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This study proposes a novel framework based on magnitude cumulant and surrogate analyses to
reliably detect the presence of intermittency and estimate the intermittency coefficient from
short-length coarse-resolution turbulent time series. Intermittency coefficients estimated from a
large number of neutrally stratified atmospheric surface layer turbulent series from various field
campaigns are shown to remarkably concur with well-known laboratory experimental results. In
addition, surrogate-based hypothesis testing significantly reduces the likelihood of detecting a
spurious nonzero intermittency coefficient from nonintermittent series. The discriminatory power of
the proposed framework is promising for addressing the unresolved question of how atmospheric
stability affects the intermittency properties of boundary layer turbulence. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2786001�

I. INTRODUCTION

Existence of small-scale intermittency is an intriguing
yet unsettled topic in contemporary turbulence research.
Over a number of decades, researchers have been trying to
unravel intermittency in turbulence measurements and at the
same time formulating diverse conceptual models to rational-
ize the observed intermittency.1,2 Encouragingly, “practical”
implications of intermittency research outcomes are also be-
ing appreciated by the numerical turbulence modeling com-
munity and a critical knowledge transfer is taking place, as
evidenced by the recent literature.3–7

One of the most widely used statistics characterizing the
intermittent nature of turbulence is the so-called “intermit-
tency exponent” ���.8 From observational data, � can be
estimated directly or indirectly via several methods. The di-
rect estimates typically involve appropriate characterization
of the second-order scaling behavior of the local rate of en-
ergy dissipation ��� field. In this respect, several alternatives
�e.g., second-order integral moment, two-point correlation
function, spectral density� are available in the literature.9–11

Recently, Cleve et al.12 showed that among various direct
approaches, the two-point correlation function ���x+r���x��
of the energy dissipation field provides the most reliable es-
timates of �. In this case, one can write

���x + r���x�� � r−�, �1�

where r is within the inertial range. Here, the angular brack-
ets denote spatial averaging.

The direct intermittency exponent estimation methods
�based on �� require very high-resolution �resolving on the
order of Kolmogorov scale� data series of pristine quality.
Most commonly, fast-response hot-wire measurements are
used for this purpose.10–14 However, acquisition of hot-wire
data in a natural setting could be quite challenging. For ex-
ample, in the case of atmospheric boundary layer �ABL�
field experiments, one needs to perform meticulous hot-wire
calibration at short regular intervals in order to account for
the ever changing �diurnally varying� ABL flow
parameters.15,16

The ABL community widely uses sonic anemometers for
turbulent flux measurements in fields. In contrast to hot
wires, these sensors require much lesser periodic calibration
and maintenance. Unfortunately, path lengths ��10 cm� and
sampling rate ��20 Hz� of conventional sonic anemometers
are too coarse for direct � estimation. In this paper, we will
explore if sonic anemometer measurements, in lieu of
hot-wire data, can be reliably used for indirect estimation of
�.

One of the most popular indirect � estimation methods
is associated with the scaling of sixth-order structure
function.13,14,17 With certain plausible assumptions, one can
show that17
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S6�r� = ��u�x + r� − u�x��6� = ���u�6� � r2���x���x + r�� .

�2�

Using Eqs. �1� and �2�, one gets ���u�6��r2−�. Chambers
and Antonia14 used this relatively simple indirect approach
and obtained ��0.2 in the atmospheric surface layer. From
an adequate statistical convergence standpoint, estimation of
higher-order �specifically, sixth-order in this context� struc-
ture functions require a very long time series.13 For instance,
Chambers and Antonia14 used several runs of 15 min dura-
tion at a hot-wire sampling frequency of �1.2 kHz �i.e.,
�106 samples per series�. On the other hand, 15–30 min
sonic anemometer-based ABL turbulence series would typi-
cally consist of only 20 000 to 40 000 samples. Understand-
ably, the estimates of � from sonic anemometer series using
the traditional sixth-order structure function approach will
not be very reliable. This motivates us to use an alternative
estimation approach, called the magnitude cumulant analy-
sis, recently introduced by Delour et al.18 Using this ap-
proach and under the assumption of log-normality �as sup-
ported by our observational data�, only second-order
magnitude cumulants �rather than data-intensive sixth-order
structure functions� are needed to estimate the intermittency
coefficient ���.

The interrelated objectives of this paper are twofold:

�1� Assess the potential of the magnitude cumulant analysis
in detecting and estimating intermittency from short-
length coarse-resolution �sonic anemometer-acquired�
ABL measurements.

�2� Design a rigorous hypothesis-testing framework that
would reduce the likelihood of spurious detection of a
nonzero � from nonintermittent �monofractal� series.

The paper is structured as follows. In Sec. II, we briefly
describe the magnitude cumulant analysis technique. The it-
erative amplitude adjusted Fourier transform �IAAFT�
algorithm-based surrogate analysis, originally developed by
the chaos theory community for detection of nonlinearity in
time series,19 is shown to be very robust and reliable for
intermittency hypothesis testing. The IAAFT algorithm is
presented in Sec. III. An extensive collection of observa-
tional data from various field campaigns is used in this study;
Sec. IV provides brief description of these field datasets.
Comprehensive results of intermittency estimation are pre-
sented in Sec. V and compared with published literature
wherever possible. Lastly, Sec. VI summarizes our results
and discusses perspectives for future research on the intrigu-
ing question of how atmospheric stability affects intermit-
tency properties of boundary layer turbulence.

II. MAGNITUDE CUMULANT ANALYSIS

In the turbulence literature, the scaling exponent spec-
trum �q is defined as

Sq�r� = ���u�q� � r�q, �3�

where Sq�r� is the so-called qth-order structure function. As
before, the angular bracket denotes spatial averaging and r is
a separation distance that varies within the inertial range. If

the scaling exponent �q is a nonlinear function of q, then the
field is called “multifractal”; otherwise it is termed
“monofractal.”1,20 In the traditional structure function ap-
proach, estimation of � �=2−�6� requires a log-log plot of
S6�r� versus r and subsequent extraction of the slope using a
least-squares linear regression fit over a scaling regime �the
inertial range�. For a short time series, computation of S6�r�
is problematic due to statistical convergence. An alternative
reliable method, first advocated by Delour et al.,18 is to use
the magnitude cumulant analysis. In this approach, the rela-
tionship between the moments of velocity increments ��u�
and the magnitude cumulants �Cn� reads as18,21

���u�q� = exp	

n=1

�

Cn�r�
qn

n!
� , �4�

where

C1�r� � �ln��u�� � − c1 ln�r� , �5a�

C2�r� � ��ln��u��2� − �ln��u��2 � − c2 ln�r� , �5b�

C3�r� � ��ln��u��3� − 3��ln��u��2��ln��u�� + 2�ln��u��3

� − c3 ln�r� . �5c�

From Eqs. �3�–�5�, it is straightforward to express the scaling
exponent spectrum as18

�q = − 

n=1

�

cn
qn

n!
. �6�

We would like to point out that the magnitude cumulant
analysis implicitly assumes that the �q spectrum does not
display any nonanalyticity.

Furthermore, by invoking a relationship between veloc-
ity increments ��u� and local rate of dissipation fields ���
�similar to Eq. �2��, for log-normal processes, one can arrive
at22

�  9c2. �7�

Therefore, estimation of the intermittency exponent � �for
log-normal processes� would only require the computation of
second-order magnitude cumulant; i.e., the second central
moment of ln ��u� �Eq. �5b��.

For large separation �r→Li, where Li is the integral
length scale�, it is well documented that the probability dis-
tribution function �pdf� of velocity increments ��u� ap-
proaches a Gaussian distribution. For this scenario, the fol-
lowing results can be derived analytically:

C1�r� → 1
2 �− � − ln�2�� = − 0.64, �8a�

C2�r� → �2/8 = 1.23, �8b�

C3�r� → − 7
4��3� = − 2.1, �8c�

where � is the Euler Gamma constant=0.577 216, and ��3�
is Apéry’s constant=1.202 056 9. These asymptotic values of
C1�r�, C2�r�, and C3�r� would be very useful to demarcate
scaling regions in the case of short-length time series.
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It is noted that instead of a physical space-based magni-
tude cumulant analysis approach �i.e., Eqs. �4� and �5��, one
could also use wavelet-based magnitude cumulant analysis
�see Venugopal et al.23,24 for a geophysical application�. A
wavelet-based approach becomes necessary for nonstation-
ary signals and signals with Hölder exponents �h� outside the
window of �0 1�.25,26 In turbulence, �h� is close to K41 value
of 1 /3, and to best of our knowledge is always found to be
within the window of h� �0 1�.27,28 In addition, the �q spec-
trum has never been reported to be nonanalytical in nature.
Thus, in the present study we decided to employ physical
space-based magnitude cumulant analysis approach.

Magnitude cumulant analysis of a synthetic fractional
Brownian motion with h=1/3 �which displays K41 like k−5/3

spectrum� is shown in Fig. 1. The dashed line in C1�r� versus
ln�r� plot has the expected slope of 1 /3. For almost the entire
scaling range, both C2�r� and C3�r� remain close to the the-
oretical Gaussian values of 1.23 and −2.1, respectively. This
signal does not show any sign of multifractality �expected� as
the slope of C2�r� versus ln�r� cannot be claimed to be dif-
ferent from zero.

III. SURROGATE ANALYSIS

Noise is omnipresent in any measured signal, and turbu-
lence signals are no exceptions. In addition to noise, limited
amount of data �finite sample settings� in most field measure-
ments could challenge intermittency detection and estimation
even with the magnitude cumulant analysis method �e.g., as-
sessment of a small nonzero slope in the C2�r� versus ln�r�
plots�. In this paper, we utilize a hypothesis-testing frame-
work, based on surrogate analysis, in conjunction with mag-
nitude cumulant analysis, for detecting and accurately esti-
mating intermittency from short-length sonic anemometer
measurements.

The concept of surrogates �stochastic realizations that
preserve only certain characteristics of a process� was intro-
duced into the chaos theory literature to provide a rigorous
statistical test for the null hypothesis that an observed time
series has been generated by a linear stochastic process �see
Theiler et al.,29 Kantz and Schreiber,30 Basu and
Foufoula-Georgiou,31 and the references therein�. Over the
years, several varieties of surrogates �randomly shuffled sur-
rogates, Fourier phase randomized surrogates, iterative am-

FIG. 1. A synthetic fractional Brownian motion �h=1/3� �top-left�. The magnitude cumulants C1�r� �top-right�, C2�r� �bottom-left�, and C3�r� �bottom-right�
are also shown. The dashed line in the top-right subplot shows the slope −c1=1/3.
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plitude adjusted Fourier transform surrogates, stochastic
IAAFT surrogates, and so on� have been proposed in the
literature.32 In this paper, we will use the IAAFT algorithm
proposed by Schreiber and Schmitz.19 IAAFT surrogates pre-
serve the correlation structure �and, thus, the power spectrum
due to the Wiener-Khinchin theorem� and the probability
density function of a given time series. Apart from nonlin-
earity detection,19,31 the IAAFT surrogates have also been
used to define a precipitation forecast quality index,33 and to
generate synthetic cloud fields.34

In the turbulence literature, surrogate analysis-based hy-
pothesis testing is virtually nonexistent with an exception of
the paper by Nikora et al.35 They used simple Fourier phase
randomization approach �pdf of the original turbulence series
was not preserved� in identifying the effects of turbulence
intermittency and spectral energy flux. In comparison to the
Fourier phase randomized approach, the IAAFT algorithm
used in the present study designs stronger statistical test �due
to its ability to preserve the integral pdf of the original sig-
nal� for the null hypothesis that an observed turbulence series
is nonintermittent.

In Fig. 2, a sonic anemometer turbulence series and its

IAAFT surrogate are shown. By construction, they have the
same pdf �bottom-right plot of Fig. 2� and virtually indistin-
guishable autocorrelation function �bottom-left plot of Fig.
2�. Basic properties of the original turbulence series and its
surrogate are provided in Table I. Ti and Li denote integral
time and length scales, respectively.

Ti = �
0

�

R���d� , �9a�

Li = U · Ti, �9b�

where R��� is the autocorrelation function. From Fig. 2 and
Table I, we can safely infer that the IAAFT surrogate cap-

FIG. 2. Longitudinal velocity time series measured by a sonic anemometer �top-left� and its surrogate series generated by IAAFT methodology �top-right�.
Both series have approximately the same autocorrelation �bottom-left� and exactly the same probability density function �bottom-right�.

TABLE I. Basic statistics of a sonic anemometer turbulence series and its
surrogate.

Series type U �ms−1� 	u �ms−1� Ti �s� Li �m�

Turbulence 3.73 1.06 1.47 5.47

Surrogate 3.73 1.06 1.46 5.43
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tures the integral pdf and autocorrelation function of the
original velocity series rather accurately. Later on, we will
show that the IAAFT surrogates do not have the ability to
capture the scale-dependent pdfs of velocity increments and
this forms the basis for the proposed intermittency hypoth-
esis testing.

IV. DESCRIPTION OF DATA

In this study, we primarily made use of an extensive
atmospheric boundary layer turbulence dataset �comprising
of sonic anemometer measurements� collected by various re-
searchers from Johns Hopkins University, and the University
of California-Davis during Davis 1994, 1995, 1996, and
1999 field studies. Comprehensive description of these field
experiments �e.g., surface cover, fetch, instrumentation, sam-
pling frequency� can be found in Pahlow et al.36 Briefly, the
collective attributes of the field dataset explored in this study
are as follows: �i� surface cover: bare soil, and beans; �ii�
sampling frequency: 18 to 21 Hz; �iii� sampling period: 20 to
30 min; �iv� sensor height �z�: 0.96 to 4.28 m.

The ABL field measurements are seldom free from me-
soscale disturbances, wave activities, nonstationarities, etc.
The situation could be further aggravated by several kinds of
sensor errors �e.g., random spikes, amplitude resolution er-
ror, drop outs, discontinuities, etc.�. Thus, stringent quality
control and preprocessing of field data are of utmost impor-
tance for any rigorous statistical analysis. Our quality control
and preprocessing strategies are described in detail in Basu
et al.37 After the quality control and preprocessing steps, we
were left with 139 “reliable” near-neutral ��z /L � 
0.05,
where z is the sensor height and L denotes the Monin-
Obukhov length� sets of runs for estimating the intermittency
exponents.

We also estimated � from a fast-response �10 kHz� hot-
wire ABL turbulence series utilizing the magnitude cumulant
analysis. The hot-wire measurements were taken at the
Surface Layer Turbulence and Environmental Science Test
�SLTEST� facility located in the western Utah Great Salt
Lake desert under near-neutral atmospheric condition.15,16 In
the following section, we will show that the intermittency
exponent and other relevant statistics derived from this high
Reynolds number �Re� hot-wire measurement are surpris-
ingly similar to various published lower Re laboratory ex-
perimental findings, and serve as benchmarks in the present
study.

Mean flow characteristics of all the field measurements
are given in Table II. For all the analyses, we have invoked
Taylor’s hypothesis to convert time series to spatial series.

V. RESULTS

A. Analysis of hot-wire measurements

In this section, hot-wire measurements and their surro-
gates are analyzed to �a� demonstrate the ability of the mag-
nitude cumulant analysis to accurately estimate the intermit-
tency structure of turbulent velocity series and �b� establish
that the surrogate series, while preserving the pdf and spec-
trum of the original data, destroy the intermittency structure.

In Fig. 3, the magnitude cumulants and second-order
structure function computed from the hot-wire measurements
of Kunkel and Marusic16 are shown. This turbulence series is
30 min long ��18�106 data points� and captures scales
down to the Kolmogorov scale. The local slopes of the mag-
nitude cumulants and second-order structure functions �esti-
mated using second-order central differencing� are shown in
Fig. 4. The vertical dotted lines in Figs. 3 and 4 represent the
scaling range over which cn �n=1–3�, and �2 can be reliably
estimated using linear regression.

The following observations can be made from Figs. 3–5:

• c1
turb computed from the turbulence velocity signal is close

to −0.38. The 95% confidence interval is �−0.384,
−0.382�. c1

turb agrees quite well with the existing results
from low Re laboratory experiments.18,21

• c2
turb is approximately equal to 0.03. In this case, the 95%

confidence interval is �0.029,0.032�. Delour et al.18 and
Chevillard et al.21 reported c2=0.025±0.003 based on sev-
eral experiments and claimed it to be “universal.” From
Eq. �7�, we can compute the intermittency exponent
�9�c2

turb0.27. In the literature, researchers have re-
ported � ranging from 0.18 to 0.7.10,11 In the case of at-
mospheric data, the “best” direct estimate is 0.25±0.05
�Ref. 10� and our indirect magnitude cumulant analysis-
based result is in agreement with it.

• Figure 5 portrays that c2
turb is converged for sample sizes of

approximately 14�106 and higher.
• In the inertial range, c3

turb cannot be distinguished from
zero �95% confidence interval is �−0.008,0.002��. This in-
dicates that the statistics of the velocity increments are
possibly log-normal.18,21 Please see the Appendix for a
brief discussion on c4

turb computation.
• Since c3

turb�0 and c4
turb�0, from Eq. �6� we can derive:

�2
turb=−2c1

turb−2c2
turb=2�0.38−2�0.03=0.70. Figure 3

�bottom-right� shows the second-order structure function.
The slope of this plot gives �2

turb=0.70 �95% confidence
interval is �0.702,0.706��. Thus, our results are self-
consistent.

• c2
surr estimated from the surrogate of the measured turbu-

lence velocity series is zero; i.e., the surrogate series is
nonintermittent.

TABLE II. Mean flow characteristics of the field measurements.

Sensor Type z �m� U �ms−1� 	u �ms−1� Ti �s� Li �m�

Hot-wire anemometer 2.01 5.99 0.74 5.71 34.22

Sonic anemometer 0.96–4.28 1.60–7.30 0.34–1.57 1.08–9.09 2.57–33.22
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• By construction, the surrogate series �i.e., turbulence with-
out intermittency� preserves the second-order statistics.
Thus, �2

turb=�2
surr. Using this relationship, the fact that c2

surr

=0, and Eq. �6�, it is straightforward �since our present
data analysis supports that c3

turb�0 and c4
turb�0� to show

that: c1
turb+c2

turb=c1
surr. In the present case, this results

in: c1
surr=−0.38+0.03=−0.35 �see also Fig. 3�. Thus,

�1
surr=−c1

surr=0.35 is in close accord with K41 hypothesis of
�1=1/3.1 The relationship c1

turb+c2
turb=c1

surr has significant
practical implications. It insinuates that one can roughly
estimate c2

turb �and thus �� by means of first-order magni-
tude cumulants of turbulence and its corresponding surro-
gate; i.e., c2

turb=c1
surr−c1

turb. In our opinion, for estimating
intermittency in short-length geophysical signals, this
simple indirect method, which does not require even
second-order magnitude cumulant computation, would be
quite useful.

• In the turbulence literature, there is a general consensus
that �3=1. From our results, we find �3

turb=−3c1
turb

−9/2c2
turb=1.14−0.135=1.005, in close agreement with

the well-accepted value.

We proceed further by comparing the pdf of the velocity
and surrogate increments using the skewness, asymmetry
factor, and flatness defined as

Skewness�r� =
���u�3�

���u�2�3/2 , �10a�

Asymmetry�r� =
���u�3�
����u�3��

, �10b�

Flatness�r� =
���u�4�
���u�2�2 . �10c�

From Fig. 6 �left�, it is evident that the original turbu-
lence increment series show negative skewness �up to �0.6�
for small scales, in accord with the existing literature �e.g.,

FIG. 3. C1�r /Li� �top-left�, C2�r /Li� �top-right�, and C3�r /Li� �bottom-left� computed using the hot wire measurements of Kunkel and Marusic �Ref. 16.� The
second-order structure function is also shown �bottom-right�. The circles denote the statistics corresponding to the original turbulence series and the stars
represent the statistics computed from the IAAFT surrogate series. Clearly, the original series portray the signatures of a multifractal process. In contrast, the
surrogate series shows the signs of monofractality. The vertical dotted lines represent the scaling range over which cn �n=1–3�, and �2 can be reliably
estimated. The dashed lines show the slopes −c1

turb=0.38 �top-left�, −c2
turb=−0.03 �top-right�, and �2

turb=0.70 �bottom-right�.
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Chevillard et al.21�. This negative skewness is believed to be
related to the vortex folding and stretching process. Malécot
et al.22 argued that the asymmetry factor �see Eq. �10� for a
definition� is a better measure of the asymmetry of the pdf
than the skewness. We found that both of these signed odd-
order moments behave quite similarly �Fig. 6, left�. The ori-
gin of spurious oscillations of these odd-order moments for
large scales �ln�r /Li��−4� is not well understood. The flat-
ness plot �Fig. 6, right� also portrays anticipated characteris-
tics. Flatness corresponding to the integral scale is close to 3
�hallmark of Gaussian velocity increments� and becomes ex-
ceedingly large for smaller scales. In contrast, the surrogate
shows Gaussian characteristics for all scales. This corrobo-
rates the fact that surrogates cannot capture the pdfs of tur-
bulence velocity increments.

B. Analysis of sonic anemometer measurements

Magnitude cumulants and second-order structure func-
tions computed from a sonic anemometer series are shown in
Fig. 7. The trends are very similar to Fig. 3, albeit quite
noisy. From this figure, we calculated c1=−0.37, c2=0.06,

and �2=0.63. We would like to emphasize that even in this
short time series scenario, we can reliably detect intermit-
tency with the help of IAAFT surrogate �see Fig. 7, top-
right�. Admittedly, the estimation of c2 is possibly not very
accurate. The estimation can be improved by using quenched
or annealed averaging strategy �discussed below�.

It is quite difficult to manually yet objectively select
scaling ranges from a large dataset �specifically, 139 near-
neutral turbulence series�. Thus, we used an automated scal-
ing range of �4U / fs Li /2� for individual series. Here, U, fs,
and Li denote mean velocity, sampling frequency, and inte-
gral length scale, respectively. From each individual turbu-
lence series and their surrogates, we calculated the corre-
sponding c1 and c2 values. Subsequently, from these 139
c1

turb, c2
turb, c1

surr, and c2
surr combinations, we computed the best

estimates �ensemble mean ±1 standard deviation� as: �c1
turb�

=−0.330.03, �c2
turb�=0.038±0.017, �c1

surr�=−0.300.03,
and �c2

surr�=0.002±0.013. This averaging strategy is similar
to the quenched averaging method used by Arnéodo et al.38

The key result: �c2
turb�� �c2

surr�, without any doubt, once again

FIG. 4. The local slopes of C1�r /Li� �top-left�, C2�r /Li� �top-right�, C3�r /Li� �bottom-left�, and ln�S2�r /Li�� �bottom-right�, for the same turbulence data series
used in Fig. 3. Second-order central differencing is used to compute the local slopes. The vertical dotted lines represent the scaling range over which cn

�n=1–3�, and �2 can be reliably estimated. Computed �linearly regressed� values of −c1
turb �top-left�, −c2

turb �top-right�, −c3
turb �bottom-left�, and �2

turb �bottom-
right� are shown as horizontal dashed lines.
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guarantees that the IAAFT surrogates can be faithfully used
for turbulence intermittency detection testing.

As an alternative strategy, using the annealed averaging
method,38 we have also computed the average of the magni-
tude cumulants �i.e., �C1�r /Li��, �C2�r /Li��� from the same
turbulence and surrogate datasets �Fig. 8�. From this figure,
we estimate the slopes as: c̄1

turb=−0.35, c̄2
turb=0.042,

c̄1
surr=−0.31, c̄2

surr=0.002. Obviously, there is no significant
discrepancy between the quenched and annealed averaged
statistics, as would be wishfully expected. Lastly, these sta-
tistics highlight that the relationship established in Sec. V A;
i.e., c1

turb+c2
turb=c1

surr, is also valid under annealed averaging.

VI. CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

In this work, we have established a framework based on
magnitude cumulant and surrogate analyses to reliably detect
the presence of intermittency and estimate the intermittency

coefficient from short turbulent time series. By virtue of this
framework, ensemble scaling results extracted from a large
number of neutrally stratified atmospheric surface layer tur-
bulent series �predominantly acquired by slow-response
sonic anemometers� from various field campaigns remark-
ably concur with well-known published �mostly laboratory
experimental� results.

Neutrally stratified atmospheric surface layer �ASL� tur-
bulence suffers from strong anisotropies due to shear effects.
In the recent years, a few turbulence research groups have
been trying to disentangle the effects of anisotropy from
scaling exponents �e.g., Kurien et al.,39 Kurien and
Sreenivasan,40 Biferale et al.,41 and Staicu et al.42�. In the
context of ASL turbulence, Kurien and Sreenivasan40 found
that “the anisotropy effects diminish with decreasing scale
although much more slowly than previously thought.” Ad-
mittedly, the magnitude cumulant analysis does not take into
consideration the effects of anisotropy. In the future, we hope
to generalize the magnitude cumulant analysis to explicitly
account for the anisotropic effects.

The focus of the present study was on neutrally stratified
atmospheric turbulence. However, it is widely known that
neutral stability conditions are rarely encountered in the real
atmosphere. Most of the time, the atmospheric boundary
layer is strongly modulated by buoyancy. It is commonly
assumed that the effect of atmospheric stability is felt only at
the “buoyancy range,” which has scales considerably larger
than the inertial range. Recently, Aivalis et al.43 studied the
intermittency behavior of temperature in the convective sur-
face layer using cold wire anemometry. They found that the
classical inertial range remains intact in convective surface
layer and the scaling exponents approach values appropriate
to the intermittent case of isotropic turbulence. They also
noticed that the scaling exponents corresponding to the
buoyancy range are highly anomalous. In contrast, Shi
et al.44 found that in the case of temperature, the inertial
range scaling exponents are unambiguously impacted by at-
mospheric stability. However, their results are inconclusive

FIG. 5. c2
turb versus sample size for the hot-wire measurements of Kunkel

and Marusic �Ref. 16�. The error bars denote 95% confidence intervals.

FIG. 6. Negative skewness, asymmetry factor �left�, and flatness �right� of the longitudinal velocity increments and the increments of the surrogate series. We
utilized the hot-wire measurements of Kunkel and Marusic �Ref. 16�.
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in the case of velocity signals under different stability re-
gimes. We believe that the unresolved question as to whether
or not the inertial-range intermittency is influenced by large-
scale anisotropic forcing of atmospheric stability is of great

consequence and needs further consideration. Abundant
high-quality slow response data collected under different at-
mospheric regimes in recent years �e.g., Cooperative
Atmosphere-Surface Exchange Study - CASES9945� could

FIG. 7. Same as Fig. 3, but estimated from a sonic anemometer series.

FIG. 8. Ensemble averaged C1�r /Li� and C2�r /Li� plots from 139 near-neutral turbulence series �circles� and corresponding surrogates �stars�. The dashed lines
show the slopes −c̄1

turb=0.35 �left� and −c̄2
turb=−0.042 �right�.
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be coupled with the robust scaling analysis and estimation
framework explored in this study in order to shed new light
into this fundamental problem.
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APPENDIX: c4
turb COMPUTATION

For a log-normal process, cn=0 for n�3. In Sec. V, we
found that c3

turb�0, which could be speculated as a signature
of an underlying log-normal process. However, in order to be
more certain, one needs to compute higher order cumulants.
In this Appendix, we attempt to compute c4

turb from the hot-
wire measurements of Kunkel and Marusic.16 C4�r� can be
written as

C4�r� � ��ln��u��4� − 4��ln��u��3��ln��u�� − 3��ln��u��2�2

+ 12��ln��u��2���ln��u���2 − 6��ln��u��2�4

� − c4 ln�r� �A1�

From Fig. 9 �left�, it seems that C4�r /Li� is approxi-
mately flat in the inertial range �i.e., c4

turb�0�. However, the
local slopes of C4�r /Li� are overly scattered to provide any
conclusive evidence of log-normality �see Fig. 9, right�. Es-
timation of higher order magnitude cumulants require astro-
nomical amount of statistical samples. We would like to note
that Arnéodo et al.46 utilized a turbulence series of length

25�107 points �approximately 14 times larger than the hot-
wire sample size used in the present study� and still was
unable to reach statistical convergence for c4 and higher-
order cumulants.
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