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In this paper some recent advances on rainfall scaling research are reviewed for
the purpose of illustrating some important recent findings but still yet the need for
further mathematical and empirical analyses to integrate results of different studies
towards a comprehensive and coherent picture of the rainfall process, Our review
centers around two major issues: {(a) temporal rainfall and scaling, and (b) spatial
rainfall scaling and relations to physical parareters of the storm environment.
Some important recent developments on integrated space-time scaling descriptions
are not reviewed herein as such descriptions have only recently emerged and deserve
a separate focused treatment in the near future,

2.1 Introduction

Rainfall being the result of complex atmospheric phenomena, possesses a com-
plicated temporal and spatial structure. A wide range of frequency-content
features and extreme variability over time intervals from a few seconds to years
and length intervals of a few kms to several hundred of kms, make rainfall an
intriguing and challenging process to study.

Significant success of scaling models in studying various physical processes
(for instance, Kolmogorov’s5/3 law for the energy spectrum in turbulent flows,
and Brownian motion to model molecular diffusion) has motivated hydrologists
to look for scale invariance in hydrologic processes, in general, and rainfall in
particular. By scale invariance, it is understood that a change in the scale
of description leads to processes that look statistically similar apart from fac-
tors invelving the ratios of scales under study. Scaling models of rain provide
attractive and parsimonious representations over a large range of scales and
are supported by empirical evidence and theoretical arguments that rainfall
exhibits scale-invariant symmetry (e.g., Schertzer and Lovejoy 1987; Gupta
and Waymire 1980; Kumar and Foufoula-Georgiou 1993b). Scaling models ex-
plored to date for the description of temporal and spatial rainfall include fractal
models of rain areas, monofractal and multifractal fields (including universal
multifractals), generalized scale-invariant models, and scaling-in-fluctuations
models. A review of these developments from 1991 to 1994 and references to
previous works can be found in Foufoula-Georgiou and Krajewski (1995).



26

In this paper some recent advances on rainfall scaling research will be re-
viewed for the purpose of illustrating some important recent findings but stiil
yet the need for further mathematical and empirical analyses to integrate re-
sults of different studies towards a comprehensive and coherent picture of the
rainfall process. It is of course recognized that space and time variations of
rainfall are not independent of each other and thus simultaneous space-time
scaling descriptions of rainfall should be sought. In fact, the early studies of
space-time point process models of rainfall {(e.g., Waymire et al. 1984) were
motivated by the need to integrate the temporal and spatial rainfall descrip-
tions into a unifying modeling framework which can also explain theoretically
Taylor’s hypothesis of turbulence (found empirically to hold for rainfall for
time scales of less than approximately 40 mins; Zawadzki 1973). Although
developments in space-time models of rainfall based on the stochastic point
process framework have been studied for some time now (e.g., see Cox and
Isham, this volume, for newest developments), theories of space-time rainfall
based on scaling ideas have only recently emerged (e.g., see Over and Gupta
1996; Marsan et al. 1996, Venugopal et al., 1997} and were not included in
this review. Rather, our discussions will center around two major issues: (a)
temporal rainfall and scaling, and (b) spatial rainfall scaling and relations to
physical parameters of the storm environment.,

2.2 High-Resolution Temporal Rainfall: Scaling or Not?

2.2.1 Preliminaries

The temporal structure of rainfall at a point has been the subject of intense
study over the past two decades. Markovian-type structures for hourly and
daily rainfall formed the core of early models used to describe rainfall’s ex-
treme variability (e.g., Gabriel and Neumann 1962). The structure and the
parameters of these models depended heavily on the time scale chosen. for
representing the rainfall process. This limitation, together with the desire to
develop model structures that can handle space and time variability simul-
taneously, led to the formulation of continuous-time conceptual point-process
rainfall models, which would be applicable over several time scales (e.g., see
Foufoula-Georgiou and Georgakakos 1991 for a review of point process models
up to 1990 and Onof and Wheater 1993 for a more recent reference). The
hope was that this continnous-time rainfall parameterization would shed light
on the underlying rainfall-generating mechanism, especially if it came from
a space-time formulation. However, although valid simulation models, they
provided a limited understanding of the underlying structure of the rainfall
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process. The reason was that the rainfall structure was mostly imposed based
on a radar-inferred phenomenology, e.g. embedding of high-intensity rain cells
within lower intensity mesoscale areas (clustering), rather than truly unrav-
eled statistically from the rainfall fields. Another practical problem with these
models was that there were too many parameters embedded in the model
structure, resulting in non-uniqueness and non-identifiability when the models
were fitted to rainfall observations at different scales. For example, fitting the
same continuous-time model to hourly or daily accumulations could result in
different estimates of the model parameters rendering thus any physical mean-
ing of these parameters questionable (e.g., see Foufoula-Georgiou and Guttorp
1987). More recent versions of point process models seem to have overcome
these problems with improved model structures and parameter estimation pro-
cedures. Some recent developments in point process-based rainfall models are
discussed in this volume by Cox and Isham.

" Temporal rainfall exhibits extreme variability over scales of several seconds
to days to years, to centuries. For example, Figure 2.1a shows a plot of rainfall
intensities sampled every b seconds from an optical raingauge in lowa City (see
Georgakakos et al. 1994 for information on the data collection procedures),
while Figures 2.1b, ¢, and d show the temporal rainfall variability over hours,
months and years, respectively for an lowa City station. Obviously, rainfall has
some characteristic scales which relate, for example, to storm and interstorm
duration, and seasonal periodicity. The effects of these characteristic scales
must be removed if a quantitative comparison of the stochastic variability over
scales is to be made. For our purposes, it suffices at this point to note that
the rainfall process indeed exhibits a large variability over all these scales, and
it is not clear visually if some underlying hidden similarities between scales do
exist or not.

Our discussion in this section will concentrate on the findings of a couple of
recent studies that have analyzed high resolution (seconds to minutes sampling
interval) rainfall series for the purpose of unraveling scaling characteristics. It
is interesting to note that some of these studies have been based on the same
Towa City high resolution data but still have resulted in different interpreta-
tions and conclusions which have not yet reached a point of complementarity
and integration towards a better understanding of the rainfall process. To il-
lustrate this point and outline several still open problems, we will elaborate
below on the methodologies and findings of the studies by Georgakakos et al.
(1994), Olsson et al. (1993), Veneziano et al. (1996), Menabde et al. (1997),
Kumar (1996), Venugopal and Foufoula-Georgiou (1996) and Carsteanu and
Foufoula-Georgiou (1996). First, some basics on the mathematical methods of
analysis (specifically, multiscaling and multiplicative cascades, and multireso-
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Figure 2.1: Illustration of temporal rainfall variability at scales ranging from seconds to
years for an Jowa City station.
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lution wavelet analysis) which are needed for our discussion are given. These
are followed-up by a review and comparison of recent findings and discussion
of open problems.

2.2.2 Mathematical background
Simple scaling, multiscaling and multiplicative cascades

Consider a function p defined on subintervals of the time axis by the values of
a continuous-time, real-valued stochastic process X (t}, such that

w(At) = X (1 + At) — X(2). (2.1)

p is said to be self-similar (X (1) to exhibit self-similarity or simple scaling in
its increments; although sometimes by an abuse of language X (1) itself is said
to exhibit simple scaling) if for each A > 0, there exists a constant C) such
that the finite dimensional distribution of p satisfies the equation

P(C’;lp,t1 ()\At) _<_ L1yenny C;lytn ()\At) S mn) =
Py, (At) < ®1,..., pe, (AL) < zp) (2.2)

where P is the probability measure associated with the occurrences of different
values of p.

Notice that (2.2) has been historically defined for processes with indepen-
dent increments (although it is satifsied by other processes too, such as frac-
tional Brownian motion) which reduces the equality of the finite-dimensional
distribution to an equality of their marginals. Adding to independence the
requirement of identically distributed increments, results in stationarity in the
increments (and in fact, also implies ergodicity) and reduces (2.2) to

P(CTp(AA) < 2) = P(u(A1) < o) (2.3)

which is equivalently expressed as

{C5 p(AA)} £ {u(An)} (24)

where = denotes equality in distribution. It can be shown that since C) sat-
isfies Cy,», = Cy,Ch,, the continuous solution of this equation follows from
homogeneity as Cy = A, H € RT (i.e., any continuous solution of C) is a
power law; see Lamperti 1962, theorem 1 for a rigorous derivation). Therefore,
equation (2.3) can be equivalently written as

(pOA0} £ N p(Al)}  HeRY. (2.5)
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From equation (2.5) we expect that the absolute values of moments, if they
exist, will satisfy
BlHOADI = AE Bllu(AD)]1). 26)

Taking logarithms in (2.6) we obtain:

log B[|p(AA?)]9] — log E[|u(At)9]

H= qlog A

. (2.7)

Due to ergodicity, the ensemble moments can be substituted with the standard
moments (i.e., moments over a realization) and since (2.7) applies for all A
including A — 0 , it can be rewritten as

i B, s QAT

7= X0 glog A (28)
Let us now introduce the exponents 7(¢) which are defined by
At))e
(q) = — lim 12822 1 OAAYIT (2.9)

A0 log A

The spectrum of exponents 7(g) measures how the ¢** power of the structure
function | X (t + At) — X (t)| varies with scale A. Notice that if X(#) is nonde-
_ creasing, i.e. us(At) >0, VAL, V¢, then p defines a measure in time, and the
exponents spectrum of the structure function of the process X {t) also becomes
the “mass” exponents spectrum of the measure p (the absclute values in the
structure function being dropped in this case). From (2.8) and (2.9) we obtain
that for a process which exhibits simple scaling in its increments and for which
the increments are ergodic
1—7(q)

q
or 7(g) = 1 — ¢H. Such a spectrum of exponents which varies linearly with
q is characteristic of processes exhibiting simple scaling, or more generally, of
monoscaling processes.

It is noted.that equation (2.10) which connects the descriptor of scaling
H (which is based on ensemble moments in eq. (2.7)) to the descriptor 7(g)
which applies to each realization (eq. (2.9}), holds in the particular case when
ergodicity in increments holds. This case encompasses most of the processes for
which (2.2) holds and in fact it holds true for the most widely used solution of
(2.2): the process of sums of independent Lévy distributed random variables,
which is ergodic in its increments. ]

If for a process, the absolute values of moments in eq.(2.6) scale with a
different exponent for each moment of order ¢, then 7(g) is not a linear function

H= (2.10)
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of ¢ and the increment-process is said to exhibit multiscaling, and if X (¢) is
nondecreasing, then the measure p is called a multifractal. This amounts to
a curvilinear (strictly convex) spectrum of exponents 7(g), and consequently
to a nontrivial spectrum of scaling exponents f(«), which is connected to 7(g)
(under suitable existence conditions) by the Legendre transform

ale) = -2
f(a) - mqin‘a(q)za{qa(Q) + T(Q)}- (21])

The interpretation of f(o) is that of a Hausdorff dimension of the set of points
with Holder exponent equal to o (for which reason f(a) is also called “spec-
trum of singularities”). Notice that in the monoscaling case, the spectrum f{«)
degenerates to a point, since the only valid Hélder exponent is o = H. This
again shows the one-to-one connection between multiscaling and multifractal-
ity, since a curved spectrum of mass exponents implies the existence of an
entire range of values where f(o) is defined. Also, the spectrum of dimensions
D(g) (often considered for positive processes and ¢ > 0), which can be defined
as -

7(9)

] Dla) =10 (2.12)
becomes a strictly decreasing function with ¢. Notice that for monofractal
measures for which E[u(At)] exists and is finite, 7(1) = 0 (from (2.9)) and.
thus, according to (2.11), f(a) = o = H. Therefore, 7(g), which is a line of
slope H going through the point (1,0}, is given by 7(¢) = H(1 — ¢). Thus,
from (2.12}, D(¢) = D = H is a constant. Also, f(a) = (0 = H) = D. This
is intuitively expected, since the Hausdorff dimension of the points where the
field is non-zero is equal to the fractal dimension in this case.

Multifractal fields are being simulated largely by the use of multiplicative
cascades. Multiplicative cascades are measures defined on the appropriate
support (e.g. a surface or a time axis), showing multiscaling (or in particular
cases, simple scaling). They can be described in terms of an infinite iterative
construction, beginning with a given “mass” uniformly distributed over the
support. Each subsequent step divides the support and generates a number of
weights (equal to the “branching number” of the generator), such that mass
is redistributed to each of the divided supports by maultiplication with the
respective weight. To achieve conservation in the ensemble average of the mass,
the expected value of the sum of weights should be equal to unity. Different
cascade generators have been proposed for modeling rainfall. According to the
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probability distributions of their weights, the most often used are: multinomial
(where the weights take a finite number of values with certain probabilities),
uniform, and lognormal (see Gupta and Waymire 1993 for a review),

The lognormal cascade was first proposed by Kolmogorov (1962) and
Oboukhov (1962) in the statistical theory of turbulence, and has the property
that it is the limiting measure for any generator with weights whose distri-
bution has all moments finite. Another cascade model, used by Lovejoy and
Schertzer {1987, and subsequent work), is the log-Lévy model, in which the
logarithms of the weights are distributed according to a non-Gaussian stable
distribution. This type of cascade produces the limiting measure for the gener-
ators with weight distributions that are attracted to Lévy-stable distributions
under aggregation. A number of observations support this model versus the
lognormal (see Tessier et al. 1993). However, as in the case of different other
weight distributions that are not suitably bounded, the lack of ergodicity of
models with Lévy-exponents greater than unity (Holley and Waymire 1992)
also raises an estimation issue, since for real-life data is it hardly feasible to
~ have an estimation across realizations. Apart from the probability distribution
of weights in the cascade generator, the dependence structure among weights
is needed to fully characterize a multiplicative cascade model. The dependence
structure among weights has been explored by Gupta and Waymire (1995} and
by Carsteanu and Foufoula-Georgiou (1995, 1996), with direct application to
rainfall processes. ‘

Time-frequency-scale analysis

A particularly useful tool for looking at a process at different scales in order
to study its multiscale structure, is the wavelet transform. It has been ex-
tensively used in turbulence analysis (e.g., Fargé et al. 1996) and in studying
other geophysical processes {e.g., see Foufoula-Georgiou and Kumar 1994 for a
collection of applications). Wavelet analysis is particularly useful when a sig-
nal’s frequency content changes over time and localization in both frequency
and time is needed. The wavelet transform maps a one-dimensional signal into
a two-dimensional plane called the time-frequency plane. The time-frequency
plane is a plane defined by time which spans the signal’s time domain, or part
of it as necessary, and frequency which ranges from 0 to Nyquist frequency
(= 1/24, 6 being the sampling interval). Time-frequency plots offer much more
information about a process than the conventional temporal or power spectrum
analysis only. They show what frequencies are present at what times and also
what energy these frequencies carry. For example, it is interesting to note in
Figure 2.2 that while two whale sounds might share almost indistinguishable
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temporal and spectrat density plots, their time-frequency plots provide enough
information to discriminate between sounds of different whale species or happy
versus sad sounds of the same whale species {Cohen 1995).

The idea of a time-frequency analysis is to “tile” the time-frequency plane
(also termed phase-space) with rectangles and assign to each rectangle a mag-
nitude representing the energy of the signal in the time-frequency interval
spanned by the rectangle. The way the tiling of the plane is done depends
on what kind of basis is chosen to represent the signal. Consider a rectangle
centered around the point ({5, wp) as shown in Figure 2.3, The width of the
rectangle in each direction represents the uncertainty with which the frequency
wp or time £g can be resolved, Heisenberg’s uncertainty principle dictates that
0., and o, the uncertainties in frequency and time, cannot be simultaneously
made arbitrarily small. Thus, if the plane were to be tiled with thin tall boxes,
it means we have a very good time localization and no frequency localization.
This is the case with a standard basis where the signal is represented as a
superposition of Dirac deltas. At the other extreme, if we decide to tile the
plane with wide and short boxes, this is equivalent to a Fourier representa-
tion, wherein there is optimal frequency localization and no time localization.
Wavelet representations offer both good time and frequency localization (see
Figure 2.4) and are therefore the basis of choice for nonstationary signals or
signals whose frequency content changes over time.

Wavelets are families of functions of the form

1 =0

1) = ——p{——
Yaslt) = )
which are all generated from a single function ¢ (called the mother wavelet)
by translation (parameter b) and dilation or scaling (parameter A). The factor
1/+/X is a normalization factor chosen to ensure that the L? norm of the

wavelet is 1. The continuous wavelet transform of a function f is defined as
(Daubechies 1992)

(2.13)

1 t—b
et ) = A4 [ a5 (2.14)
As with the Fourier transform, the wavelet transform is also invertible i.e.,
C o o0
=5 / / Wy F(X, b)iba 4 (£)dAdb (2.15)
J—=00 v —0Q '~

where

Cy = 27r/1wr11¢(w);2dw < oo (2.16)
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whale sound; (b) time-frequency plot of a different sound of the same whale; (c) time-
frequency plots of sounds of different whales (modified from figures in Cohen 1995)
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Figure 2.3: Time-frequency plane with a Heisenberg rectangle positioned at location (fo,wo).

The uncertainty of resolving time #g is o and the uncertainty of resolving frequency wg is 0.

According to Heisenberg’s uncertainty principle 0; and ¢, cannot be made simultaneously

arbitrarily small i.e., increased time resolution occurs at the expense of loss in frequency
' resolution and vice-versa.
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and &(w) is the Fourier transform of the wavelet 1 »(t).

The discretization of the scale parameter A and translation parameter b
leads to the discrete wavelet transform. The choice A = 2™ and b = n2™, results
in an orthonormal representation (Daubechies 1988). Mallat (1989a, 1989b)
proved that this representation could be simplified by transforming it into what
he called the multiresolution framework. This involved the construction of a
function @), which was given the name scaling function. This framework can
be easily visualized from a filtering viewpoint wherein the convolution of the
signal with the scaling function can be seen as a low-pass filtering and the
convolution with the wavelet can be seen as a high-pass filtering. A wavelet
decomposition can be seen as a repeated convolution of the low-pass output
with' two sets of coefficients {cx} and {dx}, representing convolution with the
scaling function and the wavelet, respectively. From a time-frequency point
of view, each stage of the decomposition can be visualized as an improvement
of frequency resolution (low-frequency bands) in the frequency domain and a
corresponding loss of time resolution (owing to Heisenberg’s uncertainty prin-
ciple}. This is illustrated in Figure 2.5.

In the wavelet decomposition case, only the low-frequency bands are de-
composed at every stage. Moreover, once the wavelet is chosen, the basis is
predetermined. In other words, the basis obtained is not a data-adaptive ba-
sis and this may be a restrictive feature. So the idea then is to try and find
a framework which can enable us to obtain a data-adaptive basis. Towards
this end, Coifman et al. (1992) go a step further and obtain a more generic
representation by decomposing the high-frequency bands also. The interesting
aspect is that, by using a combination of {cx} and {dy} to produce 2-scale
relations with 1, the wavelet spaces, W,,, can be further decomposed orthogo-
nally. The sequence of functions thus obtained are called “wavelet packets”. A
wavelet packet is defined as a square integrable modulated waveform, well lo-
calized in both position and frequency {Wickerhauser 1991). A wavelet packet
family can be parameterized by three parameters (¢,w, A) where ¢, w and X are
the position of the center of the basis function, the characteristic frequency of
the basis function and the characteristic width of the spatial support of the
basis function, respectively. It is important to note here that the parameters
A (scale) and w (frequency) are not coupled as in a wavelet transform frame-
work. In fact, in a wavelet transform, scale = (frequency)™!, i.e., each scale is
spanned by a one-period wave. On the other hand, in a wavelet packet frame-
work scale # (frequency) ™, i.e., each scale can be spanned by multiple period
waves (one-period to Nyquist-period waves).

The total number of levels of decomposition is log,(N) where N is the
signal length. A subset of N coefficients which correspond to an orthonormal
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Figure 2.5: Various stages of partitioning of the time-frequency plane in a wavelet decom-

position. Note that at every stage the high frequency bands remain intact and the lower

frequency bands are further decomposed. Also note that the wavelet basis results in a par-

titioning of the frequency axis such that it has constant width in the logarithmic scale, or
Af/f =constant.
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basis could be selected and each choice gives a particular basis. The important
thing to be noticed here is that a wavelet basis is just one of the ways of
choosing this subset. Choosing elements from a single level is analogous to
a short-time Fourier transform. The last-level selection, results in a basis
analogous to the Fourier basis and the zero-level selection is similar to the
standard basis (superposition of Dirac deltas).

Thus we have a huge library of orthonormal bases (denoted by L for fur-
ther reference), each capable of representing a signal in its own right. Two
popular algorithms to extract the best representation out of this library L
have been developed namely, (a) entropy minimization (Wickerhauser 1991)
and (b) matching pursuit (Mallat and Zhang 1993). The motivation behind
both algorithms is to try and achieve “maximal” contrast between low and
high energies which further results in capturing most of the signal’s energy in
the least possible number of coefficients.

In the Entropy Minimization algorithm, minimizing entropy results in

maximizing information since entropy = — information (see Shannon’s col-
lected papers 1993). The Shannon-Weaver entropy of a sequence z — {z;}
is defined as H(z) = —3 . pjlogp; if p; # 0 and = 0 if p; = 0, where

pj = lz;1*/|lz|*. A known aspect about this cost function is that exp H(z) is
proportional to the number of coeflicients needed to represent the function to a
fixed mean square error. The basis so obtained by minimizing entropy is given
the name best basis. Details of this algorithm can be found in Wickerhauser
(1991). In the Matching Pursuit algorithm introduced by Mallat and Zhang
(1993) a different procedure to optimally choose a basis out of the library I
1s proposed. Optimality is achieved through successive approximations of a
function f with orthogonal projection on elements of L. The details of the
method can be found in Mallat and Zhang (1993).

2.2.3 Review of some recent findings for rainfall
Simple scaling, multiscaling and multiplicative cascades

The study of Olsson et al. (1993) used six one-minute rainfall time series from
Sweden (over a period of two years), and determined D(0) and D(2) by mass-
exponent methods (for D(0) they used a box-assisted algorithm). They found
two definite scaling regions, one for time scales less than the average storm
duration and one for time scales greater than the average interstorm period
with D(0) equal to 0.82 and 1.00, respectively (e.g., see Figures 3 and 5 in
Olsson et al. 1993). They also claimed to have found scaling in the transi-
tional interval, with a D(0) value of 0.37. Their findings for D(2) were 0.36
for the transitional interval and 0.84 for scales greater than the interstorm pe-
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riod; for scales below the average storm duration they found no scaling in the
correlation integral. For a monoscaling measure the values of D(0) and D(2)
should coincide theoretically. Thus, while the above results do not exclude the
hypothesis of monofractality, a multifractal behavior — confirmed by a multi-
fractal analysis presented in the second part of Olsson et al. — is most likely
the case. However, more data analysis is needed to establish the validity of
monofractal scaling in different scale regions versus the alternative hypotheses
of either lack of scaling or multifractal scaling in any of these regions. Also,
studies with data from different storm types are needed to investigate whether
presence of scaling, scaling regions and values of scaling exponents are related
to the physical parameters of the storm environment. '

Along these lines, a recent study by Svensson et al. (1996) compared
"daily rainfall series from a temperate climate (Sweden) and a monscon climate
(China), and claimed good scaling, specifically multifractal, in the range from
one day to one month. The monsoon climate time series showed a higher degree
of multifractality (curvature of 7(g)) than their temperate-climate counter-
parts. In the range of scales greater than one month, trivial scaling associated
with a white-noise (flat) power spectrum was reported. In a similar study,
Harris et al. (1996) reported evidence that the parameters of multifractal cas-
cade models of rainfall are related to orographic influences and specifically that
they vary systematically as a function of altitude along a transect.

Within the interval of one storm duration itself, Georgakakos et al. (1994)
and Carsteanu et al. (1993), performed a fine-scale analysis on 5-s temporal
rainfall data of seven storm events from lowa City, recorded during 1990-1991.
A linear decay of the frequency spectra of all seven events was presented as
an indication of scale-invariance over short time-scales (at least up to the one-
minute range). Also, hyperbolic probability distributions of rainfall intensities
and differenced intensities in four of the seven events hinted to a Lévy-type
distribution of values in the rainfall process and its. differenced version. Multi-
fractal analysis was inconclusive in the study of Georgakakos et al., but later
Carsteanu and Foufoula-Georgiou {1995, 1996) provided evidence of good mul-
tiscaling, however with different degrees of multifractality, for all seven events.
The log-fits of equation (2.6) showed in all cases high correlation coefficients
(see bottom plot in Figure 2.6 for one such case) leading to the conclusion that
multiplicative cascades would make good scaling models for those rainfalls.
This conclusion was also reinforced by the nondegenerate f(a) curves, of which
an example is shown in Figure 2.6 (middle plot).

A multiplicative cascade model was proposed in Carsteanu and Foufoula-
Georgiou (1996), and a methodology based on “oscillation coefficients” (mea-
suring the occurrence frequency of up-down patterns in the signal) was in-
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troduced to determine whether a correlation structure in the weights of the
cascade model generator is needed to better capture essential statistics of the
rainfall process, compared to a cascade model with independent weights. It
was found both directly from the rainfall series (under the assumption of com-
plementary, i.e., adding to 1, weights) and based on the oscillation coefficients
that a negative dependence structure in the weights of a cascade generator
yields an improved representation of the rainfall process. The methodology for
arriving at this conclusion is, briefly, as follows.

The oscillation coefficient Cy = Cy4 + Cyy, where Cyy = Pl(rg—1 < ri) A
(rk > rr41)] (g being the rainfall intensity at time #;) and C4 defined sim-
ilarly, was introduced as a measure of the stochastic dependence structure of
a rainfall series. (4 was chosen because it is defined for most cascades, is
"scale-invariant for multiplicative cascades, and is independent of the underly-
ing probability density function of the cascade generator. Then, a relationship
between Cy and py (2), the lag-2 autocorrelation of weights, which measures
the dependence between consecutive pairs of weights at each level of the cas-
cade generator, was developed. This relationship, shown in Figure 2.7, was
found to be independent of the distribution of weights, a one-to-one and lin-
early increasing function. From Figure 2.7 it is observed that the range of
values of Cy estimated from the seven rainfall series (values between 0.4 and
0.54) correspond to a region of high negative correlation in the weights of the
cascade generator. This negative dependence structure in the cascade gener-
ating process of rainfall is in agreement with the hypothesis of anticorrelated
{spinning in opposite directions) atmospheric adjacent turbulent eddies and
needs to be further explored. Also, some further issues that remain unex-
plored in this area of research are: (1) development of multiplicative cascade
models of rain which preserve the temporal correlation structure of the series
at each scale and also the correlation from scale to scale; (2) solution of the
inverse problem, i.e., based on observed rainfall series at a particular scale,
how can one infer the nature and estimate the parameters of the correlation
structure of the cascade rainfall model generator; and (3) understanding of
how the correlation structure of the cascade generator relates to atmospheric
convectivity or turbulence parameters of the storm environment within which
a particular storm is generated.

The issue of scaling within a storm duration was also investigated by
Veneziano et al. (1996). Using the same seven high-resolution Towa City series
they reported a segmented frequency spectrum of the logarithms of the series.
From the slopes of the spectra they concluded that a “bare” (not integrated
over its support) cascade model (“multifractal model” in the terminology of
the authors) is not appropriate for these events. They proposed an exponenti-
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Figure 2.7: Cy versus lag 2 autocorrelation coefficient of weights py(2) in a binary multi-
plicative cascade. The shaded area corresponds to the region of oscillation coefficients found
from the seven analyzed high-resolution temporal rainfall series. For a cascade generator
with independent weights (pw(2) = 0) the Oy value was found equal to 0.6 by simulation
(dotted line). The error bars are shown for simulations with lognormally distributed weights,
but the linear relationship itself was found to be independent of the weight distribution.
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ated Brownian motion model. This model is interesting from the perspective of
offering an alternative to multiplicative cascades for temporal rainfall, by satis-
fying causality (present values depend only on the past) and having a different
autocorrelation structure than the cascades, possibly closer to the one of the
process. However, these issues need to be further explored both theoretically
and empirically in reference also to the desire to offer simple rainfall parame-
terizations rather than overfitting ones at the expense of even not preserving
well some rainfall statistics.

In a more recent study, Menabde et al. (1997) motivated by a rainfall
power spectrum exponent || > 1, proposed a cascade with variable parameters
over scales, similar to that of Cahalan (1990). The basis of their model is the
a - model of Schertzer and Lovejoy (1983) for which they change the generator
parameters such that the cascade becomes smoother at smaller scales.

In is emphasized that the issue of what is the purpose of rainfall modeling
should always be kept in mind, as it is different to develop a model for simu-
lation purposes, and different to develop it for inferences about the underlying
physical mechanisms giving rise to the observed structures. This is an issue
that has not been carefully addressed, and probably causes a good deal of con-
fusion when models are compared or inferences about the presence of scaling
or not, are made.

Time-frequency-scale analysis

Another avenue of exploring the structure of temporal rainfall series is based
on the identification of patterns (scale-invariant or not) in the time-frequency
plane representation of a process. Based on these ideas, Venugopal (1995) and
Venugopal and Foufoula-Georgiou (1996) presented a time-frequency analysis
of the Jowa City high-resolution temporal rainfall series. They used wavelet
packets to study the energy distribution of rainfall over time, frequency and
scale in an effort to gain more insight into the rainfall generating mechanism. In
particular, using the seven high-resolution temporal rainfall series from Iowa
City, they investigated the existence of persistent and short-lived structures
and their associated frequencies and time scales, as well as the energy they
carry. They then conjectured that the high-energy short-lived structures of
high-frequency may be associated to the convective portion of the rainfall
event and the low energy persistent structures of high or low frequency, to
the stratiform portion. Separation of the convective and stratiform portions
of a rainfall event is important, especially for spatial rainfall since their differ-
ent three-dimensional structures affect cloud parameterizations in atmospheric
models as well as the energy and heat balance calculations over a storm do-
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main.

In Venugopal and Foufoula-Georgiou (1996) it was postulated that the
different vertical small-scale motion structures within convective and stratiform
clouds would leave their signatures in the frequency-content and length scales
of identifiable entities or “atoms” from which the rainfall process is composed.
Also, it was postulated that the time-frequency decomposition would provide
information which can be used to infer the “rules” of energy splitting in a
cascade model of rainfall. Although a type of energy branching is apparent
in the time-frequency decomposition of a rainfall series (e.g., see Figure 2.8),
it is not clear how one can use this information to directly infer the structure
of a branching or cascading model for the rainfall process. It can be shown,
for example, that the structure of a cascade leaves a clear signature on the
time-frequency plot but the inverse problem is not trivial. Figure 2.9 shows
the time-frequency plots (using a Mexican hat wavelet) of (a) a ternary Cantor
set with weights p; = 1/2, p, = 0, and ps = 1/2; (b) a deterministic cascade
with p; = 1/3, py = 2/3; (c) a random cascade with p; = 1/3, py = 2/3. A
few things can be noted from Figure 2.9. ' :

First, in Figure 2.9a the construction rule of the underlying Cantor set is
clearly apparent and the logs of the vertical distances between branchings are
constant, as is theoretically expected. Second, in Figure 2.9b the concentration
of dark (high energy) at the left and right edges of the plot should be ignored,
as it is due to end effects caused by periodic convolution. Apart from that, it
is observed that the branching of the underlying cascade is fairly clear and it
occurs at vertical distances of constant size in logarithmic scale. The regularity
in the order and appearance of maxima (in both magnitude and position) is
also apparent. The Wavelet Transform Modulus Maxima (WTMM) technique
(e-g. Arnéodo et al. 1994) is expected to clearly identify the underlying binary
cascade structure and its weights from this time-frequency plot. Third, in Fig-
ure 2.9¢c it is observed that the introduction of randomness in the weights (here
a structured randomness, consisting of flipping the order of fixed-value weights
in a random way at each iteration) masks many of the features of the under-
lying cascade generator. Nevertheless, the branching and scaling structure is
still clearly visible. Obviously, more rigorous analysis of these plots is needed
to understand how the known cascading structure of the underlying signals
manifests itself in the time-frequency domain so that the inverse problem can
be attempted with confidence. ‘

One problem of particular interest is the determination from the plot of
Figure 2.8 of the structure of an energy cascading model for rain, e.g., whether
1t is dyadic or triadic, if it is uniformly cascading over its whole energy domain
or over some of the domain only and whether a dependence structure in the
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Figure 2.8: Analysis of the high resolution lowa City rainfall event of Nov 30, 1990, using a
Mexican Hat wavelet.
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cascading mechanism is present or not. Recent studies in turbulence using
wavelet packets (e.g., Fargé et al. 1992, 1996; and Wickerhauser et al. 1994)
suggest that cascading of energy in turbulent flows takes place only locally
within coherent structures (defined as local condensations of the vorticity field
which survive for times much longer than the eddy turnover time). They also
find that only a limited active portion of the vorticity field, related to coher-
ent structures, is responsible for the turbulent cascades. This is against the
assumptions of previous cascade models in turbulence, which assumed that
wavenumber octaves are the elementary objects and that interactions consist
of exchanging energy with neighboring octaves only. Methods based on the
work of Arnéodo’s group (e.g., Arnéodo et al. 1992a, 1992b, 1994) who are
developing tools for the solution of the “inverse fractal problem” using wavelets
- are expected to be very useful and offer an open area for rainfall research in
this direction. Arnéodo et al. (1994) argue that D{q) and f(«) provide only
“macroscopic” statistical information about the self-similar properties of frac-
tal objects. Multifractal description is incomplete mainly because, to some ex-
tent, the information concerning the hierarchical architecture of these objects
has been filtered out. To achieve a more elaborate structural analysis, they
advocate the use of the continuous wavelet transform as this is well adapted
to the large hierarchy of scales involved in fractal patterns. The premise of
their methods is based on the fact that a dynamical system which leaves in-
variant a fractal object can be uncovered from the space-scale arrangement of
its wavelet transform, given a general expression for the system. Arnéodo et al.
(1994) demonstrates this methodology by uncovering (i.e., providing statisti-
cal evidence for) a multiplicative process hidden in the geometrical complexity
of diffusion-limited aggregates. Similar methodologies are developed and dis-
cussed in Bacry ef al. (1993), and Muzy et al. (1994).

Using the time-frequency-scale decomposition obtained via wavelet packets
and the matching pursuit algorithm, Kumar (1996) attempted to identify the
coherent structures that can capture the essential dynamics of the precipitation
process. It was argued that when the original function correlates well with a
few dictionary elements (i.e., elements of the library L of orthonormal bases dis-
cussed in the previous section), these correlated components represented “co-'
herent structures” (Davis 1994), and the remaining portion was called residue
or noise with respect to the chosen dictionary. It is noted that although the
term “coherent structure” as used in that study is not strictly in accordance
with that used in the turbulence literature, it is not inconsistent with that
notion, either. In turbulence the term is used to describe a region of flow
over which at least one fundamental flow variable (vorticity, velocity, density,
temperature, etc.) exhibits significant correlation with itself or with another
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variable (Robinson 1991). Kumar (1996) used the term coherent structure to
describe regions where the variable under study is significantly correlated with
the basis elements, and these regions will have meaningful characteristics, pro-
vided the basis elements have meaningful properties. The choice of wavelet
packets as basis elements enables one to identify fluctuations that persist or
have a lifetime greater than their characteristic wavelength. Kumar (1996) ap-
plied the method to the seven high-resolution temporal rainfall sequences from
Towa and argued for the presence of dominant scales of variation in rainfall.
In particular, he found that while the best basis picked up approximately 40
coeflicients from each of levels 8 and 9, high energy (approximately 40% of the
total energy of the signal) was concentrated at level 9 of the decomposition,
which corresponded to scales of approximately 40 mins, while the energy from
level 8 (which corresponded to scales of approximately 20 mins) was negligible
(see Figure 2.10). This result tempts one to attach special meaning to the scale
of level 9 and consider it a distinct scale of variation.

It is reminded that in that analysis the “activity” at every level was iden-
tified from its representation within a best basis. However, the contribution
of each level to the best basis does not necessarily reflect the activity contrast
within the level itself. That is, the best basis might not pick up the highest
coeflicient from a particular level but pick up a lower one if that coefficient
is found to globally (i.e., over all levels) achieve the highest energy contrast.
Our preliminary results suggest that the highest 40 wavelet packet (not best
basis) coefficients from level 7 carry almost the same energy as the 40 highest
coefficients from level 8, or level 9, or level 10 for the Iowa City rainfall se-
ries (e.g., see Figure 2.11 for the Dec 2, 1990 series). Moreover the best basis
curve falls close to all these curves. The energy curves for levels greater than 7
(scales greater than approximately 20 mins) almost collapse into a single curve
while lower levels show a distinct pattern in their energy recovery. Whether or
not this behavior indicates a break in scaling and distinct scales of variation
is a question that needs further investigation and is expected to lead to useful
inferences about the underlying structure of rainfall.

2.2.4 Where do we stand?

From the discussion in the previous section it is clear that a lot of new ideas
have emerged and have been explored in the past-five years or so towards a bet-
ter understanding of the temporal rainfall structure. Most of these ideas have
as underlying premise the strong desire to unravel scale invariances in rainfall,
at least within a range of scales, for the purpose of either parsimonious model-
ing, or for physical inferences on the rainfall process. It is repeated that while
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Figure 2.10: (Top) Rainfall time series observed at a point in Iowa City on December 2, 1990.

The data is available at 10 second sampling interval and consists of 8192 points. (Middle)

Energy at different scales obtained using a wavelet packet decomposition with matching
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of the rainfall series using the best basis coefficients only from level 0 and level 9 (from
Kumar and Foufoula-Georgiou 1997).
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a reasonable approximation with a scaling structure for the purpose of mod-
eling and simulation might be acceptable, one has to be more cautious about
physical inferences resulting from the same approximations. The reason is that
physical inferences should more or less be absolute and not highly dependent
on our methods of questioning, while a model for generation may always be
conditioned on the properties it is meant to describe best, acknowledging less
ability to capture some other properties.

Our discussion was centered on relatively new efforts to unravel scaling or
underlying predominant features in the rainfall process. Obviously, no con-
sensus has yet been reached on the presence and type of scaling present in
high-resolution temporal rainfall. As the ideas and methodologies mature, it
is natural that they will integrate to a clearer picture about the underlying
structure of the rainfall process and its generating mechanism. We believe
that these efforts will greatly benefit from new mathematical developments
in time-frequency-scale analysis and fractal analysis using wavelets (e.g., see

Wornell 1996).

In an excellent paper by Fargé et al. (1996), the shortcomings in con-
ceptual and technical tools necessary for understanding turbulence and its
unsolved problems are very clearly discussed. It is argued that in fully de-
veloped turbulence where nonlinear convection is dominant, i.e., it is larger
than linear dissipation by a factor of the order of Reynolds’ number R (in
meteorology of the order of 10® to 10'?) it is obvious that Fourier representa-
tions are inadequate for studying and computing turbulent flows. Thus, a new
mathematical tool is needed to optimally solve the nonlinear convective term
in the same way as Fourier transform is the most economical representation to
solve the linear dissipative term. They argue that this new mathematical tool
is offered by wavelets and wavelet packets, which supply new functional bases
better adapted to represent and compute turbulent flows, i.e., extract their el-
ementary dynamical entities, perform the appropriate averaging on them and
predict the evolution of these statistical quantities. Since rainfall is really a
tracer carried inside the turbulent atmospheric fields, it is logical that statisti-
cal theories of turbulence have heavily influenced statistical theories of rainfall.
However, we feel that apart from the introduction of multifractal rain models
based on the turbulence cascade models, new advances in furbulence research
have not been adequately explored for rainfall research. This leaves an open
opportunity for further advances on understanding this complex phenomenon.

Rainfall is a prime example of a process where a good model is difficult to
be established based on first principles. Thus models must be found directly
from the data. It is a well known fact that apparent randomness in a time
series may be due to chaotic behavior of a nonlinear but deterministic system.
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Thus chaos provides a link between deterministic systems and random pro-
cesses, with both good and bad implications for prediction. In a deterministic
gystem, chaotic dynamics can amplify small differences which in the long run
produces effectively unpredictable behavior (even approximate long-term pre-
dictions may be impossible). On the other hand, chaos implies that not all
random looking behavior is the product of complicated physics; it is possible
to model this behavior deterministically and make short-term predictions far
better than those obtained from linear stochastic models.

Thus, in paralle] to scaling research, we believe that nonlinear modeling
of temporal rainfall as a dynamical system should also be pursued. The first
attempt along this direction was made by Rodriguez-Iturbe et al. {(1989), who
analyzed phase-space dimensionality of rainfall time series. They concluded
that it is possible that the orbits of the rainfall process might live on a low
dimensional attractor, which would open the possibility of modeling the pro-
cess with lesser degrees of freedom than previously believed. Acknowledging
that the dynamics of a physical system are never really deterministic due to
“dynamical noise” and that observations are never completely accurate due to
“observational noise” , the problem of unraveling a low-order deterministic sys-
tem from the noisy rainfall measurements needs special attention. We believe
that not enough effort has been directed towards this line of research and that
new methodologies on nonlinear modeling of chaotic time series in the presence
of dynamical and observational noise (e.g., Casdagli et al. 1995a, 1995b) would
be useful.

Finally, the ideas of scaling (simple or multiple} should be studied in con-
junction with the ideas of nonlinear dynamics to explore if such a higher level
of integration is fruitful or even possible. Rainfall research in this direction of-
fers a unique opportunity for new mathematical developments which will then
positively feed back into empirical investigations.

2.3 Spatial Rainfall Scaling: Relationships of Statistics and Physics

2.3.1 Preliminaries

In parallel to temporal rainfall research, the analysis and modeling of rainfal-
I’s spatial structure has also been studied intensively by several researchers.
Again, the most recent developments are based on ideas of scale-invariance
over a range of scales and several model structures have been proposed (e.g.
Schertzer and Lovejoy 1987; Gupta and Waymire 1990, 1993; Tessier et al.
1993; Kumar and Foufoula-Georgiou 1993b; see also Founfoula-Georgiou and
Krajewski 1995 for a brief review and further references). The purpose of this
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section is not to provide an overview of these models but rather focus on a
particular aspect of spatial rainfall research: that of trying to relate statistical
(scaling) and physical parameterizations of rain. This has been an issue of
continuous interest for the purpose of gaining a better understanding of the
physics responsible for the observed rainfall structure and for providing the
ability to attach physical meaning and interpretation to statistical parameters
of rain (see also Over and Gupta 1994, Harris et al. 1996, and Lawford, 1996).

In a series of recent papers, an extensive investigation of the statistical
spatial structure of several storm types (Kumar and Foufoula-Georgiou 1993a,
1993b) as well as the corresponding thermodynamical parameters of the storm
environments (Perica and Foufoula-Georgiou 1996a, 1996b) was reported. We
describe here in brief the main premise of this line of research and the main
findings of these studies with interpretations, open problems and directions for
further research.

2.8.2 Sealing in standardized rainfall gradients

Contrary to most studies which investigate rainfall intensities themselves for
the presence of scaling, Kumar and Foufoula-Georgiou (1993a, 1993b) set forth
the hypothesis that if spatial rainfall is decomposed in multiscale means and
multiscale “fuctuations” (i.e., gradients or generalized differences), the multi-
scale fluctuations are more likely to obey some simple universality condition
like self-similarity than are rainfall intensities themselves. This is because
the low frequency components in the rainfall process are mainly related to
the storm morphological organization due to the large-scale forcing which is
special to that particular rain producing mechanism (for example, effects of a
front on a squall line). When these effects are subtracted, the deviations which
result from the microscopic or small-scale convection effects are more apt to
be exhibiting self-similarity along scales and more apt to be controlled by the
convective instability of the storm environment. In other words, the rainfall
averages over scales carry in them the signature of deterministic background
features making it unlikely to share simple scaling relationships over a signif-
icant range. Once, however, these underlying deterministic features are re-
moved, the remaining features (called “local fluctuations”) are more amenable
to stochastic parameterizations which might present similarities over a signifi-
cant range of scales.

To implement and test this hypothesis in spatial rainfall, a methodology
based on filtering which could segregate large and small-scale features effi-
ciently and consistently over scales was needed. The filter would have to be
“local” to be able to handle nonstationarities, “directional” to be able to han-
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dle preferred storm orientations, “multiscale” to be able to simultanecusly,
consistently and efficiently extract features over several scales, and also “re-
constructive” so that the ariginal process could be obtained hack from “super-
position” of all the multiscale features. Kumar and Foufoula-Georgiou (1993a)
proposed the use of orthogonal wavelet transforms for this multiscale decom-
position and demonstrated their usefulness for the extraction of “multiscale
rainfall fuctuations” from the radar scans of rainfall. Using a separable two-
dimensional Haar wavelet (which implies three directions), it was shown that
the Haar wavelet coefficients at every scale (and direction) correspond to the
rainfall “fHuctuations” at that scale {and direction}, which were interpreted
physically as directional differences or gradisnts of the rainfall intensity field.
Kumar and Fonfoula-Georgiou (1993b) also proposed a rigorous method-
ology for scaling analysis of the rainfall fluctuations and presented preliminary
evidence for the presence of simple-scaling relationships. Later Perica and
Foufoula-Georgiou (1996a) presented an extensive analysis of many storms
monitored by radar during the Oklahoma-Kansas Preliminary Regional Ex-
periment for Storm-Central (PRESTORM) field program that took place in
May and June of 1985 (see Cunning 1986 for details on that program). They
sonchided that “standardized rainfall fiuctuations”, i.e., rainfall fuctuations
divided by the same-scale local means, exhibit Normality and simple scaling.
It was also found that directionality in wavelet coefficients was not significant
and that for most midlatitude mesoscale convective systems an “average pa-
rameterization” of fluctuations in all three directions could result by simply
averaging the directional parameters over all directions. The simple scaling
was found over scales of 4 x 4 km? to 64 x 64 km?. The lower scale of 4 km
was imposed by the radar data resolution and the upper scale of 64 km was
selected so that enough averaging cells within the radar images were available
for a meaningful statistical analysis. The analyzed scales were selected dyadi-
cally for computational efficiency in implementation of the discrete orthogonal
Haar wavelet transform.
Let us define by £ the standardized rainfall Buctuations at scale L ob-
tained as
&= X1 /Xy (2.17)

where X} is the rainfall intensity gradient at scale L {obtained via a multi-
scale filtering of spatial rainfall intensities with a Haar wavelet) and Xz, is the
average rainfall intensity at the same scale L {obtained via filtering with the
“scaling function” complementary to the chosen wavelet). The simple scaling
of €1, tmplies that

TeLaxty _ (313.)3 (2.18)
Crf,L-QXLz Lz -
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where ¢ 1, %1, denotes the standard deviation of ¢ at scale L, (kilometers)
and H is a scale-invariant exponent. It is noted from (2.18) that if one knows
the value of o¢ at one particular reference scale and the value of H, o¢ at
any other scale can be easily computed. In the work of Perica and Foufoula-
Georgiou (1996a), that reference scale was chosen to be the 8 km scale as
this was the smallest scale at which wavelet fluctuations were defined. (Note
that the smallest scale at which fluctuations via a discrete orthogonal wavelet
transform are defined, is one dyadic scale larger than the observation scale,
which was 4 km in our case). Once the parameters H and o gxs are known,
statistical reconstruction of the small-scale rainfall variability, given a large-
scale rainfall average can be obtained through an Inverse Wavelet Transform
(JWT) since wavelet is a reconstructive filter. The question then was asked
whether the parameters oy sxs and H can be predicted from physical observ-
ables of the storm environment. Before these findings are reviewed a mention
is made as to the relation of the Normality and simple scaling in standardized
rainfall fluctuations found by Perica and Foufoula-Georgiou (1996a) to other
developments of rainfall geared more towards multiplicative and multifractal
models.

While theoretically the connections between wavelets and multifractals
have been made by Arnéodo et al. (1993), Veneziano et al. (1996) have made
some important specific observations which point out to the consistency of
simple scaling in standardized rainfall fluctuations with a multiplicative-type
structure for rainfall, as found by them and other authors. Simply put, it is
sufficient to notice that since d(InX) = dX/X, the approximation

AX/X ~ A(lnX) (2.19)

holds. This implies that scaling in AX/X (equivalent to the Haar standardized
wavelet coefficients £ = X'/X) is same as scaling in the differences of the logs
of rain, at least for small values of AX for which the above approximation
holds. Thus simple scaling in standardized rainfall fluctuations found by Perica
and Foufoula-Georgiou (1996a) is consistent with the exponentiated Brownian
motion (Bm) model proposed by Veneziano et al. (1996). Also, normality in
AX/X implies, within the approximation (2.19), Normality of the logs of rain
which is again consistent with the exponentiated Bm model.

Veneziano et al. (1996) expressed concern about the assumption of Per-
ica and Foufoula-Georgiou (1996a) that standardized rainfall fluctuations can
be approximated with a Normal distribution at all scales. They argued that
Normality in standardized rainfall fluctuations (which lie by definition in the
interval [—1,1]) cannot be preserved over a large range of scales due to the
increasing variance of the respective Normal distributions. Nevertheless, the
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data showed that at the largest scales analyzed, the distributions of standard-
ized fluctuations (in the overwhelming majority of cases) were narrow enough
to warrant Normal approximations almost completely contained within [-1,1].

2.8.3 Relation of scaling parameters to physical observables

A particularly useful and informative parameter of the atmospheric dynamics
in a storm environment is the amount of buoyant energy available fo a parcel of
air rising vertically through an undisturbed environment from the level of free
convection (LFC) to the equilibrium level (EL). The LFC is the height at which
a parcel of air lifted dry-adiabatically until saturated and wet-adiabatically
thereafter would first become less dense than the surrounding air, and the EL
is the lowest level of zero potential temperature excess above the LFC. This
buoyant energy is called convective available potential energy (CAPE) and is
a measure of the potential instability at the middle and upper levels of the
atmosphere. CAPE at a point is defined as;

EL
CAPE = A / (Toa — T)dj (2.20)
LFC
where T is temperature, p = (P/PO)O‘Z86 with P being pressure and P, refer-

ence pressure (1000mb), A = —4186.8 m?s™2K ! is unit converting factor (the
negativeness of A is due to the fact that the pressure at LFC is greater than
that at EL) and T, is the saturated adiabat crossing the lifted condensation
level (LCL), to which a parcel of air from the lowest 500 m of the atmosphere
rises dry-adiabatically until saturated. T, 5, and T}, are functions of vertical
levels:(or height) (Air Weather Service 1979).

Perica and Foufoula-Georgiou (1996a) found that for midlatitude mesoscale
convective systems, H and og gxs are related to the convective available poten-
tial energy (CAPE) in the prestorm environment by the following empirical
relationships:

H =0.0516 4 0.9646 CAPE x 10™* (2.21)

o¢axs = 0.5390 — 0.8526 CAPE x 1074 (2.22)

where CAPE is in m?s~ 2 and H and a¢ sxs are dimensionless (see also Figure
2.12). Egs. (2.21) and (2.22) led for the first time in establishing empiri-
cal relationships between statistical scaling and thermodynamic parameters of
storms.
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Based on the above developments, a new physical/statistical scheme for
multiscale rainfall disaggregation {downscaling) was developed by Perica and
Foufoula-Georgiou (1996b). This scheme uses an Inverse Wavelet Transform
(TWT) to obtain rainfall intensities at any scale smaller than the initial scale
(e.g., from 64 x 64 km? averages down to 4 x 4 km? averages in that study).
Briefly, the downscaling scheme is implemented as follows: once CAPE is
known, H and o¢ sys are computed from egs. (2.21) and (2.22). Then, stan-
dardized rain fluctuations at any other scale L are generated from a Gaussian
distribution with zero mean and standard deviation o¢ x5, computed from eq.
(2.18) using the known values of o¢ gxs, and H. These fluctuations are then
randomly distributed in space over grid boxes at scale L x L and are multi-
plied by the corresponding rainfall average values at that same scale. Then
they are “added” via an inverse wavelet transform (IWT), to these averages
to get rainfall intensities at the next finer scale. This procedure is repeated at
all intermediate scales down to the finest scale of interest. Fig. 2.13 shows one
example where the TWT model was used to downscale rainfall from 64 x 64
km? average down to 4 x 4 km? averages. It is seen that the disaggregated
(simulated) fields at all intermediate scales compare well to the actual fields.
More details and a formal statistical comparison can be found in Perica and
Foufoula-Georgiou (1996b).

2.3.4 Coupling of atmospheric models with statistical scaling rainfall descrip-
tions

Despite great advancements in atmospheric modeling research, rainfall still
remains one of the most difficult variables to predict in numerical weather
prediction models. Currently, global circulation models and mesoscale models
attempt to resolve rainfall at scales of the order of 100-200 km and 10-30 km,
respectively, since it is too expensive and often computationally prohibiting
to run high resolution simulations over large areas and over long durations.
Thus, the need offen arises to resolve the smaller scale rainfall variability in
some other statistical way. Redistribution of the large-scale average rainfall
intensity value to subgrid scale values is important for two main reasons: (1)
to improve the hydrologic predictions at the bagin and subbasin scales through
distributed rainfall-runofl modeling, and {2) to improve the grid and subgrid
scale atmospheric variable predictions due to the feedback effects of rainfall
variability through coupled modeling.

This last issue was explored recently by Zhang and Fonfoula-Georgiou
{1997) by incorporating the statistical/dynamical rainfall downscaling scheme
of Perica and Foufoula-Georgiou (1996b) into the Penn State NCAR Mesoscale
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Figure 2.13: The June 27, 1985 storm over Kansas-Oklahoma at 0300 UTC. The bottom
figure in the left column shows the original radar data at 4 X 4 km? resolution. From these
data, rainfall fields at lower and lower resolutions were obtained by averaging, up to 64 x 64
km? averages as shown in the top panel (upscaling). Then, using the 64 x 64 km? field and
the downscaling scheme of Perica and Foufoula-Georgiou (1996b), rainfall fields at higher
resolutions were reconstructed down to the resolution of 4 X 4 km?, as shown in the bottom
right panel. A good agreement was found between the rain patterns and the areas covered
by rain of the simulated and original fields at all resolutions. A more rigorous quantitative

cornparison of several statistical measures of the original and simulated fields can be found
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Model (MM5). MM5 (e.g., see Grell et al. 1994) is one of the most widely
used state-of-the-art atmospheric modeling systems, It solves the full set of
dynamical equations that describe the conservation of mass, momentum and
energy in the atmosphere and a set of microphysics equations for different
phase clouds and precipitation. It was found in Zhang and Foufoula-Georgiou
(1997) that the feedback effects from the subgrid-scale rainfall spatial variabil-
ity on the further development or short-term (i.e., <24 hrs) numerical predic-
tion of rainfall are significant. For example, Figure 2.14 shows the changes of
ground temperature in deg C (colour variation) and rainfall intensity in mm/h
(black and white curves) caused by adding the feedback effect of subgrid-scale
rainfall variability to the MM5 simulation of the storm of June 11, 1985 at
0600 UTC. The feedback effects were simulated by adjusting, according to the
subgrid scale rainfall intensities, the subgrid scale moisture availabilities and
soil roughnesses, and the thermal capacity at the MM5 nodes (see Zhang and
Foufoula-Georgiou 1997). The temperature (or rainfall) change was measured
by the difference between the temperature (or rainfall) fields computed with
two runs: the MMb5 model run at 12 km resolution and the same run with
the 1.5 km resolution rainfall downscaling scheme implemented in a two-way
interactive coupling. The comparisons shown in Figure 2.14 are for the 12-km
resolution domain.

It is observed that ground temperature changes by up to 5 degrees and
that the strongest variation in ground temperature change takes place ahead
of the center of the squall line. Also the black and white curves on the fig-
ure indicating the increase and decrease of rainfall intensity with peak values
of 556.2 mm/h and 66.6 mm/h respectively, demonstrate that the inclusion of
the subgrid scale rainfall variability has exerted significant effects on the re-
solved rainfall development over the MM5 model grids and has contributed to
an enhancement of the contribution of the convective component of the total
rainfall (see Zhang and Foufoula-Georgiou 1997 for more details). Of course,
more research is needed to study the feedback effects of the subgrid scale rain-
fall variability on the energy and water budget partitioning at the grid and
subgrid scales. For example, more sophisticated land-atmosphere interaction
schemes within atmospheric models must be used in addressing this question
so that more confidence is gained that the changes we see are mostly due to the
mnclusion of the subgrid rainfall variability and not due to inadequate handling
of the land-atmosphere feedback effects. The practical implications of improv-
ing atmospheric and hydrologic predictions efficiently and cost-effectively using
statistical redistribution of subgrid scale rainfall or improved convective rainfall
parameterizations, rather than very high resolution coupled modeling requir-
ing supercomputers, is exciting and provides sufficient motivation for further
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Figure 2.14: Changes in ground temperature in °C (color variation) and rainfall intensity
in mm/h (black and white curves) caused by adding the feedback effect of subgrid-scale
rainfall variability to the simulation of the June 11, 1985 storm using the MM5 model with
two nested domains of 36 km and 12 km, respectively. The comparison (differences in values
between the run without and with subgrid scale parameterizations) is shown for the domain
of 12-km resolution. The black and white curves indicate the increase and decrease of rainfall
intensity with peak values of 55.2 mm/h and 66.6 mm /h, respectively. For more details, see
Zhang and Foufoula-Georgiou (1997).
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research along this direction.

2.8.5 Discussion and some open problems for further research

The statistical subgrid scale parameterization scheme of Perica and Foufoula-
Georgiou (1996b) offers in itself great advantages over many currently used
approaches (e.g., see Schaake et al. 1996, Warrilow et al. 1986, and the review
article of Thomas and Henderson-Sellers 1991). First, it is dynamical in the
sense that its parameters (o¢sxs and H) are updated as the storm evolves
based on the evolution of the convective instability of the storm environment
measured by CAPE. Second, its parameterization is scale-independent within
a large range of scales and thus offers the capability of resolving the subgrid-
scale rainfall variability at any selected scale without the need to consider
a separate parameterization at each scale. Third, as it was demonstrated in
Perica and Foufoula-Georgiou (1996b), this downscaling scheme has the ability
to accurately reconstruct the percent of area covered by a storm at all subgrid
scales by simply introducing a very low-level rainfall intensity cutoff parameter.
All these advantages are missing, for example, from the commonly used simple
- rainfall subgrid parameterization scheme which consists of prespecifying the
fraction of area covered by rain, e.g., 30%, and an exponential distribution with
fixed parameters for redistribution of rainfall at the rainy boxes of a desired
scale (e.g., see Schaake et al. 1996). This scheme typically does not have
the ability to dynamically update its parameters as the storm evolves, neither
to consider the scale-dependence of these parameters. It should be stressed
however, that the advantages of the scheme of Perica and Foufoula-Georgiou
(1996b) draw heavily upon two main hypotheses: (a) that standardized rainfall
fluctuations exhibit Normality and simple scaling over a significant range of
spatial scales, and (b) that there is a strong relationship between the value of
CAPE in the prestorm environment (i.e., ahead of the storm development) and
the statistical parameterization of standardized rainfall fluctuations. These
hypotheses need to be further tested for other storm environments than the
ones studied by Perica and Foufoula-Georgiou (1996a, 1996b). Also, while
spatial rainfall disaggregation at one instant of time given a large-scale rainfall
average might be quite sucessfull with this scheme, it is important to explore
how the temporal persistence of the small-scale rainfall variabilities can also
be preserved. For that, spatio-temporal scaling models of rain would be very
useful and this is an important open problem that needs further investigation.
Although the CAPE vs H and CAPE uvs o¢ gxg relationships provide a
positive first step in linking physics and statistics of rain in a meaningful and
practical way, szveral issues still remain to be further explored to better un-
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derstand why they hold in the first place. Unfortunately, data limitations, and
especially the lack of frequent soundings at stations within the storm develop-
ment area, do not perrnit an empirical investigation of this question. Insights
can only be gained from numerical simulation of storms using an atmospheric
model which can provide not only values of rainfall intensities at all grid points
but also values of CAPE. Such a recent investigation by Zhang and Foufoula-
Georgiou {1997) revealed that the spatial variability of CAPE shows a well
behaved structure relative to the storm variability and evolution. For exam-
ple, they found, by numerical simulation of the squall line of June 11, 1985,
that the spatial distribution of CAPE was characterized by a large-scale low
(< 100 m?~?) and a few localized high gradient zones (> 2000 m?s~?), which
generally coincided with the convergence locations of wind velocity near the
ground. As verified against observations, the high convective energy zones
correlated very well with the propagation of the squall Hne.

Such an association of CAPE’s spatial pattern change with the squall line
development demonstrates that CAPE is a sensitive variable to the meteo-
rological conditions of the storm environment. In fact, that high values of
CAPE concentrate at a few locations in front of the squall line development
offers promise for the definition of a storm representative value of CAPE hased
on point values. Specifically, Zhang and Foufoula-Georgiou proposed the use
of a representative value of CAPE, denoted by <<CAPE>, as an average of
grid point CAPE values exceeding a prespecified threshold which is estimated
through comparison with available observations at sparse points of the storm
domain. This issue however, needs further careful investigation and in par-
ticulay the following questions warrant further study: (1) for which storm
environments is <CAPE> a good representative measure of the convective
instability in the atmosphere, and for which environments it is not; (2) how
does CAPE evolve in the build-up, maturing, and dissipation phases of a storm
evolution, and does it offer a representative parameter in all these phases; (3)
for what storm types (warm versus cold season midlatitude storms) do the
predictive relationships between <CAPLE> and H and o¢,8xs hold, and for
which they do not; and (4) what are the effects of pronounced topography on
the subgrid scale raivfall variability, and specifically on scaling of standardized
rainfall fluctuations and CAPE spatial distribution?

Another still open problem which is also of mathematical interest is to
define the classes of processes (X(¢)) for which the standardized wavelet flue-
tuations {X'(¢)/X (t)} exhibit simple scaling, as they do for spatial rainfall,
at least within the tested scales of 4 x 4 km? to 64 x 64 km 2. (It should be
noted that this property has been found to be exhibited by the fluctuations
of high resolution temporal rainfall (Venugopal 1996; unpublished manuscript)
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only for a short range of scales, approximately 10 secs to 5 mins, which is of
the order of decorrelation time for these rainfall series.) Such a development
would shed light into the spatial rainfall generating mechanism and would also
provide a concise model of rainfall intensities. This problem was presented
by us to Daubechies in 1994 (during her visit to the Institute of Mathematics
and Applications at the University of Minnesota) and she was intrigued by the
presence of such an order in the structure of rainfall fluctuations which cer-
tainly is not usual for other processes. For sure this means something about
the underlying rainfall process and its generating mechanism and should be
further investigated. In trying to relate the structure of the underlying gen-
erating mechanism of the process to the scaling structure of their wavelet co-
efficients, experimentation with exponentiated Brownian motion type models,
such as this of Veneziano et al. (1996) or the wavelet-based model of Benzi et
al. (1993) for the construction of multiaffine (anisotropic multifractal) fields
might offer a starting point,

2.4 Concluding Remarks

As was mentioned in the introduction of this article, this review was not meant
to be comprehensive. It focused on selected recent developments and went more
in depth on studies related to analysis of high resolution temporal rainfall and
studies related to spatial rainfall scaling and relation of scaling and physical
parameters of the storm environment. As a result, several recent important ad-
vances (several of which can be found in the special J. Geophysical Research,
Volume 101, issue D21 that resulted from papers presented at the Fifth In-
ternational Conference on Precipitation) have not been presented herein. It
should be noted that research in this area progresses rapidly and promises new
exciting results and convergence to a coherent picture especially in integrated
space-time rainfall developments.

Apart from the specific open problems in temporal and spatial rainfall re-
search discussed in the previous sections, there are some other fundamental
questions which in our opinion need mathematical and empirical investiga-
tion. One problem relates to developing a rigorous mathematical framework
which can permit to reconcile and integrate model outputs and data at differ-
ent scales. This problem becomes increasingly important when the results of
atmospheric or land-surface models are compared with observables for model
validation, and the scales of model outputs is not the same with that of the
observables. Such methodologies are in their infancy and they hold much
promise for hydrometeorological research in general, and rainfall research in
particular. Baged on mathematical developments of the group of Willsky at
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MIT, Kumar (1997) has recently explored a Kalman filtering approach for in-
formation assimilation at different scales, This information can include point
measurements, other average observables, or model outputs which are usually
considered as averages over the grid boxes of the models. The idea is to replace
the time variable in the Kalman filtering approach with a scale variable and
develop analogous theories in a multiscale framework.

Another important open problem relates to the understanding of what
are the underlying dominant processes and what are the dynamically active
structures constituting the rainfall fields. In turbulence, if linear averaging is
needed to go from Boltzmann to Navier-Stokes equations, non-linear (condi-
tional) averaging is needed to go from Navier-Stokes to fully developed turbu-
lence equations. An open question in turbulence is how to do this averaging.
It is argued (Fargé et al. 1996) that one must first identify the dynamically
active structures constituting turbulent flows, classify their elementary inter-
actions and define averaging procedures to construct appropriate statistical
observables whose evolution is then to be followed and described. If a similar
approach is possible to be followed for rainfall, it will not only offer a better
understanding of the process, but it will also provide a much needed integra-
tion of its space and time dynamiecs by offering a chance to study temporal
rainfall scaling and spatial rainfall scaling features simultaneously. Recent ef-
forts along this direction {e.g., Over and Gupta 1996, Marsan et al.1996, and
Venugopal et al. 1997) are all based on different approaches and deserve a
detailed comparative review in the near future.
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