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A common method of channel network exiraction from di il ital elevation model (DEL‘V{) data is based
on specification of a threshold area A, that is, the minimum support area required to drain to a point
for a channel to form. Current efforts to predict A,, from DEM data are inconclusive, and usually an
arbitrary constant A, value is chosen for channel network extraction. In this paper, we study the
effects of threshold area selection on the morphometric properties (such as drainage density, length of
drainage paths, and external and internal links) and scaling properties (such as Horton’s laws and
fractal dimension) of a channel network. We also study the related problem of DEM data resolution
and its effect on estimation of scaling properties. The results indicate that morphometric properties

vary considerably with A, and thus values reported without their associated A ;, are meaningless and

should be used in hydrologic analysis with caution. Also, the ‘‘completeness’’ of a channel network (in
terms of having the outlet stream flowing directly into a higher-order stream) is found to depend on 4,
in a random unpredictable way. Even if only the complete channel networks are used in the analysis,
the statistical variability of scaling properties estimates due to A, selection is significant and can be
of comparable size to the variability due to DEM resolution and variability between estimates of
different river networks. Our analysis highlights the need to carefully study the problem of network
source representation or channel initiation scale from DEMs which will point to an appropriate A ;;, for

channel network extraction and estimation of morphometric properties.

1. INTRODUCTION

It has long been recognized that catchment geomorphol-
ogy relationships can be used as predictors of catchment
flood properties. For example, mean channel length is com-
monly used in empirical formulae predicting the time of
concentration of a basin [Eagleson, 1970], and the mean
annual flood or flood quantiles are often related to the
drainage area of the basin or to the drainage density of the
river network [Carlston, 1963]. Hydraulic distances (along
the drainage network) and corresponding travel times from
points in the basin to the outlet play an important role in
determining the geomorphologic unit hydrograph (GUH) of a
basin. In fact, the geomorphologic instantaneous unit hydro-
graph (GIUH), which is the impulse response of a basin to a
unit pulse of precipitation excess, may be viewed as the
probability density function (pdf) of travel times to the outlet
of water particles injected uniformly in space [Rodriguez-
TIturbe and Valdes, 1979; Gupta et al., 1980] and can be
parameterized in terms of Horton’s scaling ratios [e.g.,
Rosso, 1984]. More recently, physically based topographi-
cally driven hydrologic models that use topographic features
extracted from DEMs have found increased applicability for
runoff prediction (for example, see Quinn et al. [1991] and
the review article of Moore et al. [1991, and references
therein}).

From the above it is apparent that the practical need arises
for accurately defining the drainage paths in a network, that
is, for extracting the so-called channel network from the
topography or landscape of the basin. Field studies can be

INow at Hydrologic Sciences Branch, Laboratory for Hydro-
spheric Processes, NASA Goddard Space Flight Center, Greenbelt,
Maryland.

Copyright 1993 by the American Geophysical Union.

Paper number 93WR00545.
0043-1397/93/93WR-00545$05.00

used to define the drainage paths in a network, but this is a
very tedious, time-consuming, and expensive method which
unfortunately becomes impractical in most hydrologic stud-
ies. A commonly used alternative is to use topographic
maps. However, Morisawa [1959] and Coates [1958] suggest
that the networks obtained from blue lines on U.S. Geolog-
ical Survey (USGS) topographic maps with scales 1:62,500
and 1:24,000 are generally unreliable. The topographic maps
are unable to detect certain first-, second-, and third-order
streams, and this produces a network whose order, and
number and average length of streams are different from
those of the true network. This is nicely illustrated by
Figures 1 and 2 of Coffman et al. [1972], which indicate that
blue line networks from 1:24,000 topographic maps miss
almost all first- and second-order true streams, with the true
stream orders obtained from field-checked aerial photo-
graphs.

Recently, the wide availability and power of computers
has stimulated the use of digital elevation models (DEM) for
automatic channel network extraction. Digital elevation
models are available from the USGS for all of the contiguous
United States, Hawaii, and limited portions of Alaska in 1°
by 1° blocks with elevations given at a spacing of 3 arc
seconds. The resulting grid spacing of these DEMs depends
on latitude (for example, in Minnesota it is approximately 65
by 90 m). For some portions of the United States more
detailed data are available in 7.5 by 7.5 min blocks which
correspond to the USGS topographic quadrangle maps and
have elevation data on a regularly spaced grid of 30 by 30 m.
Once the DEM data are available, procedures for extracting
the channel network and delineating the basins and subba-
sins exist (see, for example, O’Callaghan and Mark [1984],
Jenson [1987], Jenson and Domingue [1988)], Mark [1988],
Mariz and deJong [1988], Yuan and Vanderpool [1986],
Morris and Heerdegen [1988], Qian et al. [1990], Fairfield
and Leymarie (19911, Freeman (19911, Tribe [1992], and
Chorowicz et al. [1992], among others). Although some of
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the newest algorithms permit multiple flow directions [e.g.,
Freeman, 1990], single flow direction algorithms are still
most commonly used. These are usually based on a steepest
gradient type of drainage path. That is, water flows along one
of eight possible paths (following a square grid discretiza-
tion) depending on the steepest slope. Pits or points sur-
rounded by neighbors with higher elevations can occur in the
DEM data as a result of data errors, sampling effects, and
natural features. A ‘‘flooding’’ procedure, where pits are
made to drain in the direction that water would overflow
from the pit, is often used to determine the flow direction
from a pit [e.g., Mark, 1988; Jenson and Domingue, 1988],
although other procedures [e.g., Band, 1986; Seemuller,
1989; Chorowicz et al., 1992] have been proposed.

An important aspect of any channel network extraction
algorithm is to decide where to begin the channels. The most
common approach consists of specifying a threshold area
A, (usually assumed constant) which is the minimum area
required to drain to a point for a channel to form [e.g., Band,
1986, 1989; Jenson and Domingue, 1988; Morris and
Heerdegen, 1988; Lammers and Band, 1990; Tarboton et al.,
1988, 1991; Gardner et al., 1991; Tribe, 1991]. This threshold
area for channel initiation is usually specified arbitrarily
although it is recognized that different threshold areas will
result in substantially different channel networks for the
same basin. The purpose of this paper is to study the effect
of the chosen threshold area on the morphometric properties
(such as drainage density, length of drainage paths, statistics
of external and internal links) and scaling properties (such as
Horton’s ratios and fractal dimensions) of a channel net-
work.

Channel network, stream network, river network and
drainage network have been used interchangeably in the
literature (see Chorowicz et al. {1992] for discussion). Here
we adopt the terminology of channel or drainage network as
more appropriate for the features (that is, channels or
permanent features of the basin recognizable even at the
absence of flow [Montgomery and Dietrich, 1988]) which we
try to extract from the DEM data. Montgomery and Dietrich
[1988] discuss methods of locating channel heads in the field.
Field-observed ‘‘true’’ channel networks are needed in order
to test and validate theories, as those discussed below,
aiming at predicting the channel initiation scale from DEMs.

Tarboton et al. [1989] proposed a method of predicting the
channel initiation scale based on the stability threshold of
Smith and Bretherton [1972] which defined the transition
from stable diffusive processes to unstable channel-forming
processes. The different scaling behavior in the stable and
unstable regimes was shown to be equivalent to a change in
the sign of the slope-area scaling function gradient. Thus the
area at which a break of slope in a slope-area plot occurred
was interpreted as the scale at which stability changes and
was then used as A, to define channel initiation. However,
in our opinion, the implementation of this method to DEM
extracted channel networks has been inconclusive since, as
Tarboton et al. [1989, p. 202} point out, ‘‘the slope-area
scaling break was usually just a steepening of a negative
slope and not a change from positive to negative slope as
required by the theoretical stability analysis.”” Helmlinger
and Foufoula-Georgiou {1992] investigated the possibility of
inferring the length scale of tranmsition from hillslope to
channel processes based on the hypothesis that scaling laws,
for which there is evidence at the channel scale [e.g.,
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Tarboton et al., 1988; LaBarbera and Rosso, 1989], would
break down below a characteristic critical support area. This
break in scaling laws would occur since the mechanisms of
runoff production and distribution and sediment transport
are expected to be different at the hillslope and channel
scales. Both the scaling of individual channels and channel
networks and scaling of the three-dimensional elevation
surfaces [e.g., Klinkenberg and Goodchild, 1992; Mark and
Aronson, 1984] were examined. The resuits were not con-
clusive as no clear break in the slopes of the fractal plots was
found, at least for the networks analyzed. Data of resolution
finer than 30 by 30 m may be needed to detect a break in the
scaling laws at the two different scaling regimes.

Recent evidence by Montgomery and Dietrich [1992] has
suggested that the threshold area (critical support area) is not
constant in a basin but is a function of the local valley slope
(the slope immediately upstream of the channel source in the
unchanneled valley) and therefore may vary within a basin.
Based on extensive field studies, their research has identified
an empirical relationship (power law) between threshold
area and slope (that is, A,, = CS % where C and 9 are
constants empirically determined from field data and S is the
local valley slope). This relationship indicates that the
greater the local valley slope, the smaller the threshold area
defining the initiation of a channel, as is generally observed.
Determination of the parameters of this relationship is very
tedious and is based on field studies. Efforts are under way
to find methods of predicting the parameters of the (A,,, S)
relationship from morphometric and/or soil-climatic proper-
ties of the river basin [Helmlinger et al., 1992; Montgomery
and Foufoula-Georgiou, 1993.]

Until the problem of channel initiation scale is resolved
most researchers and/or practitioners will continue to use an
arbitrarily chosen ‘‘reasonable’’ threshold area to extract
channel networks from DEMs. Many times blue lines are
used as a guidance [e.g., Andah et al., 1987; Robert and Roy,
1990; LaBarbera and Rosso, 1990} although as discussed
earlier this may not be an appropriate choice. Despite this
arbitrary selection, when morphometric properties of DEM-
extracted channel networks are reported in the literature the
threshold area or other details of the channel network
extraction procedure are not always reported. In this paper
we report the results of a study of the effects of the threshold
area on the morphometric properties and scaling properties
of the river basin. Although it is expected that morphometric
properties will be considerably affected by the selected
threshold area (for example, larger channel lengths will be
found for smaller threshold areas), scaling properties should
not be affected in an ideal Hortonian network. However,
actual channel networks are not ideal Hortonian systems.
Our analysis shows that estimates of Horton’s ratios are
significantly affected by the threshold area used for channel
network extraction. If one sees these deviations as statistical
variability, then our study indicates that the variability of
fractal estimates (based on Horton’s ratios) due to threshold
area selection for the same channel network can be of
comparable magnitude to that reported in the literature for
different channel networks, that is, networks in different
basins. It is very important that all these problems are
recognized when estimation of scaling properties is based on
DEM data. Another related problem is that of DEM data
resolution and its effect on channel network analysis. Other
authors have studied the effect of DEM data resolution on



HELMLINGER ET AL.: DIGITAL ELEVATION MODEL DATA IN ANALYSES OF CHANNEL NETWORKS

the performance of multiple flow versus single flow direction
algorithms [e.g., Quinn et al., 1991], identification of channel
initiation scale [e.g., Tarboton et al., 1991], and estimation
of topographic index curves driving hydrologic models [e.g.,
Quinn et al., 1991]. In this paper we give a preliminary
account of the effect of DEM data resolution on estimation
of scaling properties.

2. EFFEcCTS OF THRESHOLD AREA ON MORPHOMETRIC
PROPERTIES

The DEM data used in this research are in the form of the
USGS 7.5 by 7.5 min blocks. These data consist of a regular
array of elevations referenced horizontally in the Universal
Transverse Mercator (UTM) coordinate system where the
reference datum is the North American Datum of 1927 [U.S.
Geological Survey, 1987]. The data are stored as profiles
(ordered from east to west) in which the spacing of the
elevations along and between each profile is 30 m. The
USGS has used four procedures to collect the digital eleva-
tion data for production of the 7.5-min DEMs: (1) the Gestalt
Photo Mapper II, (2) manual profiling from photogrammetric
stereomodels, (3) stereomodel digitizing of contours, and (4)
derivation from digital line graph (DLG) hypsography and
hydrography categories. The accuracy of a DEM is depen-
dent on the spatial resolution, quality of the source data,
collection and processing procedures, and digitizing sys-
tems. Three levels of quality are used to classify each DEM.
Virtually all of the 7.5-min DEMs are considered to be of
level 1 quality with typical root-mean-square error (rmse) of
either 7 or 15 m. The computation of the rmse uses linear-
interpolated elevations in the DEM and corresponding
‘‘true’’ elevations from published maps.

Three watersheds, one located in northern California, a
second in southeast New York state, and the third in
northern Idaho, were extensively studied using the 30-m
resolution data. The South Fork Smith River watershed in
California (600.4 km? at the chosen outlet point) is contained
within the Gasquet, Hurdygurdy Butte, Devils Punchbowl,
Cant Hook Mountain, Ship Mountain, Prescott Mountain,
Klamath Glen, Summit Valley, and Chimney Rock 7.5-min
quadrangle maps. The Schoharie Creek watershed in New
York (113.6 km? at the chosen outlet point) is contained
within the Hunter and Kaaterskill 7.5-min quadrangle maps.
The Big Creek watershed in Idaho (146.9 km? at the chosen
outlet point) is contained within the Masonia, Polaris Peak,
Calder, and Marble Creek 7.5-min quadrangle maps. Con-
tour maps of the three watersheds are shown in Figures la,
2a, and 3a. The method described by Tarboton et al. [1988]
(based on the work of Band {1986] and O’Callaghan and
Mark [1984]) was used to extract the channel networks. This
method uses a constant threshold area to delineate the
sources of the order 1 streams. Sample channel networks for
these three basins extracted from 30 by 30 m DEM data
using threshold areas of 0.4608 km? for the South Fork
Smith River, 0.6912 km? for Schoharie Creek, and 0.2304
km? for Big Creek are shown in Figures 1b, 2b, and 3b,
respectively.

Drainage network characteristics determined by varying
the threshold area are summarized in Table 1 for all three
watersheds. Here Strahler’s [1952] ordering scheme is used,
and streams are defined as segments of the channel network
which are composed of continuous links of the same order.
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Fig. 1. South Fork Smith River, California, watershed (drainage
area, 600.4 km?). (a) Contour map with a minimum contour of 200
m and contour intervals of 400 m. The elevations within the basin
range from 134 m (at the outlet) to 1908 m. (») Channel network
extracted from 30-m resolution DEM data (threshold area, 0.4608
km?; network order 5). The streams are drawn so that line thickness
is proportional to stream order.

The range of threshold areas studied is arbitrary but covers
all “‘reasonable’’ threshold areas if one considers that the
‘‘blue lines’* on the USGS 7.5 by 7.5 min quadrangle maps
are approximately somewhere between the threshold areas
of 0.2304 and 0.4608 km? for the South Fork Smith River,
between 0.4608 and 0.9216 km? for Schoharie Creek, and
between 0.1152 and 0.2304 km? for Big Creek. It is seen from
Table 1, for example, that as the threshold area increases
from 0.0576 km? (64 pixels, where one pixel is defined by the
DEM resolution, 30 by 30 m here) to 0.9216 km? (1024
pixels) for the South Fork Smith River the total stream
length decreases from 1578.79 to 406.59 km, the drainage
density, whose inverse is considered a characteristic scale of
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Fig. 2. Schoharie Creek, New York, watershed (drainage area,

113.6 km2). (a2) Contour map with a minimum contour of 500 m and
contour intervals of 100 m. The elevations within the basin range
from 462 m (at the outlet) to 1230 m. (b) Channel network extracted
from 30-m resolution DEM data (threshold area, 0.6912 km?;
network order 4). The streams are drawn so that line thickness is
proportional to stream order.

a landscape, decreases from 2.63 to 0.68 km/km?, while the
mean length of the order 1 streams ({L,)) increases from
0.30 to 1.24 km. In fact, most of these properties, e.g., total
number of streams, total stream length, drainage density,
and stream frequency, vary linearly with A, in a log-log plot
(for example, see Figure 4) suggesting power law relation-
ships. The power law relationship of drainage density with
A, has been suggested before [e.g., Montgomery and
Dietrich, 1989; Tarboton et al., 1991]. While these system-
atic variations are interesting to know and can be used as
predictive tools to obtain properties at one A, from prop-
erties of channel networks at another A, they seem to offer
no help in pointing out the most appropriate A .
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Table 1 also shows that the length of the outlet stream
(Lq, where (& is the order of the basin) can be changed
drastically when certain threshold areas are used to define
the network. For example, Ly for the South Fork Smith
River network is 33.13 km for all except two A,, areas for
which it becomes 7.58 km. For the Big Creek network, Lg
varies randomly between the values of 12.75, 4.64 and 17.39
km. These drastic changes in the length of L are the result
of removing several key order 1 streams and then having the
resulting reduction in order of other streams propagate
downstream through the network. The practical implication
of this is that the ‘‘completeness” of a channel network
depends on A,, in an unpredictable way. (A ‘‘complete’
channel network is defined as a network whose outlet point
has been selected such that the outlet channel flows imme-
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Fig. 3. Big Creek watershed (drainage area, 146.9 km?). (a)
Contour map with a minimum contour of 700 m and contour
intervals of 200 m. The elevations within the basin range from 682 m
(at the outlet) to 1786 m. (b) Channel network extracted from 30-m
resolution DEM data (threshold area, 0.2304 km?; network order 5).
The streams are drawn so that line thickness is proportional to
stream order.
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TABLE 1. Effect of Varying Threshold Area on the Network Characteristics From a 30-m Resolution DEM
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Threshold Area Constant of
Basin Drainage Channel Stream
Area, Number of Order Number of (L), Lg, Total Stream Density, Maintenance, Frequency,
km? Pixels Q) Streams km km Length, km kmvkm? km?/km Streams/km?
South Fork Smith River, California
0.0576 o4 6 3466 0.30 33.13 1578.79 2.63 0.38 5.1
0.1152 128 6 1690 0.44 33.13 1111.44 1.85 0.54 2.81
0.2304 256 6 834 0.63 7.58 797.73 1.33 0.75 1.39
0.3456 384 b} 557 0.77 33.13 662.47 1.10 0.91 0.93
0.4032 448 s 479 0.80 33.13 61470 1.02 .98 0.80
0.4608 512 hf 425 0.83 33.13 578.81 0.96 1.04 0.71
0.6912 768 b 298 0.98 33.13 471.91 0.79 1.27 0.50
0.9216 1024 5 204 1.24 7.58 406.59 0.68 1.48 0.34
Schoharie Creek, New York
0.0288 32 6 1555 0.26 9.55 548.62 4.83 0.21 13.7
0.0576 64 6 786 0.32 9.55 367.35 3.23 0.31 6.92
0.1152 128 b 403 0.39 9.55 239.85 2.11 0.47 3.55
0.2304 256 5 180 0.62 9.55 165.17 1.45 0.69 1.58
0.4608 512 4 9 1.01 9.55 120.71 1.06 0.94 0.79
0.6912 768 4 62 1.16 9.55 96.25 0.84 1.18 0.55
0.9216 1024 4 47 1.43 9.55 84.55 0.74 1.34 0.41
Big Creek, Idaho
0.0288 32 6 1791 0.19 12.75 506.22 3.45 0.29 12.2
0.0576 64 6 840 0.26 4.64 344.90 2.34 0.43 5.72
0.1152 128 5 419 0.35 12.75 246.58 1.68 0.60 2.85
0.2304 256 5 224 0.47 12.75 180.69 1.23 0.81 1.53
0.4608 512 4 109 0.82 17.39 135.66 0.92 1.08 0.74
0.6912 768 4 76 1.00 12.75 116.28 0.79 1.26 0.52
0.9216 1024 4 64 1.00 12.75 100.59 0.68 1.46 0.44
~ 10! diately into a higher-order channel.) Thus, having selected
é E the outlet point so that the channel network is complete
£ " when extracted with one A,;, does not guarantee that the
- s network obtained with another A,, will also be complete.
Py Although it is clear that this is an *‘artificial’’ problem caused
@ 100 b . .
_§ E by the channel network extraction algorithm and the resolu-
& - tion and possibly accuracy of the digital elevation data, it is
L] [ just one example of the problems that one may encounter
8 when geomorphological relationships are extracted from
© 101 3 ; DEM data. Although it is beyond the scope of this paper to
a 10+ 10 100 dwell on the DEM data accuracy and appropriateness of the
threshold area, km? channel network extraction algorithms, this example warns
that caution must be exercised in interpreting the results
obtained from DEM data. As was well pointed out by
102 Coffman et al. (1972, p. 1499}, *‘if stream segments are
g randomly deleted from a nonrandom network, an apparently
< random network may be obtained . . . ,’" and so caution must
g 10! be exercised to ensure these effects are not the result of data
& collection or processing procedures.
; Table 2 illustrates how the number of streams, the mean
2 100 stream length, and the mean drainage area vary with stream
3 order for the three networks. The results are reported for
g two threshold areas for each network, selected such that the
10 blue line networks are somewhere between the networks
b 102 107! 109 10! extracted using these threshold areas. Table 2 shows that for

threshold area, km?

Fig. 4. Variation of (¢) drainage density and (b) stream fre-
quency with threshold area. The solid line is for South Fork Smith
River, the dashed line for Schoharie Creek, and the dotted line for
Big Creek.

South Fork Smith River at the threshold area of 0.2304 km?
the length of the order 6 stream is much shorter than the
order S stream. As discussed above, this corresponds with
the removal of several key order 1 streams at this threshold
area which results in an incomplete channel network.
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E 2. Sample Network Characteristics for Networks

Extracted From a 30-m Resolution DEM

Threshold Stream Number of

Mean

Mean

Drainage

Area, km? Order (w)  Streams  Length, km Area, km?
South Fork Smith River, California
0.2304 1 666 0.63 0.55
0.2304 2 132 1.33 2.44
0.2304 3 24 4.07 14.7
0.2304 4 9 5.61 41.3
0.2304 5 2 22.3 278.8
0.2304 6 1 7.58 600.4
0.4608 1 346 0.83 1.02
0.4608 2 58 2.39 5.55
0.4608 3 15 4.90 25.9
0.4608 4 5 9.03 68.4
0.4608 5 1 33.1 600.4
Schoharie Creek, New York
0.4608 1 71 1.01 1.10
0.4608 2 16 1.72 4.67
0.4608 3 2 5.86 33.67
0.4608 4 1 9.55 113.6
0.6912 1 48 1.16 1.55
0.6912 2 11 2.12 7.14
0.6912 3 2 3.89 33.67
0.6912 4 1 9.55 113.6
Big Creek, Idaho
0.1152 1 327 0.35 0.26
0.1152 2 7 0.92 1.20
0.1152 3 16 1.98 5.46
0.1152 4 4 5.34 28.92
0.1152 5 1 12.75 146.9
0.2304 1 170 0.47 0.50
0.2304 2 40 1.24 2.13
0.2304 3 10 1.83 6.84
0.2304 4 3 6.57 35.97
0.2304 5 i 12.75 146.9
g
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Figures 5a-5c¢ show the effects of threshold area on
several properties of external and internal links for the South
Fork Smith River. The properties reported are the mean
length {I,) or (l;), drainage area (a,) or {(a;) (i.e., area
draining directly to the downstream end of an external link
and the difference in the areas draining to the downstream
and upstream ends of an internal link), and slope {(s,) or (s;}
(defined as the difference of elevation between the higher
and lower elevation point of the link divided by the link
length). In Figure 54 the dimensionless ‘‘microscopic”’
drainage density ¢, = (I2/a,) or ¢; = (I?/a;), defined as the
mean of the ratios of the squared link lengths to their
associated direct drainage areas [Smart, 1972], is shown.
Figures 6 and 7 show the same quantities for Schoharie
Creek and Big Creek, respectively. These figures illustrate
some interesting patterns in the variation of link properties
with A,,. For example, the mean external and internal link
engths for the South Fork Smith River and Big Creek follow
each other closely (Figures Sa and 7a) while the two curves
coincide for only part of the range of threshold areas for
Schoharie Creek (Figure 6a). Although it is beyond the
scope of this paper to interpret these patterns we believe that
they hold promise in statistically identifying the appropriate
A,, from DEM data and also in pointing out cases where a
slope-dependent threshold may be more appropriate for
watersheds with uneven distribution of slopes, such as
Schoharie Creek. Notice from Figure 2a that the Schoharie
Creek basin has steep slopes in the lower left portion of the
basin while the upper right portion is relatively flat with
smaller slopes. More supporting evidence for this argument
is provided later based on observed irregularities in fractal
dimension estimates for this channel network. Within the
scope of this paper though, the only point we want to stress
is that the effect of threshold area on estimation of morpho-
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Fig. 5. Effects of threshold area on properties derived from the external (solid line) and internal (dashed line) links of
the extracted network for the South Fork Smith River: (a) mean link length, {/,) or ), b) mean link area, {(a,) or(a;),
(c) mean link slope, (s, or (s;), and (¢) mean microscopic drainage density, (¢?/a,) or {{?/a;). All terms have been

defined in text.
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Fig. 6. Same as Figure 5 for Schoharie Creek.

metric properties of the channel network is so significant that
reporting these properties without the associated threshold
area used to extract the channel network makes their use in
hydrologic studies questionable.

3. EFFECTS OF THRESHOLD AREA ON HORTON’S
RATIOS AND FRACTAL DIMENSION

Several authors have recently examined scaling properties
of channel networks by looking at the fractality of individual
streams and channel networks as a whole [e.g., Hjelmfelt,
1988; Tarboton et al., 1988; LaBarbera and Rosso, 1989;
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Robert and Roy, 1990; Rosso et al., 1991; Marani et al.,
1991]. The fractal dimension of channel networks can be
estimated either from Horton's parameters or by a direct
method such as box counting. In this section we examine
the following issues: (1) sensitivity of Horton’s ratios and
channel network fractal dimension estimates to the threshold
area used for channel network extraction; (2) sensitivity of the
box-counting fractal dimension estimates to the threshold area
and interpretation of asymptotic results from low-order net-
works; and (3) comparison of fractal dimension estimates
based on Horton’s ratios to the box-counting estimates.
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TABLE 3. Horton's Ratios for Networks Extracted From a

30-m Resolution DEM

Threshold Area

Basin
Area, Number Order log Rg/
km?  of Pixels () Rg Ry log R;
South Fork Smith River, California
0.0576 64 6 4.77 (-0.999) 2.37(0.999) 1.81
0.1152 128 6 4.37(-0.999) 2.23(0.999) 1.84
0.2304 256 6 4.22(-0.998) 2.08(0.987) 196
4.22 (-0.998)* 2.29(0.996¢) 1.73
0.3456 384 5 4.56 (—0.999) 2400999 1.73
0.4032 448 5 4,41 (-0.998) 2.36 (0.998) 1.73
0.4608 512 5 4.40(—-0.998) 2.39(0.997) 1.71
0.6912 768 5 4.02(-0.999) 2.21(0.993) 176
0.9216 1024 5 3.91(—0.998) 2.03(0.967) 192
3.91 (—0.998)* 2.45(0.998) 1.52
Schoharie Creek, New York
0.0288 32 6 4.36 (-0.999) 1.98(0.998) 2.15
0.0576 64 6 4.17 (-0.999) 1.92(0.987) 2.19
0.1152 128 5 4,41 (-0.998) 2.28(0.998) 1.80
0.2304 256 5 3.95(—0.996) 1.89(0.987) 2.15
0.4608 512 4 4.67 (-0.996) 2.15(0.990) 2.02
0.6912 768 4 4.06 (-0.996) 1.94 (0.998) 2.11
0.9216 1024 4 3.51(-0.996) 1.77(0.977) 2.21
Big Creek, Idaho
0.0288 32 6 438 (-0.999) 2.21(0.999) 1.86
0.0576 64 6 4.15(-0.999) 2.16(0.993) 1.85
4.15 (—-0.999)* 2.33(0.998) 1.68
0.1152 128 5 4.37(—0.999) 2.44(0.999) 1.65
0.2304 256 5 3.82(-0.999) 2.25(0.995) 1.65
0.4608 512 4 4.22(-0.999) 2.46(0.988) 1.60
4.22 (-0.999)* 2.16 (0.987) 1.87
0.6912 768 4 4.08 (—0.999) 2.37(0.992) 1.63
0.9216 1024 4 3.79 (—0.999) 2.36 (0.986) 1.55

Values in parentheses are the coefficients of correlation R of the
weighted least squares regression.

*Row gives estimates where the highest-order stream was omit-
ted.

3.1. Fractal Dimension Estimates
Based on Horton’s Ratios

LaBarbera and Rosso [1987, 1989] derived an expression
for the fractal dimension of channel networks as a function
of Horton’s bifurcation (Rp) and length (R, ) ratios under
the assumption that Rz and R; remain constant within a
basin and are independent of scale. Using estimates of Rp
and R; from several basins, LaBarbera and Rosso [1989]
estimated the fractal dimension of channel networks to be
between 1.5 and 2 with an average value between 1.6 and
1.7, which is far from the space-filling value of 2 suggested
by the direct (box counting) estimation method of Tarboron
et al. [1988]. This discrepancy was attributed by Tarboton et
al. [1990] to the fact that the expression for the fractal
dimension of channel networks as derived by LaBarbera and
Rosso [1989] includes only the effects of the bifurcating
structure and not the possible fractality of the individual
streams whereas a direct method of estimation includes both
effects.

Efforts were made to combine analytically the effects of
the fractality of the branching structure with the fractality of
the individual streams and obtain an overall fractal dimen-
sion for the channel network. Let us call D, the fractal
dimension of the streams, D, the fractal dimension of the
branching structure, and D, the fractal dimension of the
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channel network as a whole. Tarboton et al. [1990] derived
the expression

D.,,=D.D, n

where D, was as initially derived by LaBarbera and Rosso
[1989],

D, =log Rgllog R, 2)

while LaBarbera and Rosso [1990] derived a different ex-
pression based on slightly different assumptions,

Dcnsz/(z_Ds) (3)

Both expressions are practically equivalent for values of D,
close to unity.

Horton’s ratios (Rg, R;, and R,) are usually estimated
by regression techniques from data such as those shown in
Table 2. Estimates of Horton’s ratios are shown in Table 3
for the South Fork Smith River, Schoharie Creek, and Big
Creek where weighted least squares with weights propor-
tional to the number of streams for each order were used.
For the threshold areas for which the channel networks were
incomplete the results with the highest-order stream re-
moved are also given. If one considers all estimates of Rg
and R; for the complete networks (which would be appro-
priate given that the worst correlation R in the regression is
0.993 for the South Fork Smith River, 0.977 for Schoharie
Creek, and 0.986 for Big Creek) it is observed that the range
of log Rg/log R; is 1.52-1.84 for the South Fork Smith
River, 1.8-2.0 for Schoharie Creek (estimates of fractal
dimension greater than 2 are taken as 2), and 1.55-1.87 for
Big Creek. For Schoharie Creek the fractal dimension esti-
mates are greater than 2 for all except one A,, area. An
explanation of this is offered later in section 3.

It should be noted that the weighted least squares proce-
dure is considered to be more appropriate than ordinary least
squares for estimation of Horton’s ratios because there is a
great difference in the number of streams of each order in the
network (see Table 2). While ordinary least squares give
equal weights to the property (such as mean stream length,
etc.) for each stream order, the weighted least squares
essentially ignore the values from the higher-order streams.
As is seen in Table 2 most of the weight is given to the order
1 and 2 streams, which also results in the high correlation
coefficients. For comparison purposes, if ordinary least
squares are used the range of log Rg/log R; estimates is
1.61-1.70 for the South Fork Smith River, 1.86-2.00 for
Schoharie Creek, and 1.44-1.70 for Big Creek [see Helm-
linger and Foufoula-Georgiou, 1992].

From the above analysis it is observed that the threshold
area used for channel network extraction affects the estima-
tion of Horton’s parameters and fractal dimension. If the
variability of these estimates is considered as natural vari-
ability (as it would be in most studies given the large R
values), then the range of fractal dimension estimates is
significant (a range of 0.2-0.3), rendering these estimates
unreliable for practical purposes. It is emphasized that the
derivation of fractal dimension as a function of Horton’s
ratios, i.e., log Rg/log R, , assumes that Horton's laws hold
perfectly and that Horton’s ratios are constant within the
basin. Statistically speaking, the high values of R in the
regressions imply that Horton’s laws hold satisfactorily and
that most of the reported fractal dimension estimates are
statistically acceptable.
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3.2. Box Counting Estimates of Fractal Dimension

Falconer [1990, p. 38] gives a widely used definition of the
box-counting dimension of a curve as follows. Draw a mesh
of squares or boxes of side £ and count the number of boxes
N(e) that overlap the curve for various small . The box-
counting dimension is the logarithmic rate at which N(¢)
increases as £ — 0 and may be estimated from the slope of
the graph of log N(e&) versus log &. The box-counting
dimension is given by

log N(&)
Dyox = lim ——— )
~ ~log ¢
e—=0

The number of squares of side ¢ that intersect the curve is an
indication of how irregular the curve is when examined at
scale ¢. The dimension reflects how rapidly the irregularities
develop as ¢ — 0 and will range between 1 and 2 for a curve.

Tarboton et al. [1988] used the box-counting method to
estimate the fractal dimension of channel networks, Their
results indicated two straight lines on the log-log fractal plot:
one line at small ¢ (that is, small box sizes) with slope close
to 1 and another line at large ¢ with slope close to 2. The first
line was interpreted as giving the fractal dimension of
individual streams and the second line as giving the fractal
dimension of the channel networks which indicated that
networks are space filling. Of course, the true fractal dimen-
sions of these channel networks were not known so the
performance of the box-counting method and the validity of
these interpretations could not be verified (except by com-
parison with the results obtained by some other methods). In
this section we first examine the performance and interpre-
tation of the box-counting method plots by applying the
method on generated fractal trees of known fractal dimen-
sion. To separate the effects of the fractality of the branching
structure and the individual streams, we have generated
fractal trees which have links as straight lines (that is, D, =
1 and, therefore, D., = D,). We then apply the box-
counting estimation method to actual channel networks.

3.2.1. Artificial channel networks. A fractal tree (that
is, an artificial channel network) can be generated by a
hyperbolic iterated function system (IFS) with condensation
[Barnsley, 1988] using cither a deterministic algorithm or a
random iteration algorithm. An IFS with condensation con-
sists of a complete metric space (X, d) together with a finite
set of contraction mappings (transformations) w,: X — X,
with contractivity factors s,, forn = 1,2, -+, N, and a
condensation transformation wg,. The result of the IFS is
called an attractor.

The following affine transformations were used in the IFS
with condensation to generate the fractal trees. The conden-
sation transformation was

_ X1 _ 0 0 X1
wolx) =wol . | =lo 0.447]|x, )

and the contraction mappings were
(x) = X1y |cos & —sin 6 |[x; e 6
wilx) = w, %] " sing cos o ||x,| " fi ©®
(x) = X\ cos & sin 8 ({x; + e 7
wax) = wo xy) U -sin g cos 8|lx,| TSy )

The fractal tree shown in Figure 8a is the attractor of an
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Fig. 8. Fractal trees generated with IFS. The fractal dimensions
of both attractors are 1.36 (Rg = 2 and R; = 1.67). The attractor
corresponds to a river network (a) of large order where each stream
is a set of points along a straight line, and (b) of order Q = 10 where
each stream is a straight line.

IFS and was generated from a random iteration algorithm,
while the fractal tree shown in Figure 85 was generated from
a deterministic algorithm which allowed the network order
to be set by the user. Both trees have the same values for the
contractivity factors (s; = s, = 0.6), translation vectors
((ey, f1) = (e3, f2) = (0, 0.5)), and angle 8 (8 = =/4
radians).

For the case where the contraction mappings w, are
similitudes (such as those in (6) and (7)) with scaling factors
$n, Barnsley [1988] gives a solution for the fractal dimension
for the attractor of a hyperbolic iterated function system as

> lsaP=1 ®)

n=1

where D is the fractal dimension of the attractor of the IFS
and N is the number of contraction mappings. Since this
fractal dimension is equivalent to the box-counting dimen-
sion, the box-counting method can be used to determine its
value.

The fractal dimension of a fractal tree where all contrac-
tivity factors are equal (s, = s, forn =1,2,---, N) is
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Fig. 9. Box-counting estimates of fractal dimension: (a) the at-
tractor of Figure 84, and (/) the attractor of Figure 85.

_ log (1/N)

log |s| ®

The fractal dimension of both of the example trees is D =
1.36 since N = 2 and s = 0.6.

Having two contraction mappings (N = 2) is equivalent to
having a bifurcation ratio of 2 in a channel network (that is,
Rg = N). Since the two contractivity factors are equal, they
can be related to the length ratio (s; = s, = 1/R;). The
fractal dimension of a tree can then be written as

log Rp

= 10
log R; (10)

which is the same result as that obtained by LaBarbera and
Rosso [1989]. Since this dimension is equivalent to the
box-counting dimension, the box-counting method can be
used to estimate the value of the branching structure fractal
dimension D, in actual channel networks when estimates of
Rp and R, either do not exist or are not reliable.
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The box-counting method was applied to the artificial
channel networks shown in Figures 84 and 8b with the
resulting fractal plots shown in Figures 9a and 95, respec-
tively. The artificial network in Figure 8a corresponds to a
very large order network. The fractal plot for this network
(Figure 9aq) illustrates some problems associated with inter-
preting the results of the box-counting method. At the
smallest box sizes the slope of the curve approaches zero,
which indicates that at smaller box sizes each box contains a
single point. At slightly larger box sizes there is a transition
to the slope corresponding to the true fractal dimension. At
the largest box sizes the slope will approach a slope of 2
because all the points are included in only a few boxes.
These regions should be ignored because they are inherent in
the fractal plot resulting from the box-counting method.
Often these regions are not shown on the fractal plot. The
intermediate range of box sizes on the plot clearly shows that
the fractal dimension of the branching structure can be
obtained from the slope of the box-counting fractal plot,
which in this case is estimated to be 1.39.

The fractal plot in Figure 96 shows the results of the
box-counting method for two artificial networks with net-
work orders of 6 and 10. For these finite-order networks the
smallest box sizes where the slope approaches zero do not
exist. The intermediate box sizes which give valuable infor-
mation show two distinct regions. One region (at small box
sizes) shows a slope indicating the fractal dimension of
individual streams. The slope of —1 here indicates that D =
1, which must be true since the individual streams were
generated with straight lines. A second region (at larger box
sizes) indicates the fractal dimension of the artificial net-
work. Finally, the figure indicates that the region showing
the fractal dimension of the network becomes smaller as the
network order becomes smaller, and in fact it eventually
disappears (as seen with the order 6 network). If the true
fractal dimension was not known for the order 6 network,
one could misinterpret the slope of 2 as indicating a space-
filling network, whereas in fact, this is far from being the
case since the true fractal dimension is 1.36. One should be
aware of these estimation problems (mainly arising from
applying asymptotic results to low-order networks) when
interpretations are made on systems of unknown fractal
dimensions.

3.2.2. Actual channel networks. Figures 10a-10c
show the box-counting estimates of the fractal dimension of
the South Fork Smith River, Schoharie Creek, and Big
Creek channel networks, respectively. In general, two
slopes will be seen on the fractal plots: (1) at small box sizes
the slope indicates the fractal dimension of individual
streams, and (2) at larger box sizes the slope gives the fractal
dimension of the channel network D,.,. The box-counting
estimates of the channel networks are found to be 1.79 for
the South Fork Smith River, 1.75 for Schoharie Creek, and
1.76 for Big Creek. These estimates were obtained from the
slope of the longest straight line segment (which corresponds
to the smallest threshold area) in the fractal plots (Figures
10a-10c). Estimates from larger threshold areas would
differ slightly simply because the number of points used in
the estimation of the straight line segment of the curve would
differ. Although the decision of how many points to include
in the slope estimation is somewhat subjective, it is observed
that the well-defined straight lines of slopes 1.79, 1.75, and
1.76 are consistent with all straight line segments that would
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km< (pluses)).

have been obtained had larger threshold areas been used and
thus we choose to report these as the box-counting estimates
of the channel networks. Since the fractal dimension of
individual streams was found to be almost 1 (0.99, 0.97, and
1.00, respectively) for these three networks (see Figure 11),
the fractal dimension of the channel networks D ., is approx-
imately equal to the branching fractal dimension D,. More
specifically, using (1) the estimates of the fractal dimension
of the branching structures are equal to 1.81, 1.80, and 1.76
for the South Fork Smith River, Schoharie Creek, and Big
Creek, respectively.

A comparison of the box-counting estimates with Horto-
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Fig. 11. Fractal plots for the mainstreams (extracted from 30-m
resolution DEM data) of the South Fork Smith River (circles) with
a threshold area of 0.4608 km? D, = 0 99), Schoharie Creek
(pluses) with a threshold area of 0.6912 km? (D, = 0 97), and Big
Creck (asterisks) with a threshold area of 0.2304 km? (D; = 1.00).

102

104

,0.9216 km? (pluses)); (c) Big Creek, constant A ;;, (slope,
(astensks), 0. 9216 km? (pluses)); (d; Schoharie Creek,
(asterisks), 1.2042

nian estimates of the fractal dimension of the branching
structures reveals that there is a consistency between these
two estimates, in that the box-counting estimates are within
the range of the Hortonian estimates. For Schoharie Creek
the box-counting estimate is equal to 1.80, which is the value
of the only Hortonian estimate not greater than 2 (see Table
3). Our explanation of the greater than 2 fractal dimension
estimates for this network is that for a watershed such as
Schoharie Creek with uneven distribution of slopes (that is,
different ranges and variability of slopes in different parts of
the watershed) a constant critical support area for channel
initiation is not appropriate but A, depends on the local
slope. In fact, when slope-dependent thresholds were used
(A, = €S2 for values of C given in Table 4) the estimates
of Rg and R; were such that log Rg/log R; was less than 2
for all except two thresholds. Moreover, the box-counting
estimate of the branching structure which was now found to
be 1.73 (see Figure 10d) was well within the range of the
Hortonian estimates. For comparison to the constant thresh-
old area case, the corresponding mean source area values for
all C values are given in Table 4. It is seen that the C values
chosen correspond to the same realistic range of constant
threshold areas for channel initiation although the networks
now look different. It is thus hypothesized that the need for
a slope-dependent threshold for channel initiation (which has
been argued both on empirical and theoretical grounds [e.g.,
Montgomery and Dietrich, 1988, 1993]) may be seen even
from the more realistic Hortonian fractal dimension esti-
mates obtained from the channel networks extracted with a
slope-dependent A,, versus those extracted with constant

4. Analysis of more channel networks and comparison
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TABLE 4. Horton’s Ratios for Networks Extracted From a 30-m Resolution DEM Using Slope-
Dependent Threshold Areas A,,52 = C for Schoharie Creek, New York

Mean Basin
Source Order Number of iog Rg/
C,m? Area, km? Q) Streams Ry Ry log R,
2,000 0.0171 6 2452 4.22 (—0.999) 1.87 (0.988) 2.31
4,000 0.0360 6 1118 4.13 (—0.999) 1.95 (0.991) 2.12
6,000 0.0594 5 661 4.21 (-0.999) 2.21 (0.990) 1.81
8,000 0.0864 5 453 4.04 (—0.999) 2.15 (0.986) 1.82
12,000 0.1296 5 269 3.84 (—0.999) 2.12 (0.993) 1.79
16,000 0.2043 S 17 3.74 (—0.998) 2.08 (0.987) 1.80
24,000 0.2907 4 101 3.80 (—0.998) 2.36 (0.979) 1.55
32,000 0.4518 4 74 3.52 (—0.999) 1.96 (0.940) 1.87
64,000 1.2042 3 30 4.18 (—0.990) 2.30 (0.891) 1.71

Values in parentheses are the coefficients of correlation R of the weighted least squares regression.

with field-mapped channel networks are needed to substan-
tiate or disprove the above hypothesis.

4. REesoLutioN oF DEM DATAa

All of the above results were obtained from channel
networks extracted from 30 by 30 m DEM data. Sometimes
such data are not available, and lower resolution data, for
example, 60 by 60 m data, must be used. In order to
investigate the effects of the DEM data resolution on esti-
mates of Rz, R;, and D, lower-resolution DEM data sets
were obtained by filtering (averaging) the original 30 by 30 m
data. This operation is reasonable under the assumption that
digital elevation data at a given resolution (grid size) can be
interpreted as averages over an area surrounding the point at
which elevation is reported. The filtering kernel used is
based on orthogonal wavelet transforms and more specifi-
cally on the D4 wavelet [Strang, 1989]. Wavelet transforms
provide a generalized framework for multiscale (multireso-
lution) analysis. This framework extends the usual method
of averaging adjacent pixels to go from one resolution to
another. The use of the D4 wavelet (which has two vanishing
moments) provides a better frequency localization as com-
pared to the method of simple averaging. Filtering using
wavelets provides localization both in space and frequency,
and thus smoothing is obtained based on the neighboring
values (24 surrounding values in the case of the D4 wavelet)
only and not on all features of the terrain as a Fourier
transform-based filtering would provide. This filter also
provides estimated fields which are consistent at all scales
and, because sampling is done uniformly on a logarithmic
scale, it resembles most closely the smoothing procedure
that the eye of a cartographer would apply in degrading the
resolution of a map {Mallat, 1989, p. 2093]. Other advan-
tages of wavelet transforms for multiresolution analysis of
hydrologic processes are extensively discussed by Kumar
and Foufoula-Georgiou [this issuel.

Table 5 shows the effect of changing resolution on esti-
mates of Rg, R;, and D, = log Rg/log R; for different
threshold areas in two of the watersheds. In general, it is
observed that for a given threshold area the variability of
estimates due to resolution is of the same order of magnitude
(if not less) as that due to threshold area selection (compare
with Table 3) apart from very low resolutions where some
abrupt changes are observed. Although one might criticize
the ‘‘artificial”’ way by which lower-resolution data were

created, the use of varying resolution maps and correspond-
ing channel networks is subject to the risk of introducing into
the analysis the subjectivity of the cartographer interpreting
the terrain from lower-resolution maps. Our analysis is by no
means complete, and simultaneous use of generated and
actual varying resolution data should be used to better
address the problem of the sensitivity of scaling parameter
estimates on the resolution of the DEM data. At this point
we only offer a recommendation that every effort should be
made to address and resolve several estimation problems
before the need for higher-resolution data can be justified for
estimation of scaling properties of channel networks. Al-
though high-resolution data are no doubt needed for identi-
fication of the channel initiation scale, they may not be
needed for estimation of scaling properties if one considers
(even with higher-resolution data) the significant variability
of the estimates due to arbitrarily specified threshold areas.

5. CoNCLUDING REMARKS

Morphometric properties (such as drainage density, length
of drainage paths, and external and internal links) and
scaling properties (such as Horton’s ratios and fractal dimen-
sion) of a channel network are thought of as being charac-
teristic descriptors of a landscape. The usefulness of these
properties in hydrologic studies has stimulated their estima-
tion from DEM data where a channel network is usually
extracted automatically based on a prespecified critical
support or threshold area A,, which indicates the minimum
area required to drain to a point for a channel to form.

Several attempts have been made to predict the most
appropriate threshold area in the sense that by using that
value the extracted channel network will resemble the one
that would be observed in the field. In our opinion these
efforts have not met with success, and the problem of
defining the channel initiation scale is still an open problem.
Until this problem is resolved, researchers and practitioners
will continue to use arbitrary threshold areas for channel
network extraction from DEM data.

In this paper we have reported the results of a study which
aimed at quantifying the effects of threshold area selection
on the estimation of morphometric and scaling properties of
a channel network. The results indicate that the threshold
area considerably affects the estimation of morphometric
properties to the point that reporting these values without
reference to the threshold area used is meaningless. As far as
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TABLE 5. Horton's Ratios for Networks Extracted From DEM Resolutions (Grid Sizes) Greater
Than 30 m
Threshold Area
—————— Basin Number
Grid Size, Area, Number  Order of log Rg/
m km? of Pixels Q) Streams Rp R; log R,
South Fork Smith River, California
60 0.0576 16 7 3533 4.39(-0999) 2.16 (0.997) 1.92
120 4 6 4425 4.96 (-0.999)  2.29 (0.998) 1.93
60 0.1152 32 6 1677 4.37(-0.999) 2.23 (0.999) 1.84
120 8 6 1756 4.68 (—0.999)  2.25(0.998) 1.91
240 2 6 2696 5.09(-0.999) 2.16 (0.996) 2.12
60 0.2304 64 6 811 4.27 (-0.998)  2.12 (0.987) 1.93
120 16 6 811 4.31 (-0.998)  2.05 (0.990) 2.03
240 4 6 958 4.42 (-0.998) 2.19 (0.998) 1.90
60 0.3456 96 6 567 3.88 (-0.997)  2.02 (0.986) 1.93
120 24 5 553 4.79 (—0.999)  2.46 (0.998) 1.74
240 6 5 586 4.69 (—0.999)  2.39 (0.999) 1.78
60 0.4032 112 5 488 4.53(—-0.999)  2.49 (0.999) 1.66
120 28 5 472 5.18 (-0.999) 2.44 (0.977) 1.85
240 7 5 493 4.63 (-0.999) 2.38 (0.999) 1.76
60 0.4608 128 5 429 4.36 (—0.999)  2.40 (0.999) 1.68
120 32 S 423 5.00 (—0.999) 2.42 (0.976) 1.82
240 8 S 418 4.55(—0.999) 2.29 (0.994) 1.83
480 2 5 614 4,96 (-0.997)  2.34 (0.996) 1.88
60 0.6912 192 5 301 4.01 (-0.999)  2.24 (0.995) 1.73
120 48 S 287 4.36 (—0.998) 2.23 (0.974) 1.84
240 12 S 275 3.90 (—0.998) 2.12 (0.993) 1.81
480 3 5 341 4.83(-0.997) 2.22(0.976) 1.98
60 0.9216 256 b) 211 3.95(—0.998) 2.10(0.969) 1.86
120 64 5 204 3.97 (—0.998)  2.05 (0.968) 1.92
240 16 5 213 3.92(—-0.998) 2.04 (0.971) 1.91
480 4 4 224 5.19(-0.999)  2.90 (0.993) 1.55
Schoharie Creek, New York

60 0.0288 8 6 1694 4.56 (-0.999)  2.03 (0.999) 2.14
120 2 6 1924 4.66 (—0.999) 1.85 (0.993) 2.51
60 0.0576 16 6 780 4.15 (—-0.999) 1.96 (0.997) 2.11
120 4 6 905 4.34 (-0.998) 1.85 (0.987) 2.40
60 0.1152 32 5 386 4.49 (-0.999)  2.30 (0.999) 1.81
120 8 5 409 4.58 (—-0.999)  2.19 (0.999) 1.94
240 2 5 499 4.88 (—0.999) 1.95 (0.992) 2.37
60 0.2304 64 4 167 5.12(—0.999)  2.43 (0.986) 1.84
120 16 4 175 5.63 (—0.997)  2.64 (0.999) 1.78
240 4 5 214 4.16 (—-0.997) 1.88 (0.997) 2.26
60 0.4608 128 4 93 4.76 (—0.996)  2.45 (0.998) 1.74
120 32 4 88 4.55 (—-0.995)  2.28 (0.998) 1.84
240 8 4 94 4.67 (-0.995)  2.33 (0.995) 1.82
480 2 4 129 5.01(—0.999)  2.14 (0.988) 2.12
60 0.6912 192 4 61 4.02 (-0.996) 2.02 (0.997) 1.97
120 48 4 59 4.01 (—0.995) 1.97 (0.997) 2.05
240 12 4 56 3.82(-0.996) 1.99(0.997) 1.95
480 3 4 74 4.56 (—0.994) 1.89 (0.996) 2.38
60 0.9216 256 4 44 3.51 (—0.995) 1.76 (0.980) 2,22
120 64 4 47 3.65 (—0.995) 1.82(0.975) 2.17
240 16 4 44 3.58 (—0.993) 1.84 (0.961) 2.10
480 4 3 50 6.32(-0.999) 2.74 (0.984) 1.83

Values in parentheses are the coefficients of correlation R of the weighted least squares regression.

estimation of scaling properties is concerned, the results
indicate that the variability, due to threshold area selection,
of Horton’s ratios and the fractal dimensions estimated from
them is significant (a range of approximately 0.2-0.3 for the
networks analyzed) even if incomplete channel networks
(which were found to occur unpredictably at some threshold
areas) are detected and excluded from the analysis. Care
also must be exercised in resolving the issue of constant
versus slope-dependent A, for channel network extraction.
For one of the basins we examined, which had uneven
distribution of slopes, the channel network extracted with
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constant A,, areas resulted in unrealistic (greater than 2)
fractal dimension estimates. This was interpreted as pointing
out the need for a slope-dependent A, for which, indeed,
more realistic estimates were obtained.

Since DEM data are anticipated to see increased use over
the next several years, efforts should be directed to resolving
the problem of channel initiation scale so that networks close
to the true channel networks can be extracted from DEM
data for hydrologic studies. More field studies such as those
of Montgomery and Dietrich [1988] should be performed to
create a data base for testing the theories of channel initia-
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tion scale. In the meanwhile, however, users of DEM data
should be aware of the existing estimation problems, some of
which were pointed out by our analysis.
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