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This study presents a new methodology for designing and analyzing three-dimensional sampling
networks for groundwater quality monitoring. Sampling design is represented in the frequency domain
as a transfer function acting on the concentration spectrum to provide the sampling error variance,
which is used as a measure of sampling performance. The presented methodology does not require
numerical solution of either flow or transport equations; it operates directly on the statistics of the
concentration field evaluated using a spectral representation. It also separates sampling design issues
from the statistics of the aquifer properties, allowing better understanding of the influence of the
subsurface characteristics on sampling error and therefore on sampling network design. The results
show that sampling of groundwater quality should be viewed as a three-dimensional activity with two
major design parameters: spatial spacing between wells (Al;, i = 1, 2, 3) and total number of wells.
In the horizontal plane there is a clear need for anisotropy in spacing between wells with larger spacing
needed in the direction of the mean flow than in the perpendicular direction. The sampling anisotropy
ratio Af,/Al; is found to be a function of the correlation structure of the hydraulic conductivity field
and number of wells. The presented example demonstrates how sampling network design guidelines
can be developed as functions of the statistical structure of the hydraulic conductivity field and other

transport parameters.

1. INTRODUCTION

The extensive use of groundwater resources has increased
the need for developing methodologies for sampling network
design in order to provide an indication of the degree to
which the subsurface environment has been affected by
human activities. Subsurface groundwater quality monitor-
ing is an expensive, time-consuming and uncertain process
of characterizing the solute concentration which exhibits
high variability in the subsurface environment.

A number of methodologies have been proposed over the
years for groundwater sampling network design. These
include mixed-integer programming [Hsu and Yeh, 1989],
kriging and cokriging application [Carrera et al., 1984,
McLaughlin and Graham, 1986], variance reduction analysis
[Rouhani, 1985], nearest neighbor approach [Olea, 1984],
and methods based on optimization [e.g., Hsueh and Raja-
gopal, 1988; Loaiciga, 1989; Andricevic, 1990a; ASCE Task
Committee on Geostatistical Techniques in Geohydrology,
1990a, b] and simulation [e.g., Meyer and Brill, 1988; Mass-
mann and Freeze, 1987; Van Geer, 1987]. Some of these
methods focus on discriminating among a finite set of alter-
natives and on sequentially adding new sampling locations
based on error variance reduction. In classical optimization-
simulation approaches numerical modeling of flow and trans-
port cannot be avoided and therefore sampling network
design depends upon the grid configuration used to perform
the numerical flow and concentration simulations. As
pointed out by Moss [1979] modeling error can be seen as a
third dimension in network design and serves as a control
(limitation) on the space-time trade-off that may be available
to the network designer [Andricevic, 1990a]. In the geostatis-
tical methodology (e.g., kriging) sampling network design
[Carrera et al., 1984] is based on estimating the point or
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spatial averaged concentration variances. This requires a
substantial amount of existing data to estimate the sample
variogram, particularly to estimate the variogram range.
Since the data are usually limited for newly discovered
concentration plumes, the sample estimation of variograms
is impractical. An alternative is to use covariances to de-
scribe the spatial statistical dependence. The covariances
are usually estimated either through first-order analysis of
the numerical solution of flow and transport equations [Loa-
iciga, 1989; Andricevic, 19904] or by applying inverse Fou-
rier transform on spectra of concentration, head and hydrau-
lic conductivity [McLaughlin and Graham, 1986). In both
cases heavy computations are needed to arrive at covari-
ances, and finally the kriging weights associated with the
potential sampling points need to be evaluated by solving a
constrained minimization of the kriging equations. Since this
has to be repeated every time a new sampling location is
selected, only a finite set of monitoring alternatives is usually
tested [Carrera et al., 1984; Loaiciga, 1989; Andricevic,
1990¢].

The purpose of this paper is to introduce a new sampling
design methodology which requires neither numerical mod-
eling of flow and transport nor estimation of covariances and
which separates the space-time network design from the
statistics of the aquifer properties, allowing better under-
standing of the influence of subsurface characteristics (e.g.,
hydraulic conductivity field) on the sampling error and
therefore on the selected network design. The presented
study will attempt to answer the following questions: What is
the necessary spatial (three-dimensional) spacing in order to
satisfy a desired sampling performance within the monitor-
ing domain? How can the correlation structure of the hy-
draulic conductivity field be used in guiding the selection of
sampling network design for groundwater contamination?
The proposed methodology follows a transfer function ap-
proach and develops a framework suitable for analysis and
design of three-dimensional sampling networks for ground-
water quality. In contrast to other approaches, by working in
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the frequency domain, sampling is represented as a discrete
spatial linear filter acting on the concentration field to give an
estimate of the average concentration over the monitoring
domain (whose size and location can be arbitrary) and
averaging is represented by a continuous filter acting on the
concentration field. The difference of these two filters (con-
tinuous minus discrete) is the transfer function used in
computing the sampling error in estimating the average
concentration over the monitoring domain. When the square
of this transfer function is multiplied by the concentration
spectrum and integrated over the frequency domain, the
sampling error variance is obtained. The fact that the trans-
fer function is separated from the statistics of the measured
field (concentration spectrum) and that estimation of the
covariance of the concentration field is avoided allows the
network designer to choose a sampling pattern (based on a
desired monitoring performance level prespecified in terms
of a tolerable error variance) which is an explicit function of
the hydraulic conductivity field statistics. An inherent dis-
advantage of the proposed transfer function sampling meth-
odology is the sensitivity of the error variance on the mean
concentration gradient which is constrained by the assump-
tions of the spectral approach. More discussion about this
issue is left for the application study.

The idea of local averaging has been extensively used in
modeling random fields [e.g., Vanmarcke, 1983] and espe-
cially in modeling hydrologic processes such as rainfall [e.g.,
Rodriguez-TIturbe, 1986]. Sampling network design based on
the ‘‘sampling theorem’’ was employed by Bras and Rod-
riguez-lturbe [1985, p. 175} while a transfer function ap-
proach was employed by North and Nakamoto [1989] for the
purpose of comparing different rainfall measuring devices
such as satellites and rain gages in terms of accurately
estimating rainfall averages over a space-time domain. The
weak point in their study was the lack of realistic spectra for
rainfall fields since the complexity of that process [e.g.,
Kumar and Foufoula-Georgiou, 1989] does not permit a
simple representation of the process in terms of the govern-
ing physical equations. On the other hand, spectral repre-
sentations of subsurface processes are available [e.g.,
Gelhar and Axness, 1983] and therefore for these processes
the advantages of a transfer function approach to sampling
network design can be fully realized. The sampling network
is represented in this work with two design parameters:
spatial spacing between sampling points and total number of
wells. The proposed methodology explicitly quantifies the
influence of the hydraulic conductivity variance and corre-
lation structure on the design parameters. It is also found
that in the horizontal plane the spacing between wells must
exhibit anisotropy with larger spacing needed in the direc-
tion of the mean flow than in the perpendicular direction.
Although this is intuitively expected due to the anisotropy in
the concentration field correlation structure, our methodol-
ogy provides a formal procedure of quantifying sampling
anisotropy and developing fairly general criteria for sampling
network design based on the statistics of the hydraulic
conductivity field. The presented methodology can also
accommodate a sequential or staged monitoring program
which permits one to update the network design when new
information becomes available. The three-dimensional sam-
pling network design methodology is fully demonstrated for
the case of a continuous input nonreactive solute.
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2. TRANSFER FUNCTION APPROACH
TO SAMPLING

Consider a random field ¥(r), reR? defined in a d-dimen-
sional space. Let the ensemble average of y{r) be zero and
its variance at a point in ®¢ be o>. We assume that the field
¥(r) is weakly statistically homogeneous in space, i.e., the
first two moments do not change with translation. In what
follows we will present for simplicity the development of the
transfer function methodology to sampling network design
for the case of a one-dimensional field for which the vector r
is replaced by the scalar /. Extension to multidimensional
processes is straightforward and will be outlined in the next
section.

Let ¥, (x) denote the averaged process over an interval L
(size of monitoring domain) centered at location x, i.e.,

I (x+L2
‘I’L(x)=zf Wl

x— L2

) dl (N

and ¥, (x) denote its estimator obtained by averaging N
sampled values of ¢(/) taken in intervals Al (NAl = L)
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= — > w)sll—nalldl  (2)
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where & ) is the Dirac delta function. Both ¥, (x) and
¥, (x) can be seen as random variables resulting from the
random field (/) passing through the two linear filters p(/)
and p(/), respectively, as defined below:

pl)=1/L x=LR2=si<x+ L2
3)

pll)=20 otherwise

L

pUY=—D 8[l—nAll x—-L2=I=x+L/2

L = 4)

n=0 (
otherwise

p)=10

that is, p(!) represents an averaging window of length L
centered at location x while p(/) is its counterpart in the
discrete domain. Let £, (x) = ¥, (x) — ¥, (x) denote the
error in estimating the averaged process ¥, (x). Note that
since the ensemble average of y(l) is zero ¥,(x) is an
unbiased estimate of ¥;(x) and thus E[e;(x)] = 0. The
variance of the error (abbreviated here as ¢)

ol=E[e? = E[(¥(x) - ¥.(x)7] (5)

can be seen as a measure of the accuracy in estimating the
averaged process ¥;(x) and therefore as a measure of
sampling performance. Note that depending on the selection
of the location x and size L of the averaging window, ¥, (x)
can be seen as the spatially averaged concentration over the
entire monitoring domain (large L) or it can be seen as the
spatially averaged concentration evaluated over a moving
averaging window (small L compared to the size of entire
monitoring domain) located at any point x within the domain
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Fig. 1. Schematic representation of the transfer function approach

to sampling (see text for definition of terms).

of interest. The second interpretation might be more inter-
esting in some cases since by moving the averaging window
over the entire region one obtains a smoothed version of the
contaminant plume.

Following results in spectral theory [Blackman and Tukey,
1959] the mean square error can be written in the frequency
domain as

o2= f " HKO2S o (k) dk (6)

o0

where § (k) is the spectral density function of the random
field ¢A/) and k is the angular wave number (radians per unit
length). The term H(k) denotes the frequency response or
transfer function of the system (see Figure 1) and is given as

H(k) = P(k) — P(k) N

where P(k) and P(k) are the Fourier transforms of the
uniform smoothing filter p(/) and the discrete sampling filter
p(l), respectively. P(k) is given as

sin (kL/2)
T kL2

P(k) B(kL/2) (8)
which is known as the Bartlett filter or window of length L
[Blackman and Tukey, 1959} and will be denoted herein as
B(mkL). P(k) takes the form (see the appendix)

5. Sin (kNAI2)

Pl = N sin (kAl/2) ®)

The square of the transfer function |H(k)|? can be seen as
the sampling error filter in the frequency domain which is
design-dependent and acts on the spectrum of the original
random field we wish to monitor. Using the above expres-
sions for P(k) and P(k) and after some rearrangements, it
can be further shown that |H(k)|? can be written as

1 sin? (kNAI2) [ 2

sin (kAl/2)
kAll2

|H(K)|? = —

10
N7 “sin? (kAl/2) (19)

(see also North and Nakamoto [1989]). It is important to
note from (6) that the sampling error filter (which explicitly
relates to sampling network design via its dependence on
sample spacing Al and total number of wells N) is separated
from the statistics of the concentration field (summarized in
its spectrum). For example, by changing the parameters of
the sampling error filter (number of samples, spacing) one
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Fig. 2. Sampling error filter |H(k)|? as a function of frequency
(1/A1) for (a) number of samples N = §, and () N = 20.

can directly study the influence on the sampling error
variance regardless of the concentration spectrum. This
allows a network designer to systematically analyze what
aspects of the concentration field (transport parameters,
hydraulic conductivity field characteristics) contribute most
to sampling performance. Note that in other approaches,
e.g., kriging, this separability property is not present since
the spectrum or covariance is evaluated based upon the
measurement locations.

To get an insight of the proposed sampling methodology it
is helpful to study the form of the sampling error filter
|H(k)|2. This is plotted in Figure 2 for two values of N (N =
5 and N = 20). It is seen that the sampling error filter in the
frequency domain represents a series of spikes at frequen-
cies f = kn/2w = n/Al, for all integers n except zero where
it vanishes due to the second factor on the right-hand side of
(10) which is zero at the origin. The sampling performance is
therefore described by multiplying this filter with the spec-
trum of the concentration field. In other words, the sampling
error filter, as plotted in Figure 3a, is multiplied by the
concentration spectrum (plotted on the same figure) to
produce the sampling error spectrum (solid line) and the area
under this spectrum gives the sampling error variance 052.
The magnitude of the error variance clearly depends on the
starting frequency of the error filter and all harmonics of it.
It is important to notice that the starting frequency of the
error filter is 1/A[. This means that having small A/ makes the
starting frequency larger and consequently the error vari-
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Fig. 3. (a) The sampling error spectrum as a result of multiply-
ing the sampling error filter with the spectrum of the measured
process. (b) Comparison of the variance of sampling error (o2)
computed using the exact integration and the Dirac comb approxi-
mation for different numbers of samples.
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ance smaller. At the limit (of theoretical but no practical
interest) Al can be chosen as corresponding to a starting
frequency at which the spectrum of the concentration field
approaches zero (sampling theorem). In that case, zrf will
approach zero (neglecting the measurement error) but Al will
be impractically small.

An important aspect of the sampling error filter is the
sensitivity of its shape on the number of samples. It is clear
that by increasing the number of samples the spikes are
getting narrower and lobes between spikes are disappearing
(see Figure 2). Asymptotically this can be written as

{ 1 sin? (kNAl/z)[ sin (kAI/Z)}Z}

lim

N—x

N2 sin? (kAlf2) kAl2

1 é 5k27rn 0
= Al (1

n=-=.n#0

which is a series of spikes at f = n/Al for all positive and
negative integers n and is known as the Dirac comb [Black-
man and Tukey, 1959]. Note that the summation index (n =
—» to +o) of (11) refers to the number of spikes (harmonics)
of the Dirac comb (see Figure 2) and does not relate to the
number of wells N. Under the assumption of large N the
filter can be approximated as

1 = 2
HKP == B(k—ﬂ) (12)

NAL < Al

By substituting in (6) and using the shifting property of the
delta function, an approximate expression for the sampling
error variance can be obtained as

2 2an

2
= — S| —
T, L Z ¢< Al)

n=1

(13)

Note that the filter |H(k)|2, which acts on the spectrum
8 ,(k), picks up contributions to the sampling error from the
spectrum at twice the Nyquist frequency (1/2A/) and all the
harmonics of it. The convergence of the summation in (13) is
fast due to the fast decay of the spectrum of the random field
at high frequencies. It is worth studying the accuracy in
estimating the sampling error variance o by the approxi-
mate expression (13) since this provides significant compu-
tational advantages. This accuracy is studied below for a
simple one-dimensional example.

Figure 3a shows the sampling error filter for N = 5 acting
on the hypothetical spectrum

2

S, (k) = (14)

m(1 + k%A %)
evaluated for parameters o = 10 and A = 0.1. The bold line
denotes the integrand of (6) which represents the sampling
error spectrum and the area under this function represents
the sampling error variance. The integrand has spikes at
frequency 1/Al and ali the harmonics of it and each spike has
a bandwidth equal to 2/NAl. Thus by examining the approx-

imation by Dirac comb in (12) it can be seen that the
approximation replaces the spikes with rectangles of area
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1 x NA! and neglects the lobes between the spikes. By
increasing the number of samples the approximation be-
comes better since the lobes between spikes disappear and
the spikes become narrower and are better approximated
with narrow rectangles. In Figure 36 the relative error
between the approximation and numerical integration of (6)
is presented as a function of the number of samples. The
relative error is defined as

(15)

where o2 and o} denote the approximated and integrated
sampling error variance, respectively. It is clear that the
relative error is rapidly reduced by increasing the number of
samples and for the one-dimensional sampling case the Dirac
comb approximation has a relative error of less than 0.5% for
N = 6. Note also that the Dirac comb approximation gives a
conservative estimate of the sampling error variance (o2 >
a?). Therefore for all practical purposes the approximation
in (12) represents an accurate estimation of the sampling
error variance as defined in (6). In fact, by considering the
sampling design in three dimensions three filters would be
multiplied together, thus rapidly reducing the magnitude of
the lobes between the spikes, and in that case the approxi-
mation is even closer to the exact integration.

Before we proceed with the development of the sampling
error variance of the concentration field, it should be em-
phasized that in the development of (6) the measurement
error was neglected for simplicity. This, however, can be
easily accounted for, in which case the expression for the
sampling error variance becomes

agzj“ [HWI2S 4 (k) dk+f“° POOIESNK) dk (16)

e —

where P(k) is given by (9) and S 5 (k) is the spectrum of the
measurement noise.

3. SAMPLING ERROR VARIANCE OF A STEADY STATE
THREE-DIMENSIONAL CONCENTRATION FIELD

Of particular practical interest is the ability to design a
three-dimensional sampling network for the purpose of mon-
itoring a concentration plume. As we have seen from the
previous section, evaluation of the sampling error variance
requires evaluation of the structure of the concentration
spectrum in three dimensions.

The general equation describing the transport of an ideal
nonreactive, conservative solute in a saturated porous me-
dium is given by

0 dc dac d E ac
ar i ax; ox; \ Y ox;

(17)
where summation is implied for repeated indices, 8 is poros-
ity, g; is specific discharge in the x; direction, and E;  is the
local bulk dispersion coefficient tensor. Following the small
perturbation approach, the log hydraulic conductivity, spe-
cific discharge, and concentration are decomposed into a
mean and a small perturbation about the mean

InK=f=F+f
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i=1,

[39]
("]

q:=4;+q{ (18)

c=c¢+c¢'

where the perturbation quantities f*, ¢’, and ¢’ have zero
mean and they are assumed to be locally stationary (statis-
tically homogeneous). The assumption about local statistical
homogeneity for the concentration fluctuations is based on
the assumption that the mean concentration gradient varies
slowly relative to the scale of concentration fluctuations.
The range of validity of uniformity of the mean concentra-
tion gradient depends on the case at hand. The mean
concentration gradient is usually estimated in practice either
using physically based deterministic models (e.g., Gaussian
plume model using effective and uniform parameters) or
using available field data and statistical analysis.

By representing the perturbed quantities through Fourier-
Stieltjes integrals and applying them on the mean removed
transport equation the spectrum of the steady concentration
field is obtained [Vomvoris and Gelhar, 1990]

i Jodo
S('(' k)j=— > ’ ~ 5 S
(k) g7 ki + [aghl + agk] + k]> "9

(k) 19
where ¢ = ¢, is the mean specific discharge obtained by
aligning the x, direction to the direction of the mean flow,
Sq’q,(k) is the three-dimensional spectrum of the specific
discharge along the x; and x; axes (j, { = 1, 2. 3), Jo, =
—ac/ax; is the mean concentration gradient assumed locally
(within the monitoring domain) constant, and k = (&, k»,
k1) is the three-dimensional wave number vector. The spec-
trum of the specific discharge Sq,q‘(k) is related to the
spectrum of the log hydraulic conductivity S (k) as follows:

ke ik
k—g Oin— T Sﬂ(k) (20)

where & is the wave number magnitude, §;,, denotes the
Kronecker delta, K, = exp [E(In K)] = exp (F) is the
geometric mean of the hydraulic conductivity and summa-
tion over m and n is implied. More details and discussion
about the spectrum of the concentration field and specific
discharge can be found in the work by Gelhar and Axness
[1983].

The sampling error filter (10) is extended to three dimen-
sions by considering the monitoring domain as a sampling
volume box L| x L, x Ly, where, e.g., L, is the length of
monitoring in the x principal direction given as the product
of number of wells and spacing between wells. Using (8) and
with some algebraic manipulations it can be shown that the
sampling error filter in three dimensions has the following
form:

Sqlql(k) = ijlrlJ?I(ajlll -

|[H(k)|* = B*(kyL/2)B2(k,L,/2)B*(ksL4/2)

1 2

I - 21
B(k,Al/2)B(ksAl2/2)B(k3Al3/2) b

where B2(k,L,/2) and B?(k,Al,/2) denote the square of the
Bartlett filter of length L and A/, respectively.

The sampling error variance of o can then be evaluated
from (6) or using the Dirac comb approximation as
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, 8 - 2any 2mny, 2mn
ol=ro— 2 Salm o

ny = s = tona=1

The summation in (22) does not include integers n; = 0 since
the sampling error filter in (21) vanishes for zero wave
numbers. This fact turns out to be important in determining
the shape of the In K conductivity spectrum and will be
discussed more in the three-dimensional example presented
in the following section.

The first frequency around which our sampling error filter
picks up the variability of the concentration spectrum is at

f: = 1/Al;, where i denotes the ith principal direction. In the

case of sampling the concentration field, the frequency 1/Al;
represents the highest contribution from the concentration
power spectrum to the sampling error variance (see Figure
3a). In fact, this starting frequency and the corresponding
energy (variability) of the concentration spectrum will serve
as a guideline for the selection of proper spacing between
wells such that a certain monitoring performance level is
achieved.

4. THREE-DIMENSIONAL SAMPLING DESIGN
OF A CONTINUOUS CONCENTRATION INPUT

In order to demonstrate the proposed methodology of
sampling design and analysis we consider a hypothetical
case of an underground tank leaking a conservative nonre-
active solute at a constant rate m in a three-dimensional
aquifer with steady groundwater flow velocity. By selecting
the coordinates such that the origin is at the injection point
(x =y = z = 0), the resulting steady mean concentration
distribution for x >> y, z can be approximated as [Vomvoris

and Gelhar, 1990]
2 22
——+
4A 22X 4A 33X

(23)

n

470 (A :3A 33) ”:Xi'

clx, y,z)= exp

where A,, and A;; are the lateral macrodispersivities along
the vy and z principal directions, respectively; @ is the
porosity; m is the rate of the injected mass; and v is the mean
flow velocity assumed along the x axis. For this example we
have used the following set of parameters: A, = A3; = 0.01
m, 6= 0.3, m = | (unit mass), and v = 0.05 m/day. The mean
concentration gradient in the three principal directions is
obtained by differentiating (23):

1 yz z° 1
acléx=¢ - |—-1+ + - (24)
X 4A22 4A33X X

aclay

1
~

aclaz =r¢ (26)

2A33.\'

Using (23)-(26) the concentration spectrum in (19) can be
evaluated with the choice of the In K conductivity spectrum
S (k). Vomvoris and Gelhar [1990] in their study of evalu-
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ating the concentration variance (using the same example),
suggested a ‘‘hole type’’ spectrum for the In X field. The
main characteristic of such a In K spectrum is the zero
integral scale which implies that there is minimal variance
contribution for small wave numbers (spectrum is zero at
origin) and that the correlation becomes negative after a
certain separation distance. This restriction on the shape of
the In K spectrum is a clear mathematical necessity (there is
no strong field evidence of such behavior for the hydraulic
conductivity) in order to have finite concentration variance
which can be obtained by integrating the spectrum in (19).
Note, however, that this assumption can be relaxed when
the proposed transfer function approach is used for sampling
network design. This is because the sampling error filter of
(10) acts on the concentration spectrum at frequencies n/Al;
except at zero where it vanishes (see, for example, Figure 2).
In fact, the discrete filter will sample at the origin only
asymptotically when A/; — = (i.e., no measurements within
the domain). Therefore in the evaluation of the sampling
error variance, there is no need to enforce the zero integral
scale of the input In K correlation structure.

In this study we assume that the In X field has a negative
exponential correlation structure and therefore its spectrum
has the following form [Gelhar and Axness, 1983]:

O'le\ |A2A3
71+ (kA )%+ (khp)? + (k3 3)?]?

Syk) = 27
where o} is the variance of the In K field and A; is the
correlation scale in the ith principal direction.

The sampling performance, measured by the sampling
error variance 0'3, is normalized with respect to the mean
concentration (¢) over the sampling domain to yield a
sampling error index

1, = (o,/2)100 (28)

The sampling error index will be used throughout the paper
to represent the sampling network performance.

Figures 4a and 4b show the sampling error index 7, plotted
as a function of the spacing between wells in the direction of
mean flow (Al,) and perpendicular to the mean flow (Al),
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for a fixed spacing in the vertical direction Al; = 3 mand §
m, respectively. The input In K field is isotropic with

variance equal to one and correlation scale equal to 3 m. In
the direction of the mean flow A/, ranges from4 mto 24 m

o QIO QL U iQllgss 110L 10 &

and in the perpendicular direction A12 is varied between 1 m
and 6 m. In Figures 4a and 4b the lines of equal sampling
error index represent the trade-off between monitoring well
spacing in the two directions of the horizontal plane for fixed
spacing in the vertical direction. In other words, a different
combination of spacing in the x and y directions can achieve
the same sampling performance. As expected, the sampling
performance clearly shows (by the slope of the lines of equal
sampling error index) the need to have much closer spacing
in the direction perpendicular to the mean flow than in the
direction of flow. This important sample spacing ratio,
Aly/Al,, will be called herein anisotropy in horizontal spac-
ing (AHS). The smaller spacing in the direction perpendicu-
lar to the mean flow was expected since the concentration
field exhibits a high degree of anisotropy with a much higher
correlation scale in the direction of the mean flow than in the
perpendicular direction. This was also observed by Vom-
voris and Gelhar [1990] by analyzing the concentration
covariance and was also shown in numerical simulations by
Graham and McLaughlin [1989a]. By infrequent sampling in
the vertical direction (larger Al;) the overall sampling error
is increased (higher error index) by approximately 40%
(Figure 4b) illustrating the importance of considering the
sampling network design of groundwater quality as a three-
dimensional monitoring activity. In reality the vertical sam-
pling is usually performed with multicompletion wells (a
cluster of wells with each one screened at different depth)
and the proposed approach provides a way of choosing an
appropriate spacing in the vertical direction in order to
capture the concentration plume variability. In this way a
network designer can trade off the extensive cost of such a
cluster of wells with needed accuracy of estimating the
vertical extent of the contaminant plume.

In Figures 5a and 5b sampling performance in the vertical
plane is depicted. Spacing in the direction perpendicular to
the mean flow was fixed at Al, = 2 and 4 m. The analysis
shows that the sampling error index is increased S times by
going from A/, = 2 m to Al, = 4 m. This clearly indicates the
sensitivity of sampling performance to the choice of well
spacing in the direction perpendicular to the mean flow. This
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Fig. 5. Sampling error index I, as a function of spacing between
wells in the direction of flow (A!|) and in the vertical direction (Al3).
The sampling spacing in the direction perpendicular to the mean
flow is fixed to (a) Al = 2 m and (b) Al; = 4 m. The monitoring
domam is 100 X 60 >< 30 m; isotropic In K field with A; = A; =

A3 =2 mand a}
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sensitivity is a result of the small correlation scale in the

diraction nernendicnlar ta the mean flaw cuooscting tharao
GIreClion perpeéndicuiar o tn€ mean now, suggesung nere-

fore smaller spacing between sampling points in order to
properly capture the concentration variability. It seems that
the spacing between monitoring wells in the direction per-
pendicular to the mean flow is a crucial sampling network
design parameter. Therefore, the AHS ratio can be seenas a
major design feature for sampling network design of ground-
water contamination. It obviously depends on the correla-
tion scales of the concentration plume and should reflect the
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seen in the proposed transfer function approach since the
persistence of variability for high wave numbers (tail of the
spectrum), particularly in the direction perpendicular to the
mean flow, indicates a strong need for closer spacing than in
the direction of flow where the fast decay of the concentra-
tion spectrum allows a larger distance between the wells (see
Figure 6). Note that this conclusion is based on the assump-
tion of known direction of the mean flow and the selection of
the stationary concentration spectrum in (19). The concen-
tration spectrum in (19), developed by Vemvoris and Gelhar
[1990], is highly dependent on the form of the In K covari-
ance function and results in a high longitudinal concentration
correlation scale which indicates too large AHS ratios.
However, if nonstationarity in the concentration spectrum is
considered [Li and McLaughlin, 1991] the AHS ratio may be
altered. This is one more reason to reexamine, in future
research studies, a very common assumption about station-
arity in the concentration field.

The correlation structure of the concentration field is
spatially variable and results from the propagation of the
underlying In K correlation structure through the hydraulic
head and velocity correlations. The fact that an isotropic In
K field does give rise to an anisotropic velocity field was
demonstrated by Bakr et al. [1978) and Graham and
McLaughlin [19894]. In addition, the velocity correlation
structure exhibits a hole effect correlation structure (nega-
tive correlation after some distance) in the transversal direc-
tion as was observed by Rubin [1990] and also shown
through numerical simulations by Morrison and Andricevic
[1991]). This fact can be seen from Figure 6 where the
velocity spectrum in the horizontal plane (fixed vertical

Concentration Spectrum Velocily Spectrum (1.1)
0.60 g
P K2
0.55 ¢ ‘ 065 | .
‘ 4,
0 |
0.50 o |
0.55
0.45 .
Ll 3 b
4 o .
o 0.45 = % .
; ) =]
“, &=
k bk \
)
» %, 2
0.45 ‘., 2
J()"
0.25 o ‘g
g :
. W ~
=8 8 &
Q .
% =& &
| 0.15 2, § o
| f < N
0.0% A A e

dov 007 o2v 087 047

3]

Fig. 6. (a) Concentration spectrum in the horizontal direction
and (b) spectrum of the longitudinal velocity in the longitudinal
direction. Here, k| and k, are wave numbers and k; is fixed to 0.01.
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wave number & 3) exhibits a periodicity for several combina-
tions of k| and k,. Therefore, within the scope of sampling
network design it is important to study how different char-
acteristics of the In K field affect sampling design and to
demonstrate how this information can be used to provide
guidance in practical situations.

4.1. Effects of Anisotropic Conductivity Field

Up to now we have analyzed an isotropic In X field where
the correlation scale is the same in every direction of the
monitoring domain. In reality, this will seldom be the case
and in most situations the In K field will exhibit anisotropy.
In Figures 7a and 7b the sampling performance is presented
for the case of an anisotropic In K field which has the
geometric mean of its correlation scales equal to the corre-
lation scale of the isotropic In K field used to produce
Figures 4a and 5a. This can be simply written as

a= (A =2 (29)

where A, is the geometric mean correlation scale of the
anisotropic In X field. In Figure 7a sampling performance is
presented in the horizontal plane for fixed vertical sampling
Aly = 3 m; Figure 7b shows the vertical plane sampling
design for fixed Al, = 2 m. It is of particular interest to
compare Figure 4a with Figure 7a and Figure Sa with Figure
7b since the only difference between them is the anisotropic
In K field used to produce Figures 7a and 7b. The important
point to note is that the overall sampling performance is
worse for anisotropic In K fields, particularly for increased
sample spacing in the x and y directions. This is possibly due
to the increased variability in the direction perpendicular to
the mean flow together with the reduced correlation scale in
that direction.

This analysis shows that an anisotropic In X field needs to
be sampled differently from an isotropic field with correla-
tion scale equal to the geometric mean of the anisotropic
correlation scales if the same sampling performance is to be
achieved . This is due to the different distribution of the
variance (shape of spectrum) of the anisotropic In K field
although, as observed by Vomvoris and Gelhar [1990], the
concentration variance between these two fields does not
differ significantly.

Since the need for anisotropy in the horizontal spacing
(AHS) between wells is intuitively obvious (and has been
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horizontal spacing (AHS = Al,/Al;) and for a fixed number of wells
N = 240. Isotropic In K field with A varying from 1 to 7 m; fixed
Al3 = 3 m and L, = 100 m. Figure shows different curves for
different values of L /A.

intuitively followed in some field applications [e.g., Perlmut-
ter and Lieber, 1970]), it is of practical interest to formally
analyze how the correlation structure of the In K field affects
the choice of AHS. In Figure 8 the sampling error index is
plotted as a function of different anisotropy in horizontal
sampling ratios (AHS = A!,/Al,) for a fixed total number of
sampling wells within the monitoring domain, and for dif-
ferent magnitudes of the ratio of the length of the monitoring
domain in the x direction relative to the correlation scale of
the isotropic In K field (L,/A). By increasing the AHS ratio
the sampling performance is clearly improving up to A/,/
Al, = 60 after which further increase in AHS does not
provide significant reduction in the sampling error. This
observation has important implications for sampling network
design since it indicates that in order to efficiently monitor
the plume moving through an isotropic In X field the distance
between wells in the direction perpendicular to the mean
flow must be smaller (approximately 60 times smaller for this
example) compared to the well distance in the direction of
flow regardless of the In K correlation scale magnitude.
Further increase in the anisotropy in spacing would only
marginally improve the overall sampling activity and may
not be a desirable monitoring option, keeping in mind that by
placing wells further downstream one may miss the moving
plume (or part of it) as happened for example in the initial
sampling design of the Borden field tracer test (E. A.
Sudicky, personal communication, 1990). This possible hit-
or-miss characteristic is an important concern in practical
monitoring schemes since the groundwater velocity field
(which is the most important driving force) is highly uncer-
tain in practical applications.

4.2. Effect of Total Number of Wells

In the previous example the total number of samples in the
horizontal direction (monitoring wells) was kept constant in
order to examine the relationship among the AHS, sampling
error index, and correlation scales of the In K field. How-
ever, the number of samples in the horizontal plane plays an
important role in groundwater monitoring design due to the
high cost of drilling an additional monitoring well. Clearly,
an increase in the total number of samples within the
monitoring domain would reduce the sampling error and as
long as that increase in number of samples is followed by a
significant reduction in sampling error the additional invest-
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ment is justified. Figure 9a displays the sampling error index
of an isotropic In K field as a function of the total number of
samples in the horizontal plane for different AHS. For
smaller AHS a significant reduction in sampling error is
achieved by increasing the total number of samples. How-
ever, once the AHS ratio becomes 50-60, further increase in
the number of samples (above 200) hardly provides any
further reduction in the sampling error. It is important to
note that by increasing the AHS ratio a reduction in sampling
error can be achieved with fewer wells within a fixed size
monitoring domain. This may have a significant impact on
the necessary monitoring budget. Note that this fact known

s ‘‘decreasing marginal return’’ has been also found by
Andricevic [1990a] in monitoring groundwater quantity. Ob-
serve that again an AHS ratio of 60 seems to be the point
where further increase in AHS does not provide significant
further decrease in the sampling error. In Figure 9b the same
analysis is depicted for an anisotropic In K field.

The above analysis clearly shows that AHS and total
number of samples are related to each other and only a
trade-off between them will lead to cost-effective sampling
network design. If on top of that we add the characteristics
of the In K field the complete picture of the three-
dimensional sampling network design for groundwater qual-
ity can be obtained.

Figure 10 represents the sampling error index for different
combinations of AHS, number of samples and vertical
anisotropy in the In K field (Figure 10a, 160 wells; Figure
104, 240 wells). This figure in conjunction with Figures 8 and
9 provides guidelines for determining the most appropriate
AHS ratio for given In K correlation scales, chosen number
of samples (e.g., from Figure 8), and desirable degree of
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Fig. 9. Sampling error index I, as a function of horizontal
number of samples (number of wells) and for different values of
horizontal sampling anisotropy ratio AHS = Al,/Al,. The sampling
spacing in the vertical direction is fixed to Al; = 3 m. (a) Isotropic
In K field with A = 3m. () Anisotropic In K field with A; = 9 m,
A; =3 mand A; = 1 m such that (A;A;A3)1? = 3 m.
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Fig. 10. Sampling error index I, as a function of anisotropy in
horizontal spacing ration AHS = Al,/Al, and vertical anisotropy in
the In K field correlation structure.

sampling error. For any given anisotropy in the In X field,
magnitude of correlation scales, and an acceptable sampling
error the horizontal sampling anisotropy and number of
wells can be found.

By examining Figure 10 closely it is clear that increased
AHS does not provide the same improvement for different
vertical anisotropy ratios in the In K correlation scales. In
fact, for significant anisotropy in the vertical direction (lay-
ered aquifer) only marginal improvement is achieved by
increasing the AHS. In that case, only a further increase in
the total number of samples per monitoring domain or an
increased anisotropy in vertical spacing will result in better
overall sampling performance. More uniformly structured
aquifers (less anisotropy) will need to be sampled at a higher
anisotropy ratio to produce a smaller sampling error.

In Figure 11 the sampling error index, I, is depicted as a
function of the In K variance for different AHS ratios. It is
important to notice that there is a certain AHS ratio (5-10)
for which the sampling error is suddenly increased. This
behavior is attributed to the shape of the concentration
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horizontal spacing ratio AHS = Al,/Al.
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spectrum given by (19) (see Figure 6) from which it can be
seen that for a small and fixed wave number k; (which
corresponds to sparse sampling in the vertical direction) the
concentration spectrum in the direction perpendicular to the
mean flow has a flat region for a certain frequency span.
Such a feature may indicate a periodicity in the direction
perpendicular to the mean flow and results from the corre-
lation structure of the concentration field which in the
direction perpendicular to the mean flow has negative values
at some distance (*‘hole effect’’) as has also been observed in
the study by Vomvoris and Gelhar [1990]. If the frequency
corresponding to the chosen spacing in the direction perpen-
dicular to the mean flow (i.e., 1/A/,) coincides with frequen-
cies within that flat region we clearly have an increase in the
sampling error.

S. CONCLUDING REMARKS

In this paper we presented a new methodology for design-
ing and analyzing three-dimensional sampling networks for
groundwater quality monitoring. Sampling network design is
presented in the frequency domain as a transfer function
acting on the concentration spectrum to provide the sam-
pling error variance, which is used as a measure of sampling
performance. The transfer function of the system depends
on two important sampling design parameters: (1) spacing
between samples Al;, i= 1, 2, 3 and (2) total number of
samples N; in each i direction. It is found that the sampling
error is proportional to the concentration gradient and the
variance of the In K field while inversely proportional to the
total number of samples within the monitoring domain and
half the Nyquist frequency (1/A/;). This frequency deter-
mines the point where the concentration spectrum contrib-
utes to the sampling error the most . The smaller the spectral
power at this frequency the better the performance of the
monitoring network.

The proposed methodology for sampling network design
allows the network designer to directly relate the sampling
design parameters to statistical characteristics of the In K
field. It provides a convenient tool for practical implemen-
tation of sampling design as a three-dimensional monitoring
activity, an attempt which to the best of our knowledge
seems to be seldom reported in the literature.

The presented results show that sampling network design
for groundwater quality should be devised as a three-
dimensional sampling activity with particular emphasis on
sampling in the direction perpendicular to the mean flow. In
the horizontal plane, which is of high practical interest, there
is a clear need for anisotropy in horizontal spacing between
the wells with larger spacing needed in the direction of the
mean flow and smaller spacing in the direction perpendicular
to the flow. This intuitively expected feature is attributed to
the higher correlation scale of the concentration plume in the
mean flow direction. It is also found that the anisotropy in
horizontal spacing ratio (AHS = A/,/Al,) is a function of the
In K field correlation scales and that an apparent trade-off
exists between AHS and the total number of samples. In the
case of significant vertical anisotropy in the In K correlation
field, the sampling design in the vertical direction also
becomes an important network design parameter. Several
guidelines are presented which can be used to analyze an
existing monitoring network performance or to design a new
one by choosing the proper spatial spacing of wells and the
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total number of wells within the monitoring domain. Note
that in evaluating the performance of an unevenly spaced
existing monitoring network a representative ‘‘equivalent’
spacing between wells in the two principal directions must
be obtained. One way of doing this is to use Thiessen
polygons to assign areas to every well and then compute an
average well area which can be assigned to a rectangle of
sides Al and Al,.

With the proposed methodology the sampling network
design is clearly separated from the statistics of the concen-
tration field, thus allowing a network designer to gain a
better insight of how to go about sampling based on the
known (or at least estimated) In K field characteristics. This
feature has a direct practical application to sampling design
for field tracer test studies. Furthermore, the impact of the
transport parameters on sampling design can be explicitly
evaluated. Such an analysis may have a direct implication in
inverse modeling where concentration data are used to
estimate partially known hydrogeological parameters. Pa-
rameters significantly affecting sampling design are more
likely to be identifiable through the inverse estimation pro-
cess based on concentration measurements.

The correlation structure of the moving concentration
plume is also temporally variable and (particularly in the
case of nonconservative solutes) sequential sampling design
might be desirable. The advantages of sequential sampling
have been demonstrated by Andricevic [1990b] in monitoring
and management of groundwater withdrawals and by Gra-
ham and McLaughlin [1989b] in predicting solute transport.
For temporally variable concentration fields, the proposed
methodology needs to be extended in the time domain
(nonstationary concentration spectrum and nonstationary
sampling error filter) and the evaluation of the sampling
network should be done in real time by taking advantage of
the information gained from the previously collected mea-
surements.

APPENDIX: FOURIER TRANSFORM OF DISCRETE
SAMPLING FILTER p(/)

The linear filter corresponding to the discrete averaging
process in the one-dimensional example is given as

N-1

Al
ply=— >, 8[l-nAl] x-LR2=I=x+L/2
L (30)
p(1)=0 otherwise
The Fourier transform of p(/) can be written as
. N
f’(k)=%(ﬁ(1))=f N > (1~ nal)e M (31)
—® n=0

where k is the wave number, & ) is the delta function, and
# denotes Fourier transform. Using the shifting property of
the delta function the above can be written as

(32)
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which represents a power transfer function described as a
summation of negative exponentials. This expression can be
written as [Blackman and Tukey, 1959, p. 131]

3 B(kNAILI2) _ 1 sin (kNAII2)
" B(kAI2) N sin (kAl2)

(33)

which completes the evaluation of the Fourier transform of
p).
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