A MULTICOMPONENT SELF-SIMILAR
CHARACTERIZATION OF RAINFALL FLUCTUATIONS*

PRAVEEN KUMAR! AND EFI FOUFOULA-GEORGIOU!

Abstract. Issues of scaling characteristics in spatial rainfall have attracted increas-
ing attention over the last decade. Several models based on simple/multi scaling and
imﬂtifractal ideas have been put forth and parameter estimation techniques developed
for the hypothesized models. Simulatior}s based on these models have realistic resem-
plence to “generic rainfall fields”. In this research we analyze rainfall data for scaling
characteristics without an a priori assumed model. We look at the behavior of rainfall
fuctuations obtained at several scales, via orthogonal wavelet transform of the data, to
infer the precise nature of scaling exhibited by spatial rainfall. The essential idea be-
hind the analysis is to segregate large scale (long wavelength) features from small scale
features and study them independently of each other. The hypothesis is set forward
that rainfall might exhibit scaling in small scale fluctuations, if at all, and at large scale
this behavior will break down to accomodate the effects of external factors affecting the
particular rain producing mechanism. The validity of this hypothesis is examined. In
addition we define and estimate parameters that characterize the spatial dependence of
the rainfall fluctuations and we use these parameters, estimated for several frames (in
time), to relate to and identify the evolutionary nature of rainfall. These parameters
and the type of scaling show significant variation from one rainfall field to another.

1. Introduction. A characteristic feature of precipitation is its ex-
treme variability over time intervals of minutes to years and in space range
of a few to thousands of square kilometers. One of the major challenges
of hydrologists, meteorologists, and climatologists is to measure, model
and predict the nature of this variability over different scales. Recent re-
search (e.g. Lovejoy and Schertzer, 1990; Gupta and Waymire, 1990; and
references therein) has indicated the exciting possibility that rainfall may
exhibit scaling/multiscaling characteristics. The presence of such a hid-
den structure in the highly irregular patterns of rainfall at different spatial
scales promises improved understanding of the precipitation process and
new approaches to efficient modeling; measurement and prediction.

Early on, empirical study of contours of rain intensities (Lovejoy, 1982)
and probability distribution functions of rain rates (Lovejoy and Mandel-
brot, 1985) suggested scaling in rainfall. Later, it was argued by Kedem
and Chiu (1987) that, since rainfall is an intermittent positive process giv-
ing rise to a mixed distribution with an “atom at zero”, it could not be
self-similar or simple scaling at least to the extent that a single parameter
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would not be sufficient to characterize this proéess. Lovej
(1989) argued that although the rainfall intensities suffer this limitatig,
the rainfall fluctuations do not and could be modeled as self-similar pl‘Ocess.’
They, however, did not empirically study the rainfall fluctuations for scaliy,
characteristics but rather, using analogy from turbulence which is also an
intermittent process, concentrated on further developing their multifracty)
models of rain (Lovejoy and Schertzer, 1987). Gupta and Waymire (1999
studied the moments of marginal distribution function of rainfall
conditioned on being positive and reported deviations from simple
They proceeded with the development of a multiscaling theory of

pro Cesg
scaling,
rain.

S(®)

F1G. 1.1. Schematic showing departure from power law at low frequencies in the spec-
trum of a physical process. The dotted line indicates the region of departure.

In this research the hypothesis is set forward that rainfall can be de-
composed in a large scale component representing the mean behavior of
the process, and small scale fluctuations which exhibit self-similarity. The
motivation for our hypothesis is based on physical arguments and empir-
ical evidence. Theoretically, self-similarity implies infinite variance which
results from the spectrum S (w) — 0o as w — 0. This is physically unre-
alizable since all physical processes have finite energy. This results in the
spectrum deviating from powerlaw behavior at very low frequencies (see
Figure 1.1). Thus, in nature it is the fluctuations (deviations from a large
scale mean component) that may exhibit self-similarity, if at all. In the
context of rainfall, the very low frequencies in the spatial rain-intensity
spectrum can be seen to be representing the morphological organization or
the large scale forcing specific to that rain producing mechanism (for ex-
ample effects of fronts in a squall line). When this effect is subtracted, the
deviations which result from the local effects may obey some universality
condition like self-similarity. It might also be that we can attribute low

oy and Schertgg,
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ency componénts to a deterministic process that should be eliminated
fred” any stochastic consideration is taken into account. The spectrum
belor® intensities do indeed show such regimes (see Figure 1.2). In all of
ob v vious research, such a consideration of segregating large scale from
the ﬁr:cale behavior, has not been taken into account for the purpose of
smal is and inference of rainfall process. Our research is an effort ‘.nowards
e >:1Sirection and develops a framework for segregating rainfall in large
thlj small scale features and studying small scale features (fluctuations) for
an

Self-similarity.

cfs through spectrum of squall line storm
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Fic. 1.2. Horizontal and vertical cross sections through the two dimensional specirum
of a spatial rainfall field.

The basic requirements from any methodology designed for ‘s1.1ch a pu;—
pose are: (i) data windowing capa‘t?ility so that non—hqmgger;mtwssai oﬁ
localized; (ii) adjustable window size so tha'if.no a priori informatio |
the size of these features is required; and (iii) consistency across scales,
ie., features extracted at a certain scale directly from the data, or through
an intermediate scale, should be the same. The I‘nethodology }Dased on
orthogonal wavelets discussed here elegantly embodies ‘th.ese r.equlrements.
The multiscale segregation achieved is such that statistics hk.e.the mean
and correlation function of the component processes are additive. Also,
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the orthogonality of scale function and wavelets provide some additionaﬁf

optimality properties of multiscale discretization of the process or its fly,, -
tuations without any redundancy or loss of information. These propel‘tieé
are particularly attractive for the statistical analysis and inference of t},
rainfall process under study.

In addition to segregation of features of different scales, our research ¢y,
plicitly addresses the following issues which are other distinct advantages o
the proposed method of analysis: (1) it can incorporate anisotropy and iy,
homogeneity and (ii) we study the evolutionary behavior of the storm. Qy,
main interest is in analyzing and eventually modeling particular stormg
e.g., a squall line or a convective storm, and not a “generic storm” dg,
rived from “averaging” over many realizations often obtained by inVOking
the assumption of stationarity over time and space. Thus, being able t,
account for anisotropy and non-homogeneity and identify how they cha;.
acterize the features of the rainfall process at hand is an essential elemept
of our analysis. :

This paper is structured as follows. In section 2 we briefly reviey
the theory of wavelet multiresolution framework. Section 3 describes ap
optimal multiscale discretization of stochastic processes which forms the
basis on which the analysis and interpretation of rainfall data is baseq,
Section 4 defines the notion of multicomponent scaling which is used for
analyzing rainfall data. The details of analysis and results from applying
the developed methodology to a squall line storm are described in section

5.

9. Wavelet multiresolution framework: review. Our methodol-
ogy for analysis of rainfall fluctuations is based on wavelet multiresolution
framework (see Mallat, 1989, and Daubechies, 1992). Wavelet multiresolu-
tion framework of the Hilbert space of square integrable functions L%(R)
consists of a sequence of closed subspaces {Vin},,c7 of L%(R) (Z denotes
the set of integers and R the real line) which satisfy the following proper-
ties: ,

M1 Vi, C Vinp1 Vm € Z, i.e., a space corresponding to some

resolution contains all the information about the space at
lower resolution. o

M2 UZ__ . Vi is dense in L*(R) and NZ__ooVim = {0}, ie.,

as the resolution increases the approximated function con-
verges to the original function, and as the resolution de-
creases the approximated function contains less and less
information.

M3 f(t) € Vi iff f(2t) € V41 Vm EZ, ie, all spaces are

scaled versions of one space. It is this property that leads
to the multiresolution framework.

M4 f(t) € Vi, implies f(t—3) € Vm VkEZ,ie, the
space is invariant with respect to “integer translations” of
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a function.

In the interpretation of multiresolution framework, the projections of a
function f(t) on the subspaces V;, are viewed as successive approximations
of f(t) at finer and finer resolutions as m increases. The representation
of functions in these subspaces V;, are obtained through an orthogonal
projection by constructing an orthonormal basis for these subspaces. It is

ossible to construct a function ¢(t) in V;, called the scale function, sat-
isfying f #(t) dt = 1 and having compact support, such that {p(t— n)},
;s an orthonormal basis of Vo. Let Og be the orthogonal complement or%EVZO
Vi, le,

(21) Vi=Vo®0g

It is possible to construct a function (), based on ¢(t), such that {y(¢ —
M)}z 18 a0 orthonormal basis of Op. The function ¢(¢) is orthogonal
{o its integer translates, and (t) is orthogonal to its integer translates
and dyadic dilates. The function ¢(t) is such that {2™/2¢(2™¢ — n)}
constitute an orthonormal basis of V;,,. Using the recursive deﬁnitiogeozf
equation (2.1) along with property M1 and the orthogonality of 1(¢) with
its integer translates and dyadic dilates, it can be shown that the dilates on
the dyadic sequence and translates on integers of 1(t), i.e., {2™/2¢(2™¢ —
W} neZ? form an orthonormal basis of L%(R). The function () is
called an orthogonal wavelet and satisfies [ 1(¢) dt = 0 although higher
order moments, i.e., [t¥3(t) dt for k = 0,..., N — 1, may also be zero.

The approximation of a function f(t) € L?(R) at a resolution m, i.e.
2™ sample points per unit length, is given by the orthogonal projecti;n o%
f(t) on Vin. Let Pp, represent this projection operator, i.e.,

(2.2) f@t) € L*(R) = Pnf(t) € Vm C L*(R)

Using the basis functions ¢(t) and 9(¢) as described above, we can obtain

23) Pnf(t)=2"" i (f, émn)dmn (t)

n=—o00

Wﬁl_erg ¢mn(t) = 2™¢(2™t — n) and (f,g) denotes the inner product in
L*(R) defined for 1"eal functions as [ f(t)g(t)dt. Let @, f(t) represent
the orthogonal projection of f(¢) onto O,. Then we can obtain,

[e.e]
(2.4) Qmf@) =2 D" (f,%mn)¥mn(t) .
n=—00
where 1, () = 2™ (2™t — n).
func};{l rnultiresoluit,ion approximation, the values of the samples of the
- ion at. resolution m are e.xactly the inner products of f(t) with the
cale function ¢mn(t) for various values of n. The wavelet coefficients
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are used to express the additional details needed to go from one resol,.
tion to the next finer resolution level. Therefore, the set of inner productg
PR f =A{(f,émn)},c7 gives the discrete approximation of f(t) (or sampleq
f(t)) at resolution m and the wavelet coefficients Q%, f = {(f, ¢mn)}n Z
give the discrete detail approximation of f(2) (or difference in informatioy
between different resolutions). In other words we need to add the inform,_
tion contained in QZ, f to PZf to go from resolution level m to the neyy

higher resolution level m+ 1. For this reason, @, f(t) is also referred to ag

the detail function.

For two dimensional multiresolution approximation we consider the
function f(t1,ts) € L*(R*). A multiresolution approximation of L*(R?)
is a sequence of subspaces which satisfy the two dimensional extension of
properties M1 through M5 enumerated above for the one dimensional my]-
tiresolution approximation. We again denote such a sequence of subspaceg
of L2(R?) by (Vin),nez- The approximation of the function f(t1,%2) at the
resolution m, i.e., 2™ samples per unit area, is the orthogonal projection
on the vector space V.

A two dimensional multiresolution approximation is called separable
if each vector space V;, can be decomposed as a tensor product of two
identical subspaces V,} of L%(R), i.e., the representation is computed by
filtering the signal with a low pass filter of the form ®(#1,12) = é(t1)é(t,).

For a separable multiresolution approximation of L2(R2),

(2.5) Vm = VieVl}

where ® represents a tensor product. It, therefore, follows (by expanding
Vms1 as in 2.5 and using property M1) that the orthogonal complement
Oy, of Vi in Vipp1 consists of the direct sum of three subspaces, i.e.,

(2.6) Om = (Vn ® 03,) © (0, ® V) © (0, ® Or).
The orthonormal basis for V;,, is then given by ‘
@Byt — 27,y — 27E)) 72

2.7
( ) = (2—m(}5m(t1 — 2“mn)¢m(t2 — 2_mk))(ﬁ,kjezg'
Analogous to the one dimensional case, the detail function at the resolution
m is equal to the orthogonal projection of the function on to the space Om
which is the orthogonal complement of V,,, in Vj,41. An orthonormal basis
for Oy, can be built based on Theorem 4 in Mallat (1989, pg. 683) who
shows that if 3(t;) is the one dimensional wavelet associated with the
scaling function @(Z1), then, the three “wavelets” Wl(t;,15) = ¢(t1)¥(t2)
U2(t1,12) = ¥(t1)p(t2) and ¥3(21,t2) = ¥(t1)e(t2) are such that

{(\I’}nnk’ q’rznnk’ ‘I!::nnk)(n’k)ez2}
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is an orthonormal basis for O,, and

{(‘Il}nnk’ ‘I”z'mk’ \I’?n"k)(m,n,k)ezs}
s an orthonormal basis of L?(R?), where ! = = 2-™Wi (t; —2~™n,t,—
)

The discrete approximation of the function f(¢1,%5) at a resolution m
is obtained through the inner products

(2.8) P,if = {(f, ‘}mnk)(n,k)ez2} = {(f, ¢mn¢mk)(n7k)ezz}

The discrete detail approximation of the function is obtained by the inner
product of f(t1,t2) with each of the vectors of the orthonormal basis of
Om. This is thus given by

mf = A Yhnk) uyezeh
(29) Q;i:f = {(f: ‘Ilrznnk)(n’k)ezzL
fr:f = {(f7 q’?nnk)(n,k)ez2}'

The corresponding continuous approximation will be denoted by Q2 f(t),
Q2 f(t) and Q3 f(t), respectively. For the implementation to discrete data
see Mallat (1989).

The decomposition of O, into the sum of three subspaces (see equation
(2.6)) gives the behavior of spatially oriented frequency channels. Assume
that we have a discrete process at some resolution m + 1 whose frequency
domain is shown in Figure 2.1 as the domain of Pa +1f. When the same
process is reduced to resolution m, its frequency domain shrinks to that
of P4 f. The information lost can be divided into three components as
shown in Figure 2.1: vertical high frequencies (high horizontal correlation),
horizontal high frequencies (high vertical correlation) and high frequencies
in both direction (high vertical and horizontal correlations, for example,
features like corners). These components are captured as Qg; 7, Qf: f and
Qg: f respectively. We will use this property to characterize the directional
behavior of rainfall.

3. Multiscale discretization of mean and fluctuations of a sto-
chastic process. We now argue that the inner product of a stochastic
process with scale functions and wavelets may be regarded as optimal dis-
cretizations (in a sense described below) of mean and fluctuations of the
process. From the theory of multiresolution decomposition it can be seen
that, for a stochastic process X(t), the discrete values {(X, $mn)}, ez Ob-
tained as (X, ¢mn) = [ X(¢)$mn (t) dt constitute an optimal discretization
of X(t) at the resolution m in the least squares sense if the realization
of X(t) is regarded as a function in L?(R). However, in a probabilistic
framework, the multiresolution framework provides additional, significant,
non-trivial extensions as can be seen from the following three properties.
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F1G. 2.1. Frequency support of wavelets in two dimensional multiresolution decompos;.
tion.

P1 There is no redundancy in the discretization at any res-
olution since the integration kernels are linearly indepen-
dent of their translates, or in other words the finite dimen-
sional joint distribution function of the random variables
X ={(X,émn,),---,(X,émn,)} is non-degenerate. That
is, there exists no subspace of dimension ¥’ < v such that
Jpv Pn(@’) de’ = [R» pm(z) dz, where 2’ € R”, z € R”.
P2 The discretization at any resolution m is “maximal” as
the translates of the integration kernel span the complete
space Vp,, i.e., the joint distribution function of any finite
subset of random variables from the infinite set {X, =
(X, #mn)}, 7 of random variables is unique. -
P3 The above properties hold for all dyadic scales (resolu-
tions), thus providing elegant discretizations at a hierarchy
of scales. This property makes multiresolution framework
very attractive for multiscale studies.
Since ¢y is an averaging function, by virtue of the above properties, the
inner products of the process with the scale functions may be regarded as
the discretizations of the mean process at the scale 2—™
While the representation of the process from one resolution to a lower
one is obtained via the scale function, the information lost during this
transformation is preserved as the sequence (wavelet coefficients) Q4, X =
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e Ymn)} neZs OF equivalently the detail function Q,, X (t). Alternatively,
these coefficients can be also viewed as discretization of fluctuations of X ().
By choosing the wavelet 1),,,,,(t) as the integration kernel we see that the
discretization we obtain is optimal in the same sense as discussed above
put with the space under consideration being O,,. The wavelet coefficients
can be regarded as discretization of the fluctuations of X(t) in the sense
that these values give the deviation of the process from its local mean. If
X(t) is a process with stationary increments of order N, then by choosing
an orthogonal wavelet with N vanishing moments, denoted as ntbmn (using
the terminology of Daubechies (1988)), we obtain a stationary sequence
of wavelet coefficients Q3 X = {(X, Nhyn)} (see Kumar and Foufoula-
Georgiou, (1992a)). This sequence, therefore, represents an optimal dis-
cretization of the fluctuations of X(t) at the scale 2=™. Thus, wavelet
transforms provide a way to study non-stationary stochastic processes. In
addition, the above results are valid for all dyadic scales 2—™ (m € Z)
which makes wavelets attractive for multiscale study of non-homogeneous
processes.

4. Multicomponent self-similarity. In general a non-homogeneous
process can be made tractable by decomposing it into simpler compo-
nent processes in a variety of ways (see Vanmarcke 1983, pg. 224). We
choose to decompose the process into mean and fluctuations, i.e., X (t) =
X(t)+X'(t), for its physical significance of capturing large and small scale
behavior of the process. We approximate the mean, X (t), and fluctua-
tions, X'(t), at some resolution myg using scale functions and wavelets as
X(t) % Xmo(t) and X'(t) =3 o, X} (t) where
(4.1) 7m(t) = Z(X, ank)q)mnk(t)

n,k

and the fluctuation field at resolution m is composed of three components
(42) Xrln(t) = Z(X’ \I’rlnnk)ql;lnnk(t) + Z(X: \I’fnnk)‘l,rznnk(t)
n,k n,k

+ Z(X’ ‘I’?nnk)‘llg’mk(t)
n,k
X1, (6) + X5 1 () + X3 1 (8)-
where X (t) is used to denote the component {Qi X (¢)} of the wavelet
decomposition. Therefore,

(4.3)

Il

(.4) X)) = 3 (X () + X n(t) + X5, (6))
m>mg
(45) = XI() + X3(t) + X5(8).

Il‘he scale 27™° (or resolution mg) will be determined from physical con-
siderations, as the largest scale upto which rainfall fluctuations exhibit
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self-similarity.
The advantages of the above approximation are enumerated below,

1. The mean field X,,(t) represents the large scale behavior of the
process. No assumption about the homogeneity of the mean fielq is
required since the representation (4.1) is constructed using trapg.
formation that is local.

2. The fluctuation field at some resolution m, X7, (t), itself consistg
of three components giving the directional information about the
storm. We will assume that each of these three fields are homg.
geneous. Since the fluctuation components are extracted using
independent spatially oriented frequency channels they are uncor.
related (see Yaglom, 1987, eq. 2.205) and the covariance R (t, )
of X/ (t) itself can be written as the sum of the covariances of
these three components, i.e.,

(4.6) Ry, (t,8) = Ry n(t,8) + Ry ;(t,8) + B3 (£, 5)
and
(4.7) R(t,s) = Y (Byu(t,s)+ Ry pu(t,8) + Ry y(t,8))
m>mo ' ’
(4.8) = Ry(t,s) + Ry(t,s) + Ry(t,s)

We conjecture that the external factors governing the storm mostly
influence the large scale behavior (or the mean field) and the small
scale behavior (or fluctuation field) is relatively independent of this
influence. We hypothesise that X’(t) may be scaling in the sense

that
(4.9) {xie)} 2 DEX(),
(4.10) (X500 £ (X)),
(4.11) (X08)) 2

{XFX35(t)}-

where the above equalities are in terms of the joint distribution
of the discretizations of the corresponding fluctuation processes.
The scaling exponents Hi, Hy, and Hs need not be the same. We
regard Xy, ., as the discretization of X; at various resolutions
m (or equivalently at different scales 27™) and analogously for
the other components Xj, ,,, and X3 ... We call such a scaling
behavior as multicomponent scaling. We perform multiscale
analysis on each of these components to establish the precise nature
of their scaling properties.

5. Application to rainfall fields. Mathematically self-similar pro-
cesses are defined as processes whose finite dimensional joint distribution
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function satisfies equation (see Lamperti, 1962)

PrO-HX(Mt) < 21,..., A"HX (M) < )
(5:1) = Pr(X(t1) < z1,..., X(tn) < ©n).

which is also written as

(5.2) {X(M0)} £ X (1)}

By nature of the transformation involved, the n dimensional multivariate
joint probability distribution function, p(z;t), £, € R”, of the random
vector X = {X(t1),- -+, X(¢,)}, necessarily satisfies

HeR, deRt

(5.3) p(z;2) = M p(\z; xt)
The marginal distribution function satisfies
(5.4) p(z;t) = M p(\Hz; At).

The notation p(z;t) indicates that the distribution function of X is spec-
ified by parameters that depend on . The above condition (5.3) can be
translated into a requirement for the characteristic function of the multi-
dimensional distribution, p(£;1) as

(5.5) p(&:1) = p(A 7 M)
or, equivalently for the characteristic function of the marginal distribution
(5.6) p(€;8) = p(A~HE; At).

In general, the probability distributions p(z;t) satisfying (5.3) are de-
scribed by stable distributions, Gaussian being the limiting case of these
distributions having finite variance. The rainfall fluctuations are found to
have a symmetric distribution and hence we will be concerned with sym-
metric stable distributions. In general, the marginal characteristic function
of a symmetric stable distribution is given by (see Stuart and Ord, 1987)

(5.7) p(&;t) = exp(—|e(t)é|*)

where « is called the characteristic exponent and ¢ as the scale parameter.
For it to be self-similar, i.e., satisfy equation (5.5), we.need to have

(5.8) c(At) = X (1)
or equivalently

(5.9) logc(A) = HlogA + logc(1).
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For estimation of the parameters o and ¢ at any given scale ) see Kums,
and Foufoula-Georgiou (1992b). ‘

To find if the fluctuations of the rainfall process scale in the Sense
of equation (4.9-4.11) we study the marginal distribution function of the
discretizations of the component processes {Xj; ,,, }i=1,2,3 at different Scaleg
27™. The data used is a severe squall line storm which occurred oye,
Norman, Oklahoma on May 27, 1987. The rainfall intensity values at
ground level for this storm are available at temporal integration scale of 10
minutes (for a period of 7 hours beginning with the mature stage of the
core of the squall line), for 360 azimuths, with every azimuth containing
115 estimates for a range of 230 kilometers (i.e., data at every 2 km by 1
degree). The steps involved in the analysis are summarized below:

1. Check if the discretizations of rainfall fluctuations X, ., at each
resolution m obey a stable law or can be approximated by one
i.e., estimate parameters @ and ¢. Table 5.1 gives the estimates 0%
« and c for each of the three components at various resolutions for
the first frame of the dataset.

2. Check the goodness of fit of the stable distribution. Having es-
timated the parameters of the stable distribution, the theoretica]
and empirical cdf is plotted for each component at each scale to test
the goodness of fit. (See Figure 5.1 for such a fit at one resolution;
fit at other resolutions are similar.) The empirical cdf was obtained
using Weibull plotting positions. The theoretical cdfs for various o
and c¢ values were estimated by the methodology described in Holt
and Crow (1973). "

3. If the rainfall fluctuations can be described by a stable law, test to
see if they exhibit scaling, i.e., satisfy equation (5.9). If the rainfall
fluctuations are not self-similar at all scales, determine the critical
resolution mg up to which scaling is observed and estimate H using
equation 5.9 (see Figure 5.2). The resolution mg is determined
from the point of departure from linearity in the log-log plot of the
scale parameter ¢ with scale A. The point of departure is found to
correspond to a scale of approximately 30 x 30 km and this result
is consistent across several frames. The slope of the graph up to
scale 27™¢ gives the estimate of the parameter H (see Table 5.1).

4. Study the evolutionary behavior of the storm by studying the
changes in {a;}i=1,2,3 and {H;}i=1,3 across frames. Under our
hypothesis the characteristic exponent {e;} for the marginal dis-
tribution of {X éi’m}izlg’s is expected to be the same for all res-
olutions m. However, variations were observed in the estimated
values of @. To study the evolutionary structure of the storm, @;
and H; were plotted for various frames for all datasets (see Figure
5.3). The results for the 10 frames shown in the figure are at every
10 minutes starting from the peak of the core of the storm, i.e.,
they correspond to the dissipative phase of the core. As is evident
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FiG. 5.1. Empirical (solid lines) and theoretical (dotted lines) cumulative distribution
functions for the three components di, d2 and d3 of frame 1 the squall line storm.

The figure also shows the difference between the empirical and theoretical cumulative
distribution functions for all components.

from the figure, low « values (or large fluctuations) are observed
when the core is still intense, and the « values decrease as the
storm dissipates. The nature of dependence as indicated by H is

very persistent across several frames.
The results of this study indicate that multicomponent self-similar
models are viable models for describing the behavior of rainfall fluctuations
for scales upto 30 kms. Alternate identification techniques using probabil-

ity weighted moments have also corroborated this conclusion (see Kumar
et al., 1992).
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Fi1G. 5.2. Log-log plot of scale parameter with respect to scale for frame 1 of the squall
line storm. The solid line is for component d1, dotted line for d2, and dot-dashed line
for d3. The regression lines obtained using five levels of decomposition are also indicated

in the figure.

TABLE 5.1

Estimates of o and c for the squall line storm at various levels of decomposition. The
table also gives the mean @ and H estimated using the first five levels of decomposition,
The correlation coefficient, 7, for the estimation of H is also indicated.

Frame 1 (11:52am to 12:02pm)
component Grid o c [ H T

dl 256 x 256 | 1.479 0.134
128 x 128 | 1.376 0.211
64 x 64 | 1.378 0.320
32 x 32 | 1.561 0.454

16 x 16 | 1.620 0.516 1.483 0.501 0.983
8 x 8 1.981 0.460
d2 2566 x 256 | 1.297 0.155
128 x 128 | 1.189 0.238
64 x 64 | 1.062 0.348
32 x 32 | 1.048 0.409

16 x 16 | 1.514 0.643 1.222 0.488 0.991
8 x 8 1.480 0.746
d3 256 x 2566 | 1.696 0.032
128 x 128 | 1.668 0.091
64 x 64 | 1.546 0.178
32 x 32 | 1456 0.270

16 x 16 | 1.506 0.380 1.575 0.866 0.974
8 x 8 1.892 0.393
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H and o obtained using 5 scales for Squall Line storm
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ESTIMATION OF KINETIC RATE COEFFICIENTS FOR
2,4-D BIODEGRADATION DURING TRANSPORT IN SOIL
COLUMNS

R.S. MAIER*, W.J. MAIER!, B. MOHAMMADI}, R. ESTRELLA} |
M.L. BRUSSEAU® , AND R.M. MILLERS

Abstract. The Monod model is used increasingly to simulate the kinetics of
biodegradation in soil environments with distinctly different hydraulic properties than
the well-mixed batch reactor environments for which the model is known to be appropri-
ate [17 ,19,20]. This paper investigates the use of a transport model with Monod kinetics
to describe the fate of 2,4-D in soil columns. The research includes development of a
mathematical model for the biodegradation of 2,4-D in the presence of an acclimated
biological population and an optimization model to calibrate results of the mathemat-
ical model with experimental observations. The model is applied to experimental data
from two independent soil column experiments to qualify the generality of the numeri-
cal results. Fitted kinetic parameters are compared with well-mixed batch reactor test
data and goodness of fit is compared with a linear model of transport with first-order
substrate decay. The fitted model is used to discuss strategies to minimize transport of
2,4-D into lower soil horizons and groundwater.

1. Introduction. Groundwater pollution is a potential result of pes-
ticide usage. A potential mitigating factor is that soils may contain mi-
croorganism populations capable of biodegrading particular pesticides. The
purpose of this paper is to examine the particular case of 2,4-dichlorophen-
oxyacetate (2,4-D), a widely-used herbicide known to be biodegradable,
and to obtain quantitative descriptions of the potential for biodegradation
in soil environments.

The natural purification capacity of soils is driven by the accumulation
of natural organic matter and associated microbes that flourish in the upper
soil horizons. The lower horizon soils typically have progressively lower
organic contents and very low microbial populations. It is conjectured that
2,4-D removal requires biodegradation in the upper horizons otherwise it
will percolate downward into the groundwater. An important question is
whether and under what conditions microbial degradation can be relied on
to remove 2,4-D and prevent groundwater pollution. A related question
is whether removal is complete or whether potentially toxic intermediate
products are transported into groundwater.

Aerobic biodegradation of 2,4-D has been observed for a variety of
pure and mixed bacterial cultures derived from soils. Metabolic pathways
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