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Abstract: A method for simulating field scale transport of kinetically adsorbing solutes is described. The
non-equilibrium adsorption is modeled as a birth and death process and is coupled with the particle tracking
approach using the first two moments of the distribution of the particle residence time, i.e., the time that a
solute particle stays in the liquid phase. A single residence time distribution, regardless of the initial and
final phase, is demonstrated to yield an accurate description of chemical kinetics in the vast majority of
field scale problems. The first two moments of the residence time distribution are derived as a function of
chemical reaction rates and the transport time interval Ar. Tt is shown that the first moment of the residence
time represents a measure of the speed of the chemical reaction relative to the transport time scale At which
is chosen depending on the velocity field. The second moment of the residence time reflects the relative
importance of the chemical kinetics versus local equilibrium conditions for the given transport time step At.
The simulated spatial moments of the contaminant plume are compared in the one-dimensional case with
available analytical solutions to demonstrate the accuracy of the proposed technique. A two-dimensional
case for stratified formations is presented to study the transport behavior for heterogeneous velocity fields
and variable distribution coefficient. hypothesized as being negatively correlated with hydraulic conduc-
tivity. The results show that the enhanced plume spreading and the statistics of the arrival time distribution
appear to be more sensitive to the spatially variable distribution coefficient than to the kinetics alone. In
fact, the second spatial moment was almost doubled in the case of spatially variable distribution coefficient.
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1 Introduction

Pollutant fate and transport in natural aquifers is highly dependent on the physical, chem-
ical, and biological processes governing solute transport. A solute partitioning between
solid and liquid phase, such as a surface-chemical reaction, is one of the most important
processes influencing the fate of many organic pollutants whose transport is generally
retarded by the presence of such a sorption mechanism. The local equilibrium assumption
(LEA) has been widely used to date to describe chemical reactions between moving fluid
and active sorption sites when these reactions are much faster than the fluid flow rate.
Several recent investigations (e.g. Jennings and Kirkner, 1984; Valocchi, 1985; Bahr and
Rubin, 1987) reported the conditions for which LEA is applicable. Other studies (e.g.
Miller and Weber, 1986; Hutzler et al., 1986; Bouchard et al., 1988; Roberts, et al., 1986)
have observed the deviations from local equilibrium in the spreading and tailing of break-
through curves in laboratory experiments. Non-equilibrium phenomena or rate limited
sorption models have been examined extensively in laboratory experiments for homo-
geneous soil columns focusing on the kinetic non-equilibrium (e.g., the chemical will be
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adsorbed slowly) and/or physical non-equilibrium (van Genuchten and Wierenga, 1976;
Nkedi-Kizza et al., 1984) which describes the physical resistances encountered by a
chemical trying to reach the sorption sites of the porous medium during its movement
through the soil.

We adopt in this paper the scale description of porous media as laboratory or pore
scale, local or formation scale, and regional scale (Dagan, 1986). The local scale refers to
the scale of the aquifer (depositional unit). The regional scale usually refers to cases
where the areal dimension is much larger then the aquifer thickness. Most of the local
and regional scale problems can be described as field scale problems and this term will
be used throughout this paper. The degree of spatial variability of the hydraulic conduc-
tivity is measured by the heterogeneity scale defined as the distance over which e. g., the
core plug values of hydraulic conductivity are still correlated (order of several meters).
The heterogeneity of hydrogeological parameters (hydraulic conductivity, porosity) in
field scale problems causes the spatial variability in the flow field. The dispersion which
results from the spatial variation of the velocity field has been named macrodispersion
(Gelhar and Axness, 1983; Dagan, 1986) to distinguish it from the pore-scale dispersion.
Therefore the overall plume spreading of reactive solutes in the field scale comes from a
combination of spreading due to heterogeneity in the velocity field and to the possible
non-equilibrium processes which.may also exhibit spatial heterogeneity. As a conse-
quence of the heterogeneity in the hydrogeology and possible heterogeneity in the chemi-
cal reactions the modeled concentration point value is highly erratic and for practical pur-
poses sometimes meaningless. For that reason the spatial characteristics of the moving
plume i.e., the spatial and/or temporal moments are more informative tools for analyzing
the reactive transport and will be employed in this study.

In order to study coupled phenomena of non-equilibrium chemistry and transport at
the field scale the employed numerical technique neéds to posses negligible numerical
dispersion and be computationally efficient for three dimensional applications. The parti-
cle tracking approach meets these requirements (Kinzelbach, 1988) and is especially
attractive for problems involving chemical reactions. Apart from being free from numeri-
cal dispersion ( in the classical sense), the treatment of chemical reactions at the particle
level provides more flexibility for spatial and temporal moment analysis and allows
better insight from the chemical modeling standpoint. This technique typically represents
the solute mass as a large collection of particles; each particle is moved with determinis-
tic and random displacements over discrete increments of time. The magnitude of each
displacement depends upon the velocity and dispersion field.

Coupling the chemical reaction process with the transport model usually involves
integrating the chemical reaction rate over the transport time scale represented by the
time step At whose choice depends on the velocity field. The smaller the time scale of the
reaction process relative to Ar, the more sophisticated an integration scheme is needed
(Tompson and Dougherty, 1990). Integrating the chemical reaction rate over Af is
equivalent to solving the chemical reaction process in a stochastic framework by estimat-
ing the particle residence time in the liquid phase. The importance of accurately estimat-
ing the residence time in the liquid phase stems from the fact that only dissolved solutes

“ participate in the transport. Several recent investigations (Kinzelbach, 1988; Valocchi
and Quinodoz, 1989) have employed a stochastic description of the chemical reaction
process. Their approaches differ in the way the transition probabilities and waiting times
in the liquid phase are estimated.

This paper follows the line of coupling the particle tracking technique with a stochas-
tic description of a chemical reaction. A field scale transport model of kinetically adsorb-
ing solutes is presented where the kinetic non-equilibrium is generally described as a
birth and death process which in the case of one solute and two states reduces to a two-
state continuous time Markov process. The main focus of this paper is to examine the
possibility of modeling kinetic non-equilibrium using the first two moments of the
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distribution of the solute residence time in the liquid phase. The particle residence time
per time step At is defined as the random sum of random variables and its first two
moments are analytically approximated. We demonstrate that the use of the first two
moments of the residence time distribution per Ar provides an accurate description of the
first two spatial moments of the contaminant plume for most field scale transport prob-
lems. The use of the first two moments of the residence time distribution is computation-
ally efficient’ and particularly attractive if spatially variable chemical reactions are
employed. The first moment of the residence time distribution represents a measure of
the chemical reaction speed relative to the transport time step Af and the second moment
indicates the relative importance of kinetic non-equilibrium with respect to At, where At
depends on the velocity field. One-and two-dimensional examples are presented to illus-
trate the accuracy and limitations of the proposed technique when modeling reactive field
scale transport in heterogeneous media.

2 Particle tracking model of reactive solutes

Consider the transport model given by the advection-dispersion equation which describes
the large scale movement of pollutants in groundwater. The transport equation of the con-
servative solute in two horizontal dimensions (Bear, 1979) is given by:
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where ¢ is the concentration (M/L%), u, is the velocity (L/T) in x direction, and D is the
dispersion tensor with D, for example, being the dispersion coefficient (LHT) in the x
direction.

The random walk method, as a special case of the particle tracking approach, has a
full analogy with the Fokker-Plank equation (Tompson et al., 1989). In particular, the
two-dimensional particle distribution can be obtained from a random walk model with
step equations of the form (Kinzelbach, 1988)

* ux “y
X(f‘f‘At) =x(t)+ufo+Zl 2041“Af—u_—22 2aluAt_l;— (23)
* uy ux .
Y(t+AL) = y(e)+u, At+zy\200u At P 2a,uAt—u— (2b)
where

Uy = UAOD [0x+0D, /3y
1y = u,+3D,, [0x+ID, /3y

u= \j uf+uy2

and z; and z, are random deviates from a standard Normal distribution N(0,1), and o, (L)
and o, (L) are the longitudinal and transversal local dispersivities, respectively. The

second term in (2) represents the convective displacement while the third and fourth
terms denote the dispersive displacement. The velocity term in the step equation has been
augmented with the dispersion gradient in order to account for stagnation zones in the
case of variable velocity field. Around a stagnation point the convective and dispersive
displacements vanish and the dispersion gradient generates the additional velocity com-
ponents to move particles out of stagnation zones. However, in a slow varying velocity
field the dispersion gradient can be neglected.

In order to describe the kinetic non-equilibrium the transport equation (1) needs to be
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modified. For illustration purposes, we will present the case of one-dimensional steady
flow in a homogeneous porous medium

dc  p ds ?c  ac ‘

—teee— =D =y =
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where c¢ is the fluid concentration (species mass/fluid volume), s is the solid concentra-
tion (species mass/solid mass), p is the bulk density (solid mass/aquifer volume), and 8 is
the porosity (fluid volume/aquifer volume). In the process of coupling a chemical reac-
tion with the transport model there is a need to describe the chemical reaction rate which
is now a part of the transport equation (3). In this study the first order reversible linear

.

reaction rate is used as described by
a3
= =kKyc—5) @

where § = ps/6 is the concentration of the solid matrix represented in the same units as ¢,
K is a dimensionless equilibrium distribution coefficient, and k, is the kinetic rate coef-

ficient (T™1). Equation (4) can also be written as

% =kic—k,S ©)

where k; (T"l) and k&, (T™) are the forward and reverse rate coefficients, respectively,
related to the distribution coefficient with K;=ki/k,. The rate law (4) approaches the
local equilibrium condition with the linear adsorption isotherm S = K ¢ and retardation
factor R = 14K = 1+k;/k, when the reaction rates ky and k, approach infinity at constant
K; (Jennings and Kirkner, 1984).

The boundary conditions for (3) are:

c=0,5s=0, -a—c=0, and£=0atx—>i'oo

ax ox
We assume that at ¢ =0 there is no solute in the aquifer and that the pollutant is injected
as an instantaneous, fully penetrating source implying the initial condition

c=Ced(x)ands =0art=0

where &( - ) is the Dirac delta function and C, represents a normalizing constant propor-

tional to the total input mass.

Ahlstrom et al. (1977) applied the discretized form of (5) in space to determine the
adsorbed concentration and then solved the transport problem using the random walk
method. This approach evidently requires very small time step to justify the decoupling
of the two processes. Valocchi and Quinodoz (1989) used a continuous time two-state
Markov chain to describe (5) and compared three different methods of generating the
waiting times in the liquid phase. The most efficient method of acceptable accuracy was
that of sampling the waiting times from the four conditional probability distribution func-
tions of the fraction of time that a particle spends in the liquid phase during a time inter-
val At (Keller and Giddings, 1960). Each distribution was conditioned on the initial and
final phase, and a value of the fraction (between O and 1) was obtained going through a
three-step procedure applied for each particle. This approach particularly emphasizes the
situation where particles undergo very few (or even none) transitions from solid to liquid
phase. .
The approach applied in this paper is similar to the method employed by Valocchi
and Quinodoz (1989) in that the concentration plume spatial moments are computed by
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the particle tracking technique and the chemical reaction is modeled in a stochastic
framework. The main difference is that in our study the residence time distribution is
approximated by its first two moments which are derived as functions of the transport
time step At and the chemical reaction parameters k; and k,. The accuracy of this approx-

imation is demonstrated and discussed by comparing the marginal probability density
function obtained by properly weighing the above mentioned four conditional distribu-
tions (Keller and Giddings, 1960) to a normal distribution with mean and variance equal
to the derived moments. The applicability and accuracy of using the first two moments of
the residence time distribution for field scale transport problems is evaluated by compar-
ing the simulated first two spatial moments of the concentration plume with the available
closed form analytical solution (Valocchi, 1988).

2.1 Stochastic description of kinetic non-equilibrium

. The chemical reaction in (5) represents a simplified version of a non-equilibrium model

based on diffusive solute transport between mobile and stagnant fluid zones (van Genu-

‘chten and Wierenga, 1976). In general, kinetic non-equilibrium represents the chemical

process of several interacting species in the mobile and immobile phase. Some possible
examples are cation exchange systems between several chemical components or the
biodegradation processes where, for example, the heterotrophic denitrification is carried
out by bacteria microorganisms. Most of these processes represent chemical kinetics
which can be described as a birth and death process with corresponding forward and
reversible rates (Erdi and Toth, 1989; Goel and Rihter-Dyn, 1974)

N M At
N —_—

AO\—“-AI\-—AZ T e An (6)
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where 4;, i =0,1,...,n, stands for different chemical species in the mobile and immobile
phases and various A’s and |’s are the reaction rate constants. Let P; () be the transition

probability that process is at state § at time ¢, given that it was at state j at t =0. The pro-
babilistic description of the reaction above is given by

dP; ;@)dt = hj_yP; ;1O HL 4P s (O—-H)P; () )

where i =0,1,...,n and j =0,1,...,n are the states of the process. Equations (7) are known

as the Kolmogorov differential equations or master equations whose solution may be

obtained subject to an initial condition, e.g., P; 0 =P ;. I ; denotes the probability of

the process initially being in state j (with Zﬁj =1, then P;(1) (the probability that the
J

solute is in state i at time £) is given by

Pi(0) =Z_:Pij(f)ﬁj ®)
j

For the simple case of one component and two states (solid and liquid) the general birth
and death process reduces to a two-state continuous time Markov chain as also employed
by Valocchi and Quinodoz (1989). Although in this paper only a two-state example is
presented, in which case the birth and death process reduces to a Markov chain, we retain

~ the generality of the birth and death type process which can deal with more complex

cases, as for example with the case of modeling bacteria population growth and decay
when a biodegradation process is considered. In that case the bacteria population is
represented with a finite number of particles and the birth and death reaction rates are
used to model the population growth or decay marching through the transport time scale.
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The two-state chemical process as described in (5) (with state 2 meaning that solute is
in the'solid phase and state 1 that it is in the liquid phase) has the following parameters.

Birth or arrival rate A=4; and A, =0
Death or departure rate y1; =0 and p1, = k,

The Kolmogorov equations in this case can be written as

dPy 1 (/dt = kyPy (ki Py o (2) (©2)
AP\ 5(t)ldt = kyPy () kyPy 5(0) ©b)
AP, 1 (t)dt = kyPy 5(t)ki Py 1(£) ©c)
AP, 5(@O)/dt = kyPy \(FkaPy o2) ©d)

With a given initial condition Py,1(0) =1 (all particles in the liquid phase — instantaneous
injection) the above set of equation can be solved (Ross, 1985) yielding four transition
probabilities

ks

k
——exp[(kHe)AL] (102)

P =
HOO e

)
= k 1+k2 k 1+k2

exp{~(kytky)Ar] (10b)

k.

Py (A = l—Pm(Az)=ﬁu—em[—<kl+k?)mu (100)
k

Py (A) = I—Pl,l(Ar)=,CT‘kz~[1—eam—<kl+kz>Arn (10d)

where instead of r we have used At which is the time step of the particle wacking step
equation (2). To obtain the total probability that a particle is in the liquid phase at r+At,
equation (8) yields

Pi(t+A1) = Py (AP (E1+P (MNP, Py(0) =1, Po(0) =0 (11)

where Py(t) and P,(¢) are the probabilities that a particle is in the liquid and solid phase
at time ¢, respectively, and P,(r+Af) is the probability that a particle will be in the liquid

phase at time r+Ar. Equations (10a-d) and (11) must be coupled with the transport model
to provide at each time step the fraction of the particles adsorbed on the solid phase.

3 Residence time distribution in the liquid phase

The crucial step in applying the random model of chemical kinetics in transport of reac-
tive solutes is the accurate estimation of the residence time of each particle in the liquid
phase. During a time step At (determined as a function of the velocity field) each particle
will make transitions (phase changes) between solid and liquid phase depending on the
considered reaction rates for the partitioning process. Between transitions each particle
stays in the liquid or solid phase an amount of time (in the liquid phase wy and in the
solid phase w;) which is exponentially distributed as

fiw) =kexp(-kw), w20 . (12)
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The times w; and w, are independent random variables. This directly implies that the
counting process N(r) of transitions from liquid to solid or solid to liquid phase is a
renewal process with interarrival times w = wytw,. The renewal process N(f) represents
the number of phase changes in a time interval (0,7) and can be viewed as an indicator of
the speed of the underlying chemical process relative to the time 7, The first two
moments of the interarrival time w are easily obtained as

By = 0 (14)
klkZ
Var(w) = -+ (15)
Kk -

The key problem is to determine the total time each particle stays in the liquid phase
(residence time) during a time step Af.

We difine Af” as the residence time of each particle in the liquid phase during a given
actual transport time step Ar. Af® is a random variable which by definition can be
expressed as .

. N
At =% wy; (16)

i=1

where N{Ar) is the random number of transitions from solid to liquid phase during the
actual time interval Ar and wy; is the time spent in the liquid phase during the transition
i. Figure 1 depicts a schematic diagram of the liquid to solid transitions and the residence
time representation.

The random number of transitions from solid to liquid phase, N(Af), represents the
counting renewal process evaluated at time interval Afz. The first two moments of N(Af)
can be obtained from the mean and variance of the interarrival times w making use of
some asymptotic results (¢.g., see Taylor and Karlin, 1975 p. 289 for an interpretation of
the asymptotics of the renewal theorem)

kk k o
LY Ny L By V. I VR TN
E(W)  kytky 1+Kd R

EmE[N(+A)-N(0)] = imE[N(AN)] =
f—yoo 1—yoo

lim Var [N (t+Af)-N (1)) = limVar[N (af)] = 22D 4,
{—poo I—yoo

EW)
2 2 2
_ Fakgllf +k2)At ) k(14K d )A: 8)
(kyty)? R3

Notice that the Jarge time requirement for the validity of the above approximations is not
a limiting factor particularly in field scale transport problems, since the "large time" for
chemical reactions (large number of transitions) is usually achieved after only a few tran-
sport timne steps At. It is also worth noting that by analyzing the above first two moments
it appears that the index of dispersion of N(Ar),

14+Kd? _ 14Kd*
R*  142Kd+Kd*

is (as was expected) always less than one suggesting that N(A¢) is an under-dispersed
process {more regular process) relatively to the Poisson process with the same rate of

I(At) = Var[N(ANVEIN(A)] = 19)

AW 5288



162

| SOLID  w, |
I C i
| H
—:—:—‘o—f‘:——;j—+ & :se
L I |
| ; bw ! :
o LQup W |

aal

Figure 1. Schematic of the phase transitions during the transport time interval A

occurrence. The average number of transitions, E{N(At)], can be seen as an indication of
the speed of the chemical reaction process relative to the transport time scale. In other
words the term R/k; in (17) represents the fraction of the transport time step A¢ needed

for one chemical reaction (on the average) which in this case refers to one transition from
solid to liquid phase. Also, note that the waiting times wy, in liquid phase between transi-
tions, are independent and identically distributed random variables and that the counting
process N(Ar) of transitions from solid to liquid phase depends on the magnitude of the
waiting times wy. The first moment of the residence time in the liquid phase per time step

At can be derived as (Benjamin and Cornell, 1970)

k
2 par=La Q0

E[Af] = EN(ADIE[w,;] = PR

and the second moment can be approximated by
ka(kf+k3) A o LKA
ky(k+ky)® kR3

Var{Af']= (Elw)*Var[N(An)] = @D

The accuracy of the above approximation was found very satisfactory as will be dis-
cussed in detail in the numerical example.

It is important to notice that by considering the residence time in the liquid phase
only through its first moment, the chemical kinetic are reduced to local equilibrium con-
ditions, where the entire solute transport is just retarded by the factor R (same as scaling
the time of nonreactive transport by the factor R). The second moment (variance of Ar")
represents the variability in the liquid residence time. It is precisely this variability that
results in the increased spreading and tailing of contaminant plumes and breakthrough
curves as is shown and quantitatively examined in the numerical examples.

4 Assessment of the accuracy of the propesed approximation

Our approach has introduced an approximation resulting from the use of a single
residence time distribution (instead of four conditional distributions) with the first two
moments obtained from (20) and (21). Assessment of the accuracy of this approximation
is done in two steps. First, in this section we directly compare the residence time distribu-
tion described with the first two moments computed from (20) and (21) and the marginal
residence time distribution obtained by properly weighing the four conditional distribu-
tions of Keller and Giddings (1960) also employed by Valocchi and Quinodoz (1989). In
the next section we assess the accuracy of this approximation by examining the condi-
tions under which the use of only the first two moments of the residence time distribution
provides an accurate description of field scale transport problems in terms of accurately
approximating the spatial moments of the contaminant plume.
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Figure 2. Comparison between the proposed residence time distribution (solid line) and marginal distribu-

tion oblained by weighing the four conditional distributions depen

@Ka=2,®)K,=1;(c)K,=0.5

ding on final and initial phase (circles).
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In our approach the residence time At" is described in (19) as the sum of a random
number (N(Af)) of exponentially distributed random variables w; (Figure 1), where

N(Atr) is a counting process evaluated at the transport time scale At ie., it counts the
number of state transitions from solid to liquid within an interval Asz. Keller and Gid-
dings (1960) studied chemical reactions that do not undergo a wansport mechanism and
observed that after only "several transitions” solid == liquid the residence time distribu-
tion approaches a Gaussian distribution. We argue that by including the field scale tran-
sport mechanism on top of the kinetics, the requirement for several transitions is easily
satisfied as can be seen form (17) where the transport time step At is in days and &; in
inverse hours. In other words, even for a relatively slow intrinsic chemical reaction, e.g.,
ky=0.1 hr~l, which undergoes transport described by a time siep Ar =5 days, several
transitions between solid and liquid phase are obtained (e.g., 6 transitions from solid to
liquid on the average for R=2). This is the reason for introducing E[{N(A?)] as a measure
of the speed of the chemical reaction relative to the transport time scale Ar. At the resolu-
tion of Ar the speed of chemical reactions will determine the influence of kinetics upon
the transport and this is captured by the first moment of the counting process N(Ar). With
several transitions taking place the starting and ending phase of a particle become insig-
nificant and a marginal distribution approximation is appropriate. The marginal distribu-
tion of the residence time in the liquid phase can be obtained as

F©) =111 & 12©1+p, ;€. 0<E<1 (22a)
fE=1) = prexp(—kiAL) (22b)
FE=0) =prexp(-krAt) (220)

where & denotes the fraction (between 0 and 1) of the residence dme Ar’ to the transport
time step Af; ]‘;j(&), i,j=1,2 are the four conditional pdfs of the residence time with
f12(E), for example, being the conditional pdf of the particle starting in liquid phase and
ending in solid phase after at least one transition; and p; and p, denote the probability of
the particle being in the liquid and solid phase, respectively.

Figure 2a shows the comparison between the marginal residence time cumulative dis-

tribution calculated from (22) (circles) and approximated as a normal distribution with
the first two moments evaluated from (20) and (21) (solid line) for the case of K; equal 2.

Two different average number of transitions per A¢ are considered (i) E[N(A1)] =2.6
which may represent a slow reaction relative to the transport time step As (e.g.,
E[N(A?)] = 2.6 following (17) may describe a transport problem with intrinsic speed of
chemical reaction equal to k; =0.065 AL, retardation factor R = 14K, =3, and transport
time step Af =5 days), (ii) E[N(As)] = 20 representing fast reactions relative to the time
step Ar. In both cases the cumulative distribution obtained using the derived first two
moments exhibits an acceptable accuracy and good agreement with the marginal
residence time distribution. By increasing the average number of transitions per At this
agreement is more pronounced.

Figure 2b depicts the same type of comparison for the case of K; =1 (R = 2) and Fig-

ure 2c for K;=0.5(R =1.5). It is observed that in the case of K;=0.5, which

corresponds to weakly retarded transport, a statistically significant difference between the
two distributions is found which is due to the approximation introduced in evaluating the
second moment of the residence time. Nevertheless, even in this case the spatial moments
of the resulting concentration plume are in acceptable agreement with the closed-form
analytical solution as evidenced by the numerical examples presented in the next section.
The above discussion and comparisons clearly demonstrate that the proposed tech-
nique is applicable to field scale transport problems when the velocity field allows the
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time step A7 in transport simulations to be large enough to guarantee, on the average,
several transitions between solid and liquid phase, Notice that this is the case for most
field scale transport problems and thus for these problems the advantage of using a
residence time distribution given by its first two moments is threefold:

a) Computational effort is significantly reduced since the residence time for each
particle is generated directly from a normal distribution with known first two moments
explicitly expressed as functions of the chemical reaction rates and transport time step Af,

b) For multi-component cases or cases involving biodegradation the choice of a sin-
gle distribution for the residence time and the use of a birth and death formulation pro-
vide a computationally attractive way of coupling stochastic models for chemical reac-
tions and the particle tracking approach even for three dimensional applications when the
four conditional distribution approach would be computationally prohibitive.

¢) In the case of heterogeneous chemical reaction rates the single residence time dis-
tribution formulation is completely independent of the reaction rates and the computa-
tional implementation is straightforward. The computational effort is not increased com-
pared to the homogeneous case.

5 Numerical examples
5.1 One-dimensional case

The first numerical example considers a one-dimensional case and is presented to illus-
trate that the introduced approximation of the residence time distribution results in accu-
rate description of the solute movement in terms of the spatial moments of the solute
plume. This case was chosen based on the availability of a closed-form analytical solu-
tion of spatial moments (Valocchi, 1988; Goltz and Roberts, 1987). The computational
flow domain is depicted on Figure 3 and consists of 100 cells of length Ax = 1(L). A con-
stant uniform velocity v =0.67 (L/T) was used in the one-dimensional form of (2), to
move 5000 particles initially distributed uniformly in the fifth cell. A constant disper-
sivity o; =0.2(L) and an actual time step A = 1(T) were chosen to complete an input set:
of necessary variables for the transport problem, The proposed coupled model tested dif-
ferent kinetic reaction rates ky and k, while keeping the ratio K, = kj/k, equal to

0.5, 1.0, and 2.0. Following the proposed approach of the single residence time distribu-
tion each particle will be advected and dispersed in the transport model with the time step

Af* = EQAr o \Var (Arh (23)

where z is a standard normal random deviate and the mean and variance of Ar® are
estimated by (20) and (21), respectively.

The simulation results of the numerical example are analyzed and compared with the
analytically derived spatial moments of the contaminant plume. The first spatial moment
provides information about the mean location of the plume and the second moment (dis-
placement variance) provides information of the spreading of the contaminant plume
about its mean displacement. Figure 4 represents the mean displacement of the solute
plume for different K, values and for different speeds of chemical reactions expressed in

terms of the expected number of transitions from solid to liquid phase during the tran-
sport time step Af. As expected the mean location of the concentration plume using the
first two moments of Ar* shows almost perfect match with the analytical solution regard-
less of the chemical reaction speed. The same result is also true for different values of the
distribution coefficient K ;.

In Figure 5 the displacement variance is depicted for different expected number of
transitions E[N(Af)], and different values of X;. Figure 5a depicts the displacement vari-
ance for the case of E[N(Af)] =2.6 which represents slow kinetics relative to the tran-
sport time scale. In fact by considering Ax = 1 m, Af = 1 day, and distribution coefficient
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K,=1, from (17) the reaction rate k; equals 0.2 47! which may be considered ‘as

corresponding to a slow intrinsic adsorption process. Even for this slow kinetics the dis-
placement variance shows an acceptable small deviation from the analytical solution jus-
tifying the use of the introduced single distribution approximation of the residence time.
Notice that in Figure 5a the second moment of the particle cloud is also depicted for the
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case of slow reaction (E[(N(Ar)] =2.6) and K; =05 for which we found (see previous
section) the highest differences between the residence time distribution approximated
with its first two moments and the marginal distribution obtained by weighing the four
conditional distributions. It is observed that even in this case the simulated spatial
moments still provide an acceptable accuracy compared to the analytical solution.

As expected for faster reactions (E[N(Af)] =8) the observed deviation from the
analytical solution in Figure 5b is further reduced. By further increasing E{N(Ar)] the
numerical simulation results would give perfect match with the analytical solution due to
the decreased variance of Ar” indicating also that the underlying process approaches the
local equilibrium condition.

5.2 Stratified aquifer

The second numerical example examines the case of a two-dimensional transport prob-
lem in a perfectly stratified formation composed of distinct layers. Since the continuity
of such layers over large distances in field problems is not warranted the theoretical
results may be unrealistic. Nevertheless, the study of stratified formations is a usoal start-
ing point for grasping more complex cases, and it can serve as a benchmark for numerical
simulations (Dagan 1989).

The coordinate system used is given in Figure 6, namely z is a vertical coordinate
normal to the bedding, x is a horizontal coordinate, B is the formation thickness, and
oh/ox =—J is a constant head gradient parallel to the bedding. The flow is horizontal and
the velocity vector i = U+u’(z) (mean plus perturbation) can be easily obtained from

JK, K'(z)

= _n‘; u'(z) = U_Ka @9

where K, = E[K(z)] is the hydraulic conductivity arithmetic mean, K*(z) is the conduc-
tivity perturbations, and n is the porosity. A total of 10000 particles were injected at the
source (Figure 6) and moved with the heterogeneous velocity field using a constant local
longitudinal dispersivity a; = 0.2 (L) and constant transversal dispersivity o, = 0.02 (L).
Thus, vertical transport is allowed only due to the local transversal dispersion.

Besides studying the reactive transport behavior under the heterogeneous velocity
field, in this example we also examined the case of spatially variable distribution coeffi-
cient K;. We assumed that K, is stationary with constant mean K, and perturbations
K’4(z). Following some of the recent studies (Garabedian, 1987) we assumed that K, is
negatively correlated to the hydraulic conductivity field. The correlation between K’y
and K is assumed to be a linear one K';(z) = oK ‘(z).

To illustrate the impact of chemical kinetics upon the transport in heterogencous for-
mations we evaluated the second spatial moment (displacement variance) of the solute
plume. The simulation was performed by generating fifty realizations of the log-
hydraulic conductivity fields with variance level oy =0.8. The porosity, constant
hydraulic gradient, and mean hydraulic conductivity are chosen to give a mean horizontal
velocity U =0.67 (L/T). The formation thickness is B = 357\7 (ly represents the vertical
correlation scale of the log-hydraulic conductivity), the mean value of the distribution
coefficient K; = 1, and the average number of transitions is E[N(Af)] = 5. The degree of
correlation, &, (K’4(z) = 0K ‘(z)) is chosen to produce a coefficient of variation of 0.2 in
the distribution coefficient K. :

In Figure 7 the horizontal displacement ensemble variance is depicted for three case.

We compare the solute plume spreading due to local equilibrium assumption (constant
K, linear isotherm), kinetic nonequilibrium (constant K;), and kinetic non-equilibrium
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Figure 6. Numerical example layout for the two-dimensional case of stratified formation

Figure 7, Longitudinal displacement variance for local equilibrium assumption (LEA) (circles), kinetic
non-equilibrium with constant K (triangles), and kinetic non-equilibrium with variable X; (crosses)
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Figure 8. First two moments of the arrival time distribution of the particle cloud at the control surface

with spatially variable distribution coefficient X, 4~ Chemical kinetics are modeled with

the first two moments of the residence time distribution as discussed previously. As
expected in all three cases the displacement variance grows non-linearly with time and
therefore the transport exhibits non-Fickian behavior in this range of travel time simula-
tions. The kinetic non-equilibrium did show some increase in spreading over the LEA.
However, on the average, that additional spreading does not seem to have significant
impact on the solute plume second moment. On the contrary, the third case with spatially
variable distribution coefficient K 4» Shows a significant additional spreading of the solute
plume. In fact, in this relatively small travel time (120 Ar’s) the spreading of the solute
plume due to the negatively correlated distribution coefficient was almost doubled. It is
important to note that this simulation example illustrates that an additional spreading
over LEA can arise from chemical kinetics and negative correlation between the distribu-
tion coefficient K; and the hydraulic conductivity. This appears to be in agreement with
similar findings reported by Valocchi (1989) who analytically derived the spatial
moments for a stratified formation. The results reveal furthermore that the importance of
chemical kinetics in field scale transport problems depends on the speed of adsorption
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kinetics relative to the transport time scale At. The enhanced plume spreading due to the
negative correlation between K, and K also appears to be a major reason for the

increased second moment of the contamination plume over the LEA case.
To better grasp the solute plume behavior under variable K;, we next analyze the

arrival time for the particle cloud i.e., the time required for the arrival of the first particle
and of 25, 50, 75, and 95% (the percentages are computed as the number of particles N
crossing the control surface over the total number of particles NT) of the particles at the
control surface (see Figure 6). Smith and Schwartz (1980) used a similar analysis for a
non-reactive transport problem. Fifty solutions of the transport problem were obtained
and the mean and standard deviation were calculated for the above five arrival times. In
Figure 8 the same three cases are examined. In the case of negatively correlated Ky and K

the particles are first crossing and last exiting the control surface, which supports the pre-
viously observed increased spreading in Figure 7. Notice, however, that the late exiting
(higher mean arrival time for higher N/NT) is more pronounced than the early arrival
which indicates stronger tailing. The same conclusion is also supported by observing
higher variance of the arrival time for higher values of N/NT. The second moment of the
arrival time increases with increasing total mass passing through the control surface. In
the case of spatially variable K; the arrival time standard deviation is almost twice as

high compared to the case of LEA and adsorption kinetics with constant K.

6 Conclusions

In this paper we have used the first two moments of the distribution of the particle
residence time in the liquid phase, Ar*, to study the field scale transport of kinetically
adsorbing solutes. The first two moments of Ar™ are expressed as functions of the kinetic
reaction rates and the actual transport time step Af. The comparison between the
residence time distribution approximated by the first two moments and the distribution
obtained by appropriately weighing the four conditional distributions (conditioned on the
initial and final phase (Valocchi and Quinodoz, 1989) shows an acceptable agreement in
most cases. Numerical simulations were performed in one- and two-dimensional cases to
examine the accuracy of the proposed approximation in terms of providing an accurate
description of the spatial moments of the contaminant plume. The results in the one-
dimensional case showed close agreement with the analytical solutions of Valocchi
(1988).

The use of a single residence time distribution has a clear computational advantage.
We found (using an Apollo DN 10000 workstation) that the increase in CPU time from
solving non-reactive transport to solving transport of kinetically adsorbing solutes is less
than 7%. Furthermore the presented birth and death process framework for modeling
chemical kinetics can be easily extended to non-trivial chemical processes {multi-
component and bioremediation) and three dimensional applications. In that case the
additional computational requirements are proportional to the computational require-
ments of the particle tracking technique. The increase in computation, by considering the
birth and death process with the first two momenis of the residence time distribution, is
moderate even for spatially variable chemical reactions. More precisely, the example
with stratified formations was run on the Cray-2 Supercomputer and required in CPU
times 47 sec for the LEA case, 53 sec for the chemical kinetics - constant K ;, and 67 sec

for the case with variable K ;.

It has been shown that the spreading (dispersion) of a contaminant plume is due to
three components: one which depends on the mean value of At*, a second one which is
related to the variability in the residence time distribution relative to the transport time
scale A¢, and a third one which results from the possible negative correlation between K,

and K. The first component is due to the retardation factor given by the first moment of
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At*. The second component represents the additional dispersion caused by the siow
kmetlc reaction rates relative to Ar and is expressed in terms of the second moment of
At". The third component may arise in cases of negative correlation between the distribu-
tion coefficient K; and the hydraulic conductivity K. The results from the numerical
simulations furthermore revealed that the possible negative correlation between K; and K
may be a major factor which enhances the plume spreading in addition to the kinetics
alone, particularly in field scale problems where the transport time scale At is large (i.e.,
E[N(A£)]=10) compared to the intrinsic chemical reaction time.

The arrival time statistics also showed the effects from the three different spreading
components. The effects from the variable K; were more pronounced than the effects of

kinetics themselves and in particular the second moment of the arrival time exhibited
higher values for higher percentages of total mass that exited a cross-section, indicating
the high degree of uncértainty in estimating the travel time for kinetically adsorbing
solutes in heterogeneous media.
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