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a b s t r a c t

We examine the underlying structure of high resolution temporal rainfall by comparing the observed ser-
ies with surrogate series generated by a invertible nonlinear transformation of a linear process. We doc-
ument that the scaling properties and long range magnitude correlations of high resolution temporal
rainfall series are inconsistent with an inherently linear model, but are consistent with the nonlinear
structure of a multiplicative cascade model. This is in contrast to current studies that have reported
for spatial rainfall a lack of evidence for a nonlinear underlying structure. The proposed analysis method-
ologies, which consider two-point correlation statistics and also do not rely on higher order statistical
moments, are shown to provide increased discriminatory power as compared to standard moment-based
analysis.

� 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Empirical evidence has repeatedly demonstrated that both tem-
poral and spatial rainfall fields exhibit multiscaling (or multifrac-
tal) behavior, by which it is meant that the statistical moments
of the fluctuations of rainfall have a power-law dependence on
scale, with the power-law exponents varying as a non-linear func-
tion of moment order (e.g. [22,33,16,37,11,38]). One question that
is raised by these findings is what type of stochastic model could
reproduce the observed statistics. The presence of multiscaling
has often been associated with an underlying multiplicative cas-
cade as the model to generate rainfall or another preserved quan-
tity related to rainfall ([23,17,11]; among others). However, in a
recent study Ferraris et al. [14] concluded that the observed scaling
statistics of spatial rainfall could be reproduced by a linear model
that was subjected to an invertible nonlinear transformation, as
opposed to an inherently nonlinear model. The question of under-
lying nonlinearity of an observed series can be approached through
the use of surrogate series, first introduced by Theiler et al. [36] for
hypothesis testing in nonlinear time series analysis (see also [7]).
To test for inherent nonlinearity in this framework, one stochasti-
cally generates a number of synthetic sequences that retain as
many of the properties of the original data as possible, but are de-
rived from a linear model. Here, the retained properties are the

probability density function (pdf) and the linear correlation struc-
ture (or power spectrum) of the original series. Although the surro-
gates from a linear Gaussian model would have a Gaussian pdf, the
original pdf is reconstructed by applying an invertible nonlinear
transform as the final step in the surrogate generation process. This
is what is meant by inherent or underlying linearity of a series: that
even if there is nonlinearity present it is the result of an invertible
nonlinear transform of a linear process. Finally, by comparing (with
any pertinent test) the original series with the ensemble of the sur-
rogate series, the presence of inherent nonlinearity and the need
for a nonlinear model can be objectively assessed.

In the aforementioned study, Ferraris et al. [14] found that the
(multi)scaling statistical properties of spatial rainfall (using two-
dimensional spatial rainfall fields from the GATE campaign) could
not be distinguished from those of their surrogates. The metrics
used to examine the scaling properties and test for nonlinearity
were based on the log–log linear slopes of the statistical moments
up to the eighth order. As a result, they concluded that a meta-
Gaussian model (i.e. an invertible transform of a linear Gaussian
model) would be adequate to reproduce the spatial structure of
rainfall. Sapozhnikov and Foufoula-Georgiou [31] also found that
a nonlinear transform of a linear underlying model (an exponenti-
ation of a Langevin model) could adequately preserve the scaling
properties of spatial rainfall.

In this paper we provide evidence that a model with linear
underlying dynamics subjected to an invertible nonlinear transfor-
mation is not consistent with high-resolution temporal rainfall
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observations. This is shown through the examination of one- and
two-point magnitude coefficient analysis, extensively used in tur-
bulence and recently introduced for the analysis of scaling proper-
ties in rainfall ([38] and references therein). We conclude that a
nonlinear model with long-range (power-law decaying) dependen-
cies would be more consistent with the observations, such as a
multiplicative cascade model, which has frequently been used as
a stochastic model of rainfall (e.g. [33,17,8,11]).

The structure of this paper is as follows: in the following section
we briefly outline the rainfall data used in this study; in Section 3
the surrogate data series are introduced and the surrogate genera-
tion process is described; in Section 4 the data analysis methods
are presented with emphasis on the new methodologies based
on magnitude cumulant analysis. The results of the analysis are
presented in Section 5, and conclusions drawn in Section 6.

2. Rainfall observations

The high resolution temporal rainfall series analyzed here was
collected during a storm on the 3rd of May, 1990, at the Iowa Insti-
tute of Hydraulic Research, University of Iowa. The instrumenta-
tion and the meteorological conditions are reported in
Georgakakos et al. [15]. The sampling interval of the data is 5 s,
and the duration of the rain is approximately 9 h. The rainfall data
is shown in Fig. 1. It can be seen with the naked eye that the inten-
sity is quite variable, with a mean of 2.7 mm/h but peaks above
10 mm/h. The scaling properties of this rainfall time series were
previously analyzed by Venugopal et al. [38], in which the presence
of multiscaling was documented within a range of scales between
approximately 4 min and 1 h. Note that the upper limit of this scal-
ing range is much less than the storm duration (9 h) but is of the
order of the duration of the storm pulses (1–2 h), which can be
identified in Fig. 1a. Within this range of scaling, the rainfall data
was found to show significant intermittency and deviation from
monoscaling; furthermore, it showed long-range dependence in
the fluctuations, that was found to be consistent with a lognormal
cascade model.

3. Surrogates

To investigate which type of model is consistent with the ob-
served statistical structure of the rainfall data, and specifically to
test the null hypothesis of inherent linearity with an invertible
nonlinear transformation, we employ the so-called surrogate series
[36,35]. The surrogates series {sn} is assumed to be generated by a
process of the form

sn ¼ SðxnÞ; xn ¼
XM

i¼1

aixn�i þ
XN

i¼0

bign�i; ð1Þ

where S could be any invertible nonlinear function, {xn} is the
underlying linear process, {an} and {bn} are constant coefficients
and {gn} is white Gaussian noise. M and N are the orders of an auto-
regressive (first term) and moving average (second term) model,
respectively.

Hypothesis testing is typically performed by evaluating some
test statistic, or measure of nonlinearity, for both the original series
and an ensemble of surrogate series. The results for the ensemble
of surrogates provide the distribution of the test statistic that
would be produced by an inherently linear process. This allows
the establishment of confidence intervals for the rejection of the
null hypothesis based on the value of the test statistic computed
from the original series.

To generate surrogates that maintain the pdf and correlation
structure (and hence power spectrum) of the original data, we
use the method proposed by Schreiber and Schmitz [35], known
as the iterative amplitude adjusted Fourier transform (IAAFT)
method. This is a modification of the earlier amplitude adjusted
Fourier transform (AAFT) method [36], that iteratively adjusts both
pdf and linear correlation structure to minimize their deviation
from the original series. The generation process proceeds in the fol-
lowing way:

1. Randomly shuffle the data points of the original series {rn} to
destroy any correlation or nonlinear relationships, while keep-
ing the pdf unchanged. The reshuffled series is the starting
point for the iteration fsð0Þn g.

2. Take the Fourier transform of the current series fsðiÞn g, and adjust
the amplitudes to recreate the power spectrum of the original
data. Keep the phases unchanged. Perform inverse Fourier
transform.

3. The pdf will no longer be correct. Transform the data to the cor-
rect pdf by rank ordering and replacing each value with the
value in the original series ({rn}) with the same rank. This gives
the updated series fsðiþ1Þ

n g.
4. Repeat steps 2 and 3 until the discrepancy in the power spec-

trum is below a threshold, or the sequence stops changing
(reaches a fixed point).

In this manner a surrogate data series can be created with an
identical pdf and optimally similar power spectrum to the original
series. Any underlying nonlinear structure, which in Fourier space
would be embodied by correlations in the phase, is destroyed,
since only the absolute value (or power) of the Fourier coefficients
is retained, whereas the phases are randomized by the shuffling of
the series. For a heuristic argument for the convergence of the
algorithm, see Schreiber and Schmitz [35].

An ensemble of 100 surrogates were generated for the rainfall
data using the IAAFT method (sufficient for a 95% significance level

Fig. 1. (a) The observed rainfall series of May 3, 1990 in Iowa city; (b) one surrogate time series which preserves the pdf and power spectrum of the original series.
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for a one-sided test). An example of a surrogate series for the rain-
fall data examined in this study can be seen in Fig. 1b. Visually,
there is an obvious resemblance with the original series, but in
the following sections we will document striking differences, as in-
ferred by some statistical tests that compare the scale dependence
and long-range dependence of the original and surrogate series.

4. Methods of analysis

In this section we review three different wavelet-based meth-
ods of analyzing the scaling properties of a data series, with the
goal of comparing the scale dependence of the rainfall data with
that of its surrogates. Firstly, the method of moments, or partition
function approach, which looks directly at the scaling of the mo-
ments of the fluctuations [29,19,28], is summarized, and its limita-
tions in the context of nonlinearity detection or comparison with
surrogate data are discussed. Then two alternate test statistics to
examine the scale dependent structure of the series are described:
magnitude cumulant analysis [13] and two-point magnitude corre-
lation analysis [2,3], which examine the one- and two-point statis-
tics, respectively, of the magnitude coefficients of the rainfall
fluctuations. Both of these were first developed for the analysis
of fluid turbulence and have recently been applied to temporal
rainfall series by Venugopal et al. [38]. For completeness, a brief
summary of each method is presented here, and for a more in-
depth discussion, the reader is referred to Venugopal et al. [38]
and references therein.

4.1. Method of moments

The original multifractal formalism was developed for measures
in the context of dynamical systems [e.g. [18,9]], with a generaliza-
tion for functions provided by Muzy et al. [26,28]. While multifrac-
tal distributions (including measures and functions) are often
described by the spectrum of Hölder exponents h also called D(h)
singularity spectrum [5], in this work we focus on the alternate
description, consisting of the scaling exponents of the statistical
moments (these two descriptions are equivalent and related by a
Legendre transform [29,1]). More explicitly, the scale-dependence
of fluctuations in a time series is described by the scaling exponent
function s(q), since for a scaling process

-Zðq; aÞ � asðqÞ; ð2Þ
where -Zðq; aÞ is a partition function corresponding to the statistical
moment of order q, estimated from the observations as

-Zðq; aÞ ¼ 1
NðaÞ

XNðaÞ
x

jTðx; aÞjq; ð3Þ

T(x,a) are the so-called multiresolution coefficients that capture the
fluctuations in the time series at the scale a, and N(a) is the total
number of observations at that scale. The simplest choice for multi-
resolution coefficients T(x,a) is to take first order increments, giving
rise to what are known as structure functions [29]. However, work-
ing with first order increments has several limitations: they cannot
detect singularities of Hölder exponent h greater than 1, and they do
not remove higher order non-stationary trends (first order incre-
ments remove only constant-level trends) [1]. An alternative ap-
proach that avoids these limitations is to define T(x,a) as the
wavelet coefficients generated by the continuous wavelet transform
(CWT), using wavelets of increasing-order vanishing moments, as
shown by Bacry et al. [5] and Muzy et al. [26,28].

The continuous wavelet transform of a function f(x) can be de-
fined as

Twðx; aÞ ¼
1
a

Z
f ðx0Þw x0 � x

a

� �
dx0; a > 0; x 2 R; ð4Þ

where a is the scale parameter, x is the location, and w defines a
family of wavelets. For a general background on wavelets, see
Meyer [25], Daubechies [10] or Mallat [24]. For our analysis, we
use as wavelets (apart from a normalizing constant) the successive
derivatives of a Gaussian function gðNÞðxÞ ¼ dN

dxN e�x2=2, which have N
vanishing moments (

Rþ1
�1 xqgðNÞðxÞdx ¼ 0;0 6 q < N), thus satisfying

our need to remove higher order nonstationarities (polynomial
trends), if present, from the data. These derivatives of a Gaussian
have been used extensively to study the behavior of multifractal
functions (e.g. [28,1]).

The wavelet-based multifractal analysis thus consists in esti-
mating the partition function -Zðq; aÞ using the wavelet coefficients
Tw(x,a) as the multiresolution coefficients, T(x,a), in Eq. (3). It is
important to note that there are two wavelet-based approaches
to calculate the partition function: (i) use all the wavelet coeffi-
cients at all scales; or (ii) use only those wavelet coefficients which
constitute the local modulus maxima at each scale and can be
chained together to form lines of maxima from the largest to the
smallest scale. The CWT-based method cannot estimate the parti-
tion function for q < 0 since the estimate can potentially diverge
(e.g., see [38]). To alleviate this concern, we choose to use the sec-
ond method based on the Wavelet Transform Modulus Maxima
(WTMM), introduced by Muzy et al. [27,28]. In other words, the
estimation of the partition function is reformulated as

-Zðq; aÞ ¼
X

l2LðaÞ
½jTwðx; aÞj�q; ð5Þ

where q 2 R, LðaÞ is the set of all maxima lines that satisfy:
l 2LðaÞ, if "a0 6 a, $(x,a0) 2 l. In order to avoid numerical instabili-
ties in the computation of the partition function, especially those
that are likely to arise for q < 0, Muzy et al. [27,28] suggested that
the value of the wavelet transform modulus at each maximum be
replaced by the supremum value along the corresponding maxima
line at scales smaller than a.

We do not delve into the rigorous mathematical formalism of
the reformulation here, but suggest that the reader refers to the
original work of Muzy et al. [27,28] or to the more recent (and re-
lated) work of Venugopal et al. [38], in which it was illustrated that
WTMM-based estimation of the partition function is a more appro-
priate and robust method, compared to CWT-based estimation, to
analyze high-resolution temporal rainfall. For the rest of the man-
uscript, the WTMM-based approach is assumed, unless otherwise
specified. Once the partition function is calculated using Eq. (5),
the scaling exponents s(q) are estimated from Eq. (2). It is re-
minded that a linear s(q) indicates monoscaling and a nonlinear
s(q) indicates multiscaling.

In the context of testing the consistency of a data set with a lin-
ear model (possibly with a subsequent invertible nonlinear trans-
form) vs. a nonlinear one, comparison is often performed
between the s(q) curve estimated from the observed data series
with that estimated from the surrogates. Note that this was essen-
tially the approach of Ferraris et al. [14] (although their multireso-
lution coefficients were not wavelet-based). There are two
potential drawbacks of this approach. The first is the need to esti-
mate higher-order moments from the data in order to accurately
define the shape of the s(q) curve. The use of higher-order mo-
ments is problematic not only for statistical reasons (a large num-
ber of data points is needed for accurate estimation), but also by
the inherent degeneracy of higher positive (q > q�þ > 0) and nega-
tive (q < q�� < 0) moments due to the so-called multifractal phase
transition. This could be due to the fact that the observed multi-
fractal field is actually the result of an integral over an underlying
cascade process [34], or simply due to the inherent property of a
multiplicative cascade to produce only a limited range of singular-
ity strengths [20,21]. Specifically, Venugopal et al. [38] found that
for the temporal rainfall observations examined here, j q�� j was
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approximately 3, and that while the s(q) curve was well-estimated
for jqj < 3, it degenerated to a linear curve for moment-order jqj
greater than 3, due to the inherent multifractality of the field (spe-
cifically the limits on singularity strength), rather than any limita-
tion of sample size.

The second drawback of using the method of moments for non-
linearity detection is simply that there is no clear test statistic for
comparing the two s(q) curves (for observations and surrogates),
given that these curves have confidence intervals that vary with
moment order. This problem is exacerbated by the first drawback
mentioned above, i.e., the inability to accurately estimate s(q) for
higher order moments.

There is an alternate approach, however, for examining the scal-
ing properties of a data set, which avoids the reliance on higher or-
der moments and parameterizes the s(q) curve with only a few
parameters. This approach is known as the magnitude cumulant
analysis [13], and we propose here that it can form the basis for
a more powerful test for determining the compatibility of a series
with a linear model.

4.2. Magnitude cumulant method

Let X be a random variable, PðxÞ, its probability density func-
tion, UPðkÞ, its moment generating function (i.e., the Fourier trans-
form of PðxÞ), and Mn its nth-order moment. Mn can be estimated
as the nth-derivative of UPðkÞ at k = 0. The cumulant generating
function of a random variable is defined as WPðkÞ ¼ ln UPðkÞ, and
the cumulants Cn of X (similar to the moments) can be estimated
as the nth-derivative of WPðkÞ at k = 0. The moments and cumu-
lants of X can in turn be related as

C1 ¼ M1;

C2 ¼ M2 �M2
1;

C3 ¼ M3 � 3M2M1 þ 2M3
1;

C4 ¼ M4 � 4M3M1 � 3M2
2 þ 12M2M2

1 � 6M4
1:

. . .

ð6Þ

Consider the qth-order moment of the modulus of the wavelet
coefficients, jTw(x,a)j, as defined in Eq. (3). Retaining only the
dependence on scale a for the sake of brevity and rewriting the
coefficients as jTaj, it can be shown [13] that:

�Df lnðaÞ þ
X1
n¼1

CnðaÞ
qn

n!
� sðqÞ lnðaÞ; ð7Þ

where Df is the fractal dimension of the support of singularities, and
Cn(a) are the cumulants of the so-called magnitude coefficients,
lnjTaj, i.e.,

C1ðaÞ � hln jTaji � c1 lnðaÞ;
C2ðaÞ � hln2jTaji � hln jTaji2 � �c2 lnðaÞ;
C3ðaÞ � hln3jTaji � 3hln2jTajihln jTaji þ hln jTaji3 � c3 lnðaÞ;
� � �

ð8Þ

It is then easy to see from Eqs. (7) and (8) that:

sðqÞ ¼ �Df
q0

0!
þ
X1
n¼1

CnðaÞ
lnðaÞ

� �
qn

n!
;

¼ �c0 þ c1q� c2q2=2!þ c3q3=3! � � � ; ð9Þ

where the coefficients cn > 0 are estimated as the slope of Cn(a) vs.
ln(a) (n = 1,2,3,. . .), and c0 = Df (see also [38] for the proof).

Thus having access to the coefficients cn (from linear-log regres-
sion of the cumulants of lnjTaj vs. scale), one can estimate the func-
tional form for s(q). For instance, if cn = 0, n P 2, then the given
function is a monofractal, since s(q) is linear. A quadratic estimate

for s(q), on the other hand, which signifies a multifractal, will re-
quire two regression fits to estimate c1, and c2. For the temporal
rainfall data it was previously found [38] that cn = 0 for n > 2, and
as such a quadratic s(q) was sufficient, and only two parameters
were required. Thus, in relation to the standard structure function
or wavelet-based multifractal formalism based on the method of
moments, the cumulant-based estimation of the multifractal attri-
butes could be considered more efficient, as it requires fewer
regression fits to determine the shape of the spectrum of scaling
exponents. More pertinently, it does not require the use of higher
order moments and produces (for rainfall) just two relevant
parameters, c1 and c2, whose distribution can be found for the sur-
rogate data series and compared to the values for the original ser-
ies. This method of course requires the convergence of at least the
second order cumulant. Note that the magnitude cumulant analy-
sis implicitly assumes that the s(q) spectrum does not display any
nonanalyticity.

Remark. Before we proceed with the discussion of two-point
statistics, we elaborate on some computational issues surrounding
the estimation of s(q) using the ‘‘WTMM with supremum” method.
This method (which enables us to estimate s(q) for q < 0) has a
minor disadvantage of not being able to estimate singularities of
negative Hölder exponent. The issue of singularities with h < 0 is
important because Venugopal et al. [38] illustrated that the high
resolution temporal rainfall considered in this work has values of h
ranging between �0.7 and 1.5 (e.g., see Fig. 13 of [38]). Recalling
that integration adds 1 to the singularity Hölder exponents of a
signal, we address this deficiency of the ‘‘WTMM with sup”
method, by working with the cumulative (integral) of the rain.
Consequently, ccumulative

1 , the first-order cumulant slope (Eq. (8))
becomes corig

1 þ 1. (All other order cumulants remain the same.) It
is easy to see that this affects the spectrum of scaling exponents
s(q) (owing to Eq. (9)), i.e., scumulative(q) = sorig(q) + q. Thus, in order
to retrieve s(q) of the original signal, we estimate scumulative(q) and
subtract q.

4.3. Two-point magnitude correlation analysis

The analysis methods that we have presented thus far (method
of moments and magnitude cumulant analysis) can be categorized
as one-point statistics. However, it is known that for a multifractal
the one-point statistics do not provide all possible information
about the underlying mechanism that might have given rise to
the multifractal: the two-point statistics will carry further
information.

For example, one of the common models used to generate a
multifractal field is a multiplicative cascade (e.g., [33,17,11]). It is
evident from a multiplicative cascade construction that the ‘‘par-
ent” (large scale) would somehow be related to the ‘‘children”
(any small scale). Thus, examining two-point statistics will allow
us to evaluate if there exists any dependence between scales,
and, if so, whether it follows any particular behavior. The hypoth-
esis testing with surrogates remains necessary, as it allows us to
assess the levels to which such long-term dependencies could oc-
cur through an inherently linear process, and hence set confidence
levels on any conclusions we might make about the underlying
cascade structure.

Specifically, the two-point correlation function of the magni-
tude coefficients (log of the wavelet coefficients), defined [2,3] as

Cða;DxÞ ¼ hðln jTaðxÞj � hln jTaðxÞjiÞðln jTaðxþ DxÞj
� hln jTaðxÞjiÞi ð10Þ

can provide information about the space-scale (or time-scale) struc-
ture that underlies the multifractal properties of the considered
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signal. For example, if Cða;DxÞ is logarithmic in Dx and independent
of scale a provided that Dx > a, i.e.,

Cða;DxÞ � ln Dx; Dx > a; ð11Þ

then long-range dependence is inferred. For a random multiplica-
tive cascade on a dyadic tree Arneodo et al. [2,3] showed that:

Cða;DxÞ � �c2 ln Dx; ð12Þ

where the proportionality coefficient c2 is the same as the one de-
fined in Eq. (8), i.e.,

Cða;Dx ¼ 0Þ � C2ðaÞ � �c2 lnðaÞ: ð13Þ

We reiterate that the presence of multifractality does not necessar-
ily imply either long-range dependence or a multiplicative cascade
structure [4]. For instance, one can have scaling in C2(a), and if the
(log-linear) slope is non-zero, it suggests the presence of multifrac-
tality. In addition to that, if C(a,Dx) decreases to zero rapidly, it
would suggest that there is no long-range dependence; or, if
C(a,Dx) changes linearly with lnDx, then it suggests long-range
dependence. All these cases can be judged in relation to the surro-
gates of the data, that are known not to have a cascade construction,
and can be used to show the range of correlation that could be pro-
duced with an underlying linear mechanism. When the slope of
C(a,Dx), vs. lna, Dx > a, is equal to c2 (which is also the slope of
C2(a) vs. lna), and also significantly different than the slope of the
inherently linear surrogates, we can infer that the underlying mech-
anism which gave rise to the multifractal, is a multiplicative
cascade.

Thus, the two-point magnitude correlation provides a second
test that is not dependent on higher order moments. It provides
(i) a single numerical statistic that can be compared between
rainfall and its surrogates, and (ii) additional information about
the underlying structure of a model that is consistent with the
observations. Armed with these statistical methods of unravelling
the multiscale statistical structure of a series, we can now begin
to examine the scaling properties of the rainfall and its
surrogates.

5. Results

5.1. Application of the method of moments for comparison with
surrogates

The scale-dependence of the rainfall data and the 100 surrogate
series, of the same length as the data, generated by the IAAFT
method described in Section 3, was analyzed by the method of mo-
ments. It was previously found [38] that an analyzing wavelet with
N = 3 vanishing moments was required to remove the nonstation-
arities from the rainfall time series and correctly estimate its scal-
ing properties. Thus the g(3) wavelet was used for the analysis of all
data series for consistency, although using a lower order was not
seen to affect the results for the surrogate data. It can be seen in
Fig. 2 that the moments of the wavelet coefficients are log–log lin-
ear, implying thus scaling-invariance for both the rainfall and sur-
rogate data series between the scales of approximately 4 min and
1 h. Plotting the scaling exponents s(q) for rain and its surrogates
(Fig. 3) shows that although there is some difference between
the scaling exponents for rain and the ensemble averaged values
for the surrogates, the spread amongst the 100 surrogate series is
certainly large enough to encompass the observed scaling expo-
nents of rainfall. Hence, from the method of moments it would
be difficult to reject the null hypothesis of an underlying linear
generating process. This is the same conclusion that Ferraris
et al. [14] obtained for spatial rainfall data using the method of
moments. Note that for both rainfall and surrogates, s(q = 0) =
�Df = �1 which implies that both signals are singular almost
everywhere.

However, as outlined in Section 4.1, the method of moments
has limitations, and the cumulant analysis methods will be shown
in the next section to exhibit higher discriminatory power. Finally,
note that, on an average, the s(q) for the surrogate series in Fig. 3
seems to be closer to a straight line (specially for �1 6 q 6 1.5),
i.e. closer to a monofractal, than the rainfall data, although still
showing a slight curvature. We will see that this tendency becomes
more apparent as we consider the results from the other tests.

Fig. 2. Moments of the intensity of rainfall (	) and of surrogates (�); as explained in the text, the WTMM method was applied on the rainfall cumulative using the g(3) wavelet.
Shown are the first, second and third moments. The estimates for the surrogates are based on 100 realizations. The vertical dashed lines delimit the range of scales (expressed
in 5 s unit) used for the linear regression estimate of s(q).
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5.2. Magnitude cumulant analysis

Similarly, the wavelet-based magnitude cumulant analysis was
performed on both the rainfall and surrogate time series. The first,
second and third-order cumulants are displayed as a function of
the scale a in Fig. 4. While the rainfall and surrogates have overlap-
ping third-order cumulants with slopes c3 
 0, it can be seen that
there is a clear difference in the second order cumulant, with the
mean slope being �c2 = � 0.26 ± 0.04 for rainfall and �c2 =
� 0.06 ± 0.03 for the surrogates. Thus the cumulant analysis shows
an even more marked tendency for the surrogates to be closer to
monoscaling, that is, the surrogates have a more linear s(q) and
lower intermittency as measured by the parameter c2 (but still
not having a c2 = 0 that would indicate a perfectly monoscaling
field). Fig. 5 shows the frequency histogram for the values of c2

estimated from a realization of 100 surrogates. The c2 value of
0.26 estimated from the rainfall observations is greater than the

largest c2 of 0.18 for the surrogates. Since the c2 of rainfall is greater
than the largest value for the surrogates, this test would allow us to
clearly reject (with a 95% confidence level) the null hypothesis of
an inherently linear generating process. (Note that the calculation
of the confidence intervals is done via the procedure of inverting
the empirical cumulative distribution function which, in turn, is
estimated using the traditional plotting position approach.)

Now consider the first order cumulant, which from Fig. 4 is also
linearly dependent on ln(a), with a slope of c1. We have seen that
the surrogates have significantly reduced c2 compared to the rain-
fall series, which has a relatively high c2. But the surrogate gener-
ation is designed to preserve the value of the power spectrum, and
hence the scaling properties of the second moment of the fluctua-
tions, which is to say that it preserves s(2). So if one were to start
with a parabolic s(q) (as is the case with a lognormal cascade, and
as has been observed for temporal rainfall [38]), i.e., s(q) = � 1 +
c1q � c2q2/2, then the surrogate operation, by design, preserves
s(2). In other words,

�1þ 2cR
1 � 2cR

2 ¼ sRð2Þ ¼ sSð2Þ ¼ �1þ 2cS
1 � 2cS

2; ð14Þ

where the superscript R denotes the original rainfall and S the sur-
rogates. Removing the �1 (�Df) and cancelling the factor of 2, we
see cR

1 � cR
2 ¼ cS

1 � cS
2.

In our case, the c1 of rainfall is 0.69 from the slope of the first
order cumulant (Fig. 4a). If we assume that cS

2 tends to 0, we would
predict that the slope of the first order cumulant of the surrogates
should be cS

1 ¼ cR
1 � cR

2, or 0.69 � 0.26 = 0.43 in our case. If we take
the mean cS

2 of the surrogates as 0.06 (see Fig. 5), we get instead
cS

1 ¼ 0:43þ 0:06 ¼ 0:49 (following Eq. (14)). Direct fitting of the
slopes of the first order cumulant gives cS

1 ¼ 0:51� 0:03, closely
matching either of these estimates.

Thus the cumulant analysis shows that the surrogates are much
closer to monofractal (lower c2) than the original rainfall series,
and that the c1 is reduced to compensate for this and maintain
the original s(2) value (and slope of the preserved power spec-
trum). To reiterate, the c2 value of rainfall being significantly higher
than the maximum c2 of the 100-surrogate ensemble indicates that
the rainfall time series is not generated by an underlying linear

Fig. 3. s(q) curve for rain (	) and surrogates (*). The estimates for the surrogates are
the average value for 100 realizations. Error bars represent the 5% and 95% levels for
the surrogate series.

Fig. 4. Cumulants of the rainfall intensity and of surrogates. Plots (a), (b) and (c), show the first, second and third cumulants respectively, for the rainfall (	) and surrogates
(w). The estimates for the surrogates are the average value for 100 realizations. The vertical lines indicate the scaling range over which parameter estimation was performed.
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Gaussian process, but has an inherently nonlinear structure. Final-
ly, we will see that the two-point magnitude correlation confirms
this result.

5.3. Two point magnitude correlation

The two-point magnitude correlation analysis described in Sec-
tion 4.3 was performed on the rainfall and surrogate time series,
and the resulting magnitude correlation functions Cða;DtÞ are
shown in Fig. 6 as a function of the logarithm of the displacement
Dt. Once again there is a clear difference between the rainfall series
that shows a very gradual decay of the correlation, i.e. a long range
dependence in the magnitude coefficients, with a slope of �0.26 in
the scaling range. Recall that Arneodo et al. [2,3] show that a mul-
tifractal cascade process on a wavelet dyadic tree leads to a slope of
Cða;DtÞ that is given by �c2 (Eq. (12)), which is the same c2 esti-
mated by the cumulant analysis. So therefore this slope of �0.26,
is consistent with the c2 that was estimated in the previous section
from scaling of the second order cumulant. Note that before we use
this correspondence as an argument that the underlying genera-

tion process is consistent with a multiplicative cascade, we should
check the magnitude correlation of the surrogates, to ensure that
this long-range dependencies could not have, by chance, been gen-
erated by an underlying linear process. Observing Fig. 6 however
shows that the correlations in the magnitude of the surrogates,
are in general much lower than those of the rainfall, and on aver-
age have a slope in the scaling range of just �0.06. Once again the
comparison between the properties of the rainfall and its surro-
gates indicate that the rainfall series have an underlying structure
which significantly differs from the linear structure of the
surrogates.

6. Discussion and conclusion

The question as to what models give rise to statistics which are
consistent with the rich multiscaling structure of temporal and
spatial rainfall observations, is a long debated one. Although it is
understood that there might not exist a unique model which
reproduces the statistics of the observed data, it is still of interest
to at least be able to infer some of the basic characteristics re-
quired for a model to match the observations, such as determinis-
tic vs. stochastic and linear vs. nonlinear dynamics. This paper
focuses on whether a distinction can be made between the rainfall
series generated by a linear stochastic process subjected to an
invertible nonlinear transformation, and a rainfall series generated
by an inherently nonlinear process, such as a multiplicative
cascade.

Our study was partially motivated by the previous work of
Ferraris et al. [14], which reported that multifractal cascades or
other nonlinear stochastic processes might not be necessary to
reproduce the observed spatial rainfall statistics, and that a nonlin-
ear filtering of a linear autoregressive process suffices. In this paper
we report distinct differences between the statistical properties of
temporal rainfall and a nonlinearly filtered linear process (exoge-
nous nonlinearity), while we report similarities between rainfall
and a multiplicative cascade process (inherent nonlinearity). We
attribute our ability to depict differences between linear and non-
linear structures, to the more powerful testing methodology we
employ, based on magnitude cumulant analysis instead of method
of moments. The magnitude cumulant analysis offers two main
advantages: firstly it avoids the use of higher order moments,
known to suffer from statistical convergence problems when esti-
mated from small samples and also to exhibit a theoretically
degenerate behavior – called a linearization effect – in known
models such as both purely multiplicative cascades (e.g. [21])
and fractionally integrated cascades (e.g. [32]). Secondly, the mag-
nitude cumulant analysis parameterizes the multiscaling in a few
parameters (c1 and c2 here) and makes statistical inference easier
(see also [6]). In addition, we employ a two-point correlation anal-
ysis which adds significantly to the ability to clearly depict differ-
ences in the linear and nonlinear dynamics. By way of comparison,
we demonstrated that using only the scaling exponents directly
estimated from the statistical moments of the fluctuations, it was
impossible to reject the inherent linearity hypothesis for temporal
rainfall data, just as was concluded for spatial data by Ferraris et al.
[14].

As a concluding remark, we can note that determining the con-
sistency of the data series with a linear (or nonlinear) underlying
structure could serve as a model diagnostic for stochastic simula-
tion or downscaling models of rainfall (e.g. [12,30]). For example,
the results in this paper would indicate that for high resolution
temporal rainfall the statistical structure (on the order of minutes
to hours) would not be well reproduced by a linear model, subject
to any invertible transformation. Rather, an inherently nonlinear
model structure would be necessary.

Fig. 6. Two point magnitude correlation Cða;DtÞ vs. ln(Dt) for the rainfall series
(solid line) and its surrogates (dashed curve) computed at scale a ’ 40 s.

Fig. 5. Histogram of c2 values estimated from the magnitude cumulant analysis of
100 surrogate data series.
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