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[1] The next generation of digital elevation data (≤3 m resolution) calls for the
development of new algorithms for the objective extraction of geomorphic features, such
as channel networks, channel heads, bank geometry, landslide scars, and service roads.
In this work, we test the performance of two newly developed algorithms for the extraction
of geomorphic features: the wavelet‐based extraction methodology developed by
Lashermes et al. (2007) and the GeoNet nonlinear diffusion and geodesic paths
methodology proposed by Passalacqua et al. (2010). The study area is part of the Rio
Cordon basin, a headwater alpine catchment located in the Dolomites, a mountainous
region in the eastern Italian Alps. The aim of this work is to compare the capability of the
two new algorithms in extracting the channel network and capturing channel heads,
relevant channel disruptions corresponding to landslides, and representative channel cross
sections. The extracted channel networks are also compared to the ones obtained using
classical methodologies on the basis of an area threshold and an area‐slope threshold. A
high‐resolution digital terrain model of 1 m served as the basis for such analysis. The
results suggest that, although the wavelet‐based methodology performs well in the channel
network extraction and is able to detect channel heads and channel disruptions, the local
nonlinear filter together with the global geodesic optimization used in GeoNet is more
robust and computationally efficient while achieving better localization and extraction of
features, especially in areas where gentle slopes prevail. We conclude that these new
methodologies should be considered as valid alternatives to classical methodologies for
channel network extraction from lidar, in addition to offering the potential for calibration‐
free channel source identification and also extraction of additional features of interest.
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1. Introduction

[2] In the last decade, a range of new remote sensing
techniques, such as terrestrial and airborne laser scanners,
has led to a dramatic increase in terrain information [Tarolli
et al., 2009]. The terrestrial laser scanner provides very high
resolution surveys over limited areas. The airborne laser
scanner technology, also known as light detection and
ranging (lidar), offers the opportunity to provide high‐
resolution topographic data over areas larger than other
technologies [Ackerman, 1999; Kraus and Pfeifer, 2001;
Briese, 2004; Slatton et al., 2007]. A new generation of
high‐resolution (1–3 m) lidar‐derived digital terrain models

(DTMs) are now available for different landscapes, and
widely used by several researchers, offering new opportuni-
ties for the scientific community. In the last few years several
studies have been conducted using lidar data. These include:
the characterization and differentiation of landslide morphol-
ogy, such as the determination of the locations and distribution
of landslide activity [McKean and Roering, 2004;Glenn et al.,
2006; Ardizzone et al., 2007; C. Gangodagamage et al., Sta-
tistical signature of deep‐seated landslides, submitted to
Journal of Geophysical Research, 2009], the geomorpholog-
ical mapping of glacial landforms [Smith et al., 2006], the
recognition of depositional features of alluvial fans [Staley
et al., 2006; Frankel and Dolan, 2007; Cavalli and Marchi,
2007] and of channel bed morphology [Cavalli et al., 2008;
Trevisani et al., 2010], the calculation of slope for headwater
channel network analysis [Vianello et al., 2009], the analysis of
the hillslope‐to‐valley transition morphology and of the
topographic signature of valley incision by debris flows and
landslides [Tarolli and Dalla Fontana, 2009], and some crit-
ical issues of high‐resolution DTMs for the numerical mod-
eling of shallow landslides [Tarolli and Tarboton, 2006]. The
works of Lashermes et al. [2007], Tarolli and Dalla Fontana
[2009], Passalacqua et al. [2010], and Pirotti and Tarolli
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[2010] discussed a topic that has been the subject of consid-
erable research over the past several decades: the automatic
extraction of channel networks from high‐resolution lidar‐
derived DTMs. Different methods have been proposed in the
literature for channel network extraction. For example, a con-
stant critical support area [e.g., O’Callaghan and Mark, 1984;
Band, 1986; Mark, 1988; Tarboton et al., 1989, 1991], a
slope‐dependent critical support area [e.g., Montgomery and
Dietrich, 1992; Dietrich et al., 1993], and also a threshold
on local curvature [Rodriguez‐Iturbe and Rinaldo, 1997;
Heine et al., 2004]. The availability of high‐resolution
topography given by laser scanners offers now the oppor-
tunity to reconsider the procedures for channel network
extraction introducing new methodologies and reaching
more detailed results than those obtained in the past. It has to
be kept in mind, however, that the resolution of the available
DTMs and also the vertical error in the elevation data can
considerably influence the accuracy, and thus interpretation,
of the numerically computed local gradients and curvatures,
both critical properties for channel extraction.
[3] In the work of Lashermes et al. [2007] a methodology

based on wavelets was introduced to locally filter lidar
elevation data, and to detect thresholds in topographic cur-
vature and slope direction change for defining valleys and
probable channelized portions of the valleys. This research
indicated the effectiveness of high‐resolution elevation data
and of the related topographic curvature maps in the analysis
of land surface morphology. The curvature derived from
high‐resolution topography using airborne lidar seems to
greatly improve channel network extraction since it is
possible to recognize in detail concave‐convergent terrain
associated with fluvial erosion processes [Tarolli and Dalla
Fontana, 2009]. Furthermore the work of Passalacqua et al.
[2010] shows the advantages obtained using nonlinear fil-
tering, instead of linear filtering as in the wavelet‐based
methodology, and the efficiency of geodesics in tracing
channels. Nonlinear filtering is in fact capable of achieving
‘noise’ reduction (meaning observational noise or irregu-
larities at scales smaller than the scales of interest), while
enhancing geomorphic features of interest, without deform-
ing landscape contours. In addition, the definition of channels
as geodesics, that is, lines along which a certain cost function
is minimized, allows a fully automatic and fast network
extraction.
[4] The aim of this paper it to test and compare the rel-

ative merits of the methodologies proposed by Lashermes
et al. [2007] and Passalacqua et al. [2010] in terms of
their capability of extracting geomorphic features of interest
such as channels, channel heads, detecting relevant channel
disruptions corresponding to landslides, and capturing rep-
resentative channel cross sections. The study area is part of
the Rio Cordon basin, a headwater alpine catchment located
in the Dolomites, a mountainous region in the eastern Italian
Alps. We selected this area because several field surveys
were conducted during the past few years, including lidar,
field mapped channels, channel heads and landslide scars.
These precious data sets give us the opportunity to discuss
new issues, and test new analysis procedures when mapping
channel networks in an alpine environment with a complex
morphology. In particular, after presenting the study area
(section 2) and reviewing briefly the two methodologies
(section 3), we extract the channel networks and compare
them to the ones obtained through classical methodologies

(area and area‐slope thresholds) (section 4). Then, we take
advantage of the survey data available, to focus on the
ability of the new methodologies to localize channel heads
(section 5). As pointed out by Lashermes et al. [2007] and
Passalacqua et al. [2010] and recalled later in this paper, the
methodologies produce ‘skeletons’ of likely channelized
pixels which are discontinuous, meaning that the probable
channels exhibit disruptions, which may or may not repre-
sent geomorphologic features of interest. We investigate the
nature of these disruptions by taking advantage of the
availability of survey‐mapped landslides in section 6.
Furthermore, the effect of linear versus nonlinear filtering is
analyzed through the investigation of cross sections extracted
along the channels of the study area (section 7). Finally, we
suggest a guideline for such applications, and also identify
future challenges in fully or almost fully automated meth-
odologies for geomorphic feature extraction from lidar
(section 8).

2. Study Area

[5] The study area (Figure 1) consists in the Rio Col Duro
basin (subbasin of Rio Cordon), a small headwater basin of
0.45 km2, and some neighboring landslide areas, located in
the Dolomites, a mountainous region in the eastern Italian
Alps. The elevation ranges from 1935 to 2385 m a.s.l. with
an average of 2199 m. The slope angle is 25.9° on the
average and 74° at maximum, computed from the high‐
resolution DTM (1 m resolution) of the area in analysis. The
basin is morphologically divided into two parts: the upper
part consists of a low‐slope belt dominated by colluvial
channels; the lower part displays steep slopes and a narrow
valley, where bedrock and alluvial channels and shallow
landslides are present.
[6] The area has a typical alpine climate with a mean

annual rainfall of about 1100 mm. Precipitation occurs
mainly as snowfall from November to April. Runoff is
dominated by snowmelt in May and June, but summer and
early autumn floods represent an important contribution to
the flow regime. During summer, storm events are usually
separated by long dry spells. Soil thickness varies between
0.2 and 0.5 m on topographic spurs to depths of up to 1.5 m
on topographic hollows. The vegetation covers 97% of the
basin and consists of high‐altitude grassland (91% of the
area), and sporadic tall forest (6%). The remaining 3% of
the area consists of bedrock outcrops and unvegetated talus
deposits. Several field surveys were conducted during the
past few years including lidar surveys (data acquired during
snow‐free conditions in October 2006) [Pirotti and Tarolli,
2010]. A recent campaign (September–October 2008, and
August 2009) has provided new detailed data of field‐
mapped alluvial and colluvial channels, channel heads, and
landslide scars in a neighboring area [Pirotti and Tarolli,
2010].
[7] The shallow landslides in the study area were docu-

mented by repeated surveys in the period 1995–2001 [Dalla
Fontana and Marchi, 2003], and summer 2008–2009 based
on Differential Global Positioning System (DGPS) ground
observations. Analysis of these data indicates that small,
shallow debris flow scars heal rapidly, and are difficult to
detect after as few as 3–4 years. About 68% of the surveyed
landslides were triggered by a very intense and short‐duration
storm on 14 September 1994 [Lenzi, 2001; Lenzi et al.,
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2004]. The storm, with a duration of 6 h, caused the largest
flood recorded in 20 years of observation in the Rio Cordon
basin. Due to the short duration of the storm, few slope
instabilities were observed on entirely soil‐covered slopes,
while several landslides were triggered on slopes just below
rocky outcrops [Tarolli et al., 2008]. An important new
sediment source was formed on 11 May 2001, during an
intense snowmelt event without rainfall following a very
snowy winter [Lenzi et al., 2003, 2004]. Soil saturation
mobilized a shallow landslide (see landslide A in Figure 1)
covering an area of 1905 m2 which then turned into a
mudflow moving along a small tributary. A 4176 m3 debris
fan was formed at the confluence with the Rio Cordon,
providing to the main channel fine sediments to be trans-
ported downstream [Lenzi et al., 2003]. This new landslide
area triggered during 2001 is considered in this work, and it
is located in a neighboring area of the Rio Col Duro basin
where steep slopes, a narrow valley, and ancient landslide
deposits are present. The location map of Rio Col Duro and
the available surveyed data (channels, channel heads and
landslides) are shown in Figure 1.
[8] It is important to note that the Rio Col Duro basin

exhibits a significant variability in the values of drainage

area at the channel heads. Namely, among the 16 channel
heads included in the basin, the channel initiation drainage
area ranges between 110 m2 and 13000 m2 approximately,
as it can be seen from the histogram of drainage areas in
Figure 2, computed using the D8 algorithm [O’Callaghan
and Mark, 1984]. It is clear that it would be impossible to
capture such a variability with a unique threshold value for
drainage area, as it would be required by a classical
extraction methodology. The small values of contributing
area at several channel heads (channel 2 up to channel 10,
see Figure 1) are explained by the formation of these
tributaries not by a combination of flow accumulation and
slope, but by subsurface flow in low‐slope areas. Figure 3
and Figure 4 show examples of these two types of chan-
nel initiation processes observed in the Rio Cordon basin. In
particular, Figure 3 shows an example of channel head
generated by erosion, while Figure 4 shows a channel head
generated by subsurface flow and gentle slope.

2.1. Field Data Collection

[9] Field surveys were carried out along the entire
hydrographic network. The catchment was systematically

Figure 1. The Rio Col Duro basin. Shown is a location map of the study area, the channel head locations c,
the areas where the analysis of channel heads detection is performed (T1, T2, and T3), and the area where
landslide disruptions are analyzed landslide test area). The locations of three extracted cross sections are also
marked (CS1, CS2, and CS3). The letter A indicates the largest landslide considered in this study. Land-
slide A is located at 46°27′39.921″N, 12°6′0.103″E, while the outlet has latitude 46°27′26.6″N and lon-
gitude 12°05′49.7″E.
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walked along all the drainage lines up to the catchment
divide. The channel head, or first‐order stream head, was
defined as the point at which nonconfined divergent flows
on the hillslope converged to a drainage line, i.e., the

upstream limit of concentrated flow [Dietrich and Dunne,
1993].
[10] The channel network identified in the Rio Col Duro

basin can be divided into three portions: colluvial, bedrock,
and alluvial channels (see Figure 1). The colluvial incisions
are small headwater channels, exhibiting a weak or
ephemeral transport capacity [Montgomery and Buffington,
1997]. They can be considered as the elementary compo-
nent of the hydrologic network, defining channel initiation
[Montgomery and Dietrich, 1989], and characterizing the
headwater areas. In our study area these morphologies are
dominant in the upper part of the basin, where gentle slope
prevails. The initiation process is due to an upslope infil-
tration of water within moraine deposits, and downslope
subsurface flow where gentle slope soil mantle prevails.
Nevertheless, colluvial channels are also present in the
lower and steeper part of the basin, where their formation is
mainly due to flow accumulation and surface erosion due to
larger values of slope. The alluvial channel network (lower
midzone of the network) is dominated by erosional and
depositional processes controlled mainly by local slope
changes, where the sediment forming the channel bed can be
transported and organized during floods. Alluvial channels
are characterized by bed morphologies such as cascades and
steep pools, typical of steep mountainous channel reaches,
characterized by high transport capacity [Vianello and
D’Agostino, 2007].

Figure 3. An example of channel head observed in the Rio
Col Duro basin formed by a combination of flow accumula-
tion and slope (c13 in Figure 1).

Figure 2. Histogram of the drainage area at the surveyed
channel heads (a total of 16 channel heads) in the Rio Col
Duro basin, computed using the D8 algorithm. The values
of drainage area show a large variability, as they range
between approximately 110 m2 and 13000 m2.

Figure 4. An example of channel head observed in the
proximity of the Rio Col Duro basin and formed by subsur-
face flow in a low‐slope area. The flow accumulation at
channel heads of this type of channels can be of the order
of just 100 m2.
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2.2. Lidar Data Specifications

[11] The lidar data and high‐resolution aerial photographs
were acquired from an helicopter using an ALTM 3100
OPTECH, and Rollei H20 digital camera flying at an
average altitude of 1000 m above ground level during snow‐
free conditions in October 2006. The flying speed was
80 knots, the scan angle 20° and the pulse rate 71 kHz. The
survey design point density was specified to be greater than
5 points/m2, recording up to 4 returns, including first and
last. Lidar point measurements were filtered into returns
from vegetation and bare ground using the TerrascanTM

software classification routines and algorithms. The lidar
bare ground data set was used to generate a Digital Terrain
Model (DTM) of 1 m grid cell size. The absolute vertical
accuracy, evaluated by a direct comparison between lidar
and ground DGPS elevation points, was estimated to be less
than 0.3 m, an acceptable value for many lidar analyses in the
field of geomorphology [McKean and Roering, 2004; Glenn
et al., 2006; Frankel and Dolan, 2007; Tarolli and Dalla
Fontana, 2009]. Note that Pirotti and Tarolli [2010] demon-
strated for the same study area used here (and the same data
set) the suitability of this DTM vertical accuracy (and thus of
the lidar bare ground point density) for an acceptable channel
network extraction through the use of landform curvature
maps. Digital aerial photos at a resolution of 0.15 m were
also collected using a Rollei H20 camera.

3. Overview of the Two‐Channel Extraction
Methodologies

[12] In this section we present the mathematical back-
ground on the wavelet‐based river network extraction
methodology proposed by Lashermes et al. [2007] and the
more recent one proposed by Passalacqua et al. [2010],
based on advanced image processing techniques. The
approach proposed by Lashermes et al. [2007] consists of
using wavelets for the computation of slope direction
change and curvature, which, as explained in the following
subsection, are important metrics in channel detection and
extraction. The wavelet tool developed by Lashermes et al.
[2007] naturally leads to a multiscale analysis of the geo-
morphic features. The work of Passalacqua et al. [2010] has
suggested important changes to improve the localization of
the extracted channels and the automation and computa-
tional robustness of the algorithm. A brief description of the
two methodologies follows. We refer the reader to
Lashermes et al. [2007] and Passalacqua et al. [2010] for
more details on the extraction methodologies.

3.1. Wavelet‐Based Framework for Feature Extraction

[13] Local slopes, ∣rh∣, and local curvatures, r2h (using
here the Laplacian as definition of curvature), carry con-
siderable information about the type of landscape form at a
site (e.g., valley, channel, hillslope, hollow). In particular, if
a site i has r2hi < 0, the site is topographically convex, or
divergent, and is conventionally defined as a hillslope. If
r2hi ≥ 0, the site is topographically concave, or convergent,
and typically corresponds to a valley (channelized or not),
hollow or basal hillslope sculpted by advective processes.
[14] There are two different ways in which scale comes

into the picture in the analysis of topographic data. First,
there is the scale at which elevation data are available,

usually called resolution. Second, there is a scale of aver-
aging or smoothing that is often applied when computing
local geomorphic properties. This smoothing is performed to
reduce the effect of noise (observational noise or irregular-
ities at scales smaller than the scale of interest) on the
numerical estimation of local derivatives from discrete data.
This smoothing can be done traditionally in two different
ways. One is to perform a spatial averaging of the pointwise
derivatives, and the other is to spatially average the topog-
raphy field and then take derivatives of the smoothed field.
As shown by Lashermes et al. [2007], smoothing the
topography data with a Gaussian filter and then take first
and second derivatives of the smoothed topography is
mathematically equivalent to computing the wavelet coef-
ficients of the topography using as wavelet filters the first
and second derivatives of the Gaussian function, respec-
tively. This is a direct consequence of the well‐known
commutative property of the convolution operation:

@xð f ? gÞ ¼ @x f ? g ¼ f ? @xg ð1Þ

which implies that smoothing the function f with a kernel g
and then taking derivatives (left most term) is equivalent to
taking derivatives of the function and smoothing these
derivatives with the kernel g (middle term) or equivalent to
smoothing the function f directly with the derivative of the
kernel g (right most term). This is an important property and
its first two terms correspond to the smoothing methods just
described. The third term of the above equality (1) naturally
introduces the use of wavelets for efficient computation of
local slopes and curvatures of a function. Specifically, the
first and second derivatives of the function h(x, y) in the x
direction (similar expressions hold for the y direction) can be
written as

rx;�hðx; yÞ ¼ ðh ? g x
1;�; x; yÞðx; yÞ ð2Þ

r2
x;�hðx; yÞ ¼ ðh ? g x

2; �; x; yÞðx; yÞ ð3Þ

where

g x
1;�; x; yðu; vÞ ¼ @x g0; �; x; y ð4Þ

gx2;�; x; yðu; vÞ ¼ @xg0; �; x; y
2 ð5Þ

where s represents the standard deviation of the Gaussian
kernel, the subscripts 1 and 2 indicate the order of the
derivative, the superscript x indicates the direction in which
the derivative is taken, and g0,s,x,y is a 2D Gaussian kernel of
standard deviation s and centered at location (x, y):

g0;�; x; yðu; vÞ ¼ 1

2��2
exp �ðu� xÞ2 þ ðv� yÞ2

2�2

" #
ð6Þ

We note that the above kernels (4) and (5) are proper
wavelets; that is, they satisfy the admissibility conditions of
having local support and integral zero. By varying the var-
iance s of the Gaussian filter g0,s,x,y (6) the above compu-
tations can be performed at different scales simultaneously.
[15] The scale a associated with a wavelety(a, x) is defined

from its Fourier transform ~ (a, n): this has necessarily a
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well‐defined maximum (a wavelet can be interpreted as a
band‐pass filter) at a specific frequency nm. The scale a is
then defined as the inverse of this band‐pass frequency: a = 1

�m
[e.g., Mallat, 1998; Kumar and Foufoula‐Georgiou, 1997].
Based on this, the scale a associated with the wavelets
g1,s, x, y
x and g1,s, x, y

y is related to the parameter s through the
relation

a ¼ 2�� ð7Þ

[16] The scale a associated with the wavelets g2,s, x, y
x and

g2,s, x, y
y is related to the parameter s through the relation

a ¼
ffiffiffi
2

p
�� ð8Þ

[17] Since the scale a of smoothing is a more relevant and
easier to interpret quantity than the parameter s of the
analyzing wavelet, all the notations for slope and curvature
computed using wavelets will be labeled with a and not s in
the sequel. Note that a single choice for the scale a corre-
sponds to different s values for the g1 and g2 wavelets and
thus for gradients and curvatures. The expression for the
modulus ma(x, y) of the steepest slope at location (x, y) and
scale a is given by

maðx; yÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrx;ahðx; yÞÞ2 þ ðry;ahðx; yÞÞ2

q
ð9Þ

where again the subscript x and a indicate the direction and
scale at which the derivative is taken, respectively. Channel
incision in uplands topography leads to hillslopes on
opposite sides that typically face each other obliquely. This
signature can be used to delineate the axis of valleys and the
likely pathway of channels with limited floodplain area on
their boundaries [Lashermes et al., 2007]. This can be
achieved by computing the derivative of the slope direction
�a(x, y) given by

d�a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdx�aÞ2 þ ðdy�aÞ2

q
ð10Þ

where

�aðx; yÞ ¼ arctan
ry;ahðx; yÞ
rx;ahðx; yÞ

� �
if rx;ahðx; yÞ > 0

¼ �þ arctan
ry;ahðx; yÞ
rx;ahðx; yÞ

� �
if rx;ahðx; yÞ < 0

and ry;ahðx; yÞ > 0

¼ ��þ arctan
ry;ahðx; yÞ
rx;ahðx; yÞ

� �
if rx;ahðx; yÞ < 0

and ry;ahðx; yÞ < 0 ð11Þ

and finding the points at which d�a becomes maximum [see
Lashermes et al., 2007]. Finally, the Laplacian is given by

�aðx; yÞ ¼ r2
x;ahðx; yÞ þ r2

y;ahðx; yÞ ð12Þ

[18] In Lashermes et al. [2007] the above multiscale
properties ga(x, y) and d�a(x, y) were used to extract channel
networks from lidar. Specifically, the analysis of the quan-

tile‐quantile plots of the Laplacian curvature and slope
direction change across scales highlighted the existence of
two transitions in the statistical behavior of these metrics
[Lashermes et al., 2007]. It was found that a sharp deviation
in the positive tail of the probability distribution of curvature
from a Gaussian distribution defined a critical threshold
curvature which delineates the channelized valleys of the
terrain, while the similarly identified threshold in the slope
direction change indicates the transition between non-
channelized and channelized parts of the valley. The two
thresholds are used to create the set of the likely channelized
pixels, namely a binary matrix called ‘skeleton’ where
pixels that satisfy the threshold criteria are assigned a value
of 1, while pixels that do not satisfy them are assigned a
value of 0. The skeleton is then used as a starting point for
the semiautomatic channel extraction. The same skeleton
will also be used here for investigating the capabilities of
this methodology to detect channel morphology properties.
[19] After the identification of the likely channelized

pixels through the quantile‐quantile plots of curvature and
slope direction change, Lashermes et al. [2007] performed
the extraction of the channels in a semiautomatic fashion.
Starting from the skeleton, the user manually selects the
outlet of the basin and the extraction proceeds upstream
linking all the pixels that have maximum slope direction
change along the main stem. Then the procedure is repeated
for each tributary junction. The extraction algorithm stops
when one or both of the threshold criteria on curvature and
slope direction change are not satisfied, as at these locations
the skeleton is interrupted. Note that this semiautomatic
methodology requires in some cases manual intervention
and the resulting extracted channel network is affected by
the user choice on which channels to trace (if the skeleton
appears very disrupted along a certain path, the user may
decide that it is not a channel and avoid tracing it).

3.2. Geometric Nonlinear Framework
for Feature Extraction

[20] The Gaussian filtering operation, performed in the
Lashermes et al. [2007] methodology, can be expressed as

hðx; y; aÞ ¼ h0ðx; yÞ ? Gðx; y;�Þ ð13Þ

where h0(x, y) represents the original high‐resolution digital
elevation data, G(x, y; s) is a Gaussian kernel of variance s2

and centered at location (x, y), and h(x, y; a) represents the
resulting family of coarsened landscapes at scales a = 4s.
The operation in (13) is equivalent to applying an isotropic
diffusion equation over time, with the initial condition
h(x, y; 0) = h0(x, y) and where time relates to scale a:

@thðx; y; tÞ ¼ r � ðcrhÞ ¼ cr2h ð14Þ

where the subscript t indicates that the derivative is taken in
time, c is the constant diffusion coefficient and r is the
gradient operator. Because of the isotropic nature of the
Gaussian filtering operation, diffusion acts across the land-
scape, without respecting the natural boundaries of the
features. This operation results in a degradation of the spatial
localization of these boundaries, which, in the case of land-
scapes, represent important discontinuities such as crests and
valleys. For this reason, the methodology proposed by
Passalacqua et al. [2010], released to the community as
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GeoNet, substitutes the Gaussian filter with a nonlinear filter,
originally formulated by Perona and Malik [1990]. The
nonlinear filter results in a spatially variable anisotropic
diffusion, by making the diffusion coefficient c of the
standard linear diffusion equation (14) a suitable function of
space. The nonlinear diffusion equation is thus formulated as
follows:

@thðx; y; tÞ ¼ r � ½cðx; y; tÞrh� ¼ cðx; y; tÞr2hþrc � rh ð15Þ

[21] It is desired that the diffusion coefficient c is chosen
such that the nonlinear filter achieves noise reduction and
edge enhancement, avoiding smoothing across boundaries.
In principle, if the location of the boundaries were known,
then we could set c = 0 at the boundary and c = 1 every-
where else. According to Perona and Malik [1990] the
gradient of elevation gives a simple first estimate of the
boundaries location:

~Eðx; y; tÞ ¼ rhðx; y; tÞ ð16Þ

resulting in the diffusion coefficient c being a function of the
magnitude of the gradient:

c ¼ pðj rh jÞ ð17Þ

[22] Perona and Malik [1990] suggested the following
two forms of p(·), the so‐called edge‐stopping function, able
to avoid diffusion across boundaries:

pðj rh jÞ ¼ 1

1þ ðj rh j =�Þ2 ð18Þ

or

pðj rh jÞ ¼ e�ðjrhj=�Þ2 ð19Þ

where l is a constant that can be estimated from the 90%
quantile of the probability distribution function of the
absolute values of the gradient throughout the image
[Perona and Malik, 1990]. The nonlinear diffusion equation
takes the following form:

@thðx; y; tÞ ¼ r � ½pðj rh jÞrh� ð20Þ

[23] This nonlinear filter is used to reduce the noise in the
digital elevation data and enhance the features of interest.
Passalacqua et al. [2010] showed the advantages of using
the Perona‐Malik filter (nonlinear diffusion) versus the
Gaussian filter (linear diffusion) through the application to a
basin located in northern California. The form of the edge‐
stopping function used is (18).
[24] Following the nonlinear filtering operation, we can

proceed, as in the wavelet‐based methodology, with creating
a skeleton of the likely channelized pixels. Passalacqua
et al. [2010] suggest to use the quantile‐quantile plot of
curvature (as in work by Lashermes et al. [2007]) and then
to further narrow the skeleton by introducing a small
threshold in the contributing area, small enough to not
interfere with channel initiation, but large enough to effec-
tively reduce the presence of isolated convergent areas

which appear as noise in the skeleton (they are small iso-
lated areas and thus do not necessarily belong to channels).
Note that Passalacqua et al. [2010] employ the definition of
geometric curvature � = r · (rh/∣rh∣) instead of the
Laplacian. The geometric curvature, being the gradients
normalized by their magnitude, attains an easier comparative
interpretation in the mountainous basin analyzed herein.
However, in the wavelet‐based methodology we employ the
Laplacian as initially proposed by Lashermes et al. [2007].
An exhaustive discussion of the advantages of one definition
versus the other one can be found in work by Passalacqua
et al. [2010].
[25] For extracting the channel network, Passalacqua

et al. [2010] proposed the use of geodesic curves instead
of the semiautomatic procedure developed by Lashermes
et al. [2007]. A brief description of this technique follows
(more details can be found in work by Passalacqua et al.
[2010]). Geodesics are defined as curves of minimal cost
among all the possible curves that connect two points a
and b:

gða; bÞ :¼ arg min
C2W

Z b

a
 ðsÞds

� �
ð21Þ

where the function y(C) : W → R+ gives the cost of
traveling on a curve C 2 W. The definition of the function
y includes topographic attributes of the geomorphic feature
we want to extract. In the case of channel extraction pre-
sented by Passalacqua et al. [2010], the cost function y
includes surface curvature and flow accumulation, such
that curves with positive curvature above threshold
(defined from the quantile‐quantile plot) and large flow
accumulation are preferred to all the possible curves con-
necting two points. Note that, having defined the skeleton
of likely channelized pixels through the curvature and
slope direction change thresholds, geodesic curves are the
curves of minimal cost y among the ones that connect two
points (outlet and channel head) within the skeleton.
Basically, the identification of the skeleton restricts the
domain of existence of channels (where one or both the
threshold criteria are not satisfied, we are sure that chan-
nels do not exist, and thus we do not include those areas in
the search of geodesic curves). The main advantage of the
geodesic optimization is the use of local information
(slopes, curvatures, etc.) but in a global setting so that
small errors and local discontinuities do not interrupt the
algorithm of channel extraction, resulting in a fully auto-
matic procedure. Note also that the algorithm automatically
identifies channel heads as the points at which the skeleton
stops. Because the skeleton is usually wider than one pixel,
the point identified as a channel head is the point located
at the end of the skeleton and at minimum geodesic dis-
tance from the outlet. Again, we refer the reader to
Passalacqua et al. [2010] for an exhaustive discussion on
the automatic selection of channel heads.

4. Comparison of the Extracted Channel
Networks to Classical Methodologies

[26] Our goal in this section is to show the channel networks
obtained by applying the wavelet‐based extraction meth-
odology [Lashermes et al., 2007] and GeoNet [Passalacqua
et al., 2010] and to compare them to the surveyed channel
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network shown in Figure 1. We also applied to the same
data set two classical extraction methodologies based on an
area threshold and a combination of area and slope threshold,
with the area computed using the flow direction algorithm
D8 [O’Callaghan and Mark, 1984], to assess the perfor-
mance of the new generation of extraction methodologies
versus the methodologies commonly in use.

4.1. Definition of the Scale of Analysis

[27] First, we need to define the scale (standard deviation
of the Gaussian kernel and number of iterations for the
geometric nonlinear methodology) employed in the two
methodologies. As reported by Passalacqua et al. [2010],
there is no direct relationship between the standard deviation
of the kernel employed in the wavelet‐based methodology,
and the number of iterations of the nonlinear filtering
operation employed in GeoNet. However, Passalacqua

et al. [2010] showed the advantages of nonlinear versus
linear filtering through a comparison of the two methodol-
ogies performed with t = 50 in both, assuming t = s2 in the
wavelet‐based methodology. Our interest in this paper is not
in repeating this comparison, but in analyzing the capabili-
ties of the two methodologies at their best performance for
the analysis and the data employed here. Considering the
resolution of the data of 1 m, we decided to use s = 1m as
the minimum standard deviation of the Gaussian kernel. We
recall here that the standard deviation of the kernel translates
into different scales a in the elevation (g0,s,x,y in (6), a = 4s),
in the gradient (g1,s,x,y in (4), a given by (7)), and in the
curvature (g2,s,x,y in (5), a given by (8)). In order to work
with approximately the same scale a in the gradient and
curvature computation, we selected as minimum scales s =
1m for the gradient, and s = 2m for the curvature, which
correspond approximately to a value of a around 7m. The other
scales here analyzed, for the wavelet based methodology, are

Figure 5. Quantile‐quantile plot and corresponding skeleton for the Laplacian curvature computed with
(a, b) s = 2 m (a = 8.9 m), (c, d) s = 4 m (a = 17.8 m), and (e, f) s = 6 m (a = 26.7 m).
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a = 17.8m (corresponding to s = 4m for curvature) and a =
26.7m (corresponding to s = 6m for curvature). For the
geometric nonlinear methodology, GeoNet, we selected as
minimum scale that corresponding to t = 20 iterations, and
t = 50 and t = 100 iterations as coarser scales. These values
were selected following the approach used by Passalacqua
et al. [2010] to achieve a similar level of overall smooth-
ing in the linear and nonlinear filtering operations.
[28] We proceed now with assessing the optimal scale of

analysis (not too small to suffer from noise but not too large
to risk smoothing out features of interest) for the data at
hand by plotting the skeleton of likely channelized pixels at
different scales. For this part of the analysis we will simply
refer to the skeleton based on curvature (without adding the
slope direction change) as that will already give us an idea
of the effect of scale on the results. In addition, we focus
only on a small part of the basin, indicated as T1 in Figure 1,
as it will be easier to assess differences among scales in a

smaller part of the basin. Figure 5 shows the quantile‐
quantile plots of the Laplacian and the corresponding skel-
eton computed through the convolution with the wavelet
g2,s,x,y at scales a = 8.9 m (Figure 5a), a = 17.8 m (Figure 5b)
and a = 26.7 m (Figure 5c). As it can be seen, the channels
of the Rio Col Duro basin are very small and the
corresponding channel heads very close to each other.
At scale a = 17.8 m (Figure 5b) we can see how most of the
channels are already not mapped. For this reason, we fixed
the scale of analysis for the wavelet based methodology at
the minimum (s = 1 m for gradient and s = 2 m for curva-
ture). Figure 6 shows the quantile‐quantile plots of the
geometric curvature and the corresponding skeleton com-
puted through finite differences after performing the Perona‐
Malik filtering with t = 20 (Figure 5a), t = 50 (Figure 5b)
and t = 100 (Figure 5c) iterations. As in the case of the
wavelet computation, although the skeletons appear in this
case better defined, we fixed the scale of analysis at t = 20,

Figure 6. Quantile‐quantile plot and corresponding skeleton for the geometric curvature computed after
Perona‐Malik filtering with (a, b) t = 20, (c, d) t = 50, and (e, f) t = 100.
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as already at t = 20 some of the smallest bifurcations and
corresponding channel heads are not well detectable. An
attempt to use t � 20 extracted too many isolated areas.
[29] Having defined the scales of analysis for the wavelet‐

based methodology and for GeoNet, we can now proceed
with plotting the quantile‐quantile plots and skeletons for
the whole basin and extracting the channel networks.

4.2. Channel Network Extraction

[30] The large variability shown by channel initiation
contributing areas mentioned in section 2 and shown in
Figure 2, presents a formidable challenge for any standard
channel network extraction algorithm. In the case of the
geometric methodology proposed by Passalacqua et al.
[2010] a small threshold in contributing area is used to
achieve further narrowing of the skeleton of likely chan-
nelized pixels, an operation useful in improving the
robustness of the minimum geodesic search of channels. In
this case, a very small threshold of 100 m2 was able to
eliminate some pixels of the skeleton width without inter-
fering with the channel heads. Note that, as pointed out by
Passalacqua et al. [2010], the contributing area threshold is
an arbitrarily chosen value, which might depend on the
landscape in analysis. The only constrain in selecting this
value is that it should be smaller than the smallest channel

initiation area in that landscape, which in our case was
110 m2.
[31] Figures 7a and 7b show the quantile‐quantile plots of

curvature (Laplacian) and slope direction change, computed
using as wavelets the first and second derivatives of the
Gaussian kernel with appropriate variance such that the
scale is approximately a = 4 m, while Figures 7c and 7d
show the corresponding plots for the geometric curvature
and slope direction change computed through finite differ-
ences after performing 20 iterations (in time) of the Perona‐
Malik filter. It can be noticed by comparing Figure 7a with
Figure 7c and Figure 7b with Figure 7d that the value of the
standard normal variate z at which the deviation from nor-
mal and lognormal behaviors are observed (namely z = 1 for
curvature and z = 1.3 for slope direction change), are
methodology‐independent, as expected since this value is
representative of the statistical intrinsic behavior of the
system, rather then the particular processing or the compu-
tational methodology employed.
[32] After having identified the thresholds for the curva-

ture and slope direction change, we can extract the skeleton
of the likely channelized pixels, as described in section 3.
Figure 8a shows the skeleton obtained through the wavelet‐
based methodology, while Figure 8b shows the skeleton
obtained through the nonlinear geometric methodology. At
the scale of the whole basin it is difficult to capture the

Figure 7. Quantile‐quantile plots. (a) Laplacian computed with the Mexican hat wavelet with s = 2 m
(a = 8.9 m), (b) slope direction change computed with the first derivative of the Gaussian with s = 1 m
(a = 6.28 m), (c) geometric curvature computed through finite differences on the Perona‐Malik filtered
data (t = 20), and (d) slope direction change computed through finite differences on the Perona‐Malik
filtered data (t = 20). The deviations from the normal behavior indicate a transition in the statistical
behavior of the system. These transitions correspond to a value of the standard normal deviate z = 1
for the quantile‐quantile plots of curvature and to z = 1.3 for the quantile‐quantile plots of slope direction
change.
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differences among the two skeletons. However, the differ-
ences are succinctly highlighted in section 5, which focuses
on channel head detection. For now, we want to point out
that these are the two skeletons used in the sequel for
extracting the channel networks shown in Figures 9a and
9b. Figure 9 shows the comparison of the channel network
extracted (plotted in yellow) using the wavelet‐based meth-
odology (Figure 9a); the geometric nonlinear methodology
(Figure 9b); an area threshold A1 = 3099 m2 (Figure 9c); a
combination of area and slope ASy > T1 with y = 2
[Montgomery and Dietrich, 1992] and T1 = 221 m2

(Figure 9d) to the surveyed channels (plotted in red). The
values of A1 and T1 are given by the mean of the drainage
areas [O’Callaghan and Mark, 1984] and the product of
mean area and mean slope squared, respectively, both
measured at the 16 surveyed channel heads. We can notice
how the classical methodologies tend to predict channels
that are actually not present in the field. This is the case, in
particular, in one side of the basin (see arrows in Figures 9c
and 9d). This area is characterized by large and uncha-

nnelized hillslopes. Classical methodologies identify here
several channels due to the large drainage area, which,
however, are not present in the field. The wavelet‐based
methodology and the geometric nonlinear methodology
show more realistic extracted channel networks. The channel
in the lower side of the basin detected by the geometric
nonlinear methodology corresponds to an ancient channel,
mapped on historical maps, but not surveyed (see channel
marked by B in Figure 9b).
[33] It has to be noted here that the wavelet‐based

extraction is partially subjective, as the user decides which
channels to trace, based on the continuity of the skeleton.
Because the skeleton in this area was very discontinuous, as
can be seen from the skeleton in Figure 8, we decided not to
trace it with the wavelet‐based methodology.

5. Channel Head Detection

[34] In this section we focus on the capability of the
wavelet‐based methodology and of GeoNet in detecting
channel head locations. First, we will use the channel net-
works extracted in section 4, to measure the performance of
the two methodologies on the whole basin. Then, we will
focus on three small areas of different morphological char-
acteristics to study the dependence of the performance on
the landscape type. Figure 10 shows the histogram of the
distances between the surveyed channel heads and the
detected channel initiation locations on the skeleton (at the
end of the extracted channel) obtained with the wavelet‐
based methodology (Figure 10a) and GeoNet (Figure 10b).
We measured these distances on the whole basin in corre-
spondence with the 16 surveyed channel heads. In the case
in which the skeleton did not detect the channel head, that
particular location was excluded. This happened in partic-
ular in the area T2 (see Figure 1), where, as explained later,
the channel detection is particularly challenging because of
the local geomorphological characteristics of the basin. We
obtained 12 measured distances for the wavelet‐based
methodology and 13 for GeoNet, out of a total of 16 field‐
mapped channel heads. As can be seen from Figure 10, the
distances between the surveyed and the detected channel
initiation is less than 5 m for most of the channels, meaning
that our thresholding criteria are geomorphologically
appropriate for the basin of study. Only for one channel
head, indicated as c1 in Figure 1, both methodologies
detected channel initiation far from the actual location of the
channel head (see the largest values in Figures 10a and 10b).
This is due to the fact that the skeletons detect a convergent
area upstream of the location of c1 which is in fact present in
the field, but without any incision or erosion.
[35] Now we focus on three small areas (T1, T2, and T3)

indicated by the boxes in Figure 1. The aim of this part of
the analysis is to test the two methodologies described
above, in terms of their capability of detecting channel heads
in areas with different morphology. The area T2 is charac-
terized by gentle slopes (mean slope value of 16°), the area
T3 by steep slopes (mean slope value of 30°) and the
presence of a narrow valley. The area T1 has characteristics
in between of the two.

5.1. Test Area T1

[36] Figure 11a shows the skeleton of likely channelized
pixels in test area T1, obtained through thresholding curva-

Figure 8. (a) Skeleton obtained by thresholding curvature
and slope direction change computed through wavelets at
approximately a = 7m. (b) Skeleton obtained by thresholding
geometric curvature and slope direction change computed
through finite differences on the Perona‐Malik filtered data
after t = 20.

PASSALACQUA ET AL.: TESTING FEATURE EXTRACTION METHODOLOGIES W11535W11535

11 of 17



ture and slope direction change computed through wavelets,
as prescribed by the Lashermes et al. [2007] methodology, at
a scale of approximately a = 7 m (see Figure 7). We can
compare Figure 11a with Figure 11b, obtained through
nonlinear filtering after t = 20 iterations and thresholding
curvature and slope direction change (see Figure 7). We
notice that both the skeletons identify appropriately channel
initiation, but the skeleton obtained through nonlinear fil-
tering, Figure 11b, shows less disrupted channels. In an area
where no significative landslides are present, such as this
one, as it can be seen from Figure 1, channels are expected to
be continuous.
[37] While the wavelet methodology proposed by Lashermes

et al. [2007] does not perform an automatic detection of the
channel heads, as the channels are traced in a semiautomatic
fashion from the outlet to the sources, thus stopping at user’s
discretion, the geometric nonlinear methodology proposed

by Passalacqua et al. [2010] automatically detects channel
heads, as mentioned in section 3 and fully described by
Passalacqua et al. [2010]. As previously discussed, before
automatically detecting channel heads, noise is further
reduced by introducing an additional threshold in the
drainage area, here chosen equal to 100 m2. This operation
allows to obtain a narrower and more defined skeleton, as
shown in Figure 11c, where the automatically detected
channel heads are compared to the surveyed ones. The
extracted channel heads are located approximately 3 m, 5 m,
8 m, and 2 m (top to bottom) from their surveyed locations.

5.2. Test Areas T2 and T3

[38] Figures 12a and 12b show the skeletons of likely
channelized pixels obtained through thresholding curvature
and slope direction change computed for the test area T2

Figure 9. Channel networks extracted using different methodologies and compared to the surveyed one.
(a) The wavelet‐based methodology, (b) GeoNet, (c) an area threshold A1 = 3099 m2, and (d) a combi-
nation of area and slope ASy > T1 with y = 2 and T1 = 221 m2. The letter B in (Figure 9b) indicates an
ancient channel mapped by GeoNet and reported in historical maps of the area but not surveyed. The arrows
in Figures 9c and 9d indicate the side of the basin where the two classical methodologies tend to predict
channels which are not present in the field.
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through wavelets at scale a = 7 m (Figure 12a), and com-
puted through finite differences on the Perona‐Malik fil-
tered data after t = 20 iterations (Figure 12b). Looking at
Figures 12a and 12b one can observe that the channel
recognition carried out with the finite differences on the
Perona‐Malik filtered data reduces the inclusion of isolated
small convergent areas as part of the skeleton of likely
channelized pixels. Thus, the geometric approach allows for
a more robust detection of the channels compared to the
wavelet‐based methodology. The results obtained in the test
area T3 (Figures 13a and 13b) show that the two method-
ologies perform equally well. In this case, where steep
slopes prevail and the valley is deeply incised, both meth-
odologies recognize in detail the convergent areas without
capturing at the same time the small isolated convergent
areas located nearby. The different performance of the
two methodologies in two different morphological areas
addresses an interesting finding: where low slopes prevail,
the nonlinear filtering combined with finite difference
computations employed in GeoNet results in more accurate

Figure 10. Histogram of the distances between surveyed
channel heads and detected channel initiation points within
the skeleton from (a) the wavelet‐based methodology and
(b) the geometric nonlinear methodology.

Figure 11. Test area T1: (a) skeleton obtained by thresh-
olding curvature and slope direction change computed
through wavelets at approximately a = 7 m and (b) skeleton
obtained by thresholding geometric curvature and slope
direction change computed through finite differences on
the Perona‐Malik filtered data after t = 20. Skeleton obtained
by thresholding geometric curvature and slope direction
change computed through finite differences on the Perona‐
Malik filtered data after t = 20, in addition to a small thresh-
old drainage area of 100 m2. (c) Comparison between the
extracted (shown as gray circles) and the surveyed channel
heads (shown as white circles).
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and robust extraction of channels compared to the wavelet‐
based methodology.

6. Channel Disruption Analysis

[39] We now test the ability of the two methodologies
described above in detecting channel disruptions, which in
this basin would be mostly attributed to landslides. We
focus this analysis on the black dotted rectangle (“landslide
test area” in Figure 1), located in the lower left part of the
boundary (partly outside) of the Rio Col Duro basin.
Figure 14a shows the skeleton obtained by thresholding
curvature and slope direction change computed through
wavelets, while Figure 14b shows the same skeleton obtained
on the Perona‐Malik filtered data and employing the geometric
curvature. Figures 14a and 14b show also the location of
several surveyed initiation areas of shallow landslides, here

plotted in gray. Note the channel disruption correspondent to
the largest landslide surveyed on the landscape (see A in
Figure 14). Both skeletons were found interrupted at this
location. In the other cases we can notice that the landslides are
always located laterally with respect to the channel, and none
of the channels overlaps an existing landslide. This shows that
the thresholding criteria chosen serve the purpose of tracing the
channels in their actual location, and identifying disruptions of
interest. Also in this case, the results are interesting since a
classical channel extraction methodologywould have not been
able to highlight the presence of these disruptions, as channels
would be traced continuously throughout the basin with no
possibility of detecting the presence of landslides and their
possible consequences in channel form.

7. Effect of Linear Versus Nonlinear Filtering
on Extracting Channel Cross Sections

[40] We analyze in this section the effect of Gaussian fil-
tering versus nonlinear Perona‐Malik filtering on extracting

Figure 12. Test area T2: (a) skeleton obtained through
thresholding curvature and slope direction change computed
through wavelets at scale a = 7 m and (b) skeleton obtained
through finite differences on the Perona‐Malik filtered data
after t = 20 iterations. In Figures 12a and 12b the surveyed
channel heads are shown as white circles. This test area is
characterized by low slopes. It can be seen that GeoNet
results in a more accurate and robust extraction of channels
heads compared to the wavelet‐based methodology.

Figure 13. Test area T3: (a) skeleton obtained through thresh-
olding curvature and slope direction change computed through
wavelets at scale a = 7 m and (b) skeleton obtained through
finite differences on the Perona‐Malik filtered data after t = 20
iterations. In Figures 13a and 13b the surveyed channel heads
are shown as white circles. This test area is characterized by
steep slopes, and the two methodologies perform equally well.
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channel cross sections in the Rio Col Duro basin. In par-
ticular, as it can be seen in Figure 1, we extracted three cross
sections, one in the colluvial channel within a gentle slope
area (labeled as CS1 in Figure 1), one in the bedrock
channel (labeled as CS2 in Figure 1) and the third one in the
alluvial channel (labeled as CS3 in Figure 1). Figures 15a–
15c show the original cross section and the ones cut after
performing Gaussian or nonlinear filtering on the elevation
data. In the case of Gaussian filtering we have used two
smoothing scales, namely s = 1 m, which corresponds to

Figure 14. Skeleton obtained (a) by thresholding curva-
ture and slope direction change computed through wavelets
at approximately a = 7 m and (b) through finite differences
on the Perona‐Malik filtered data after t = 20 iterations. In
Figures 14a and 14b the surveyed landslides are shown as
white patches. Note that both skeletons are interrupted in
correspondence to the largest landslide, indicated as A.

Figure 15. Cross sections cut along the Rio Col Duro
main stem river: (a) colluvial channel CS1, (b) bedrock
channel CS2, and (c) alluvial channel CS3. In all three cross
sections, independently of the local geological characteris-
tics, Gaussian filters of increasing scale tend to shift the
centerline of the channel and lower the elevation of the
landscape. Notice in particular Figure 15a where the left
bank of the channel ends up disappearing.
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a ffi 4m (a = 4s for elevation), and s = 7 m, which corre-
sponds to a ffi 28m. For the nonlinear filtering, we have
performed 20 and 50 iterations, respectively. In all the three
cross sections, independently of the local geological char-
acteristics, we can notice how Gaussian filters of increasing
scale tend to shift more and more the centerline of the
channel and also lower the elevation of the landscape.
Furthermore, increasing the scale, the cross sections become
increasingly smoothed, and in particular in the case of cross
section 2 (colluvial channel, Figure 15a) the left bank of the
channel ends up disappearing. This has an effect on the
channel extraction itself, resulting in increasingly disrupted
skeletons of likely channelized pixels, even in areas with no
landslides present. Thus it is concluded that nonlinear filter-
ing of landscapes offers advantages for both channel network
extraction and for the extraction of channel cross sections.
[41] Looking at Figures 15a–15c it is also interesting to

note how clear is the different morphology of the colluvial
channel cross section compared to the bedrock and alluvial
ones. Bedrock and alluvial channels are deeply incised and
are located in the steep slope area of the Rio Col Duro basin,
while the colluvial channel presents shallow incision and
smoothed topography. This channel is located in the gentle
slope area of the basin, where the employment of nonlinear
filtering is recommended.

8. Conclusions

[42] This work presents a comparison of the capability
of two geomorphic feature extraction methodologies in
extracting the channel network, capturing channel heads,
detecting relevant channel disruptions corresponding to
landslides and extracting representative channel cross sec-
tions in a complex mountainous landscape, where both gentle
and steep slope areas are present. The analysis has been
carried out in a small headwater alpine basin, where several
field surveys were conducted during the past few years, such
as channel network and channel head survey, landslide scars
mapping, and lidar survey. All the analyses presented in this
work are based on a 1 m lidar derived DTM.
[43] In general, the twomethodologies, purely based on the

detection of local morphology by the use of local slope and
landform curvature, present significant advantages with
respect to the traditional methodologies for channel network
extraction based on drainage area and local slope thresholds.
Our study area exhibits a large variability in the values of
drainage area at the channel heads and thus it would be
impossible to capture such variability with a unique threshold
value for drainage area, as would be required by a classical
extraction methodology.
[44] In detail the results suggest the following.
[45] 1. Local nonlinear filtering combined with the global

geodesic optimization used in GeoNet [Passalacqua et al.,
2010] is more computationally robust, achieving better
localization and extraction of features, compared to the
wavelet‐based methodology [Lashermes et al., 2007].
[46] 2. Where steep slopes prevail and the valley is deeply

incised, both methodologies recognize in detail the con-
vergent areas.
[47] 3. Where low slopes prevail, nonlinear filtering and

finite difference computations as employed in GeoNet
should be considered optimal.

[48] 4. Both methodologies capture channel disruptions
due to landslide activity, even though the wavelet‐based
skeleton appears more noisy and discontinuous. Also in this
case a classical channel extraction methodology would have
not been able to highlight the presence of these disruptions,
as channels would be traced continuously throughout the
basin.
[49] 5. Looking at the extracted cross sections, Gaussian

filtering of increasing scale tends to shift more and more the
centerline of the channel, while nonlinear filtering achieves
better channel centerline localization and shows little
deformation of the landscape contours.
[50] The availability of high‐resolution topography com-

binedwith these twomorphometric methodologies represents
a powerful new approach for advancing automatic feature
extraction and thus advance the study of earth surface pro-
cesses in terms of better understanding of process from form,
development of landscape evolution models, and parame-
terization of relevant landscape features into geomorphic
transport and hydrologic models.
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