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ABSTRACT

~ The statistical geometry of braided rivers has been studied from a variety of

viewpoints, from simple random walks through dynamical-systems theory to analysis
of static and dynamic scaling of river planform. The most important results to date
are that (1) methods based on statistical geometry are a useful way of testing
models, and (2) braided rivers show both anisotropic spatial scaling and time-space
dynamic scaling such that the evolution of large areas looks like the evolution of
smaller areas run in slow motion. Specifically, the evolution of an area with length
scale L, is statistically indistinguishable from that of a smaller area with length
scale L, provided the time step is increased (i.e. the evolution is slowed down) as
approximately (Ly/L;)"?. This implies that the likelihood of large-scale changes over
long time scales can be estimated from measurements of the distribution of small-
scale changes over short time intervals.

1. INTRODUCTION

A braided river comprises a network of interconnected channels that evolves
temporally in a way that seems fo be predictable only over relatively short
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intervals. The complexity and unpredictability of braided rivers invite statistical
analysis of their dynamics. Our goal here is to review some of the statistical-
geometric measures that have been applied to braided rivers, with emphasis on
scaling relations (relations that apply to a range of scales under appropriate
normalisation), and to outline how these can be related to the underlying physics
of the river network. We will also discuss ‘the utility of these measures in
evaluating models of braiding.

Early attempts to characterise the geometry of braided rivers focused on
basic topological measures such as mean link length and number of channels
(the so-called ‘braid index’). In an important early contribution, Howard et al.
(1970) showed how a very simple random walk model could reproduce many of
these averaged network quantities. The model contained no physics, and could
not evolve with time, suggesting that none of the simple topological measures
were very discriminating means of testing models.

Two more involved approaches have been developed to analyse the
geometry of braided rivers since then. One is based on “dynamical systems
theory”; the basic idea is to look for spatial structure in integral quantities such
as total channel width, treating spatial sequences as time series (Murray and
Moeckel, 1997; Murray and Paola, 1996). The second approach is based on the
ideas of static and dynamic scaling. The basis for this approach is the apparent
self-similarity of braided rivers, both for small and large systems and for
different spatial and temporal scales within a given system (Nykanen et al.,
1998; Sapozhnikov and Foufoula-Georgiou, 1995; Sapozhnikov and Foufoula-
Georgiou, 1996; Sapozhnikov and Foufoula-Georgiou, 1997; Sapozhnikov and
Foufoula-Georgiou, 1999).

2. MEASURES OF STATISTICAL GEOMETRY
2.1 Dynamical-systems based approach

In view of the apparent insensitivity of traditional simple network statistics when
used for model testing, Murray et al. (1996) proposed an approach based on
dynamical systems theory. Most of these approaches have been developed for
time series of a single scalar variable, and in general they are associated with the
concept informally known as chaos: apparently unpredictable behaviour in
deterministic systems. The original idea of most of the dynamical-systems
methods of time-series analysis (Weigend and Gershenfeld, 1994) was to search
for evidence of low-dimensional chaos and, if it was found, to characterise it
quantitatively. It turns out that true low-dimensional chaos is quite rare in
nature. Nonetheless, dynamical-systems statistical approaches may be useful in
comparing systems with one another or with models, as long as one is careful
not to interpret the results as necessarily defining true “attractors’. Since braided
rivers are clearly chaotic, in the broad sense of being deterministic systems that
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show apparently unpredictable behaviour, in principle the same techniques could
be applied to time series from braided rivers, Unfortunately, dynamical-systems
methods tend to be data-intensive: 500 points are often considered a minimum
for analysis. Most natural braided rivers evolve slowly enough that obtaining
such a long time series while maintaining stationary conditions is not practical.
The idea can readily be adapted to spatial series, however, by assuming that
causality in braided rivers in general proceeds from upstream to downstream
(though this assumption is a reasonable starting point, it may not be true-—see
Seminara ef al (2001) for further discussion of upstream and downstream
influences in river systems). The limitations of available data suggest using a
relatively simple planform measure of geometry., Murray and Paola (1996)
proposed total (summed) channel width as a physically meaningful variable for
which long spatial series can readily be obtained from air photos.

The spatial series so obtained is then treated as a time series. For a spatial
series of widths by, b,, ... b,, a series of m-dimensional vectors V .., is formed
as V= { by, by, ... by, }. These vectors then form a path in m-dimensional space
(a ‘state space’: Figure 1), The structure of this path reflects the way in which
downstream widths are influenced by upstream widths; clusters, for instance,
represent preferred width sequences. For chaotic systems, such vector paths
define the attractor of the dynamics, provided the vector dimension (i.e. the
length of the width sequences) is at least equal to the true dimension of the
attractor, Unfortunately, at this point all indications are that braided rivers are
high-dimensional. For instance, point trajectories in low-dimensional plots such
as Figure 1 are not unique; rather the paths intersect one another (Murray and’
Paola, 1996). In this case, low-dimensional plots cannot define the attractor.
However, it is still possible that useful information can be extracted from them.
In particular, state-space plots might still be an avenue for comparing field,
laboratory, and theoretical braid patterns quantitatively. To do this, Murray and
Moeckel (1997) proposed a method based on thinking of the state-space plot
simply as a probability density in m-dimensional space. Their method is
illustrated in Figure 1. A state-space plot is constructed as explained above for
each system to be compared. Each state-space plot is then converted to a discrete
probability distribution by dividing it into m-dimensional volumes and assigning
each volume a probability equal to the number of points it contains normalised
by the total number of points. Then the distributions are compared, pairwise, via
the “transportation distance”: a measure of the minimum amount one
distribution has to be reconfigured to convert it to the other one. This is
illustrated in Figure 1. This method turns out to be relatively insensitive to
outliers, and to the volume size chosen for discretisation, compared with other
available methods.
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Figure 1. (a,b) Example state-space plots from (a) a succession of
random numbers and (b) a succession of widths (normalised by
mean width) measured from an aerial photograph of the
Sunwapta River, Alberta, Canada. In each case x, is the value
of the variable following x,. The two-dimensional probability
density has been crudely discretised into four boxes. (c)
Computation of the ‘transport distance’ proposed by Murray
and Moeckel (1997) for comparing state-space plots
quantitatively. The transport distance is the minimum
weighted distance that probabilities in (a) must be shifted to
reproduce the distribution in (b), in this case 0.667 (4/6).
50 Statistical Geometry and Dynamics of Braided Rivers



2.2 Spatial scaling

Well-developed braided rivers often show internal geometric similarity in the
sense that parts of the network seem to resemble the network as a whole. For
example, Figure 2 illustrates that a small part of the river looks statistically
similar to a larger part under appropriate rescaling of the spatial coordinates.
Moreover, visual comparison of spatial patterns of different braided rivers often
reveals that there are apparent statistical similarities between one braided river
and another, For example, Figure 3 displays digitised images of three braided
rivers: the Brahmaputra River in Bangladesh, and the Aichilik and Hulahula
Rivers in Alaska, Despite the different natural scales of these systems and their
different slopes and bed materials (Table 1), when projected to the same scale as
in Figure 3 they all appear to have statistically similar geometry.

Figure 2. Static scaling: a small part
of a braided-river network
resembles the overall

pattern.

Table 1. Hydrological and geomorophological characteristics of three
natural braided rivers.

Brahmaputra Aichilik Hulahula
Reach width, km 15 0.5 0.7
Reach length, km 200 6.4 20
Mean channel depth, m 5 1 1
Slope 7.7 x 107 107 7% 107
Braiding index* 3.8 6.8 5.2
Predominant bed material sand gravel gravel

*average number of channels per lateral transect
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(a} BRAHMAPUTRA

0 X 200 km

(c) UULAIULA

0 X 20 km

Figure3. Images of the Brahmaputra River, Bangladesh, and the
Aichilik and Hulahula Rivers, Alaska, projected to the same
scale for comparison. Note that although the Brahmaputra is
much larger than the two Alaskan ones, and is sand-bed rather
than gravel-bed, all three are statistically similar when scaled
appropriately.

Statistical similarity or scale invariance is an important aspect of the
geometry of a system and, as will be discussed below, offers clues as to the
underlying physics of the system. When the geometrical properties of an object
exhibit the same scaling relations in all directions (referred to as isotropic
scaling) the object is called a ‘self-similar’ fractal. However, when the properties
scale differently in different directions (referred to as anisotropic scaling) the
object is called a ‘self-affine’ fractal. Since braided rivers exhibit a preferred
direction (the direction of downstream flow) it is natural to expect anisotropy.
The first analysis of geometric statistical similarity or anisotropic spatial scaling
in braided rivers was performed by Sapozhnikov and Foufoula-Georgiou (1996),
based on a methodology they had developed previously (Sapozhnikov and
Foufoula-Georgiou, 1995). This methodology is called the Logarithmic
Correlation Integral (LCI) method and is presented briefly in the Appendix for
completeness.
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Anisotropic scale invariance is characterised by two fractal exponents,
denoted by v, and v,, where x represents the direction of the average flow and y
the cross-flow direction. Briefly, the LCI method computes the “mass” M(X,Y)
(defined as the number of pixels covered by water) within rectangles of size XxY
for various rectangle sizes. Then these computations are projected in the log-
space, i.e., the function z(x,y) = logM(logx,logy) is formed and its derivatives
with respect to x and y are computed (this is called the Logarithmic Correlation
Integral function). As shown in Sapozhnikov and Foufoula-Georgiou (1995), a
linear plot of dz(x,y)/dy vs. 9z(x,y)/0x indicates the presence of spatial scale
invariance, and the anisotropic scaling exponents v, and V, can be estimated
from the slope and intercept of this plot. Figure 4 shows plots of dz/0y versus
0z/0x for the three braided rivers shown in Figure 3. The points on the plots
show a good linear dependence indicating the presence of self-affinity in all
three rivers. The values of the scaling exponents v, and v, were found to have
similar values for all three rivers: v,= 0,74 and v, = 0.51 for the Brahmaputra; v,
= 0.72 and v, = 0.51 for the Aichilik; and v, = 0.74 and v, = 0.52 for the
Hulahula.

Figure 4.  Logarithmic Correlation
Integral (L.CI) plots for the
three braided rivers shown in
Figure 3.
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Sapozhnikov and Foufoula-Georgiou (1996) postulated that the presence of
statistical spatial scaling in the morphology of braided rivers is an indication that
the underlying mechanisms responsible for the formation of braided rivers are
universal and the same at all scales. If these mechanisms (e.g. see Murray and
Paola (1994)) were disturbed at any scale by external controls, such as for
example mountain ranges or predominant flow paths, then spatial scaling would
not be expected to hold. Indeed, analysis of several braided river systems in
Alaska obtained via synthetic aperture radar (SAR) imagery confirmed this
hypothesis (Nykanen et al., 1998). For example, Figure 5 shows two reaches of
the Tanana River in Alaska and the corresponding plots that test for the presence
of spatial scaling. In Reach C (left plot), a mountainous region adjacent to the
river exerts an external control (contrary to internal self-organizing mechanisms
creating the braiding). Reach D (right plot) has a very gradual slope and a low
braiding index (3.14 vs. 5.22 for the previous reach). Although no
morphological constraints seem present, this is a transitional river reach
connecting a fully braided regime to a single meandering river regime. Thus this
reach is characterised by a single dominant channel throughout its length. The
width of that main channel is approximately ten times that of the next biggest
channel, with all intermediate channel widths missing. As seen in Figure 5,
spatial scaling is not present here either. Along the same Tanana river, reaches
which do not exhibit the above topographic or transitional controls exhibit very
good spatial scaling (Nykanen et al., 1998).

2.3 Dynamic (time-space) scaling

The analysis of the preceding section indicates clearly that the planform of
braided rivers shows self-affine scaling if the river systems are left to evolve
undisturbed and no external controls influence their development. As
informative as this is, it is nonetheless restricted to static planforms. A more
complete understanding of the physics of braided rivers requires an
understanding of how the scaling can be extended to time. It is clear from
watching braided rivers that they evolve with time, through small incremental
changes that cumulatively produce larger changes by, for instance, diverting
water from one part of the network to another. Is there a temporal scaling as
well, and if so how is it related to the spatial scaling?

This question was first tackled by Sapozhnikov and Foufoula-Georgiou
(1997), who posed the question as follows. Consider two movies, one of a small
section of a braided river, with length scale L, and the other of a larger section
with length scale L,. Now compare the two movies by, say, projecting them onto
adjacent screens (at the same size). Intuitively one would expect the smaller-
scale movie to seem to evolve faster than the large-scale one, because it should
take longer for the larger channels to move some representative distance,
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Figure 5.  Two reaches of the Tanana River (Alaska), and associated LCI
plots, showing breakdown in scaling due to (a) imposition of a
geological control, and (b) development of a single dominant
channel associated with transition to meandering.
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e.g. one channel width. Now suppose you had a speed control for the smaller-
scale movie. Could you, by slowing it down, make it statistically
indistinguishable from the larger-scale movie? If so, how would the magnitude
of this ‘slow-motion’ factor be related to the spatial scale ratio L,/ L,?
Sapozhnikov and Foufoula-Georgiou (1997) proposed that, if T, and T, are time
scales for the two cases (i.e. T/ T) is the ‘slow-motion’ factor), the presence of
statistical space-time scaling implies a space-time rescaling such that

12
L L
T | L )]
where z is a scaling exponent. The presence of such a statistical scale invariance
under a power law space-time transformation is called dynamic scaling. The
next question is how to test quantitatively for the presence of dynamic scaling in
braided river systems.

Sapozhnikov and Foufoula-Georgiou (1997) proposed a methodology
based on the probability distributions of temporal changes in the patterns of
braided rivers. Changes were defined as parts of the space which were either not
occupied by water but became occupied, or were occupied but became dry, or in
which depth changes caused a change in dye concentration, after some time lag
t. If n(I' > 1, 1) denotes the number of changes larger than size ! (where size is
quantified by the square root of the area of the change) then it can be shown

(Sapozhnikov and Foufoula-Georgiou, 1997) that the condition of dynamic
scaling above can be written in terms of the statistics of changes as:

n(l'>1,t) = l.‘Df[{;} ' Q)

where f(.) is an unknown function, and D is the fractal dimension of the braided
river spatial pattern. A step-by-step method for estimating the dynamic scaling
component z is presented in Sapozhnikov and Foufoula-Georgiou (1997).
Suffice to say that for given estimates of D and z, the presence of dynamic
scaling implies that n(I' > [, 1) IP vs. t/I* for different values of the time lag ¢ and
for different sizes of pattern changes should all collapse on the same curve SO
As will be demonstrated below, this holds true for data from an experimental
braided river, implying the presence of dynamic scaling.

The difficulty of obtaining the necessary observations of the evolution of
natural braided rivers in the field, and the resolution limitations of satellite
images, suggest using laboratory data to begin the search for dynamical scaling.
It is relatively easy to produce small-scale laboratory braided river networks that
show essentially all of the morphological and dynamic characteristic of their
field-scale cousins. From a hydraulic point of view this can be rigorously
justified on the basis of the Froude scale modeling (Ashmore, 1982). Details of
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the experiments discussed here are in Sapozhnikov and Foufoula-Georgiou
(1997). The experimental basin was 5 m x 0.75 m and was continuously
supplied with sediment (median grain size = 0,12 + 0.03 mm with a discharge of
0.6 g/s) and water (discharge 20 g/s). A video camera recorded the evolution of
the system, To visualise the river and monitor its depth, dye was supplied
continuously during each videotaping session. After each videotaping session,
the dye supply was cut and water flushed the dye from the system in a matter of
a few hours, The recorded data were consequently digitised for treatment and
analysis. The study region was 0.75 m wide and 1.0 m long and began 2.8 m
downstream of the feed point. The final resolution of the images (Figure 6) was
3 mm across the river and 1,5 mm along the river.

Figure 6.  Photograph of the experimental braided river used to measure
the time-space distribution of changes (from Foufoula-
Georgiou and Sapozhnikov, 2001).

Using the mass-in-a box method (Mandelbrot, 1982; Sapozhnikov and
Foufoula-Georgiou, 1997) the fractal dimension of the braided river was
estimated to be D = 1.75. Using the step-wise-estimation procedure (Foufoula-
Georgiou and Sapozhnikov, 2001; Sapozhnikov and Foufoula-Georgiou, 1997)
the dynamic scaling exponent was then estimated to be z = 0.5. Using these
values of D and z, the plot of the rescaled distributions is shown in Figure 7. All
curves (rescaled probability distributions) collapse to a single curve, providing
full evidence for the presence of dynamic scaling.

The physical interpretation of the value of the dynamic scaling exponent
was extensively discussed in Sapozhnikov and Foufoula-Georgiou (1997). They
compared their estimate of z = 0.5 with two limiting cases: A value of z = 2
would suggest that the time scale of changes is controlled by a diffusion-type
process and is thus proportional to the square root of the length scale of the
changes. A value of z = 0 would indicate that no rescaling would be needed
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Figare 7.  Number of occurrences of events of a given size for the
experimental braided river in Figure 6, rescaled using
estimated values of the fractal dimension D = 1.75 and the
dynamic-scaling exponent z =0.5. The distribution functions
collapse onto a single line, verifying the presence of dynamic
scaling (from Foufoula-Georgiou and Sapozhnikov, 2001).

going from a small to a larger spatial scale, i.e. the time scale of changes of all
sizes is the same. The relatively small value z = 0.5 implies that, although small
changes do have a shorter time scale than large ones, the difference is much less
than one would expect if the time scaling behaved diffusionally. Sapozhnikov
and Foufoula-Georgiou (1997) suggested that the evolution of small features is
largely controlled by the evolution of larger ones. We will return to this point
below.

3. IMPLICATIONS OF SCALING

What does it mean that braided rivers show evidence of both static and dynamic
scaling? What does it mean if they are self-organised critical (SOC)? We will
begin with the latter question, because in a sense it contains the answer to the
first question: although scaling does not by itself imply SOC, SOC does imply
both the time-space scaling and fractal spatial patterns described in the previous
sections.
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The direct meaning of SOC is implied in the definition: the system
organises itself in such a way that it brings itself to a “critical” state in which
small perturbations produce response over all possible length scales in the
system, The frequency of these responses depends on an inverse power of the
size of the response,

The original SOC model (Bak er al., 1987) was illustrated using an
imaginary sand pile, This archetypal system, which turns out to have little to do
with real sand piles, has two essential features: (1) it is two-dimensional, and (2)
it has a nonlinear (via a threshold slope) law for particle motion, Both of these
features seem to have clear analogues in braided streams, Braided streams are
fundamentally two-dimensional: much of their dynamics arises from the
interaction of different flow threads, which obviously could not arise without a
second dimension to provide for variable paths. It is tempting to point to the well
known threshold shear stress for initiating sediment motion as the analogue for
Bak et al.’s threshold slope, but in our view this would be misleading — it
would imply that braiding could occur only for conditions near critical, which is
patently not the case for sand-bed, suspension dominated braided rivers like the
Brahmaputra. We suggest instead that the essential feature is non-linearity of
transport, a property fundamental to all useful sediment transport laws and one
identified as fundamental to braiding for other reasons by Murray and Paola
(1994). The steep increase of sediment flux with flow velocity u (e.g. as w in the
Engelund-Hansen (1967) total load law) plays the same role in stream braiding
as the on-off behaviour invoked by Bak et al. in their sand-pile model.

So it seems that two very basic properties of braided rivers are consistent
with the existence of SOC behaviour. What good does it do us to know that
braided rivers may be SOC? One important advantage of identifying a “generic”
behaviour like SOC is that, once proven, it implies a number of system
attributes, like power-law scaling and fractality, that are useful in modeling and
prediction. That characteristics like these are common to all SOC systems also
implies that we may be able to apply results from other, better studied SOC
systems to the braided river problem.

3.1 SOC and sediment flux

The SOC nature of braided rivers has implications for the way in which they
convey material, A number of workers have noted that sediment flux in braided
rivers is highly variable in time. These sediment pulses have been observed in
both laboratory and field measurements (Ashmore, 1991; Goff and Ashmore,
1994; Hoey, 1992; Hoey and Sutherland, 1991). Similar pulses developed
spontaneously in the braided river model of Murray and Paola (1994),
suggesting that they are a generic feature of sediment transport in braided rivers.
Here we will show that the avalanches of the original Bak et al. (1987) two-
dimensional sandpile model lead directly to transport pulses in that model as
well. In the original model, the system was “probed” by dropping single

Gravel-Bed Rivers V 59



particles on it at random locations. A simple change to this setup is to supply the
system with a steady flux of material at one end and then monitor the flow rate
of particles from the other end. The rules are otherwise the same as in the Bak er
al. model. The result of this is shown in Figure 8a. The output flow rate, on
average, equals the feed rate, but is clearly quite variable. This variability is
induced by storage and release of material as a result of the slope threshold for
avalanching. A similar storage and release mechanism is thought to be
responsible for producing the fluctuations in sediment output of braided streams,

but evidently (Figure 8b) it produces a significantly lower level of intermittency
than in the sandpile model,
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Figure 8.  Sequences of sediment output (black) from (a) the original Bak
et al. (1987) sandpile model with steady sediment supply and
(b) an experimental braided river (Ashmore, 1985). The grey
lines in the background show cumulative excess mass
(cumulative input - output) in each system.
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In the Bak ef al. (1987) model, there is only one material type in transport,
Braided rivers transport both water and sediment, Although obviously these two
phases are closely coupled, they have quite different time scales. The events
studied by Sapozhnikov and Foufoula-Georgiou are changes in the plan-view
distribution of water. To what extent are water events and sediment events
coupled? The observations of Ashmore (1985) establish a general connection
between sediment pulses and areas of rapid change in channel pattern, However,
this connection has not been explored in detail. Although it is possible in
principle to have high sediment flux events without changing the bed
topography substantially, the general connection between sediment pulses and
the growth and incision of bars suggests that this is unlikely. On the other hand,
our observation is that it is possible to change the flow pattern dramatically with
only a minor change in bed topography, if a small change occurs in an
advantageous location. Further study of the relation among topographic change,
sediment flux pulses, and change in flow pattern should be an extremely fruitful
area in braided river research.

3.2 SOC and flooding

One 1mportant practical application of SOC is to predict the llkehhood of
changes of various magnitudes. Anyone charged with designing structures in or
around braided rivers must be able to estimate the recurrence interval or
probability of flows of various magnitudes at a given point in the system. This
problem has a very different structure in a braided river than in one with a fixed
or slowly evolving channel. In the latter, which is the conventional case
considered by river engineers, flooding statistics are controlled by the likelihood
of discharge events of a given magnitude, along with the geometries of the
‘channel and floodplain. In an active braided stream, the likelihood of flooding at
a given point depends both on discharge statistics and on the statistics of channel
shifting. The channel shifting statistics are controlled by the internal dynamics
of the river system and would lead to flooding everywhere even if the discharge
never changed (Cazanacli, 2000). Understanding the SOC nature of braided
rivers is essential to constraining this piece of the flooding problem,

We can gain some further insight into applying SOC concepts to evaluating
flood risk by tummg to one of the best-studied SOC systems: geological faults.
Fault systems were one of the first physical systems proposed to show SOC
behaviour (Olami et al., 1992; Sornette, 1992). Here the “avalanches”
correspond to earthquakes, and the power law distribution of avalanche sizes to
the well known Gutenberg-Richter law of earthquake magnitude. One result of
earthquake research is that, despite enormous effort driven by a compellmg
social need, it is still not possible to predict specific earthquakes, and there is at
present little prospect of doing so. So at this point, it does not seem that there is
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much chance of predicting specific changes in braided river patterns either. On
the other hand, it is quite possible to quantify seismic hazard, and likewise, it
should be possible to quantify risk associated with stream braiding as well.

Adopting this approach, the first question is how to quantify the general
risk of flooding for areas within the braid plain. As mentioned above, in braided
rivers the probability of flooding in a particular area depends both on variation
in discharge and on the probability of occurrence of a flow path at the point in
question. The latter is associated with the internal dynamics of the system.
Channel shifting on relatively short time scales implies that braided rivers would
eventually wet their entire braid plain even if their discharge never changed. Our
group at St. Anthony Falls Laboratory (Cazanacli, 2000) has analysed the
probability of successive occupation of unwetted areas for an experimental
braided fan. The most important result of this work is that unwetted area on the
fan surface decays according to:

firy(0)
1+ 4T,

cm

fdry (t) = (33)

where f,,.(¢) is the fraction of the total fan area that has never been under water
in the time interval [0, 7], and T,,, is a channel-mobility time scale given by:

I - 0B.h(Br - B.)
Os

where « is an order-one coefficient (empirically a = 1.8), B, is the total width of
active channels, k, is the mean channel depth, By is the total width of the braid
plain or fan, and Q, is the total sediment flux. The physical reasoning behind a
similar time scale is discussed in Paola (2001).

Equations (3a, b) have been tested only for two rates of deposition in a
single experiment. If the basic form and physical basis prove general, then they
can be used to quantify that part of the flooding hazard within a braided system
associated with flow switching, on the basis of readily measurable physical
quantities.

The harder problem of calculating the likelihood of a shift in the river
pattern of a given size can be tackled using the results of dynamic-scaling
analysis. The rescaling presented in Figure 7 implies that the probability of high-
magnitude, low-frequency events can be estimated from relatively
straightforward measurements of the distribution of smaller, more frequent
events (Sapozhnikov and Foufoula-Georgiou, 1997). We begin by establishing
the function n(l,, ¢,) that gives the number of changes exceeding a characteristic
length scale /; (measured, for instance as the square root of the area of the
change) between photographs or maps of a river taken some relatively short

(3b)
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interval #, (e.g. one year) apart, (The discharge must be the same in the two
images to make the comparison useful,) It is unlikely that we will observe any
extremely large shifts in this short time, but we can establish the form of n(ly, ;).
Now we want to use this to estimate the likelihood of (generally larger) changes
I, occurring over some longer time interval ¢, (e.g. 10 years), According to
equation (1), the length must be rescaled as I, = I(1,/5,)", With z = 0.5, this
means, for instance, that a length scale of 1 m over a year is equivalent to a
length scale 100 m over 10 years, This gives the distribution n(l, #,) The length
of the box over which the changes are counted must be scaled up the same way,
s0 100 m by 100 m becomes 10 km by 10 km, Because the planform is a fractal
with dimension D, the number of changes in the longer-term, larger-scale case
must be scaled with (1,/1;)°. (The rescaling really should account for self-affinity
(Foufoula-Georgiou and Sapozhnikov, 1998) but this complicates matters
considerably.) Thus, if in our one-year comparison with a 100 m box there were
5000 changes with length scale > 1m, this would imply that on a ten-year
comparison with a 10 km box the number of changes with a length scale > 100
m would be 1,58 = 5000/(100"%),

We return to the earthquake analogy for a more speculative avenue for
assessing the risk of a large event. For earthquakes, a basic measure of risk is
based on adding up the accumulated strain since the last large event. This
provides an estimate of the largest event the system is capable of producing. In a
braided river or a sandpile model, the analogue of accumulated strain is
accumulated sediment mass. So one could ask how the likelihood of a sediment
transport event of a given size depends on the accumulated mass excess since
the last avalanche of that size. The incremental mass excess at each time # is
dQ,(HAt = (Qy — O,(L,1))At where Q(x,7) is the mass discharge summed over
each row of cells, O, is the (constant) supply value, and L is the length of the
system, The accumulated mass excess for the i event of magnitude > M is

tis 1, M

Dt ' dOd(t,,) | @

t=ti,M

where £, is the time of the event, and #, is the time of the next event > M.
Figure 8 shows time series of accumulated volume (mass) excess for the
steadily forced sandpile model and an experimental braided river (Ashmore,
1985). The sandpile results are based on a sequence of 11,000 values of the
output sediment flux Q(L 7).  Average event size is compared with cumulative
mass excess for both cases in Figure 9a. For the sandpile, there is a relation
between event magnitude and accumulated mass excess, but the mass excess is
typically much larger than any individual event. This is in contrast to the
earthquake case, where large earthquakes seem to “flush” the system of

Gravel-Bed Rivers V . - 63



accumulated strain. In the forced sandpile model the flushing occurs instead via
a whole cluster of transport events. Figure 9b shows the results of a similar
analysis of the bedload flux time series shown in Figure 8b, as well as one
additional experimental run. For these relatively short sequences, the results are
sensitive to where the mass accounting is started and stopped. We began the
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Figure9.  Sediment volume for specific discharge events compared with
accumulated excess volume (Figure 8) for (a) forced sandpile
model and (b) two runs from an experimental braided river
(Ashmore, 1985; circles, run 11; squares, run 3). In the latter
case the discharges were averaged over 15 minutes.

mass balance with a low value that followed a series of large events, in order to
study how the system built up to the next major event. Figure 9b shows that for
this case the sizes of the output events were comparable to the accumulated mass
excess. Evidently the monitoring interval (15 minutes) in the experiments was
long enough to encompass major mass-clearing episodes of sediment flux.
While these results are only preliminary, they suggest that the likelihood of
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major flux events might be estimated from careful monitoring of the sediment
budget of a braided river, The flux events are of interest in their own right, but
insofar as they are associated with major reorganisations in the flow pattern they
could be impoxtant in evalvating flood hazard as well,

3,3 SOC and scale dependence of channel activity

Sapozhnikov and Foufoula-Georgiou (1997) pointed out that their finding that
the temporal exponent z was about 0.5 implies that the dependence of
characteristic time on length scale is relatively weak. They speculated that this
might imply that changes at smaller scales are strongly forced by changes at
larger scales, Another way of looking at this is to ask what z = 0.5 implies if the
observed changes are limited by rates of sediment transfer. One would expect
the unit volumetric flux g, to scale as g, ~ LT so characteristic fluxes on length
scales L, and L, should scale as

_fz_z(iﬂf_)‘ )
gs, L) \ T
which implies, with z = 0.5 (equation 1),

gs, L

If sediment flux scales with boundary shear stress T as g, ~ 7% then the
characteristic stress decreases with length scale as 7 ~ L. So small events are
associated with small local stresses. If local flow depth scales as L, and stress is
controlled by the depth-slope product, the implication of 7 ~ L is that there is no
correlation between local slope and event size. This inference should be easy to
check. '

3.4 The limits to scaling

Static scaling of braided rivers has been demonstrated over a range of less than
two orders of magnitude in length scale (Sapozhnikov and Foufoula-Georgiou,
1996). The upper limit to scaling is set by the width of the braid plain, which in
turn is set in most cases by tectonic or other outside controls. The maximum
length scale of braiding itself—the “integral scale”—seems to correspond to the
fundamental bar wavelength as identified in classical analyses of linear
instability (Ashmore, 2001; Fredsoe, 1978; Parker, 1976). What sets the lower
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limit, the “Kolmogorov scale” of braiding? For analyses like that of
Sapozhnikov and Foufoula-Georgiou (1996), the effective lower limit is the
resolution of available air photos; the real physical limit is not known. At this
point we can only offer some suggestions as to the likely controls on the fine
scale of braiding. Some of the fine structure comprises small remnant flows in
channels that have been largely abandoned. These are passive features, although
they may be important as havens for deposition of fine sediments. Actively
maintained fine structure would have to be able to generate shear stresses above
the critical value for sediment transport. One possibility is that small channels
are associated with higher slopes, in which case the Kolmogorov scale would be
controlled by variance in slope. Otherwise, the range of active channel scales
would depend on the range of grain sizes and shear stresses. For gravel bed
rivers where the mean shear stress is likely to be near critical for the median size
(Parker, 1978), the only means available for extending the range of channel sizes
would appear to be formation of local patches of fine sediment that could remain
mobile with smaller stresses (Paola and Seal, 1995). For sand-bed rivers the
mean dimensionless stress is more typically in the range of 20-50 times critical
(Parker et al., 1998). In this case it should be possible to maintain a range of
active channel sizes over more than a decade in length scale even with no
variation in grain size or characteristic slope.

4. FURTHER WORK AND NEW DIRECTIONS

The research described here represents an initial analysis of the statistical
geometry of braided rivers. Some avenues that we think would be particularly
rewarding for future research include:

1. Can we develop a predictive, mechanistic theory that relates both static and
dynamic scaling behaviour to imposed conditions such as sediment and
water flux or grain size?

2.  How can we extend scaling ideas to the vertical dimension, using for
example newly available high-resolution topographic data (e.g. Lane,
2001)? This could allow us, for instance, to predict the likelihood of large
depth changes from measurements of smaller ones.

3. Can we develop a predictive theory for the breakdown of scaling by
imposed controls, including bedrock, tectonic controls and vegetation?

4.  Can we use presence/absence of scaling in natural river systems to identify
disturbed areas? Could approach to scaling be useful as a measure of the
recovery of a river section after disturbance?

5.  Is there scaling in other variables such as velocity field and local grain size,

beyond that imposed by the forms of scaling that have already been
identified?
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6. What are the implications of static and dynamic scaling for the
stratigraphic record of braided rivers?
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APPENDIX: SELF-AFFINITY TESTING

Let X and Y be the sides of a rectangle and M(X,Y) be the mass (e.g., the number
of pixels covered by water) of the part of the object contained within the X x ¥
rectangle. Then, spatial scaling implies that

M(X,Y)~ X"~y (A1)
where v, and v, are the fractal exponents corresponding to the X and Y
directions, respectively. Note that according to Eq. (A1), the mass M(X, Y) scales

with the sides of the rectangle only if X scales with Y in a certain way. Equation
(A1) can be written in the form

i(z_/vx_ E/vy-%. (A2)
x| |r| M

If we introduce x = log, X, y = log ¥, and z = log M, we get

x2_x1:y2_yl= _
Ty, kTu (A3)

or
—=—=dz (A4)
The function M(X,Y) is known as the correlation integral, and by analogy we call

the function z(x,y) the logarithmic correlation integral of the object under study.
Comparing Equation (A4) with

% s By gy (AS)
dx dy
we obtain
v, & +v, & =1
dx dy _ (A6)

This relationship provides a method for testing the presence of spatial
scaling and for estimating the fractal exponents v, and v, of a self-affine object,
as follows. Having estimated the logarithmic correlation integral z(x,y) from a
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. » Dattern of the object by direct calculation of the mass M(X,Y) (i.e., pixels

covered by water) within rectangles of sizes X X Y, one can calculate the
derivatives 9z(x,y)/0x and 0z(x,y)/dy and use them to test whether the linear
relationship (Equation A6) is satisfied and, if yes, to find the values of v, and v,
As can be seen from the above equation, 1/v, is the intercept of the linear best fit
Jine with the vertical axis, and -v/v, is the slope. Ideally, only two points are
needed to estimate v, and v, , but for a good estimation a least squares fit to the
derivatives at all points of the surface z(x,y) is preferable. Since both coordinates
contain uncertainty in their values, we use a least-squares method which
minimises the sum of the squares of the perpendicular to the best-fit line
distances (Alciatore and Miranda, 1995).
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