simple
methodology for extracting areas of intense rainfall activity
and quantifying their underlying elevation for the purpose
of characterizing dynamically the signature of topography
on the statistics of rainfall intensity. At every snapshot of
radar images, we define as “rain cells” all pixels of the
rainfall fields over which the intensity exceeds a preassigned
quantile of the overall storm rainfall intensity distribution.
Delineating the geometry of the rain cells in time by this
thresholding process, we dynamically analyzed the spatial
statistics of the within‐cells rainfall intensity with respect
to the elevation of the topographic features underneath
those cells.
[10] Let F(.) denote the joint cumulative probability dis-

tribution of the nonzero rainfall intensities during the whole
storm duration and ru = F−1 (u) be the quantile level asso-
ciated with the probability of nonexceedance u (e.g., u = 0.5
to 0.95). At every radar image at time t, we denote by Rt[k,l]
the positive precipitation intensity in mm/h at location k,
l and define as “rain cells,” the set of values Ru

t over which
the intensity exceeds the quantile value ru,

Rt
u ¼ Rt k; l½ �jRt k; l½ � � ruf g: ð1Þ

Likewise, let us denote the elevations underlying those rain
cells as

Zt
u ¼ Zt k; l½ �jRt k; l½ � � ruf g: ð2Þ

[11] To track the dynamics of the rainfall field’s elemen-
tary statistics with respect to the underlying topography, the
spatial average of the underlying elevations of the rain cells,
hZut i, is studied for different quantile levels. It can be
observed (see Figure 1b) that during the first phase of the
storm from 0600 to 1200 UTC, as the hZut i elevation curves
decrease in time and collapse into each other for different
quantile levels u, the rain cells tend to be distributed over
a relatively flat area. However, during the second phase of
the storm from 1200 to 2000 UTC, the magnitude of hZut i
and its variability increases which means that the rain
cells move upslope and get distributed over a region of
steeper gradients.
[12] To quantify the signature of the underlying elevation

on the statistics of rainfall intensity in time, we also tracked
the evolution of the spatial average hRu

t i and the spatial
variance Var (Ru

t ) of the rain cell intensity for different
quantile levels, over the whole storm duration. The results,
reported in Figure 2, taken together with the results of
Figure 1 show that there is a dependency among the tail
statistics and underlying elevations of the rain cells. In other
words, while the intense rain cells propagate over higher
elevations during the storm evolution, the mean and the
variance of the intensities of those cells grow in time (see
Figures 2a and 2b), in a way that over high‐elevation
topography the variance grows even faster than the mean,
especially for high quantiles (see Figure 2c, which depicts
the coefficient of variation). Furthermore, analysis of the
spatiotemporal average of rain cell intensities as a function
of the underlying mean elevation for a range of quantiles

Figure 1. (a) Digital Elevation Model (DEM) of the stud-
ied area and (b) the spatial mean of the elevations under-
neath the rain cells hZut i defined at four different quantile
levels u = 0.50, 0.75, 0.90, 0.95 (see text for definition).
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defining the “rain cells” reveals an unexpected exponential
relationship (see Figure 3) as

Ru ¼ z0 exp kZu

� �
; ð3Þ

where k and z0 are constants, and Ru = E[hRu
t i] and Zu =

E[hZut i] represent the ensemble (over all radar images during
the storm evolution) spatial average of the rain cell intensities
and the underlying elevations for the quantile level u,
respectively. This exponential increase depicts the fact
that the space‐time dependence of extreme rain cluster
intensity on topography, accelerates exponentially as one
considers higher and higher‐order quantiles. This relation-
ship, which has to be investigated further for other storm
systems, can provide a useful predictive relationship for
parameterization of the orographic signature on rainfall ele-
mentary statistics.

4. Multiscale Analysis of Spatial Rainfall

[13] In section 3, rain cells were defined as rainy areas
over which rain intensity exceeded a specified quantile
threshold and it was found that the underlying topography
gives rise to significant impacts on the first‐ and second‐
order statistics of the rainfall fields. By changing the
quantile levels, cells of different size (scales) were investi-
gated and it was shown that for the smaller scales (higher
quantiles), the within‐cell rainfall intensities and their vari-
ability became larger as rain cells moved toward higher
elevations. In this section, using a formal multiresolution
representation in real space, Fourier and wavelet domains,
we pursue a different but complementary multiscaling
analysis of the precipitation fields with respect to the
underlying elevations.

Figure 2. Time evolution of the (a) mean and (b) variance
of rain cell intensities for different quantile levels. It is
observed that while the storm moves toward higher topo-
graphic elevations (see Figure 1), both the mean and vari-
ance of the rain cells increase. It is also noted that the
standard deviation cannot be linearly normalized by the
mean as reflected in (c) the coefficient of variation, which
does not remain invariant during the storm evolution.

Figure 3. A semilog linear relationship indicates that the
space‐time average of the rain cell intensity increases expo-
nentially with respect to their underlying elevations. Every
circle represents a quantile level ru, where u varies from
0.2 to 0.95 in increments of 0.1.
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4.1. Scaling Manifestations in the Frequency and Real
Space Domain

[14] The histogram of the spatial rainfall intensities is
often very skewed with a broad dynamic range. To map
the narrow range of many low‐intensity values into a wider
range of output levels, the logarithmic transformation is
often an effective approach. To circumvent the problem of
the zero intensity values in rainfall fields, a constant is
typically added before the logs are taken, i.e., the transfor-
mation log(Rt[k,l] + c) is applied. However, since the loca-
tion of zero intensity values is known anyway, the following
invertible transformation is a preferred alternative,

y t k; l½ � ¼ 0 if Rt k; l½ � ¼ 0
log Rt k; l½ �ð Þ otherwise

�
; ð4Þ

where the log(.) denotes natural logarithm. In particular, this
transformation allows the entire real axis to be available for
statistical computation, it makes the histogram of the field
more Gaussian‐like (e.g., see Figure 4f) and as such it fa-
cilitates the detection and estimation of scale invariance
[Ruderman, 1994; Huang and Mumford, 1999]. It is worth
noting that, as the log function is a monotonic transforma-
tion, the overall scaling law of the process would not be
distorted in Fourier and real space under this transformation.
In the sequel, unless otherwise noted, all analyses are per-
formed on the log‐transformed rainfall fields according to
equation (4).
[15] Knowing that the inner product and norms in L2(R) are

conserved by the Fourier transform (i.e., Parseval theorem),
the Fourier expansion has been widely used for detecting
the second‐order scaling laws of geophysical processes.
Using the 2D Discrete Fourier Transformation, the power
spectra (i.e., square of the absolute values of the Fourier
coefficients) of the y t[k,l] have been computed for each of the
radar images over the whole storm duration of 18 h (180 radar
snapshots at every 6 min). The output of the transformation
is rearranged by moving the zero‐frequency components to
the center of the spectrum for visualization purposes. To
reduce the measurement noise effect and have a robust esti-
mation in the spectral domain, an ensemble representation
is obtained by averaging the spectra of rainfall images over
the entire period of the storm. A contour plot of the ensemble
power spectral density in the frequency domain is shown
in Figure 5. It is observed that the storm spectral signature
exhibits an anisotropic pattern and interestingly, this shape
shows an elliptic regularity with its major axis perpendicular
to the Appalachian ridge line (see the dashed line in Figure 5)
for low frequencies and aligned to the mountain ridge line
at higher‐frequency components. This directional behavior
speaks for the organization and elongation of intense rain
cells (small‐scale features) perpendicular to the mountain
ridge, an isotropic energy distribution at intermediate scales
and a coherency along the prevailing topography at much
larger scales.
[16] The 2D spectral density is mapped into a one‐

dimensional representation via averaging over all angles
about the center of the spectrum. As shown in Figure 6,
for the radial frequency interval [0.03, 0.50] cycles/pixel
corresponding to scales of 2 to 32 km in real space, a clear
log‐log linearity of the ensemble spectrum of the rain-

fall field is observed. This confirms that the spatial distri-
bution of the energy (i.e., variance) over radial frequencies

fr =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2k þ f 2l

q
admits a power law scaling relationship in the

following form:

SR frð Þ / 1=f �er ; ð5Þ

where the slope of the ensemble spectrum is be ∼ 2.5.
[17] It is interesting to ask how the spectral slope varies as

the storm evolves over the mountain range. For the same
frequency interval, the estimated exponents of the direc-
tionally averaged spectrum for each of the radar images
are plotted versus time and hZ0.95t i in Figures 7a and 7b,
respectively. It is seen that the spectral slope ranges from 2.1
to 2.7 with a dependency on the underlying topography
during the storm period from 0600 to 2000 UTC. In short,
while the storm was developing over the low‐elevation
terrain (hZ0.95t i < 300m), the spectral slope is larger indi-
cating a stronger spatial self‐coherence (i.e., the energy
content drops off faster from larger‐scale features down to
cells of very small size). When the storm evolves over the
mountain barrier (hZ0.95t i > 400m) the energy is distributed
more uniformly across different ranges of scales, which
implies that the spatial autocorrelation structure of the fields
weakens when the orographic effect is more significant.
In between (elevations of 300 to 400 m) the storm is in a
transitional state with a widely varying spectral slope (see
Figure 1b).
[18] This scaling behavior in the Fourier domain can be

translated into real space which is more conducive to
understanding the correlation structure associated with the
observed power law spectral signature. Defining the 2D
autocorrelation function of an image as the expected value
of the component‐wise product of the image with itself at
different spatial translations [dk,dl],

C dk ; dl½ � ¼ hy k; l½ �;y k þ dk ; l þ dl½ �i; ð6Þ

Ruderman [1997] analytically proved that for a field with
power law spectrum of slope b > 2, the directional average
of its autocorrelation function has the following form:

C drð Þ ¼ c1 � c2d
��2
r ; ð7Þ

where c1 and c2 are positive constants and dr =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2k þ d2l

q
.

By expanding equation (6), it can be shown that for a field
with this correlation structure, the variogram

� drð Þ ¼ h y k; l½ � � y k þ dk ; l þ dl½ �j j2i ð8Þ

also exhibits a similar power law relationship.
[19] The variograms of the rainfall fields are shown in

Figure 8 in a log‐log plot and the estimated slope in the
scaling range of 2 ≤ dr ≤ 32 km confirms the spectral
analysis in an average sense and shows that the variogram
follows a power law scaling with an estimated slope of
∼0.4–0.5. By inspection, the sum of the autocorrelation
function in equation (7) with b > 2 includes a divergent
p series which in other words signifies a nonsummable
autocorrelation function [e.g., see Beran, 1994] over radial
translations and speaks for the evidence of long‐range
dependence in spatial rainfall intensities.
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[20] Up to this point, the second‐order scale invariance
properties of the rainfall field in the Fourier domain and real
space have been studied and some connections of this
scaling behavior with respect to the underlying elevations
have been explored. In the domain of Gaussian self‐similar
random fields this characterization can fully explain the
scaling properties of the process. However, if the process is
not Gaussian, higher‐order statistical moments over differ-
ent scales (resolutions) need to be computed to test the
presence of scaling. This can be accomplished by “coarse
graining” the field at the original (highest) resolution to
obtain fields at successively lower resolutions. Defining the
original spatial rainfall as an image of size N × N, a coarse‐
grained field at scale l can be obtained by passing a non-
overlapping averaging filter of size l × l over the field,

y� k
0
; l

0
h i

¼ 1=�2
X�
k;l

y k; l½ �; ð9Þ

where the yl[k′,l′] is a field of the same areal coverage as
y[k,l] but decimated by a factor l in each dimension. As
formation of local intense convective cells imposes a sharp
spatial variation on precipitation intensity values, the mag-
nitude of the gradient of a precipitation field implicitly re-
presents the intensity of the rainfall convective activities. It
is known that for a strictly self‐similar Gaussian field the
distributions of the local gradient ryl[k′,l′] standardized by

their corresponding means are independent of l and collapse
into an identical shape of the Rayleigh density function
[Ruderman, 1994].
[21] For this purpose, we focused on the distributions of

the magnitude of the local gradients of the coarse grained
fields at different scales l.

ry� k
0
; l

0
h i��� ��� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
@y� k 0 ; l0½ �

@k 0

� �2

þ @y� k 0 ; l0½ �
@l0

� �2
s

: ð10Þ

[22] Distributions of the local gradients of the rainfall
images are presented in log probability for l 2 {1,2 km} in
Figure 9. It is seen that the histograms do not collapse on
each other, particularly over the tail, which implies that
simple scaling may not hold true. The tail is also thicker
than the Rayleigh distribution and in general the peaks of
the histograms locate before the maximum of the Rayleigh
density. The same trend is revealed for larger scales; how-
ever, naturally the histograms tend gradually to the shape of
the Rayleigh distribution as the scale increases. Interest-
ingly, it is also observed that even by averaging the field
over larger scales (16 × 16 km) the gradient fields cannot be
fully explained in the Gaussian domain. This mainly arises
because of the strong spatial correlation of the field,

Figure 4. (a) Image of the Rapidan storm radar snapshot R[k ,l] at 0800 UTC. (b) Image
of the log(R[k,l] + 1). (c) Image of the transformed rainfall fields y[k,l] according to equation (4). (d, e,
and f) The corresponding histograms of the nonzero intensity values of Figures 4a, 4b, and 4c, respectively.
Throughout this study, the transformation of equation (4) displayed in Figures 4c and 4f has been employed.
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knowing that the central limit theorem holds true only for
independent or weakly dependent random variables.

4.2. Filter Response and Parameterization
of Rainfall Fluctuations

[23] In section 4.1, it was revealed that not only the studied
rainfall fields deviate from the Gaussian domain of attraction
but also they cannot be fully explained by simple scaling. In
this section, scaling of the rainfall fields is explored in thewavelet
domain with particular emphasis on precipitation extreme values
(i.e., thick tails) to establish a framework for conditional down-
scaling of rainfall with respect to the underlying elevations.
[24] In recent years, wavelet decomposition has played an

important role in the area of multiscale analysis of 1/f pro-
cesses [Wornell and Oppenheim, 1992; Flandrin, 1992;
Kaplan and Kuo,1993; Abry and Sellan, 1996; Zhang et al.,
2004] and also has been successfully applied for efficient
multiscale encoding of rainfall fields [e.g.,Kumar and Foufoula‐
Georgiou, 1993a, 1993b]. Using 2D wavelet decomposition,
a spatial signal with finite energy content is encoded into a set
of approximation coefficients aj[k,l] and a set of zero mean
detail coefficients dj[k,l] with respect to the shifted and dilated
version of a complete set of orthonormal basis functions.
Instead of the inner product formalism for the computation of
the wavelet coefficients, starting from any given resolution of
an image, these wavelet coefficients can be computed recur-
sively by convolution of the signal with a cascade of discrete
filter banks [Mallat, 1989] from fine to coarse scales in which
at each recursion the size of the image is decimated by a factor
of two. This decomposition procedure also allows an additive
perfect reconstruction of the image, knowing the root‐scale
coarse approximation coefficients a0[k,l] and sequences of
detail coefficients dj[k,l] at finer scales.

[25] Here to study the scaling properties of the rainfall
fields, we employ a basic form of the wavelet transfor-
mation using the two‐dimensional Haar band‐pass filters
(Figure 10). This filter bank is passed recursively over a 2D
field in a nonoverlapping scheme to compute the high and low
band‐pass coefficients from fine‐to‐coarse scales. Starting
with an image of size 2j+1 × 2j+1, applying the high and low
band‐pass filters simultaneously, we can compute the first‐level
directional details and approximation wavelet coefficients,
which are images of size 2j × 2j. By repeating this procedure
recursively in j+1 levels, this process can go on until we get
an image of size 1 × 1 for the approximation coefficients.
Hence, provided that the image at a coarse scale is given,
knowing exactly the sequence of wavelet detail coefficients, a
perfect reconstruction from coarse‐to‐fine scale is possible via

ajþ1 2k; 2l½ � ¼ aj k; l½ �=2þ dhj k; l½ � þ dvj k; l½ � þ ddj k; l½ �
	 


=2; ð11Þ

where the superscripts h, v and d, denote the horizontal, vertical
and diagonalwavelet coefficients. Here, aj + 1[2k,2l] justmeans
that the number of image pixels doubles at every reconstruc-
tion recursion [see also Perica and Foufoula‐Georgiou,
1996a; Riedi et al., 1999].
[26] Recalling the theory of multiplicative random cascades

[e.g.,Gupta and Waymire, 1993], the spatial rainfall fields in a
finite range of scales can be reconstructed using the following
dyadic recursion formalism from coarse‐to‐fine scales:

Rjþ1 ¼ Rj�j; h�ji ¼ 1; ð12Þ

Figure 6. Open circles show the one‐dimensional represen-
tation of the rainfall field ensemble average Fourier power
spectrum, and the dotted line represents a fitted least square
linear model (R2 = 0.96). The angular averaged power spectra
of the rainfall fields at two different instants of time are also
depicted (dashed lines). The log‐log linearity of the power
spectrum confirms the presence of second‐order scaling in
the range of 2–32 km.

Figure 5. Two‐dimensional ensemble average spectral
signature of the Rapidan storm. The power spectrum is
centered at frequencies fk = fl = 0 and divided by 12 equally
spaced contour lines. The dashed line displays the approxi-
mate direction of the underlying main divide.
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where Rj denotes the rainfall process at resolution 2
j and z j is a

random multiplier or cascade generator with the expectation
value of unity. By taking the logarithm of both sides, this
stochastic structure can be described in an additive Multiresolu-
tion Markovian form with a zero mean random component,

y jþ1 ¼ y j þ "j; "j �d ln �j
� �

; h"i ¼ 0: ð13Þ

[27] Comparing equations (12) and (13), it can be con-
cluded that the 2D discrete Haar Wavelet transform of the
log‐transformed rainfall images provides an efficient means
for characterizing the statistics of the cascade generator in a
logarithmic space. Indeed, provided that the wavelet

decomposition works as a whitening filter and knowing a
parametric probability model for the wavelet detail coeffi-
cients, this formalism allows one to reconstruct or down-
scale the rainfall field from coarse‐to‐fine scales on a quad
tree cascade of wavelet coefficients (see Figure 11).
[28] In this work, we did not focus on reconstruction or

downscaling of the rainfall field on the basis of the described
procedure and left it for future study. However, we concen-
trated our attention on the characterization of the marginal
distribution of the detail wavelet coefficients of the log‐
intensity rainfall fields and their dependence on the underlying
topography. In Figure 12, the studentized distributions (i.e.,
unit variance) of the sum of the nonzero wavelet subbands at
all orientations are demonstrated in log probability for all
Rapidan storm radar snapshots at one level of decomposition.
As shown, the average behavior of the distribution in the log
probability space appears to be leptokurtic with a more acute
peak around the mean and thicker tail than the parabolic tail of
a Gaussian distribution (Figure 12, dashed line). Assuming that
the wavelet coefficients are defined in L2(R), this tail behavior
may be intuitively explained by a symmetric distribution with
double exponential tails (i.e., exp{|x|a}) with an exponent a
less than 2 which describes the tail of a Gaussian random
variable. The family of generalized Gaussian (GG) distribu-
tions (see Figure 13), also known as the Generalized Laplace
and/or Exponential Power Distribution in the statistical litera-
ture, is a class of probability density functions that can
potentially model this sort of heavy tail behavior [e.g., Huang
and Mumford, 1999]. There are different parameterizations for
this class of distribution functions in the literature; however,
the early formwas first introduced by Subbotin [1923] andwell
established by Vianelli [1963, 1983]. In this work, we used a
symmetric zero mean form of this class, according to the
proposed parameterization by Nadarajah [2005] as follows:

fX xð Þ ¼ �

2sG 1=�ð Þ exp � x

s

��� ����n o
� GG s; �ð Þ; ð14Þ

Figure 7. (a) Spectral slope of each of the radar images
versus time during the storm period and (b) spectral slope ver-
sus the rain cell elevation hZ0.95t i. Spectral slope decreases as
the average underlying elevation of the rain cells increases.
This dependence implies that the surface of the rainfall images
becomes rougher in a geometrical sense with weaker correla-
tion structure while it is intensified by orographic interaction.

Figure 8. Variogram of all storm radar snapshots in a log‐
log plot. The observed slopes confirm the power law behavior
of the spectra (see Figure 6) and long‐range dependence.
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where x2R, and the s anda are positive real‐valuedwidth and
tail parameters of the distribution.
[29] Laplace and normal densities are particular cases of

the GG density when a = 1 and 2, respectively. In the limiting
case when a → + ∞, the density would approach a uniform
distribution on (−s, + s) and it would be a Dirac delta function
when a → 0. The tail probability of this distribution is
summable and by the usual central limit theorem, the sum of
random samples from this distribution tends to the standard
normal distribution. In other words, the density does not
preserve its shape under aggregation except for a = 2
[Nadarajah, 2005]. All of the central moments of the distri-
bution are finite and the density can be fully characterized
knowing the second‐ and fourth‐order moments,

E X 2
� � ¼ s2G 3=�ð Þ=G 1=�ð Þ;E X 4

� � ¼ s2G 5=�ð Þ=G 1=�ð Þ: ð15Þ

[30] Studying the storm radar scans, it is found that the
GG distribution could be an admissible model for explaining
the variability of the wavelet detail coefficients. The stu-
dentized histogram and the fitted model for the radar image
at the 0830 UTC are demonstrated in Figure 14 at three
different scales. Fitting can be performed based on the
conventional Method of Moment (MM) or the Maximum
Likelihood (ML) estimation procedures. Rahman and
Gokhale [1996] found that both methods perform similarly
for a < 2. Using the MM for this case and the Kolmogorov–
Smirnov (K‐S) goodness of fit test, it is revealed that we
can explain those coefficients by the GG distribution with
high degree of statistical confidence, i.e., at the 95% sig-
nificance level.
[31] Scaling of the wavelet detail coefficients in a multi-

fractal context manifests itself as a power law behavior of
their qth‐order moments [e.g., see Mandelbrot et al., 1997;
Abry et al., 2004],

E dj k; l½ ��� ��q
 � ¼ cq2
�j�q ; ð16Þ

for a given finite range of scales jMin ≤ j ≤ jMax, where jMax /
jMin ? 1 and for all q such that E{|dj[k,l]|

q} is finite over an
interval[0, qmax]. The tq is usually referred to as the scaling
exponent and cq is a prefactor. When the scaling exponent
can be explained linearly as tq = qH, the wavelet coeffi-
cients are monofractal or simple scaling and the exponent
H denotes the self‐similarity index.
[32] To describe the spatial scaling law of wavelet coef-

ficients in a robust statistical sense, all of the available radar
images of the storm are studied in the wavelet space, using
the described Haar filter banks. Focusing on a parsimonious
representation, the second‐ and fourth‐order moments of the
wavelet coefficients of all log‐transformed rainfall fields for
four levels of decomposition are computed and illustrated in
Figure 15. The semilog linearity of the moments versus
decomposition levels signifies that not only the variance but
also the fourth‐order moments of the wavelet coefficients
are power law scaling in an average sense.
[33] From equation (15), the tail parameter of the GG

distribution can be numerically estimated knowing the
sample kurtosis �,

� ¼ G 5=�ð ÞG 1=�ð Þ½ �= G 3=�ð Þ½ �2: ð17Þ

[34] Therefore, the scaling law of the tail parameter in
dyadic scales can be derived analytically by characterizing
the kurtosis at different resolutions as follows:

� jð Þ ¼ c4

c2ð Þ2 2
�j �4�2�2½ �: ð18Þ

By definition, for simple scaling processes (i.e., tq = qH) the
thickness of the tail at different scales remains invariant.
Analyzing the expected values of second‐ and fourth‐order
moments for the entire data set (see Figure 15), it is revealed
that in an average sense E[t4/t2] ffi 2 and the wavelet
coefficients behave similar to a simple scaling (monofractal)
signal. However, their kurtosis is greater than the Gaussian
case � ffi 4.8 > 3 which is equivalent to the tail parameter
a ffi 1.2 in a generalized Gaussian density.

Figure 9. Dashed lines represent the distribution of the gra-
dient of the normalized log‐intensity rainfall fields y t[k,l] for
l2{1 2} km over the entire period of the storm. Solid line is a
Rayleigh distribution fitted to the average histogram. The tail
behavior indicates a deviation from Gaussianity.
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[35] Linearity of the second‐order moment in Figure 15
confirms the presence of 1/f spectra and knowing the pro-
cess fractality, using equation (15) a similar power law
scaling can be derived for the width parameter s of the GG
distribution; see Figure 16. It needs to be mentioned that this
monofractal property of the wavelet coefficients does not
necessarily mean that any reconstructed process from
coarse‐to‐fine scales, on the basis of the described approach,
is also monofractal. The GG distribution does not preserve
its shape under aggregation except for a = 2 and the sum of
the GG random variables tends to a Gaussian density in the
limiting case. Therefore, as the wavelet cascade evolves
from coarse‐to‐fine scales by adding GG random numbers
in log scale, the distribution of the cascade tends to the
normal density which means that the distribution of the
original field tends to a log‐normal density.

5. Conditional Multiscaling Analysis

[36] In section 4, transforming the rainfall radar images
into a log space, the stochastic nature of the rainfall wavelet
fluctuations (i.e., detail coefficients) and their scaling
properties were studied using the GG density. According to
the described formalism, while one wants to downscale
stochastically a remotely sensed rainfall image from coarse‐

to‐fine (say lc → lf) scales at the time step t, the parameters
of the probability density of the wavelet coefficients (i.e.,
GG density) need to be estimated at the available root‐scale
lc. Consequently, some important questions may arise on
how these parameters are to be estimated based on the pre-
cipitation data available at the coarse scale, say lc = 8 km. Is
there any functional relationship between those parameters
and the underlying topography while the storm evolves in
time? Can one use the information content of the underlying
topography to reduce the estimation error of those down-
scaling parameters? Motivated by the need to establish an
efficient downscaling scheme over complex terrain, this
section is devoted to analyzing the dynamical evolution of
the GG density parameters (a, s) with respect to the oro-
graphic signature on the rainfall field at a given coarse scale.
[37] To capture the signature of landscape features on

rainfall variability at different scales, a statistical measure
which accounts for the joint information content of the
rainfall field and the underlying elevations is defined. Spe-
cifically, we define a time‐ and scale‐dependent orographic
index as the cross correlation of the precipitation fields Rl

t

with the underlying elevations Zl
t at a particular scale l,

OIt� ¼ hRt
�; Z

t
�i=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hRt

�;R
t
�ihZt

�; Z
t
�i

q
; ð19Þ

Figure 10. High and low band‐pass Haar wavelet filters are applied in nonoverlapping 2 × 2 blocks on
the rainfall images recursively to obtain wavelet subband coefficients at different resolutions.

Figure 11. Quad‐tree structure of Haar wavelet coefficients for reconstruction of a spatial rainfall field.
Assuming aj[k,l] = y j in equation (13) and a parametric probability model for dj[k,l], we can synthetically
reconstruct the approximation coefficients and the rainfall field at the next higher resolution level j+1.
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where hX, Yi denotes the expected value of the component‐
wise product of X and Y. Accordingly, the Orographic Index
OIl

t is a normalized index between 0 and 1 which potentially
reflects the significance of the orographic signature on the
rainfall field in the sense that when the orographic index is
found to grow in time, on average, the more intense rain

Figure 12. Distribution of the wavelet detail coefficients
for all log‐intensity radar images of the Rapidan storm.
The distributions are plotted in log probability for clear
illustration of the non‐Gaussian nature of the tail. The solid
line shows the average histogram behavior, and the dotted
line denotes the standard normal distribution.

Figure 13. The generalized Gaussian is a flexible family of
distributions which in a particular parameterization allows a
symmetric probability continuum spanning from a Dirac
delta function (a → 0) to a uniform density (a → ∞). In
the range of 0 < a < 2, the density has a thicker tail than
a standard normal distribution and the tail becomes thinner
for a > 2.

Figure 14. Fitted generalized Gaussian distribution to the
studentized wavelet coefficients of the horizontal subband
in three decomposition levels (i.e., l2{2, 4, 8} km) at
0830 UTC. In this case, the K‐S test results indicate that
at the 95% confidence level the observed wavelet coeffi-
cients are samples from the selected family of distributions.
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cells are formed over higher elevations. For the storm period
(i.e., 0600–2000 UTC) at every radar snapshot, Figures 17a
and 17b display the scatterplots of the parameters of the
fitted GG distributions versus the orographic index com-
puted at the scale lc = 8 km. Evidently, as the orographic
index increases, both the width s and the tail parameter a of
the rainfall fluctuations increase. In other words, while high‐
intensity precipitation cells are developed over areas of
higher elevation, the energy of the rainfall wavelet fluctua-
tions in terms of their standard deviation increases and they
become more organized with thinner tails.
[38] Although the dependence of the parameters on the

orographic index is evident in our case study, linear pre-
dictive relationships explain less than 50% of the variability
as the correlation coefficients are between 0.5 and 0.7 (R2 <
0.5). Therefore, in the sequel efforts are focused on quan-
tifying how much the mean square error of the parameter
estimation may be improved by discrete conditioning on the
orographic index, without relying on the assumption of
linear dependence. To this end, nonparametric conditioning
is performed on nonoverlapping subsets of the storm oro-
graphic indices at lc = 8 km. To encode the maximum
amount of extractable information content in a least square
sense, the set of computed orographic indices in time is
partitioned into k mutually exclusive and collectively
exhaustive subsets to estimate the conditional expected
value of the downscaling parameters at each partitioning by

E 	jOIk½ � ¼
X
a2OIk

aP 	 ¼ ajOIkð Þ; ð20Þ

where 	 2 {a, s}, “a” denotes any value of the param-
eter “a” or “s” estimated on any member of the subset k and
P(	 = a∣OIk) is a uniform conditional probability measure
with P(OIk) > 0.
[39] The degree of improvement in the variance of the

estimation error of those parameters 	 given the orographic
index can be calculated on the basis of the following general
relationship [Fristedt et al., 2007]:

E 	� E 	ð Þ½ �2�E 	� E 	jOIkð Þ½ �2¼ E E 	jOIkð Þ � E 	ð Þ½ �2: ð21Þ

For instance, according to a partitioning scheme addressed
in Table 1, the components of the right hand side of
equation (21) are computed for the explanatory parameters
of the rainfall wavelet coefficients, at the scale of lc = 8 km.
It can be observed that for the studied storm, knowing the
range of variability of the orographic index, the variance
of estimation error can be improved on the average by up to
∼10% and 35% for a and s, respectively.

6. Conclusions

[40] The motivation for this research was to explore the
linkages between the space‐time statistical structure of
precipitation and its underlying topography at multiple
scales. This allows us to extract knowledge that can inform
an efficient and accurate downscaling scheme of satellite
precipitation products, such as those anticipated by the
Global Precipitation Measuring (GPM) Mission, for
hydrologic applications over complex terrain. In this study,
we analyzed the Rapidan Storm of June 1995, over the

Figure 15. Second‐ and fourth‐order moments of the
wavelet coefficients at different resolutions (i.e., l2{16, 8,
4, 2} km) for all storm radar images. Open circles show
the mean values (ensemble average over all radar images),
and the dashed lines represent the corresponding 95%
confidence intervals of the estimates. The results of the least
square fitting (solid lines) indicate that the expected values
of these moments exhibit power law scaling with a high
degree of confidence (R2 > 0.96).

Figure 16. Scaling properties of the width parameter of the
fitted generalized Gaussian (GG) distribution. Open circles
show the mean values, and the dashed lines represent the
corresponding 95% confidence intervals of the estimates.
Given that the tail parameter a remains invariant at different
scales and knowing the scaling law of the second‐order
moment (see Figure 14), the scaling of the width parame-
ter s can be derived using E[X2] = s2G(3/a)/G(1/a). Hs

denotes the scaling index of the width parameter.
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Appalachian Mountains, in terms of its multiscale statistical
structure and its dependence on the underlying topography.
First, to quantify the signature of the underlying elevation
on the first‐ and second‐order statistics of the rainfall field,
a thresholding operation was performed to define cells of
varying size and intensity. It was revealed that the spatial
statistics of the rain cells’ intensity values (i.e., mean and
variance) had a strong dependence on the underlying ele-
vations. Specifically, it was shown that the presence of
orographic features accelerated locally the intensity and
variability of rain cells and made their formation more likely
above higher elevations. Subsequently, formal ways of
analyzing the second‐order scaling properties of the rainfall
fields were presented both in Fourier and real space. The
anisotropy of the two‐dimensional Fourier spectrum and
its directional dependence on the underlying terrain was
explained. It was also shown how the variogram and direc-
tionally averaged spectrum of a scaling field relate to each
other and can be estimated consistently in the context of
remotely sensed rainfall images.

[41] Coarse graining of the log‐transformed rainfall fields
revealed departure from Gaussianity, requiring special
attention to the scaling of extremes. Haar wavelet decom-
position of the log‐transformed precipitation fields was
performed and the generalized Gaussian (GG) distribution
was found a suitable probability model which adequately
explains the tails of the distribution of the wavelet coeffi-
cients over a range of scales.
[42] We also quantified the dependence of the parameters

required for statistical downscaling of the precipitation fields
on the underlying orographic features and showed that these
parameters can be estimated more accurately by conditioning
on the information content of the underlying topographic
elevations. Obviously, since this study is just centered on a
particular storm, our statistical descriptions are far from
complete and provide the motivation for future generaliza-
tion efforts through collecting and analyzing a large, statis-
tically representative data set, and/or rainfall fields simulated
via cloud‐resolving models over orographic terrain.
[43] As a concluding remark, it is noted that in most of the

available stochastic rainfall downscaling models using ran-
dom cascade formalisms one of the main assumptions is the
scale‐to‐scale independence of the random components
(multipliers) of the cascade generator. Studies of natural
images have shown that these random components may
exhibit higher‐order dependence, even though they are
uncorrelated, and thus might require scale‐dependent prob-
abilistic characterizations [e.g., Huang and Mumford, 1999;
Wainwright and Simoncelli, 2000]. Given the results of the
presented study, it is worth exploring whether a scale‐
dependent cascade generator parameterized via the under-
lying terrain orographic information could be an avenue for
improving rainfall downscaling schemes with emphasis on
preservation of extremes.

[44] Acknowledgments. This work was supported by a NASA‐GPM
award NNX07AD33G and NSF award EAR‐05366219 to the National
Center for Earth‐Surface Dynamics, an NSF Science and Technology

Figure 17. (a) The tail and (b) the width parameters of the fitted generalized Gaussian distribution to
the wavelet coefficients of the log‐transformed rainfall data at the scale lc = 8 km, plotted versus the
orographic index computed at the same scale.

Table 1. Nonparametric Conditional Expectation of the
Parameters 	 2 {a, s} of the GG Distribution With Respect to
the Orographic Indexa

OI(lc = 8 km)

E[	|OIk]
[E(	|OIk) −
E(	)]2/Var(	)

a s a s

≤0.20 1.29 3.90 0.018 0.149
0.20−0.25 1.18 3.60 0.295 0.442
0.25−0.30 1.39 4.32 0.065 0.000
0.30−0.35 1.29 4.20 0.015 0.012
0.35−0.40 1.34 4.90 0.004 0.306
≥0.40 1.46 5.47 0.277 1.171

E[E(	|OIk) −
E(	)]2/Var(	)

0.11 0.35

aIt is shown quantitatively that the variance of estimation can be a
reduced appreciably by conditioning on the information content of the
underlying topography.
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