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A new computational algorithm is presented for the solution of discrete time linearly constrained 
stochastic optimal control problems decomposable in stages. The algorithm, designated gradient dynam- 
ic programming, is a backward moving stagewise optimization. The main innovations over conventional 
discrete dynamic programming (DDP) are in the functional representation of the cost-to-go function and 
the solution of the single-stage problem. The cost-to-go function (assumed to be of requisite smoothness) 
is approximated within each element defined by the discretization scheme by the lowest-order poly- 
nomial which preserve its values and the values of its gradient with respect to the state variables at all 
nodes of the discretization grid. The improved accuracy of this Hermitian interpolation scheme reduces 
the effect of discretization error and allows the use of coarser grids which reduces the dimensionality of 
the problem. At each stage, the optimal control is determined on each node of the discretized state space 
using a constrained Newton-type optimization procedure which has quadratic rate of convergence. The 
set of constraints which act as equalities is determined from an active set strategy which converges under 
lenient convexity requirements. This method of solving the single-stage optimization is much more 
efficient than the conventional way based on enumeration or iterative methods with linear rate of 
convergence. Once the optimal control is determined, the cost-to-go function and its gradient with 
respect to the state variables is calculated to be used at the next stage. The proposed technique permits 
the efficient optimization of stochastic systems whose high dimensionality does not permit solution under 
the conventional DDP framework and for which successive approximation methods are not directly 
applicable due to stochasticity. Results for a four-reservoir example are presented. 

1. INTRODUCTION 

The purpose of this paper is to present a new computational 
algorithm for the stochastic optimization of sequential de- 
cision problems. One important and extensively studied class 
of such problems in the area of water resources is the discrete 
time optimal control of multireservoir systems under sto- 
chastic inflows. Other applications include the optimal design 
and operation of sewer systems [e.g., Mays and Wenzel, 1976; 
Labadie et al., 1980], the optimal conjunctive utilization of 
surface and groundwater resources [e.g., Buras, 1972], and the 
minimum cost water quality maintenance in rivers [e.g., 
Dracup and Fogarty, 1974; Chang and Yeh, 1973], to mention 
only a few of the water resources applications and pertinent 
references. An extensive review of dynamic programming ap- 
plications in water resources can be found in the works by 
Yakowitz [1982] and Yeh [1985]. Before we proceed with the 
description of our algorithm and its innovations and advan- 
tages over existing methodologies, a brief description of an 
optimal control problem is given, and the available methods 
of solution and their limitations are briefly discussed. 

A discrete time finite operating horizon optimal control 
problem can be simply stated as follows. Given an initial 
state vector x(0), find a policy, i.e., a sequence of controls 
{u*(k)}k=• N as functions of the current state vector which 
minimize a given objective function (or its expected value) 
over all other policies, and which satisfies a specified set of 
constraints and the equations of system dynamics. Our con- 
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cern is limited to cases for which the objective function and 
constraints are stagewise separable so that dynamic program- 
ming is applicable. 

One of the oldest and most standard algorithms to this 
"optimal control problem" or "explicit stochastic opti- 
mization" is discrete dynamic programming (DDP) [cf. Bell- 
man [1957]; Bellman and Dreyfus, 1962]. Such an approach 
requires the discretization of the state space (and, in most 
applications, of the control space) and solution of the opti- 
mization problem on each of the grid points. The exponential 
increase of the computer memory and computation time re- 
quirements with the number of state and control variables 
(Bellman called it the "curse of dimensionality"), limits the 
applicability of DDP to oligo-dimensional systems. 

Much of the recent research on dynamic programming ap- 
pears to deal with methods devised to overcome the limi- 
tations of discrete dynamic programming, and several useful 
methods have been proposed over the years. These methods, 
known as "successive approximation methods" include differ- 
ential DP (see, for example, Jacobson and Mayne [1970] for 
unconstrained optimal control problems and Murray and Ya- 
kowitz [1979] for problems with linear constraints), discrete 
differential DP [-Heidari et al., 1971], state incremental DP 
[Larson, 1968, chapter 12], nonlinear programming algo- 
rithms [-Lee and Waziruddin, 1970; Gagnon et al., 1974; Chu 
and Yeh, 1978], and a discrete maximum principle algorithm 
[Papageorgiou, 1985]. In some of these methods discretization 
of the state space is completely avoided. 

However, such successive approximation methods are not 
directly applicable to stochastic optimal control problems. 
The main reason is that due to the stochasticity of the input, 
no single-state trajectory can be projected with certainty. In- 
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Schematic representation of a general system and the variables involved. 

stead, the whole optimal control policy over all states is re- 
quired, so that integration over the range of states at the next 
stage can take place for the minimization of the expected cost. 
Thus apart from some approximate methods such as the 
small-perturbation approach of Kitanidis [1987], the "param- 
eter iteration method" of Gal [1979], and some other methods 
reviewed in the work by Yakowitz [1982, section 5], the con- 
ventional discrete dynamic programming approach remains 
the only universal approach to stochastic optimal control 
problems (see, for example, Larson and Casti [1982, p. 120]). 
This 'essentially limits the dimensionality of the systems that 
can be solved under an explicit (and not implicit) stochastic 
framework. According to Yakowitz [1982], 

..,-two reservoir systems are the largest to be reported solved by 
stochastic dynamic programming, whereas we have noted that 
deterministic reservoir systems of up to 10 reservoirs have been 
solved. This observation points to the motivation for making the 
deterministic assumption and underscores the need for research 
ideas for overcoming the computational burden of the stochastic 
case. 

In thi s paper, we present an alternative DP 'technique which 
c.ombines elements of conventional DDP (i.e., discrete state- 
space .and backward stagewise optimization) with elements of 
constrained optimization 0,e., nonlinear programming with 
linear equality constraints) for the derivation of the optimal 
control over the continuous control space. The idea behind 
our method is that the cost to go and optimal control func- 
tions are approximated (within the hypercubes defined by the 
state discretization scheme) with piecewise Hermite interpolat- 
ing polynomials. This higher order of approximation permits 
the use of fewer state discretization nodes (and therefore re- 
duces the fast computer memory requirements) while still 
achieving high-accuracy solutions. Also, the continuity of the 
first derivative of the Hermitian approximation functions per- 
mits the use of efficient Newton-type schemes for the stagewise 
optimization. 

The idea of interpolation in dynamic programming is not 
new. Bellman and Dreyfus [1962, chapter 12] used orthogonal 
polynomials for the approximation of the cost-to-go function. 
This global approximation, however, has several disadvan- 
tages as compared to local approximation. The main disad- 
vantage is that functions hard to approximate in a particular 
domain of the state space will result in a poor approximation 
over the whole domain. Also, for fast changing functions, os- 
ciliatory approximations may be obtained unless many terms 
are used. Daniel [1976] and Birnbaum and Lapidus [1978] 
recognized the importance of using local approximations and 
explored the use of multidimensional B splines [e.g., Schultz, 
1973]. Although splines provide approximations with continu- 

ous first and second derivatives, the first derivatives at the 
nodes are not explicitly preserved. This is important for opti- 
mal control problems where eventually only the first deriva- 
tives (and not the values of the function) are used in the com- 
putation of the optimal control. Besides, in many cases, the 
optimal knots of the splines must be determined (a time con- 
suming process) or estimates of the derivatives so that a good 
spline approximation can be obtained. Of course, spline ap- 
proximation permits the use of Newton-type methods for the 
stagewise optimization. This issue, although recognized by 
Birnbaum and Lapidus [1978], was not further explored in 
their work. 

The algorithm proposed in this paper is similar in motiva- 
tion but different in techniques from all previously proposed 
methods. It is termed gradient dynamic programming (GDP) 
because the gradient of the cost to go and optimal control 
functions with respect to all state variables are preserved at all 
nodes. This algorithm was briefly introduced by the authors 
[Kitanidis and Foufoula-Georgiou, 1987] in an effort to obtain 
methods with smaller discretization error than conventional 

DDP. In that work, however, only single-control optimization 
problems had been considered and the emphasis was on com- 
paring GDP and DDP through an asymptotic error analysis. 
The encouraging theoretical and numerical results, namely, 
faster convergence to the "true" control policy and reduction 
in dimensionality in the sense that fewer nodes are needed to 
achieve a given degree of accuracy, motivated the extension of 
our efforts to the optimization of multistate, multicontrol sys- 
tems. In the present paper, we present the methodology of 
GDP and the technical issues involved in its implementation. 
The application of the proposed method to the deterministic 
and stochastic optimal control of multireservoir systems is 
demonstrated in a four-reservoir example which Yakowitz 
[1982, p. 683] describes as being "probably beyond the scope 
of discrete dynamic programming because of the curse of di- 
mensionality." 

2. TERMINOLOGY AND PRELIMINARIES 

Before we embark on the description of the gradient dy- 
namic programming (GDP) method, some terminology is in 
order. Let N denote the number of decision times (stages), n 
the dimension of the state vector x, m the dimension of the 
control vector u, and r the dimension of a random forcing 
function (input) w. As illustrated in Figure !, x(k) is the state 
vector at the beginning of period k, and u(k) and w(k) are the 
control and random input vectors, respectively, during period 
k. 

For a deterministic system, w(k) is a known input vector, 
e.g., mean inflows during period k. For a stochastic system 
w(k) is a random vector with known probability density func- 
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tion p(w(k)). Without loss of generality we may assume that 
the random vectors w(k), k = 1, ..., N are independent of each 
other. Note that serially and cross-correlated inputs can be 
accounted for through state augmentation. 

where at and [i are vectors of given probabilities. Then, based 
on the known probability distribution function of x(k q- 1), the 
deterministic equivalents of the above chance constraints are 
used in lieu of (3b). 

2.1. System Dynamics 

Consider a system whose dynamics are described by the 
state transition function T k such that 

x(k + 1) = Tk(x(k), u(k + 1), w(k + 1)) (1) 

k=0,1,'",N--1 

Note that T k is an n-dimensional vector function dependent 
on the stage k. In the developments that follow we restrict our 
attention to linear dynamics. This limitation is mainly im- 
posed from a desire to have only linear constraints at the 
optimization step. A commonly used formulation of (1) in 
reservoir systems is 

x(k + 1) = ½b(k)x(k) + W(k)u(k + 1) + q(k + 1) (2) 

(see, for example, Kitanidis [1987])' ½I>(k) and W(k) are known 
matrices and q(k + 1) is the vector of inflows. Note that for a 
deterministic system, the state at stage (k + 1) is completely 
determined by the state at stage k and the transition function 
Tk. For a stochastic system x(k + 1) belongs to a set of state 
vectors determined by the probability density function of the 
random vector w(k + 1). 

It is assumed throughout this work that the functions in- 
volved possess continuous first and second derivatives with 
respect to the state and control vectors. Let 0Tn/0x:= 
c•T•/t9x(k) and c•T•/c•u := c•T•/c•u(k + 1) denote the Jacobinns of 
Ta ..= Ta(x(k), u(k + 1), w(k + 1)) with respect to the state and 
control vectors, respectively. For instance, the ijth element of 
c•Tk/c•x is c•T•,i/c•x j, where T•.i denotes the ith row of T•. For a 
system with linear dynamics, c•T•/c•x and •Tk/•u simply reduce 
to the matrices •(k) and W(k), respectively. 

2.2. System Constraints 

We restrict our attention to linear constraints resulting from 
linear transition equations. A typical set of constraints will 
include lower and upper bounds on the control and state 
variables and functional inequalities among control and state 
variables. For instance, a reservoir control problem will have 
constraints of the type 

umi"k q- 1) _< u(k + 1) _< umax(k q- 1) (3a) 

xmin(k q- 1) < x(k + 1)= T•(x(k), u(k + 1), w(k + 1)) 

< xmax(k + 1) k = 0, 1, "', N- 1 (3b) 

where the control variables are reservoir releases and the state 

variables are storages. Using simple operations any such 
system of 1 linear constraints can be brought into the form 

Au(k + 1) < b (4) 

where A is an (1 x m) matrix and b is an (l x 1) vector of 
known coefficients. Note that the coefficient matrices A and b 

in (4) depend on the decision time k and the initial state vector 
x(k). For a stochastic optimization problem the constraints on 
the random vector x(k + 1) are introduced in a probabilistic 
sense: 

Pr {x(k + 1) _< xmin(k q- 1)} _< at 

Pr {x(k + 1)_> xmax(k + 1)} _< I• 

(5a) 

2.3. Objective Function 

For a deterministic discrete time optimal control problem, 
the objective is to find the control policy {u*(k)), k = 1, ---, N 
which minimizes the performance criterion 

at = • Cn(x(k), u(k + 1)) + FN(x(N)) (6) 
k=O 

given an initial state vector x(0). The performance criterion 
(objective function) consists of the sum of the single-stage cost 
functions Cn(x(k), u(k + 1)) over the whole operating horizon 
and a terminal cost FN(x(N)). Note that the objective function, 
as well as the constraints, meets the dynamic programming 
requirement of being decomposable in stages. 

In the stochastic case, the objective function is replaced by 
the expected value of the expression of (6), i.e., 

N-1 

d = E • C•,[x(k), u(k + 1)] + F•[x(N)] (7) 
w(1 ), ..., w(N) k = 0 

where expectation is taken with respect to the random vectors 
w(1), ..., w(N). In concise notation, let C•.-= C•(x(k), u(k + 1)) 
denote the loss function at stage k and V,C• ,= •C•/•u(k + 1) 
denote the gradient of Ck with respect to the m-dimensional 
control vector u(k + 1), that is, 

VuC k = (OCk/OUl, ..., OCk/Oldm) 

Similarly, we define VxC • ..= OC•/Ox(k), the gradient of C• with 
respect to the state vector x(k). The Hessian matrix of C• with 
respect to the state and control vectors is composed of the 
blocks Ck .... C• .... and C•... where, for example, the ijth ele- 
ment of C•.x, is 02C•/Ox•Ouj. 

2.4. Cost-To-Go Function (Optimal Cost Function) 

Let Fk ,= F•(x(k)) denote the cumulative cost associated with 
the state vector x(k) and the optimal control policy from k to 
the end of the operating horizon. We will refer to this function 
as the cost to go at stage k (or with N-k periods to go). In a 
deterministic backward moving dynamic programming 
scheme, the iterative functional equation of the system can be 
written as 

F•_,(x(k- 1))= min {C•_ x(x(k- 1), u(k)) 
u(k) 

+F•,[x(k)=T•,_l(X(k--1),u(k),w(k))]} k=l,...,S (8) 

with terminal condition F•(x(N)), a given function of the final 
storage. For a stochastic system, the functional equation takes 
the form 

F•_ x(x(k -- 1)) = min {Ck_ x(x(k - 1), u(k)) 
u(k) 

+ E F•[x(k)= T k_ ,[x(k- 1), u(k), w(k)]]} (9) 
w(k) 

k=l,'",N 
In the above equation, 

E F•(x(k- 1), u(k), w(k)) 
w(k) 

:fw "'f Fk(x(k-1)'u(k)'w(k)) l(k) •lwr(k) 

'A;r(k)[wl(k), ... wr(k)] dwx(k) ... dwr(k ) 
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where fl;rOO(Wl(k), ''', wr(k)) is the joint pdf of the random 
variables wi(k ), i = 1, .--, r during period k. 

We complete the terminology by letting V,•F k.-- 
dFk(x(k))/dx(k) and V,F• ..= dF•(x(k))/du(k) denote the gradients 
of F• with respect to the state and control vectors, respec- 
tively. The Hessian of F• is composed of blocks Fk .... F• .... 
and F•,,• defined the same way as for the single-stage loss 
function. In the next section we discuss the general method- 
ology of gradient dynamic programming. 

3. GENERAL DESCRIPTION OF THE GRADIENT 

DYNAMIC PROGRAMMING METHOD 

Based on the principle of optimality [Bellman, 1957] any 
multistage optimization problem with objective function and 
constraints which are stagewise separable may be decomposed 
through dynamic programming into a sequence of single-stage 
optimization problems. This section describes the gradient dy- 
namic programming methodology at a typical stage. For sim- 
plicity, the development of the equations is carried out for the 
deterministic case. The method is easily extended to stochastic 
optimization, as will be illustrated in the next section. 

The state space is discretized and represented by a finite 
number of nodes (state vectors x). Assume that at stage k, the 
values of the cost-to-go function F•,(x(k)) and the values of its 
first derivatives V,•F•- dFk(x(k))/dx(k) are known for all the 
grid points, i.e., all discrete state vectors x(k). These values are 
known at the last operation period, k---N, and can be ex- 
plicitly updated from stage to stage as the algorithm moves 
backward in time as will be shown in the sequel. Let x(k- 1) 
denote a particular grid point at stage k- 1. It is desired to 
(1) determine the optimal control u*(k) associated with 
x(k - 1); (2) compute the Jacobian of u*(k) with respect to the 
state vector x(k- 1); and (3) compute the values of Fn_ l(X(k 
-- 1)) and V,•Fn_ 1 -- dFn_ 1/dx(k - 1). Once this is done for all 

possible state vectors x(k- 1), the solution to the single-stage 
optimization problem has been completed. 

3.1. Approximation of Fn 

Fk is approximated within each n-dimensional hypercube 
(defined by the nodal points of the state vector x(k)) through a 
Hermitian interpolation of the known values of Fn and its 
gradient V,•F,• at all the nodes defining the hypercube. The 
construction of this approximation polynomial is given in Ap- 
pendix A. In particular, Fn is written in the form of (A 1) where 
the basis functions tpi and ½ij are defined in (A2)-(A4) in terms 
of the local coordinates of any point x = (x 1, x 2, ..., Xn) 
within the n-dimensional hypercube. 

3.2. Determination of u* (k) : No Constraint Bindin•l 

If no constraint is binding, u*(k) is the solution to the 
system of equations obtained by differentiating the cost-to-go 
function with respect to the control variables and setting the 
derivatives to zero: 

V,Cn_ 1 + V,Fn = 0 

or, through application of the chain rule of differentiation, 

(10) 

(11) 

Equation (11) represents the first-order necessary conditions 
for the optimum. The second-order condition for u*(k) to be a 
unique local minimum is that the Hessian is positive definite, 
or symbolically, 

I•T•_ 1] T [-•T•_ 1] H = Ck_ 1.uu '+- •U Fk'xx[ •u > 0 (12) 
Newton's method for unconstrained optimization [cf. Luen- 
ber•]er, 1984] can be used for the determination of u*(k). In a 
Newton-type approach the basic iteration is 

U i+1 .•. U i -- PiRigi 

where u • is the vector of parameters in the ith iteration, g• is 
the gradient (given in equation (11)) of the function to be 
minimized, R• is the inverse of the Hessian matrix of (12) or an 
approximation thereof, and Pi is a scalar step size parameter 
which may be used to optimize the one-dimensional search in 
the direction Rig i in the case of nonquadratic terms. Note that 
in solving (11), V.•F• is evaluated at the state vector x(k)= 
T•_ •(x(k- 1), u(k), w(k)) which may not coincide with one of 
the grid state vectors at stage k for which the values of F• and 
V•Fk are available. In that case the approximation of F• at the 
state vector x(k) is used as computed in section 3.1. Also, V•,F• 
and the matrix F•,•, of second derivatives needed for the 
evaluation of the Hessian in (12) are computed through differ- 
entiation. These equations are given for completeness in Ap- 
pendix B. 

3.3. Determination of u* (k) : Binding Constraints 

If one or more of the constraints is binding, then con- 
strained optimization methods may be used for the determi- 
nation of u*(k). They include primal, penalty and barrier, dual 
and cutting plane, and Lagrange methods [cf. Gill and 
Murray, 1974; Fletcher, 1981; Luenbeq]er, 1984]. We have 
chosen to work with a primal method, i.e., a method which 
stays inside the feasible region during the search for the opti- 
mum. The many advantages of primal methods are described 
in Luenberger [1984, p. 323]. A particularly attractive feature 
for the problem at hand is that if the search is terminated 
before the solution is reached, the terminating point is guaran- 
teed to be feasible and near the optimum. Thus it may provide 
a solution acceptable for all practical purposes or at least a 
good starting point if the procedure is reinitialized. For prob- 
lems with linear constraints their convergence rates are hard 
to beat. A computational disadvantage associated with any 
primal method is the requirement of a phase 1 procedure for 
the determination of an initial feasible solution [see Luenber- 
•ler, 1984]. In most practical cases, however, an initial feasible 
solution can be trivially determined, as for example, by setting 
the releases to zero or to the values of the inputs. Careful 
selection of the initial solutions can significantly improve the 
computational efficiency of the algorithm (Jery Stedinger and 
coworkers, Cornell University, personal communication, 
1987). 

We will briefly describe here an active set strategy which 
was found to work well with sample problems. Active set 
methods [cf. Luenber•er, 1984; Fletcher, 1981] have unique 
computational advantages. The inequality constraints are par- 
titioned into active (treated as equality constraints) and slack 
(essentially ignored). The working set is adjusted at each step 
of the iterative solution procedure. The basic components of 
an active set method are (1) determination of the current 
working set of active constraints by applying an e•cient pro- 
cedure for adding and dropping constraints from the previous 
working set and (2) a procedure for moving toward the opti- 
mum subject to the constraints prescribed by the current 
working set. Active set methods are much more e•cient than 
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branch-and-bound procedures but may fail to converge ("zig- 
zagging"). For their convergence to be guaranteed, some weak 
convexity requirements must be met [Fletcher, 1981, p. 113]. 
These conditions are usually met in applications and the 
popularity of these methods has increased significantly in the 
last ten years. In the reservoir operation problem they are 
often used in conjunction with successive approximation 
methods [e.g., Murray and Yakowitz, 1979; Georgakakos and 
Marks, 1985]. Sometimes, minor refinements based on an un- 
derstanding of the problem at hand may be needed to guaran- 
tee convergence and improve efficiency. Lenard [1975] pre- 
sents a computational study of active set strategies and sug- 
gests that highest efficiency is achieved by starting with as 
small a set of active constraints as possible. 

Let Gu(k)= d define the working set where G is a (p x m) 
matrix of known coefficients of rank p (the rows of G are 
linearly independent) and d is an (p x 1) vector of known 
coefficients. The optimal control u*(k) will be the solution to 
the constrained optimization problem: 

minimize 

f•(u(•)) := {%_,(x(•- 1), u(•)) 

+ Fk[T k_ •(x(k- 1), u(k), w(k))]} 

subject to 

(13) 

Gu(k) = d (14) 

This problem is solved using an iterative Newton-type method 
for moving optimally within a working set (see Appendix D 
for details and also Luenberger, [1984, chapter 11]). If uø(k) 
denotes an initial feasible solution vector, i.e., one which satis- 
fies (11), the new improved solution at the next iteration will 
be 

u•(k) = uø(k) + Au(k) (15) 

where Au(k) is the solution to the linear system of equations 

•:."t'. i..G..r.] [ .A.•.k.!] = [.•. ! .V. lj•!.r.] (16) G ! 01 

where 

V•,f• = V•,C•,_ • + VxF•,(O%_ •/Ou) (17) 

and where •, is a (p x 1) vector of Lagrange multipliers. The 
above solution is based on an approximation of the cost to go 
with a quadratic function of the control. Details can be found 
in Appendix D. 

One may easily verify that since u ø satisfies the working set 
of constraints, so does u •. Note that if f,, is a symmetric and 
positive definite matrix on the subspace M = {u: Gu = 0} and 
G is a (p x m) matrix of rank p then the (m + p) x (m + p) 
matrix 

is nonsingular [Luenberger, 1984, p. 424]. As is seen from 
(13)-(15), at every iteration the evaluation of V:F•, and F•,,x x is 
required and this is accomplished through differentiation of 
the Hermitian interpolation function for F•, using the formulae 
in Appendix B. 

At this point, the currently inactive constraints are checked 
under the new solution u•(k) and any violated constraints are 
added to the working set. The new active set is checked to 
verify that the rank of the G matrix is equal to the number of 
its rows. If this is not the case, redundant constraints are 
removed. The constrained optimization is now performed 
under the new active set, and the procedure is repeated until a 
solution (within the provided stopping criteria) is reached. At 
this point, the Lagrange multipliers •. are checked and any 
active constraint whose corresponding 2 i is negative is 
dropped from the active set and the constrained optimization 
is repeated with the new working set. If none of the 2 i are 
negative, the solution is accepted. The relaxation of a con- 
straint based on the sign of the corresponding Lagrange multi- 
pliers follows directly from the Kuhn-Tucker conditions or 
from the sensitivity interpretation of Lagrange multipliers [see 
Luenberger, 1984, p. 328]. 

According to the active set theorem [Luenberger, 1984, p. 
329], convergence will occur after only a finite number of 
working sets. Within a working set a Newton-type method 
guarantees quadratic convergence to the optimum. In theory, 
the correct sign of the Lagrange multipliers, which determines 
which constraints are dropped from an active set, is only 
guaranteed at the exact global optimum, and therefore accept- 
ance of a new optimum solution does not guarantee that the 
current working set will not be encountered again. In practice, 
however, zigzagging is rarely encountered and in most cases 
the active set method works very effectively. 

3.4. Computation of the Jacobian du•*/dx 

The optimum un*(x(k - 1)), abbreviated as un*, must satisfy 
the Kuhn-Tucker condition at any point x = x(k - 1). In this 
case, assuming that Gu = d represents the active constraints at 
the optimum, one has 

(Vuf0 r + Gr•. = 0 (19a) 

Gu* = d (19b) 

where •, > 0 and d is a function of x(k- 1). These equations 
are satisfied for any values of x, u*, and •,. If x is replaced by 
x + fix, where fix represents an infinitesimal increment, then 
the control, the Lagrange multipliers, and the vector of the 
constraints d change into u* + (du*/dx)cSx, •, + (d•,/dx)cSx, and 
d + (dd/dx)cSx, respectively, so that (19) is still satisfied: 

r/' dll* " • 
(vdo + Vx{VdO (X-x JOx + Vx{VdOOx 

+ = 0 
\ax/ :a+ 

Using (19) these equations are simplified into 

We remind that du*/dx is an (mx n) matrix whose ijth ele- 

ment is dui*/dxj; d•./dx is a (p x n) matrix whose ijth element 
is d)h/dxj; f•,.uu = %,(Vuf0 r is the Hessian of f• with respect to 
u (equation (18)); and 

(OT•,_ 1) r 
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3.5. Evaluation of F k_ • and VxF •_ • 

Once the optimal control and its Jacobian with respect to 
the state vector x(k- 1) has been determined, the cost to go 
and its gradient may be calculated. The optimal control u*(k) 
is a function of x(k - 1). Then from (7) 

F•_l(X(k -- 1))= C•_l[X(k - 1), u•*(x(k - 1))] 

+ F•{x(k) = T•_ 1Ix(k- 1), uk*(x(k-- 1), w(k-- 1))]) (22) 

Substituting for the calculated optimum at x(k - 1), F•_ 1 may 
be found. By differentiating (22) with respect to x(k- 1) and 
using the compact notation introduced earlier, one arrives at 

1) 

where du•*ldx is the Jacobian of u•*l(x(k - 1)) with respect to 
the state vector x(k - 1). 

Rearranging (23) gives 

ß .{-IVuCk_ 1 + VxFkC•Tk-llduk* 0u -•x (24) 

Note that if no constraint is binding, the expression in the 
brackets is zero and the Jacobian du•*/dx does not need to be 
calculated. If at least one constraint is violated, V,,F k_ • is 
obtained by substituting in (24) the value of (duk*/dx) obtained 
from (20). 

4. STOCHASTIC GRADIENT DYNAMIC PROGRAMMING 

Gradient dynamic programming is extended to stochastic 
optimization in a straightforward way. One has simply to re- 
place the expressions involving the cost-to-go function and its 
first and second derivatives by their expectations. Hence as- 
suming that the technical conditions for interchanging the 
order of differentiation and expectation are satisfied, for the 
determination of the optimal control u*(k) the first-order nec- 
essary condition becomes 

[- /OT•,_ v,c,_, + [Vxr4, = o •(•) •u 
while the Hessian becomes 

H = C•,_ •,,,,, + E • (26) L\ Ou Ou 
The Jacobian du*/dx is again computed from (20) where now 

f•,.,, is given by (26) and 

Once u*(k) and duk*/dx corresponding to the state vector 
nodal point x(k- 1) have been determined, F•,_ • and V,,Fn_ • 
can be evaluated from 

F•,_ ,(x(k - 1)) = Ck_ x(x(k - 1), u*(k)) 

+ E [Fn(x(k- 1), u*(k), w(k))] 
w(k) 

(28) 

VxFk- 1 duk*• = V•'Ck-• + V"Ck-•k, dx J 

Note that in the case of linear dynamics we are considering, 
(c•Tn_•/c•u) and (c•Tk_•/c•x) are constant matrices and one 
needs only to replace Fk, V,,Fn, and F•,.,,,, in the equations of 
the deterministic case by their expectations with respect to 
w(k). 

For the numerical evaluation of the expectation E,,a0 the 
distribution function of w(k) is discretized. Let r denote the 
dimension of the random vector w(k) during period k; D i, 
i = 1, ..-, r the discretization level (i.e., number of nodes) of 
the ith random variable wi(k); and p•,•,oo= prob {w•(k)= [w i 
(k)]di }, d i = 1, '", D i, where [w•(k)]d, denotes the value of wi(k) 
on the node d• of the discretized probability density function 
(pdf). Then, for any function h(w(k)) 

DI Dr 
(k) 

w(k) d ! = 1 dr = 1 

p,,aføh(Ew•(k)]a,), " ', Ew,(k)]•) (30) 

Note that in the above equation the assumption of indepen- 
dence of w(k) has been invoked without loss of generality as 
discussed in section 2. In many cases, the random variables 
w•(k), i- 1,---, r will have the same probability distribution 
over all the operation periods k = 1, .-., N and the terminol- 
ogy and equations would simplify. However, the consideration 
of the general case of different pdf's and different dis- 
cretization levels for each random variable and each operating 

period does not pose any computational difficulties. 
It should be emphasized that the high-speed memory re- 

quirements of the stochastic case remain the same as for the 
deterministic case. Only the computation time increases by a 
factor of I-[i= • Di. It is therefore advantageous to discretize 
the pdf of the random inputs as coarsely as possible while 
keeping the accuracy of integration within the desired limits. 
In choosing an efficient pdf discretization scheme one can take 
advantage of results on numerical quadrature (see, for exam- 
ple, Engels [1980] and Abramowitz and Stegun [1972, chapter 
25]). In general, the most efficient scheme will depend on the 
shape of the pdf and the curvature (smoothness) of the func- 
tion to be integrated. For example, for normally or lognor- 
mally distributed random inputs and for the local approxi- 
mations of the cost-to-go function considered herein Hermi- 
tian integration provides an effective choice (see Appendix E). 

5. ALGORITHMIC DESCRIPTION OF THE GRADIENT 
DYNAMIC PROGRAMMING METHOD 

The state space is discretized and represented by a finite 
number of nodes (state vectors x). At every stage and at each 
node the optimal control u* is iteratively calculated. Opti- 
mization proceeds backwards in time, so that the first opti- 
mizations correspond to one period to go (k = N). Below we 
give an algorithmic description of GDP for one state vector 
x(k - 1) during stage (k- 1). The known quantities at stage k 
are F•, V,•F•, u*(k + 1), and du•+ •*/dx = du•,+ •*(x(k))/dx(k) 
which have been stored off-line for all the nodal state vectors 

x(k) from a previous run. The procedure is repeated for all 
discretized state vectors x(k- 1) and for all periods k = N, 
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5.1. Step 0 

Approximate F k using piecewise Hermite interpolation 
polynomials. These polynomials preserve the values Fk of the 
cost-to-go function and the values of its first derivatives V,,F k 
at all the nodal points of the n-dimensional state vector x(k). 
The construction of these polynomials within each n- 
dimensional hypercube is discussed in section 3.1. and also in 
Appendix A. 

5.2. Step 1 

Select a state vector nodal point x(k - 1) at which the quan- 
tities u*(k), du•*/dx, F•_ t, and V,,F•_ t are to be computed. 

5.3. Step 2 

Find an initial feasible control vector u(k), that is, a control 
vector that satisfies the constrain set Aa_< b, where 

,4 = A(x(k- 1)) and b = b(x(k- 1)). An initial feasible solu- 
tion is usually obtained by applying the phase I procedure of 
linear programming. Luenberger [1984] describes such a gen- 
eral procedure, although in many specific cases an initial solu' 
tion may be obtained through simpler imeans..If the initial 
feasible solution makes none of the' constraints bin:di.ng or 

in section 3.2. At each iter:ation the solution :is ½h•k .ed for 
feasi.bility. If none of the Constraints becomes bi.nding or acti.ve 
the al.gorith:m procee'ds with the unc.onstrained_•o/pti::miz •.•i.on, 
otherwise it goes to step 3 

(see Appendix C for details). The new solution is a"= a' + 6a 
where 

6• = G'r(G'G'r) - x[d'- G'a'] (33) 

This projection provides a computationally efficient way to 
obtain feasible solutions every time the active set is changing 
or as an alternative to the phase I procedure of having to 
solve a linear programming problem at each iteration. At this 
point set a equal to •" and return to step 3. 

5.7. Step 6 

Remove constraints from the active set. When the optimum 
within a working set is reached (Aa < • at step 4), then the 
signs of the Lagrange multipliers •, obtained from (16) are 
checked. If all 2i are nonnegative, then the optimum solution 
has been found and we proceed to step 7. If, however, one or 
more of the 2i are negative, then the corresponding constraints 
are dropped from the active set and the algorithm returns to 
step 3. 

In updating the active set, it is computationally advanta- 
geous to remove or add only one constraint at a ti.me. For 
example, ,.on!y•the' -constraint with the largest negative La. 
grange multiplier may be remo.ved from the active se t When 
.mOre than one negative. Lagrange multiplier is. encountered. 
I]y doing so, the..matrix 'of. constraints G changes olnly..by one 

Projectiøn solUtiøn in step .4 may be computed 
ß ' o.ne by a simple ,u..•ting Pr.•'•'d ure [cf. 

5,4. Step 3 

Form the current active constraint set (working set) corre, 
sponding to the control vector u= u(k), i,e., 

au = d (31) 

where G = G(x(k- 1)) is a (p xm) matrix 
ficients .of rank p and d = (x(k - '1))is: a. (p 
known coefficients. 

5.5. Step 4 

Perform one iteration of the .eonstrain• •optimization prob- 
lem: 

minimize f(u) (32) 

subject to 

Gu -- d 

i.e., determine the improvement Aa(k) and the vector of La- 
grange multipliers )• as described in section 3.3. Upon conver- 
gence, i.e., Au < a go to step 6. Otherwise, check if the new 
solution u' = u q- Au violates any of the constraints not pres- 
ently in the working set. If none of these constraints is viol- 
ated, set u to u' and continue the constrained optimization 
within the same working set. If at least one of the previously 
inactive constraints is violated, go to step 5. 

5.6. Step 5 

Add constraints to the active set and determine a feasible 
solution under the new active set. Let G'ff = d' denote the new 

(updated) active set. It is desired to obtain a feasible solution 
for the constrained problem which is close to the previously 
obtained solution u'. For this purpose, project a' on the feasi- 
ble domain defined by the constraints of the new active set 

.5.1&:-: Step'. 7 

At the optimum u*(k)c .o-•mpute F•.•,. WF•,_t,' .and idl!•*/dx. 
F •or •these 'computatir,Ons the. equa/tions in sections .3.4:-and 3,5 
-or t.heir .obViOUs extensions.to .the stochastic case are used. 
These values are stored .off, l• for use-at t.he next.opti- 
r•imiza!i O n peri :od. 

=" Repeat ste .ps 1-7. f-or '•1 th ß nodal. points :.. of the discreti .zed 
vect ør :x(k--!), 
Where'N," of :the 
state vector x(k-•1 

5.10. Step 9 

Repeat steps 0-8 for all stages, i.e., for k = N, ..., 1. 

5.11. Step 10 

The final step involves a forward run to determine the opti- 
mal trajectory given an initial state vector x(0). For the deter- 
ministic case, the optimal trajectory over the whole operating 
horizon can be obtained at once. Notice that due to the ap- 
proximation of the cost-to-go functions, F(x(0)) will be ap- 
proximately equal to the total cost computed using (6) or (7). 
For the stochastic case only the total cost F(x(0)) and the 
first-stage optimal control •*(1) can be determined since the 
future optimal controls depend on the yet u•nknown future 
inputs to the system. At the end of the first stage, however, the 
system is usually observed and the new starting vector x(1) 
determined. At this point a new stochastic optimization prob- 
lem has to be solved for (N - 1) operating periods and a*(2) is 
thus determined. If the system is not observed at the end of 
each operating period then a "suboptimal" trajectory can be 
obtained by making use of the mean values of the stochastic 
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inputs. Note that this trajectory will not be the same as the 
deterministic one because the computation of F k_ •, VxFk_ •, 
uk*, and dun*/dx at each stage has taken into account the 
stochasticity of the inputs. 

If x(0) or any of the subsequent state vectors x(k) does not 
fall on a nodal point then interpolation is needed for the 
determination of u*(k + 1). Our experience from the one- 
dimensional case [Kitanidis and Foufoula-Georgiou, 1987] sug- 
gests that the full advantages of gradient dynamic program- 
ming are realized when Hermitian interpolation is also used 
for the control function. This does not impose any compu- 
tational difficulty or significant additional cost because the 
Jacobians du•*/dx needed for the interpolation of u•* are com- 
puted anyway for the determination of Fn_ • and V,,Fk_ • and 
are stored off-line. Only the computation time of the forward 
run is increased because now m Hermitian interpolations are 
needed as compared with the less accurate alternative of only 
one multilinear interpolation. 

6. COMPUTATIONAL REQUIREMENTS OF GRADIENT DYNAMIC 
PROGRAMMING 

We begin by briefly reviewing the computational require- 
ments of the conventional DDP so that quantitative compari- 
sons with those of gradient DP can be made. Let n denote the 
number of state variables, m the number of control variables, 
N i the discretization level, i.e., number of nodes of the ith 
component of the state vector, M i the discretization level of 
the ith control variable (refers to the conventional DDP), and 
N the number of stages. The computational requirements con- 
sist of high-speed memory requirements (HSMR), total 
amount of computation time (CT), and off-line storage, i.e., 
low-speed memory requirements (LSMR). For the convention- 
al DDP with discretization of both state and control these 

requirements are well known (see, for example, Larson and 
Casti [1982, p. 230]). 

HSMR-- fi N i (34a) 
i=1 

CT: (i:I•1 Ni)(.•=•I 1 M•)NAt 1 (34b) 
LSMR = (i_,_I•I• Ni)rnN (34c) 

where At• is the computing time required for a single evalu- 
ation of the right-hand side of the functional equation (22) and 
a single scalar comparison. The function evaluation also in- 
cludes computing time required to perform one interpolation 
(usually multilinear) of the state vector, unless the dis- 
cretization of the control is such that only state vectors at the 
nodes are reached when moving from one state to the next. 
Note that this later case is not always feasible as for example 
in problems where the dimension of the state space is not 
equal to the dimension of the control space (noninvertible 
systems). 

Observe that what causes the "curse of dimensionality" is 
the term (Hi--1" Ni) which determines the HSMR and is also 
directly involved in all other computational requirements. It is 
apparent that an approach to reduce the dimensionality of a 
problem would be to use coarser discrefization schemes. As it 
was shown, however, in the work by Kitanidis and Foufoula- 
Georgiou [1987] one should use discretization schemes with 
caution with conventional DDP, since the discretization error 

introduced in the control is of the order of the discretization 
interval of the state. A natural approach to reducing the error 
in the control while keeping the same discretization interval in 
the states is to increase the accuracy of the description of the 
optimal cost function at each stage. This can be achieved by 
using a more elaborate interpolation scheme. The interpola- 
tion scheme proposed herein involves Hermitian approxi- 
mation of the cost-to-go function within each of the n- 
dimensional hypercubes of the quantized state space. The 
error analysis in the work by Kitanidis and Foufoula- 
Georgiou suggests that under some conditions of smoothness 
of the cost-to-go functions, the Hermitian interpolation in- 
duces a discretization error in the control which is of the order 

of (Ax) 3, where Ax is the discretization interval of the state 
vector (assumed uniform for simplicity). This means that by 
halving the discretizafion interval of the states, the error in the 
control is reduced by a factor of one half in conventional 
DDP, whereas it is reduced by a factor of one eighth in GDP. 
Computational experience with one-dimensional cases and 
relatively smooth cost functions suggests that GDP with a 
small number of discretization nodes is comparable in terms 
of accuracy to conventional DDP with a considerably larger 
number of nodes. 

The computational requirements of the GDP algorithm are 

HSMR: (fi N,')(1 +n) (35a) i=1 

LSMR = (i=I•• Ni' ) m(1 +n)N (35c) 
where N[ is the new discretization level of the state vectors, 
At 2 is the computational time required to find u* by solving 
an n-dimensional nonlinear optimization problem with p 
linear inequality constraints and compute at the optimum the 
values of F•, V,,F•, and du*/dx. 

Note from (35a) that GDP introduces a linear increase (as 
function of the dimensionality of the state space) into the 
HSMR as compared with the HSMR of DDP in (34a). This is 
because the first derivatives with respect to all state vectors 
are now stored on line to be used for the Hermitian interpola- 
tion. However, this linear increase is negligible compared with 
the exponential decrease due to the first term in (35a), where 
now N i' need only be a fraction of N•, i.e., N[= N•/c, c > 1 
and still obtain the same accuracy in the solution. Hence, the 
overall reduction factor is (1 + n)/c"and the value of c de- 
pends on the smoothness of the cost-to-go function. It is 
worth noting that in most cases in practice, the dimension of 
the optimization problem (n) will be larger than the number of 
actual reservoirs involved, since augmentation of the state 
space is needed to account for serial correlations in the in- 
flows. Also, note that the total computational time of GDP 
although it does not suffer from the exponential increase due 
to the discretization of the control, it might be of comparable 
size to that of DDP due to the larger computational time At2. 

For illustration purposes consider the following example: a 
system of 10 reservoirs and 10 controls, with discretization 
schemes involving 10 nodes at each state variable. The HSMR 
for DDP is 10 •ø positions while for GDP with four nodes is 
4•ø(1 + 10). (The assumption of four discretization nodes for 
GDP is based on our computational experience with the algo- 
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Fig. 2. Representation of the four-reservoir system used in the ex- 

amples. 

rithm and is supported by the example presented in the next 
section.) For a 32-bits/word machine and double precision 
arithmetic, the HSMR of DDP translates to a core of 8,000 
Mbits, while for GDP to only 92 Mb (1 Mbit = 106 bytes), 
and these figures are only the core required to store the opti- 
mal cost function. While the first number is probably close to 
the capacity of many of today's computers the HSMR require- 
ments of GDP are clearly not prohibiting. 

The HSMR of the stochastic case is the same as that of the 

deterministic case. Only the total computation time is in- 
creased by a factor of I-[i= •r Di ' where D i is the discretization 
level of the probability distribution function of the ith sto- 
chastic inflow and r is the number of stochastic inflows. Ef- 

ficient discretization of the pdf of inflows is thus important in 
keeping the computational time of stochastic optimization 
within reasonable limits while still achieving the desired accu- 
racy. The common approach to pdf discretization has been the 
use of equal probability intervals (usually five to ten) indepen- 
dently of the degree and smoothness of the cost-to-go function 
on which integration is performed (see, for example, Weiner 
and Ben-Zvi [1982]). As it is shown however in Appendix E, 
for a normal or lognormal pdf of inflows only two (or three) 
appropriately chosen nodal points can give exact integration 
of the pdf on functions of up to third (or sixth) degree (Hermi- 
tian integration). For an n-dimensional optimization problem, 
the piecewise Hermite approximation involves piecewise in- 
complete polynomials of degree (n q- 2) which reduce to third 
degree polynomials along each direction [-see Kitanidis, 1986]. 
Thus for lognormally distributed inflows and cost-to-go func- 
tions Fk of appropriate smoothness, a three-point pdf dis- 
cretization scheme will be exact for polynomials of up to 
degree (2n -- 1) (see Appendix E). 

7. APPLICATION OF GDP TO MULTIRESERVOIR OPTIMIZATION 

The GDP method is now applied to a multireservoir opti- 
mization problem. The purpose of this illustration is to dem- 

onstrate and test the applicability of the GDP algorithm to 
deterministic and stochastic optimization of multidimensional 
systems and provide grounds for discussion. No attempt is 
made to compare the proposed algorithm with other existing 
methods mainly because the only method that comparison 
would be appropriate with is the conventional DDP which 
would be computationally prohibiting for a large-dimensional 
system and a state discretization grid fine enough to assure 
accuracy in the solution. Such a comparative example has 
been presented for a one-dimensional study by Kitanidis and 
Foufoula-Georgiou [1987]. In that study, the conventional 
DDP and GDP algorithms were compared in terms of per- 
formance (i.e., convergence to the true solution) for both deter- 
ministic and stochastic optimization and for various dis- 
cretization schemes. Under appropriate smoothness require- 
ments for the cost-to-go function, the results of the one- 
dimensional case (i.e., good performance of GDP even with 
coarse discretization schemes as compared with DDP with 
much finer discretization) are expected to carry over to multi- 
dimensional systems as well. 

The system chosen for illustration is the four-reservoir 
problem of Figure 2 which has served as an illustrative exam- 
ple in many studies. This example was first introduced into the 
literature by Larson [1968] for the purpose of illustrating the 
method of incremental dynamic programming. Subsequently, 
Heidari et al. [1971] used it as an example for discrete differ- 
ential dynamic programming, Chow et al. [-1975] for com- 
paring computer time requirements of several algorithms and 
Murray and Yakowitz [1979] for constrained differential DP, 
to mention only a few studies. First, the basic system will be 
presented and then optimized under various cost function and 
constraint sets. The experiments have been designed so that 
discontinuities are progressively introduced into the cost-to-go 
function through tighter constraints and their effects on the 
proposed optimization algorithm studied. Note that even 
when the constraints on the control can be completely relaxed, 
the constraints on the state are needed because they define the 
feasible space of interpolation. 

7.1. System Description 

Let ui(k + 1), xi(k + 1) denote the release and the ending 
storage of reservoir i, respectively, at the time period k q- 1. 
The dynamics of the system are given by the continuity equa- 
tions: 

x,(k + 1) = x•(k) - u•(k + 1) + q•(k + 1) 

x2(k q- 1)-- x2(k ) - u2(k q- 1) q- q2(k q- 1) 
(36) 

x3(k q- 1) = x3(k ) -- u3(k q- 1) q- u2(k q- 1) 

x4(k + 1)= x4(k ) - u4(k + 1) + u3(k q- 1) q- u•(k + 1) 

k = 0, 1, '", N- 1, where q•(k + 1) and q2(k + 1) are the 
inflows to the system considered either deterministic or sto- 
chastic and N is the length of the operating horizon. For 
recreation and flood control purposes constraints are imposed 
on the storages: 

0 < x(k) < K k = 0,-.., N (37) 

where K is the vector of reservoir capacities, with ith element 
K i the capacity of the reservoir i. Also, constraints on the 
releases are imposed on the basis of the capacity of the power 
generators (it is assumed that there is a power generation 
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TABLE la. Deterministic GDP Optimal Control of the System of Example 1 

Total 

State Period Optimal Control Cost 
Discretization Ni k Vector u*(k) J* 

Approximate 
Cost F* 

3 1 (1.50, 2.69, 1.92, 2.46) 
3 2 (1.50, 2.69, 1.93, 2.47) 
3 3 (1.51, 2.49, 1.97, 2.46) 66.95 
4 1 (1.50, 2.64, 1.99, 2.50) 
4 2 (1.50, 2.64, 1.98, 2.50) 
4 3 (1.50, 2.64, 2.00, 2.50) 66.86 

Exact solution for (1.50, 2.67, 2.01, 2.51) 66.85 
all periods 

66.01 

66.71 
66.85 

The starting vector is x (0) = (6,6,6,6). For Ni=3 the nodal state vectors x(k) for all state variables 
are formed from the set of states {0,6,12}. For N•--4 the set of states is {0,4,8,12}. Approximate cost 
F* is the cost computed backwards, that is, the value of Fo (x(0)) evaluated at (6,6,6,6). Total cost J* 
is the cost computed from a forward run using the optimal control vector u*(k). 

station at each reservoir outflow) and the water use down- 
stream. These constraints are 

umin(k) • u(k) • umax(k) k = 1, ..., N (38) 

All quantities are expressed in •the same units of storage. 
The performance criterion takes into consideration the ben- 

efits from power generation and irrigation (short-term opti- 
mization) and it also includes a terminal cost to account for 
longer-term operating policies, e.g., a desire to reach a specific 
level of storage at the end of the operating horizon. The per- 
formance criterion is expressed as 

N-1 4 4. 

J = • • Ai(ui(k))+ • Bi(x•(N), m,) (39) 
k=O i= 1 i = 1 

where Ai( ) is the single-stage cost function, Bi( ) is the 
terminal cost function, and m• is the desired level of water in 
reservoir i at the end of the operating horizon. 

Testing of our algorithm has been performed on an optimal 
control problem for which deterministic and stochastic opti- 
mization can be easily obtained with other methods. It is well- 
known that for a system with linear dynamics, quadratic ter- 
minal and stagewise cost functions, and no constraints the 
cost-to-go function propagates as quadratic (see, for example, 
Dreyfus and Law [1977, chapter 6]). In such a case, the GDP 
method is expected to be exact even with the minimum 
number of discretization nodes that is two nodes for each state 

variable. This assertion was verified for several examples and 
provided a test of our computer programs. Note that conven- 
tional DDP would require an infinite number of nodes to 
obtain an exact solution. Of course, for this particular case the 
solution can be efficiently obtained through other methods 
such as nonlinear optimization, differential dynamic program- 
ming or linear quadratic control. Also, note that stochastic 

systems which satisfy the above requirements and have an 
additive random term in the dynamics are "certainty equiva- 
lent" (see, for example, Dreyfus and Law [1977, chapter 14]). 
This means that the optimal control of the stochastic problem 
is the same as that of the deterministic problem constructed 
from the stochastic one by raplacing the random variable by 
its expected value. Thus for such systems testing of stochastic 
GDP has also been performed. 

In most practical situations, however, the cost functions are 
not quadratic or there are constraints on the control and the 
state which introduce discontinuities in the cost-to-go func- 
tion. The performance of the GDP algorithm for the deter- 
ministic and stochastic optimization of such systems is studied 
in the following examples. 

7.1.1. Example 1. In this example the terminal cost func, 
tion is quadratic and the control unconstrained. The oper- 
ation horizon consists of three operating periods, the vector of 
the capacities of the reservoirs are K---(12, 12, 12, 1.2), the 
vector of the desired terminal states is m -- (5, 5, 5, 7), and the 
stochastic inflows have a mean vector rl- (2, 4) and a vector 

of standard deviations s• = (s•, s•:). The inflows are con- 
sidered independent with a lognormal probability density 
function. The cost functions in (39) are 

where 

A,(u,(k)) = c•(k)(u,(k) - •): 

Bi(xi(N), mi) = (xi(N) -- mi) 2 

c = [c,(k)] = (1.1, 1.2, 1.0, 1.3) ¾k (40) 

For this system, optimization shows that the capacity con- 
straints become active when the reservoirs are almost full at 

the previous stage. This means that the quadratic terminal 

TABLE lb. Same as Table la But With Starting Vector x(0)=(1,1,1,1) 

State 

Discretization N i 

Total 

Period Optimal Control Cost Approximate 
k Vector u*(k) J* Cost F* 

3 

3 

3 

Exact solution for 

all periods 

1 (0.95, 2.33, 1.20, 0.40) 
2 (0.95, 2.33, 1.19, 0.40) 
3 (0.95, 2.33, 1.19, 0.40) 

(0.95, 2.33, 1.19, 0.40) 
10.60 10.61 
10.58 10.58 
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TABLE lc. Stochastic GDP Optimal Control of the System of 
Exhmple 1 

Standard 
Deviation 
of Inflows 

Sq 

Optimal Control 
Vector u*(1) 

TABLE 2b. Stochastic GDP Optimal Control of the System of 
Example 2 

(0.5, 0.5) (1.47, 2.62, 1.95, 2.43) 
(1.5, 1.5) (1.48, 3.17, 2.14, 2.60) 

Standard 
Deviation 

Aproximate of Inflows Optimal Control 
Cost F* Sq Vector u*(1) 

Approximate 
Cost F* 

66.04 (0.5, 0.5) (1.81, 2.61, 2.05, 2.73) 159.26 
80.56 (1.5, 1.5) (2.67, 3.29, 1.63, 2.28) 240.10 

The starting vector is x(0)=(6,6,6,6). State discretization Ni=3. 
Approximate cost F* as defined in Table l a. 

The starting vector is x(0) = (6,6,6,6). State discretization Ni=3. 

cost function does not propagate as quadratic in a backward 
optimization scheme. In fact, it is well-known (see, for exam- 
ple, Bellman and Dreyfus [1962, chapter 6]) that Fk(x(k)) prop- 
agates as a piecewise quadratic function with the break points 
defined by the constraints. It is shown that in such cases GDP 
gives good approximations of the optimal control and total 
cost even for as coarse a discretization as three nodes per state 
variable. 

Table la reports the results of deterministic optimization 
for an initial state vector x(0)= (6, 6, 6, 6) and for two state 
discretization schemes. These results are compared with the 
exact solution obtained through nonlinear optimization. Note 
that for the particular form of the cost functions considered 
the true optimal control vector remains constant over all op- 
erating periods. For comparison purposes Table lb gives the 
GDP optimal control for an initial vector x(0)--(1, 1, 1, 1). 
Notice that these results are exact even for three discretization 

nodes, since the initial condition of almost empty reservoirs 
defines an optimal trajectory which does not involve in the 
interpolation any state vector affected by the constraints. For 
the stochastic optimization, probabilities % =/g• = 0.05, j = 1, 
ß .. 4 were used for the deterministic equivalents of the chance 
constraints in (5a) and (5b), that is, the acceptance probability 
of violating any of the probabilistic constraints on the releases 
was set equal to 5%. The results for an initial vector x(0) -- (6, 
6, 6, 6) and for a three-node state discretization scheme are 
given in Table l c. As was expected, the higher the variability 
of the inflows the higher the expected value of the cost and the 
more the stochastic optimal control u*(1) deviates from the 
deterministic one. 

7.1.2. Example 2. The performance of GDP for the opti- 
mal control of systems with cost functions of degree higher 
than quadratic is now studied. For this example, q = (2, 3) and 
all other variables remain the same as before. The cost func- 

tions are 

Ai(lli(k)) = ci(k)(lli(k ) - 1.) a- 

Bi(xi(N), mi) = (xi(N) -- mi)'* 

Table 2a reports the results of the deterministic opti- 
mization of the system for an initial state vector x(0) = (6, 6, 6, 
6) and for a state discretization scheme consisting of three 
nodes. The exact solution has again been obtained through 
nonlinear optimization. It is observed that even for such a 
coarse state discretization scheme (N i - 3) the results of GDP 
are of reasonable accuracy whereas it is expected that DDP 
with only three nodes per state variable and fourth-degree cost 
functions would have very poor performance (see Kitanidis 
and Foufoula-Georgiou [1987] and Goulter and Tai [1985]). 
Of course, finer state discretization schemes (Ni = 4 or 5) 
which are well within the computational capabilities of most 
computers, would rapidly improve the performance of GDP. 
Such a comparative study is, however, outside the scope of the 
present paper. 

The stochastic optimization results for lognormally distrib- 
uted inputs and two vectors of standard deviations are pre- 
sented in Table 2b. As in example 1, the probabilistic con- 
straints on the releases have been converted to their determin- 

istic equivalents using a probability of 5%. As was expected, 
the stochastic optimal control u*(1) and the total approximate 
cost F* deviate from their deterministic counterparts, the devi- 
ation being larger the larger the variability of the stochastic 
inflows. 

8. CONCLUDING REMARKS 

A new computational algorithm for the discrete time opti- 
mal control of systems separable in stages (i.e., sequential opti- 
mization) has been presented. The method, termed gradient 
dynamic programming (GDP), is believed to provide a valu- 
able tool for the stochastic optimal control of multidimension- 
al water resources systems. The computational burden of ex- 
plicit stochastic optimization methods (namely, the conven- 
tional stochastic DDP) and the existence of many efficient 
methods for the deterministic optimization of large systems 
has many times motivated the deterministic assumption of 
systems which are clearly stochastic. The practical impli- 
cations of such "suboptimal" operation rules have many times 
been emphasized in the literature (see, for example, Weiner 

TABLE 2a. Deterministic GDP Optimal Control of the System of Example 2 

Total 

State Period Optimal Control Cost 
Discretization Ni k Vector u*(k) J* 

Approximate 
Cost F* 

3 1 (1.32, 2.51, 2.05, 2.67) 
3 2 (1.46, 2.51, 2.03, 2.71) 
3 3 (2.08, 2.49, 2.23, 2.81) 

Exact solution for (1.67, 2.52, 2.15, 2.81) 
all periods 

151.91 132.54 

154.83 154.83 

The starting vector is x(0) = (6, 6, 6, 6). All other variables have been explained in Table la. 
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and Ben-Zvi [1982] and Stedinger et al. [1984]). One of the The •P0•xx, "', xn) has the following properties: (1) it van- 
important aspects of stochastic optimization is that the re- ishes on all nodes, (2) its derivatives in all directions except for 
sulting cost is much more reliable which is a highly desired j vanish on all nodes, and (3) its derivative in direction j is 
property for planning purposes. 

GDP is a general computational algorithm which is be- 
lieved to provide a valuable tool for the stochastic optimal 
control of multidimensional systems which are decomposable 
in stages. In this paper we have presented the general method- 
ology and have provided details of its implementation. For the 
constrained stagewise optimization part of the algorithm, we 
have studied and discussed an active set strategy with a 
Newton-type optimization scheme. Other optimization meth- 
ods can be used at this step depending on the particular prob- 
lem at hand. Also, other interpolating functions preserving the 
values and derivatives of the cost-to-go function at the nodes 
can be incorporated (see, for example, Foufoula-Georgiou 
[1987]). 

One important requirement of all gradient-based opti- 
mization methods is the smoothness of the functions to be 

optimized. Since it is known that constraints on the state and 
control vectors introduce discontinuities in the derivatives of 

the cost-to-go functions care must be exercised in using GDP 
for problems which are constraint-dominated. Finer state dis- 
cretization schemes may be required in those cases. Fortu- 
nately, stochastic optimization requires integration of the cost- 
to-go function over the range defined by the pdf of the sto- 
chastic input and this results in a "smoothing" of the function 
to be optimized. Our computational experience suggests that 
this tends to alleviate the effects of the discontinuities. 

GDP has not solved the problem of stochastic optimization. 
It is believed, however, that it is a first step toward exploring 
methods which combine the advantages of the general back- 
ward moving stagewise optimization with the wealth of con- 
strained optimization methods through the idea of local ap- 
proximations of the cost-to-go functions. It should be kept in 
mind that no single optimization method is "best" for all 
problems. Further theoretical and computational work should 
focus on a comparison of the available methods and on identi- 
fying the classes of problems (in terms of type and smoothness 
of the cost-to-go function, presence of constraints, etc.) for 
which a particular approximation method is more attractive 
than others in terms of accuracy and computational efficiency. 

APPENDIX A: APPROXIMATION OF F THROUGH 

HERMITE INTERPOLATION 

Given the values of F and its derivatives c•F/gxj, j = 1, ... n, 
at all nodes, one may approximate the function F within a 
hypercube by 

2 n 

F(x,, ..., x,,)= '", x,,) 
i=1 

,- + x,,) i= j=l i 

(A1) 

where i is the index of nodes (i = 1, ..., 2 n) defining a hyper- 
cube, j is the index of direction or the state variable xj (j -- 1, 
ß .., n), Fi is the value of F at node i, and (c•F/Ox)i is the value 
of the derivative of F with respect to xj at node i. 

The 4•i(xx, .-., %) is a function of the state-space coordi- 
nates with the following properties: (1) it is equal to 1 at node 
i, (2) it vanishes at all other nodes, and (3) its first derivative in 
any direction is zero at all nodes. 

equal to 1 on node i and vanishes on all other nodes. 
Let x •'-- (xx •', ..., x•') r and x a-- (xx a, ..., x•) r be the 

vectors of coordinates just "below" and "above" the interpola- 
tion point x•--(xx, .-., x•) r in the sense that xi b •_ x i _• xi • 
for i -- 1, -.., n. Define Ax•-- x• • -- x/' and the local coordi- 
nates •i = (xi - xib)/Axi, i= 1,''', n. 

The kth coordinate at a given node may be represented as 
x•, • + !•,Ax•,, where l•, is either 0 or 1. That is, to each node i 
we associate an n tuple of binary zero-one numbers (Ix, "., In). 
Then the lowest-order polynomial (•i is 

•Pi(•x, '", •,= (1 + • rh,-2 • r/k 2) fi (1- rh, ) (A2) k=l k=l k=l 

and the lowest-order polynomial ½o is 

½o1•, "', •.)= r/,tl -- r/j) fi (1 -- r/•,) (A3) 
where r/• - • l• = 0 

(A4) 
rh, = (1 -- •,) 1•, = 1 

The proof can be found in the work by Kitanidis [1986]. 

APPENDIX B' APPROXIMATION OF A,,F•, AND Ft•,x x 
BY DIFFERENTIATION OF THE POLYNOMIALS 

OF THE HERMITIAN INTERPOLATION 

Differentiating F from (A1) with respect to the state gives 

dF • Fi + dx s •,dxs/ ,• • (B1) '= ,k dxs/ 

We define the following quantities for notational convenience: 

e -- fi (1 - r/n) (B2) 
k=l 

P(aa,) = fi (1--r/n) (B3) 
k •: a,b 

R=I+ •rh,-2•r/•, 2 (B4) 
k=l k=l 

Then in (B 1) 

where 

Similarly, 

d2F 

dx t dxs 

where 

d• i drls 
dxs - dxs [(1 - 4r/s)P - RP(s)] (B5) 

d*'j - (drl"•(dr/f•-'TP,,) (B6) 
axs \axs/\ax/ 

T = (1 -- 3r/j) 2 if s = j 

T = r/j(r/j -- 1) if s =/= j 
(B7) 

'= j= • i k, dxt dxs,l 
(B8) 

d2•p, _ ( drlt'•( 
dxt dx s k,d%J\ 

' drlshSt s )'-•Xs ] ' (B9) 
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with 

Ss. s = -4P - 2(1 -- 4rls)P(s) 

Sl.s •- --(1--4rls)Ptl)--(1--4rll)P(s ) + RP(l,s ) 

Also, 

d2½ij (d•]l •(d•Is•(d•IJ• -1 
dx I dxs - •dXlJ•/•d•/ 

where 

¾ s (B10) 

¾ l%s (Bll) 

W/,sd (B12) 

Ws,s, j = -- 3P -- (1 -- 3rls)P•s) ¾ s = j (B 13a) 

Ws,sd = 0 ¾ s :# j (B 13b) 

W•.s. • = --(1 - 3rls)P(l) ¾ s = j, 1 • s (B14a) 

W•.sO = --(1 -- 3rll)P(s) V l=j, I • s (B14b) 

W•.•.• = r/•(1 -- rlj)P(l,s ) ¾ s • j, I • s (B14c) 

APPENDIX C' PROJECTION OF A SOLUTION TO THE 

HYPERPLANES OF THE ACTIVE CONSTRAINTS 

Let u o denote a solution vector which violates some of the 
constraints of the working set Gu- d, where G is an (p x n) 
matrix of rank p(p < m). The problem is to find the projection 
of u o onto the domain defined by the active constraints, so 
that an initial feasible solution is obtained each time the active 

set changes. Let u' denote the projection, which can be written 
as 

u'= u o + •u (C1) 

The problem then becomes one of constrained optimization: 

min tSu rtsu 
(C2) 

subject to G(uo + tSu)= d 

By forming the Lagrangian 

rSurrSu + vr[G(uo + rSu)- d] (C3) 

where v is a p x 1 vector of Lagrange multipliers, and taking 
derivatives with respect to rSu and v r, we obtain 

cSu + Grv = 0 
(c4) 

G(u o + •u) = d 

Thus rSu is computed from the solution of the system of (n + p) 
equations 

or 

cSu = GT(GGT) - l(d- Guo) (C6) 

APPENDIX D: SOLUTION OF THE CONSTRAINED 

OPTIMIZATION PROBLEM 

Consider the problem 

min f(u) (D 1) 

subject to Gu = d (D2) 

where G is a (p x m) matrix of rank p, d is a p x 1 vector, and 
u an m-dimensional vector. The iterations start with a feasible 

vector u o. The solution at the next step is u = Uo + Au, where 

Au denotes an "improvement" to be determined. Since both Uo 
and u satisfy the equality constraints, Au satisfies 

GAu = 0 (D3) 

As in every Newton-type optimization method it is assumed 
that f can be approximated locally by a quadratic function 
about the last estimate of the optimal solution, u o. Through 
expansion into Taylor series, the following programming 
problem is obtained' 

min f(Au) =f + grAu + «AurQAu 
(D4) 

subject to GAu = 0 

where f, its gradient g = (Vuf) r, and its Hessian (matrix of 
second derivatives) Q = fu, are all calculated at u o. 

The Lagrangian associated with the constrained opti- 
mization problem is 

L =f(Au) + krGAu (DS) 

where k r is a p x 1 vector of Lagrange multipliers. Taking 
derivatives of L with respect to Au 

g + QAu + Gr•, = 0 (D6) 

where combined with (D3) yields the linear system of m + p 
equations 

from which both Au and • may be obtained. The coefficient 
matrix is nonsingular and the quadratic optimization problem 
has a unique local minimum if Q is positive definite in the 
subspace M = {Au: GAu = 0}. That is, for any Au which satis- 
fies (D3), AurQAu > 0. A necessary condition is that Q has at 
least n-p positive eigenvalues. Note that this is a weaker 
condition than positive definite Hessian. 

The step may be written in the familiar form 

Au= --R.g (D8) 

where R may be interpreted as the inverse of the Hessian in 
the subspace where the decision variables are permitted to 
vary. That is, RQ is a projection matrix on the subspace of 
feasible steps Au. In the special case that Q is invertible, R may 
be explicitly written as 

R = Q-• - Q-•GT(GQ -•GT) -•GQ -• (D9) 

APPENDIX E' DISCRETIZATION OF THE PDF OF THE 

STOCHASTIC INPUT AND NUMERICAL INTEGRATION 

For normal or lognormal pdf of the stochastic inputs ef- 
ficient numerical integration schemes can be utilized, as is 
illustrated below. For convenience in notation we consider the 

numerical integration of a one-dimensional function h(x). Abra- 
mowitz and Steoun [1972, ch. 25] gives 

e-X2h(x) dx = • aih(xi) + R, (El) 

where xi is the ith zero of the Hermite polynomial Hn(x ) and a i 
are weights given as 

2 n- in 
a i = n2[H•_ •(xi)] 2 (E2) 
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Both as and xi are given in tables in the work by Abramowitz 
and Stegun [1972, Table 25. 10]. The remainder term is 

R n -- h(2n)(•) --oo < • < oo (E3) 
2"(2n)! 

Hence for a standard normal distribution the two- and three- 

point Hermite integration becomes 

- • x/• e-X2/2h(x) dx = «[h(- 1) + h(1)] + R,•' (E4) 

- X• e-X2/2h(x) dx 
= •h(0) + •[h(- 1.732) + h(1.732)] + R 3' (E5) 

where 

1 
R2'=- h{'ø(•) --oo < • < oo (E6) 

48 

1 
R3'= • h{6)(•) --oo < • < oo (E7) 

960 

For example, one can see that the numerical integration of a 
normal or lognormal pdf on a smooth cost function of re- 
quisite differentiability and degree three (or five) is exact with 
only a two- (or three-) point discretization scheme. 

NOTATION 

N number of decision periods (stages). 
r/ dimension of state vector. 

rn dimension of control vector. 

r dimension of input vector. 
k stage index. 

x(k) (n x 1) state vector at the beginning 
of stage k. 

u(k) (mx 1) control vector during stage k. 
w(k) (r x 1) input vector during stage k. 

T k = Tk(x(k), u(k + 1), w(k + 1)) n-dimensional vector 
function. 

c•T•/c•x ..= c•T•/c•x(k) Jacobian of T• with respect to the 
state vector. 

c•T•/•u .-= c•Tk/c•u(k + 1) Jacobian of T• with respect to the 
control vector. 

C• := C•(x(k), u(k + 1)) single-stage cost function. 
VuC • := c•Ck/c•u(k + 1) gradient of C• with respect to the 

control vector. 

V•C• .-= c•C•/c•x(k) gradient of C• with respect to the 
state vector. 

Ck,u, Hessian of C• with respect to the 
control vector u(k + 1). 

F• := F•(x(k))= cost to go at stage k. 
V•F• := dFk/dx(k) gradient of F• with respect to the 

state vector. 

V.F• ..= dF•/du(k) gradient of F• with respect to the 
control vector. 

Fk,•,•, Hessian of F• with respect to the 
state vector x(k). 

u*(k) optimal control associated with 0• 
state vector x(k- 1). 

du*/dx the Jacobian of u•*(x(k- 1)) with 
respect to the state vector x(k- 1). 
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