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Abstract. The Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI)
Goddard Profiling (GPROF) rainfall retrieval algorithm is an inversion type algorithm, which
uses numerical cloud models and radiative transfer schemes to simulate the brightness tem-
peratures that the TMI would see, thereby allowing one to relate hydrometeor profiles to
brightness temperature. The variability in modeled hydrometeor fields is known to have an
important effect on simulated brightness temperatures, and while the TMI instrument sees all
the variability down to scales of a few meters, cloud models are typically run at resolutions
of 1-3 km. This paper is an illustrative investigation into the importance of subgrid variabil-
ity (scales below 1-3 km), which is ignored when simulating brightness temperatures. Previ-

ous studies on the importance of subgrid variability have been based on comparisons of
simulated brightness temperatures computed from hydrometeor fields of a high resolution
model and spatially aggregated hydrometeor fields from the same model run. It is argued
that numerical cloud models have reduced small-scale variability due to model artifacts such
as computational mixing, and this may lead to an underestimation of the importance of in-
cluding subgrid variability. To address this problem, stochastic downscaling developed in a
wavelet-based framework is used to reintroduce the variability reduced by computational
mixing. In particular, a high resolution model is spatially aggregated (i.e., upscaled) over the
scales affected by computational mixing and stochastically downscaled back to the original
resolution of the model. The higher degree of variability introduced by the downscaling
(which is a closer approximation to the variability observed in hydrometeor concentrations as
compared to that produced by high resolution models) is found to result in larger biases in
estimated brightness temperature. This points to the potential for a significant source of bias
in microwave-sensed precipitation retrievals that requires further study.

1. Introduction: Background
and Problem Statement

1.1. TMI Rainfall Estimation

Estimates of the influence of precipitation processes in the
global energy budget of the atmosphere place roughly 75% of
the energy as originating from latent heat release in the for-
mation of precipitation. Since almost two thirds of precip-
itation falls in the tropics and 75% of the tropics are ocean,
satellite measurements are necessary to properly estimate the
mean and variability of tropical precipitation. This is the jus-
tification for NASA’s Tropical Rainfall Measuring Mission
(TRMM) [e.g., see Simpson et al., 1996].

From a precipitation standpoint, the three principal instru-
ments on the TRMM satellite are (1) the TRMM Microwave
Imager (TMI), a passive microwave sensor, (2) the Precipita-
tion Radar (PR), an active microwave transmitter-receiver and
the first space-borne precipitation radar, and (3) the Visible
and Infrared Sensor (VIRS), a visible-infrared passive radi-
ometer. Only the TMI instrument is addressed in this study.
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The TMI Rainfall Algorithm, often referred to as 2A12 or
the Goddard Profiling Algorithm (GPROF), is an inversion
type algorithm, which, in short, amounts to using numerical
cloud models and radiative transfer schemes to simulate the
brightness temperatures that the TMI would see, thereby al-
lowing one to relate hydrometeor profiles to brightness tem-
perature. These inversion algorithms have been in use to re-
trieve rainfall from Special Sensor Microwave Imager
(SSM/T) measured brightness temperatures. Recent references
for the inversion type algorithm discussed here include Kum-
merow et al. [1996] and Panegrossi et al. [1998]. Earlier ref-
erences include work by Kummerow and Giglio [1994], Smith
et al. [1994], and Mugnai et al. [1993].

The numerical cloud models are typically run at resolutions
varying from 1 to 3.3 km [e.g., Panegrossi et al., 1998] and
are used to simulate different types of rain and their corre-
sponding hydrometeor profiles. The hydrometeors considered
here explicitly fall into six categories: (1) non-precipitating
water (i.e., cloud liquid water (CLW)), (2) nonprecipitating
ice (i.e., cloud ice water (CIW)), (3) precip-itating water or
rain liquid water (RLW), (4) precipitating ice (i.e., hail, grau-
pel), (5) snow, and (6) water vapor. Water vapor is not a hy-
drometeor but interacts with microwave radiation and so is
grouped in with the other five species of hydrometeors for
convenience. Oxygen is also radiometric-ally significant but
is not considered explicitly in the cloud model but rather dealt
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with implicitly in the radiative transfer scheme. The hydro-
meteor profiles are represented in the model as volume aver-
aged densities (measured in g m™3) of the six types of hydro-
meteor species at a number of levels, N, in the vertical.

The TMI observed microwave radiance results from the
vertically integrated effects of microwave interaction (ab-
sorption, emission, and scattering) with the hydrometeors.
The observed radiance is also dependent on (1) the vertical
atmospheric temperature profile, (2) the emissivity and tem-
perature of the surface, and (3) the nature of the surface de-
fined as either specular or Lambertian. It is convenient to ex-
plicitly define a complete state vector referred to here, in ac-
cordance with previous notation found in the literature [Kum-
merow et al., 1996], as R(x, y). This state vector represents, at
any horizontal coordinate (x, y), the hydrometeor densities and
the atmospheric temperatures at all N, vertical levels, as well
as the surface characteristics. The state vector is thus used,
together with a radiative transfer scheme, to determine the ra-
diance the TMI would see when looking at the modeled at-
mosphere. Note that for any (x, y) coordinate, the state vector,
R(x, y), will consist of 7N, values (6N, for the hydrometeor
species and LN, for vertical temperature profile) plus the three
surface characteristics (emissivity, temperature, and whether
the surface is specular or not).

Many cloud models have been used for inversion scheme
studies. The principal cloud model used for the 2A12 NASA-
TRMM TMI rainfall product is the Goddard Cumulus Ensem-
ble (GCE) model [Tao and Simpson, 1993]. Panegrossi et al.
[1998] used models such as the University of Wisconsin Non-
hydrostatic Modeling System (UW-NMS) and the Wisconsin
Dynamical-Microphysical Model (WISCDYMM) with Hail
Parameterization Model (HPM). In this study we use the Ad-
vanced Regional Prediction System (ARPS) developed at the
Center for the Analysis and Prediction of Storms (CAPS),
University of Oklahoma. The model features a similar micro-
physical scheme (see Lin et al. [1983] for a detailed descrip-
tion) and parameterization to that used in the GCE model.

To simulate what the TMI instrument would see while
looking through the modeled atmosphere, radiative transfer
schemes are run through the cloud models to obtain simulated
brightness temperatures, Tb sime at the model resolution. The
Ty, gim and R fields are then averaged to the “measurement
resolution” (~10-20 km; see Kummerow et al. [1998] for de-
tails on TMI resolution), thus creating a large database of
(Tb,sim’ R) pairs at this measurement resolution. To be accu-
rate, it is noted that the measurement resolution referred to in
this study is not the physical footprint of the sensor. The
footprint is larger but the footprints overlap, and through the
use of deconvolution techniques [Farrar et al., 1994), infor-
mation at a resolution higher than the footprint may be re-
trieved. It is also important to note that the instrument aver-
ages horizontally over the footprint in Ty, rather than R. More
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precisely, the instrument actually averages the radiance over
its angle of view. However, one can show with a simple plot
of Ty, versus radiance that the relation between Ty, and radi-
ance (Planck’s law of radiation) is linear to an excellent de-
gree of approximation for the TMI channel frequencies and
the range of Ty, and radiance observed.

The final step of the rainfall retrieval involves “matching”
the simulated T, g, with the TMI observed brightness tem-
peratures, Ty, .. This is accomplished within a Bayesian
framework [e.g., Kummerow et al., 1996], where the large
database of (T, simy R) pairs represents a realistic sampling of
the “flavors” of rain likely to occur in the tropics. Discussion
of this final step is beyond the scope of this paper.

1.2. Problem Statement

This study is concerned with scale and variability issues in
the TMI rainfall estimation process described in section 1.1.
The process involves a number of scales, which are schemati-
cally illustrated in Figure 1. First, there is the scale associated
with the pixel size of the (Tb,sim’ R) database, which is chosen
to correspond to the TMI “measurement resolution” of the or-
der of 10-20 km. Second, there is the scale associated with
the pixel size of the cloud model, which is typically between 1
and 3 km. The variability in the cloud fields for all scales be-
low the typical model resolutions of 1-3 km is referred to here
as the “subgrid variability.” We refer to “small-scale vari-
ability” as the variability between the model resolution and
the TMI measurement resolution. One must also acknowl-
edge the real physical process scale down to the order of me-
ters, which the real instrument “sees” as it integrates over its
footprint, yet which the model does not resolve. As men-
tioned above, the (Tb,sim, R) pairs in the database are results
of Ty ;m and R computed at the model resolution then aver-
aged to the TMI measurement resolution for the purposes of
the database. However, Ty, ;;, and R are non-linearly related.
Therefore differences in the fine scale variability of the R
field from which Ty, ;;, is computed lead to differences in the
computed (Tb sim R) relations, even though the coarse reso-
lution (i.e., 10-20 km) R field may remain unchanged. Part of
this variability is the subgrid variability. The question moti-
vating this study is therefore: Does including variability at
scales < 3 km affect Tb'Sim estimates and if so, by how much?

A simple numerical experiment to answer this question in-
volves running a cloud model at a resolution much higher
than 3 km (375 m was used in this study). Then one can
compare Ty, ;.. computed at 375 m resolution with that com-
puted at 3 km resolution by spatially aggregating the 375 m
hydrometeor fields prior to applying the radiative transfer
schemes. However, such a comparison does not fully address
the question since it is argued that the model-produced clouds
have significantly reduced variability compared to observed
clouds for scales between the model resolution and 8 times
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Figure 1. Schematic illustration of scales.



HARRIS AND FOUFOULA-GEORGIOU: CLOUD MODEL DOWNSCALING

(a)

10,351

(b)

TALG19941848: C

1TAUGIS84 1848 0

Figure 2. Visual comparison of reflectivity fields of (a) radar observations of a supercell at 2 km resolution
and (b) an Advanced Regional Prediction System (ARPS) model representation of the same storm at 3 km
resolution. While the radar observations comprise more low level signals (which may even be due to clutter
and other radar artifacts), the variability of the intense features of the storm appears greater for the radar ob-

servation than for the modeled field.

this scale (i.e., 375 m to 3 km in our case). We therefore pro-
pose that an adequate investigation into the importance of
subgrid variability requires that this variability be properly
represented in the first place. A way of accomplishing this is
proposed in this study and is used to enhance the modeled
cloud variability to better match the observed subgrid vari-
ability of clouds.

One of the mechanisms which contributes to the smooth-
ness observed in modeled fields is the process of computa-
tional mixing or numerical smoothing. This is an artificial
process necessary, in some form or another, for finite differ-
ence computational fluid dynamical (CFD) models. While
computational mixing is designed to remove small-scale com-
putational noise and ensure computational stability, it also re-
duces small-scale variability of dynamic and scalar fields.

By a simple visual comparison one finds that modeled pre-
cipitation tends to look smoother and less variable than pre-
cipitation observed with a radar. For example, Figure 2
shows a comparison of radar observed reflectivity fields of a
supercell storm and an ARPS model representation of that
same storm made using a wide variety of assimilated data. By
most meteorological standards the modeled field would be
considered a very good forecast, since for forecast purposes
the small-scale variability would be largely unimportant.
However, for radiative transfer computations it may well be
important because of the non-linear relation between T, and
hydrometeor concentrations. In essence, this is known as the
beam-filling problem [e.g., Kummerow, 1998; Kummerow et
al., 1996; Kummerow and Giglio, 1994; Spencer, 1986],
which is largely a problem of non-linear averaging of pre-
cipitation. With respect to our objective of examining the ef-
fect of subgrid variability on Ty, -, estimates, our concern is
that if the modeled subgrid variability is underrepresented be-
cause of computational mixing, one may be misled as to the
importance of accounting for it.

To address this concern, the following approach is there-
fore undertaken in this study. A cloud model is run at a very
high resolution of 375 m. Radiative transfer computations

performed at this resolution can thus be compared with radia-
tive transfer computations performed on a cloud model at a
resolution of 3 km (obtained by simply horizontal spatial av-
eraging of the 375 m model). This alone gives an estimate of
the degree of importance of including subgrid variability in
T}, sim estimation and is similar to the approach followed by
Haferman et al. [1994] but done here for higher resolutions.
However, to alleviate the problem of underrepresented vari-
ability in the 375 m model run (i.e., variability between scales
of 375 m to 3 km), we upscale the model output to 3 km and
apply recently developed wavelet-based methods [e.g., Perica
and Foufoula-Georgiou, 1996b] to stochastically downscale
the 3 km aggregated fields back to 375 m resolution. This
procedure increases the subgrid variability relative to that of
the original modeled field to better match the observed vari-
ability and we argue that it results in a better estimate of the
importance of including subgrid variability in Ty g, computa-
tions.

The horizontal variability of hydrometeor concentrations in
precipitating clouds is expected to have important effects on
the upwelling brightness temperature, particularly where
scattering is dominant [Stephens, 1989]. This effect, depend-
ent on the modeling of the horizontal component of radiative
transport, clearly requires three-dimensional (3-D) radiative
transfer schemes [Haferman et al., 1994; Roberti et al., 1994]
as opposed to plane-parallel independent pixel approximations
of the radiative transfer equations. While applying a 3-D ra-
diative transfer scheme is more desirable, a first-order meas-
ure of the beam-filling problem can be achieved [e.g., see dis-
cussion by Haferman et al., 1994] using a plane-parallel or
Independent Column Approximation (ICA) radiative transfer
scheme. This study uses an ICA radiative transfer scheme
and thus can be seen as a first step in addressing the impor-
tance of subgrid variability to the beam-filling problem. More
importantly the study assesses the benefits of introducing sto-
chastic downscaling methods to address issues of inadequate
precipitation variability in numerical cloud models. A more
elaborate 3-D radiative transfer analysis in conjunction with a
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3-D downscaled cloud representation (which requires a de-
tailed parameterization of the vertical structure of hydromete-
ors) is currently under investigation.

2. Cloud Model and Radiative Transfer Scheme

The model used here is the Advanced Regional Prediction
System (ARPS) developed at the Center for the Analysis and
Prediction of Storms (CAPS) at the University of Oklahoma.
As the name suggests, ARPS is more than a cloud model (it is
a system) and incorporates many advances in data assimila-
tion developed at CAPS. Its aim is operational severe storm
forecasting, and it is currently providing real-time forecasts at
horizontal resolutions as high as 3 km (for examples on-line,
visit http://caps.ou.edu/wx/aa).  For the purposes of this
work, however, the model was run at a very high resolution of
375 m in the horizontal in order to explore the effects per-
taining to the contribution of subgrid variability (i.e., scales
below 3 km). This was done on a square domain of 160x160
km in size.

Details of the ARPS model are given by Xue et al. [1995]
(on-line at http://caps.ou.edu/ARPS/ARPS4.guide.html). As
is for most cloud models, ARPS is physically based and oper-
ates on finite difference representations of the Navier-Stokes
equations as well as thermodynamic and microphysical proc-
esses. One might thus expect such cloud models to exactly
reproduce the variability found in observed fields. However,
this is often not so over the full range of modeled scales as
many of the subgrid processes, such as turbulent dissipation,
for example, must necessarily be parameterized. This contin-
ues to be an active area of research [e.g., Porté-Agel et al.,
2000, 2001]. Also, like the real atmosphere, the models are
chaotic and sensitive to perturbations, which for a model may
be brought on by numerical noise. Thus care must be taken to
dampen the effects of any numerical noise by a process often
referred to as computational mixing. Computational mixing
ensures computational stability, and is usually the only purely
nonphysical process in any computational fluid dynamical
model. This mixing acts on dynamical as well as scalar fields
and as a general rule of thumb is expected to have some effect
on the variability of these fields at scales up to 6Ax to 8Ax,
where Ax is the model horizontal resolution. Notice that 8Ax,
for Ax = 375 m is equal to 3 km and is thus the reason for
choosing a resolution of 375 m for the high resolution run.
Choosing this resolution means that at scales of 3 km the
modeled variability should be largely unaffected by computa-
tional mixing.

The ARPS model run generated here used a fourth-order
mixing scheme which, in a nutshell, adds to the principal con-
servation equations, a small term proportional to the fourth-
order partial derivatives of the perturbation of a field quantity,
from its base state or, say, initial value. The proportionality
constants (there are two: one for the horizontal, K, and one
for the vertical, K,) in this additive term are the mixing coeffi-
cients, sometimes referred to as the computational diffusion
coefficients [e.g., Pielke, 1984; Xue et al., 1995]. The values
for the fourth-order order mixing coefficients used in this
study were K), = 2x10” m*s™! and K, = 2.5x107 m*s°.

The model run for this work is simplified in that it has no
real data assimilated in the initial field and represents an in-
tense storm triggered in an environment of high instability
quantified by the convective available potential energy
(CAPE). The environment is initialized with an analytic
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sounding [Weisman and Klemp, 1982] plus the addition of
helicity [Droegemeier et al., 1993]. Also, for the purposes of
this work, surface parameterizations were not included, and
radiative effects were neglected. Of relevance to this work, of
course, is the microphysical parameterization scheme [Lin et
al., 1983], which is similar to that used in the GCE model and
features cold rain microphysics.

The Eddington ICA radiative transfer scheme used by
Kummerow [1993] was used for this study. This scheme was
chosen because it was well documented, and readily available
with kind support from the author [Kummerow, 1993]. One
must keep in mind that use of an Independent Column Ap-
proximation has the shortcoming of not accounting for 3-D
radiative effects, in contrast to some of the later schemes such
as the 3-D Monte Carlo [Roberti et al., 1994; Roberti and
Kummerow, 1999] and 3-D Discrete Ordinates Method
[Haferman et al., 1994]. However, as discussed in section 1,
use of an Independent Column Approximation suffices for the
purpose of illustrating the importance of adequately repre-
senting subgrid variability for radiative transfer computations.

In the radiative transfer scheme the viewing zenith angle
was 50° from nadir, and some simplifications were made.
First, all ice species were grouped together (i.e., cloud ice
grouped together with precipitating ice and snow) as a single
ice species. Second, the surface characteristics were fixed and
set to represent a nonspecular sea surface (i.e., Lambertian),
with an emissivity of 0.5 and a surface temperature equal to

the atmospheric air temperature at ground level (typically
295° to 300°K).

3. Fourier Power Spectrum and Scaling
in Atmospheric Fields

A simple yet conceptually powerful tool for looking at the
variability of any field over a wide range of scales is the Fou-
rier power spectrum. The power spectrum is computed using
standard fast Fourier transform (FFT) algorithms such as
those given by Press et al. [1992]. An empirical observation
often (but not always) noted for a wide variety of atmospheric
fields is the presence of scaling or scale-invariance, which
manifests itself as log-log linearity of the power spectrum in
space or time. Evidence of scaling power spectra for rain
fields in both space and time can be found in numerous stud-
ies [e.g., Harris et al., 1996; Menabde et al., 1997; Lovejoy
and Schertzer, 1995; Georgakakos et al., 1994] as well as for
cloud liquid water fields [e.g., Davis et al., 1996; Lovejoy and
Schertzer, 1995]. The scaling nature of these atmospheric
fields is largely empirical, although there are arguments in the
literature suggesting that the scaling of observed scalars such
as rainwater or cloud water is linked to the scaling observed in
turbulence [Schertzer and Lovejoy, 1991].

As discussed in section 2, computational mixing influences
the variability over a range of scales from the horizontal
model resolution, Ax, up to 6Ax to 8Ax and this should be re-
flected in the tails of the power spectra of modeled scalar and
dynamical fields. Indeed, comparisons of power spectra show
a steeper falloff for modeled rainwater and cloud water fields
than for observed fields. For example, Figure 3a shows the
spectrum for modeled cloud liquid water (CLW). The spec-
trum was computed from horizontal transects of CLW from a
continental squall line modeled at 1 km resolution. The spec-
trum shown is an average of several transects in order to re-
duce noise. For comparison, the dashed line represents the
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Figure 3. Fourier power spectra for observed and modeled
fields of (a) cloud liquid water (CLW) and (b) rain rate. The
CLW spectrum of the model is computed from horizontal
transects obtained from a 1 km model run. The dashed line
has a slope of 1.6 as found for in situ CLW measurements by
Davis et al. [1996]. Rain rate spectra are for modeled and ra-
dar observed fields.

mean spectral slope given by Davis et al. [1996] for CLW
measurements made with a variety of liquid water probes
flown through marine stratocumulus clouds. This type of
scaling is reported to extend down to scales of tens of meters.
While the modeled cloud field from which the spectrum is
computed is not marine stratocumulus (i.e., the model features
deep convection), the spectrum falloff even for convective
clouds is not expected to be anywhere as steep as that shown
in Figure 3a.

Similarly for rain fields, Figure 3b shows a spectral com-
parison between observed and modeled fields for 2-D rain rate
maps of the same model run used for Figure 3a. (Details on
the representation of 2-D Fourier power spectra are given in
Appendix A.) The spectrum of the modeled rain rates is
found again to drop off quicker than for the observations pro-
vided by TRMM PR (i.e., 2A25 product) for a storm occur-
ring during the Texas and Florida Underflights-A (TEFLUN-
A) ground validation observation period and data from a high
resolution scanning X-band radar [Seed et al., 1996] having
100 m resolution.

In both cases of modeled CLW and rain rates the steep
falloff at high wave numbers (small scales) is indicative of a
smoother structure and reduced variability in comparison to
their observed counterparts. Further documentation of the
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discrepancies between the multiscale structure of modeled and
observed clouds is given by D. Harris et al. (Multiscale statis-
tical properties of a high resolution precipitation forecast,
submitted to Journal of Hydrometeorology, 2000).

4. Wavelet Decomposition, Normalized
Fluctuations and Stochastic Downscaling

4.1. Wavelet Decomposition and Normalized Fluctuations

A more descriptive multiscale analysis tool involves the
wavelet decomposition of signals [e.g., Daubechies, 1992],
which has recently found applications in the study of numer-
ous geophysical processes [e.g., see Foufoula-Georgiou and
Kumar, 1994]. The details of the method described in this
section are well documented in a number of publications [e.g.,
see Perica and Foufoula-Georgiou, 1996a, 1996b; Kumar and
Foufoula-Georgiou, 1993a, 1993b], and the reader is referred
to those. Below, only a brief description is given for com-
pleteness, and attention is paid to the physical interpretation
of the quantities that the analysis method yields.

Using the Haar wavelet, y, and the corresponding scaling
function, ¢, an illustration of a discrete orthogonal wavelet
decomposition is given for a time series in Figure 4. In es-
sence, if one is using the Haar wavelet (there is a large suite
of wavelets one can choose from, but only the Haar wavelet is
used here), the corresponding scaling function acts as a simple
local averaging of the time series (reducing the resolution of
the time series by a factor of 2 at each step), while the wavelet
transform records the “details” or fluctuations around the lo-
cal means. An important property of a discrete orthogonal
wavelet decomposition is that the decomposition process is
entirely reversible (by an inverse wavelet transform), and the
original time series in Figure 4 may be recreated by the aver-
age at a large scale and its “details” at all intermediate scales.
On the basis of the empirical evidence of Perica and Fou-
foula-Georgiou [1996a] the details, or fluctuations, X', of
the rainfall process at any scale depend almost linearly on the
average rainfall intensities, X , at that same scale. We there-
fore analyze the normalized quantity, £ = X’/ X [Perica and
Foufoula-Georgiou, 1996a] at each successive iterative step
of the decomposition. For the Haar wavelet the quantities &,
at each scale, are simply interpreted as normalized local rain-
fall fluctuations.

For spatial data a 2-D separable Haar wavelet [e.g., Kumar
and Foufoula-Georgiou, 1993b] is used which results in three
separate wavelet components. These represent fluctuations in
the longitudinal, latitudinal, and diagonal directions. Again,
by using the Haar wavelet transform these can be simply rep-
resented by the set of equations

X121 =%{[7m(i, D+XmG, j+D]
~[Xm(+1, )+ Xm(+1,j+D]}

Xonin20 ) = Xm(i, )+ Xm(+1,)]
~[XmG, j+ D)+ X m@+1, j+D]}

Xins130.5) =L XomG, )= Xom+1,)]
~[Xomi,j )~ Xom(i+1,j D]}

X @)= (X )+ Xm(Gsj +1)

+Xm+L )+ X m@i+1,j+1)} ,m=0,1.2... (1)
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Figure 4. Schematic of iterative discrete Haar wavelet decomposition for a rainfall time series. The original
field X(¢) is decomposed into an averaged field, X(¢) (via filter @) and a difference field X’(¢) (via filter y).
The averaged field, X(z), is further decomposed at the next iteration, and so on, until the desired coarse scale
is obtained. Since the decomposition is orthogonal, the original field can be reconstructed from the averaged

field at any scale and the difference fields at all intermediate scales.

The index, m, indicates the iteration (scale of decomposition)
and the indices, i and j, represent the row and column indices,
respectively, of the 2-D field. Note that m = 0 corresponds to
the original scale of 375 m, and the first decomposition yields
normalized fluctuations at the 750 m scale; m = 1 corresponds
to the scale of 750 m, and the second decomposition yields
normalized fluctuations at the 1.5 km scale and so on. For an
original image of N x N pixels, the indices, i and j, vary from
1 to N/2™ at scale m, while the primed indices, i’ and j,
vary from 1 to N/2™*1. There are three normalized fluctuation
components,

X;n+l,n (l’ J)

milnth)) 193 @)
Xm+1(l,.])

Emrn (s )) =

where n = 1, 2, 3, refers to the index of the directional com-
ponent in the longitudinal, latitudinal, and diagonal directions,
respectively. For rainfall the distributions of these normalized
fluctuations are well approximated by Gaussians centered at
zero [see also Perica and Foufoula-Georgiou, 1996b]. The
distributions at each iteration may thus be fully characterized
by the standard deviations, og,. ., of these distributions.
Examples of the distributions of normalized fluctuations and
how they change with scale are given in Figures Sa-c for an
ensemble of 1 hour of Next Generation Weather Radar
(NEXRAD) data at 2 km resolution. The standard deviations

of the normalized fluctuations, 0,1, aT€Q relative measure
of the variability of the rainfall field at a specific scale. Small
0¢,.., indicates that the field mostly consists of small fluc-
tuations relative to the intensity of the field values, while
large og,,,  indicates a higher occurrence of large fluctua-
tions relative to the intensity of the field values.

For rainfall, simple scaling is often observed in the stan-
dard deviations of the normalized fluctuations [Perica and
Foufoula-Georgiou, 1996a; Venugopal et al., 1999]. By this
we mean that log-log linearity is observed on a plot of
O, Versus scale. An example of this log-log linearity is
shown in Figure 5d, where the standard deviations of the
normalized fluctuations for the three fluctuation components
for rainfall derived from a NEXRAD radar image at 2 km
resolution are shown. The scaling observed may be expressed
by

O-‘Em-tl.n = O-él,n 2mH" = 19293, (3)

where H, (determined by the slopes on the log-log plots) are
the scaling exponents for each of the directional components
n. H, may be interpreted as indicators of smoothness, since a
steep slope in a plot such as that shown in Figure 5d indicates
a more rapid decrease in rainfall variability with decreasing
scale. Equation (3) is written for the dyadic (base 2) special
case, which is computationally convenient for the decomposi-



HARRIS AND FOUFOULA-GEORGIOU:

CLOUD MODEL DOWNSCALING 10,355

4 —
a)
3
o o
g2 2
1
0 HIER
-1 0 1
§4km,3
4
c)
3
8 )
Q 2 ¢ =0.31
Ay 16km,3
1]
0 RRERE
-1 0 1
€I6km,3

Longitudinal component, H, = 0.41
o Latitudinal component, H, = 0.30
v Diagonal component, H, = 0.48

d)

4 8

T T

16 32

I (km)

Figure 5. Probability Density Functions (PDFs) of normalized fluctuations for the diagonal component at the
(a) 4 km (m = 0), (b) 8 km (m = 1), and (c) 16 km (m = 2) scales for a 1 hour ensemble of 2 km NEXRAD
(KEAX) rain rate radar fields from 1000 to 1100 hours July 7, 1995, over Kansas City, Missouri.
(d) Standard deviation of distributions in Figures Sa-5c are plotted versus scale on a log-log graph to yield the
scaling exponents, H,, estimated by the log-log linear slopes for each component.

tion. However, in general, it holds for any two scales, A, and
Ay, in which case (3) takes on the form
O&5,m =0&.n (Aa/A)Hn

4.2. Stochastic Downscaling

Given a set of estimated parameters from relation (3)
above, namely the H, and o¢,.., At any one scale, m, one can
stochastically downscale a field from a coarse resolution to
one of much higher resolution. The resulting field will have

the same scaling properties obeying (3). Perica and Fou-
foula-Georgiou [1996b] showed how a radar image at 64 km
resolution could be stochastically downscaled to 4 km resolu-
tion. The 4 km field represents a random realization that may
have occurred conditional on the given 64 km averaged field.
The general procedure for downscaling is described in great
detail by Perica and Foufoula-Georgiou [1996b] and only
briefly reviewed here for completeness.

As an illustration, consider the downscaling we wish to
perform for this study from a scale of 3 km down to a scale of
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375 m. Given the three values of H, and three standard de-
viations of the normalized fluctuations at 6 km scale (m = 4),
which is written as og,, =0y, ,, we proceed as follows:

1. For the first pixel, (i, j), at 3 km resolution one generates
three Gaussian random deviates [e.g., see Press et al., 1992]
with zero mean and standard deviationo =0¢,, =
Olgonn 2. These three deviates are the three normalized
fluctuations, &sgm (i, ), in (2).

2. Multiplying these three variates by the pixel value at 3
km resolution, X3, (@, j), converts the three random devi-
ates to the three absolute fluctuations, X3, (. J) .

3. The three absolute fluctuations, X3, .G, J), together
with the mean pixel value at 3 km resolution, X3, ,(, j), are
transformed via the inverse Haar wavelet transform to create
four pixel values at 1.5 km resolution.

4. Steps 1 through 3 are repeated for all the 3 km pixels in
the image until the entire image has a 1.5 km resolution and
four times as many pixels as the initial image at 3 km resolu-
tion.

5. Now steps 1 through 4 are repeated for the pixels at 1.5
km resolution but now with the Gaussian random deviates
generated with o =0¢,, 2-2Hn In the next iteration (once
one has an image at 750 m resolution) the random deviates
will have standard deviation o =0, 23, and so on.

A few additional minor details must be addressed in the
procedure outlined above. First, the procedure allows for
negative values to be generated. This occurs infrequently, but
when it does, the pixel is set to zero and the four new pixels
are renormalized to conserve the mean. Second, at each it-
erative step (i.e., after step 4 above) the four new pixels gen-
erated within each of the larger pixels from the previous step
(e.g., the four new pixels at 1.5 km resolution within a single
3 km pixel) are rearranged to improve connectivity. This is
done by shifting the largest intensity to the pixel that is sur-
rounded by high intensities and the lowest intensity to the
pixel surrounded by the lowest intensities [Perica, 1995].
This rearranging is important as the four new pixels are un-
correlated to each other and to surrounding pixels. Thus ne-
glecting to improve the connectivity leads to a step or jump in
the final spectrum of the field. In the example above, the
jump would occur at a wave number of k = (3 km)! (i.e., the
starting scale of the downscaling procedure). An alternative
method of downscaling employing the cascade-based frame-
work of Lovejoy and Schertzer [1995] is currently being in-
vestigated for another study and would not require this con-
nectivity scheme. The algorithm for the entire process of sto-
chastic downscaling outlined above is available (in the C pro-
gramming language) from the authors.

5. Multiscale Statistics and Downscaling
of a Numerical Cloud Model

The ARPS cloud model, as discussed in section 2, was run
with a horizontal resolution of 375 m in order to explore the
contribution of the variability below the 3 km scale often used
in radiative transfer computations. Performing a wavelet de-
composition and computation of the normalized fluctuations
produces the plot shown in Figure 6a for precipitating ice at 4
km altitude. Similar plots were produced for other hydrome-
teor species. Scaling is observed at the larger scales above 3
km, but a rapid falloff in variability is seen to occur at smaller
scales, consistent with the claims made above, that models
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Figure 6. Log-log plots of the standard deviations of nor-
malized fluctuations versus scale for precipitating ice at
4 km altitude from the (a) original 375 m modeled field and
(b) the downscaled 375 m field. The scaling shown in Figure
6a at the largest scales (top 3 points) for each exponent yields
the parameter estimates, which are used in the statistical
downscaling from 3 km to 375 m (bottom 4 points in Figure
6b). Notice that the new parameter estimates in Figure 6b re-
sulting from a regression of all 6 points differ only slightly
from the parameters of Figure 6a used for the downscaling.
Similar plots are obtained for the other hydrometeor fields.

lack small-scale variability because of such processes as com-
putational mixing acting at scales of about 6 to 8 times the
horizontal resolution of the cloud model.

Given that the model lacks variability at these smaller
scales, the modeled fields were spatially averaged up to a
resolution of 3 km, and using the scaling parameters retrieved
from scales above 3 km (as, for example, shown in Figure 6a
for precipitating ice), they were stochastically downscaled
back to 375 m horizontal resolution. This therefore prescribes
a scaling structure as shown in Figure 6b and effectively in-
creases the variability at scales below 3 km in a fashion con-
sistent with the scaling structure seen in radar observations. It
is important to note that the downscaling preserves the mean
of the field at each 3 km pixel and thus only acts to spatially
redistribute the hydrometeors within each single 3 km pixel.
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Figure 7. Downscaling process illustrated for precipitating ice (in g m™3) at 4 km altitude for (a) the original
375 m modeled field, which is relatively smooth, and (b) the 375 m field created by statistically downscaling
the 3 km spatially averaged field. A similar downscaling procedure was performed for all the hydrometeor
species at all vertical levels for the original 375 m modeled field. The range of scales from the horizontal
resolution of the cloud model (375 m) to a factor of 8 times the horizontal resolution (3 km) is the range over
which numerical cloud resolving models are affected by computational mixing.

Visually, the downscaling is seen to roughen the smooth
appearance of the modeled output as shown in Figure 7. The
original modeled output in Figure 7a is almost smokey and
laminar in appearance, uncharacteristic of precipitation
viewed using radar, for example. After the downscaling the
roughness is markedly increased as shown in Figure 7b.

The parameter estimation and downscaling procedure is
applied to each hydrometeor species independently. The pa-
rameters used are listed in Table 1. Parameters estimated for
any single hydrometeor species did not seem to vary system-
atically with altitude; therefore each horizontal slice in the
vertical is downscaled using the same parameters. In addi-
tion, the same random seed is used for the downscaling at
each individual level in the vertical. This may lead to an
overestimation of the horizontal variability in the columnar
integrated fields. Proper treatment requires further investiga-
tion into the vertical structure of hydrometeor concentrations

and possibly 3-D downscaling techniques. However, verifi-
cations were made to show that the simplification of applying
the 2-D downscaling scheme above, as opposed to a 3-D
downscaling scheme, still produced realistic vertical profiles
of the hydrometeor concentrations, although the vertical
structure was not exactly preserved as shown in Figure 8 for
precipitating ice. The mean of the four adjacent columns
shown in Figure 8 represents the mean profile at a 750 m
scale and is not expected to be preserved after downscaling.
However, mean vertical profiles averaged to 3 km in the hori-
zontal (i.e., the starting scale of the downscaling procedure)
are necessarily preserved (exactly) by the mass conservation
properties of the upscaling-downscaling procedure.

The degree to which the downscaling procedure increases
variability can also be seen via a Fourier spectral analysis.
Figure 9 shows the spectra for the surface rain rate before and
after the downscaling. The tail in the spectrum computed

Table 1. Estimated Downscaling Parameters?

Hydrometeor
Species H H H, O &6tms O¢6im2 Ooims
Rain 0.24 0.22 0.42 0.39 0.33 0.27
Graupel/hail 0.42 0.35 0.56 0.39 0.34 0.26
Snow 0.34 0.24 0.38 0.35 0.32 0.26
CLWP 0.16 0.20 0.30 0.57 0.59 0.47
CIW¢ 0.36 0.36 0.44 0.37 0.35 0.26

aAll parameters are dimensionless (see text).
b CLW is cloud liquid water.

€ CIW is cloud ice water.
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Figure 8. Vertical profiles of precipitating ice (in g m™)
(a) before and (b) after applying the stochastic downscaling
procedure. Profiles are shown for adjacent pixels and show
that the vertical structure is not exactly preserved after the
downscaling but is nonetheless a good approximation to the
original modeled vertical structure. Similar results were ob-
served for the other hydrometeor species.

from the original 375 m model is effectively raised as a result
of the downscaling procedure, and scaling is observed in the
power spectrum of the downscaled field. The spectral slope
of the log-log linear portion of the spectrum computed from
the downscaled field is —1.9. This is consistent with the lower
end of the range of spectral slopes found from observed radar
fields which typically lie between —1.8 and -3.0 [Menabde et
al., 1999; Harris et al., 1998].

6. Effect of Subgrid Variability on Simulated
Brightness Temperatures

As noted elsewhere in the literature [e.g., Kummerow et al.,
1996; Panegrossi et al., 1998; Haferman et al., 1994], the
scale at which one performs the radiative transfer scheme af-
fects the simulated brightness temperatures. Capitalizing on a
very high resolution run of 375 m in the horizontal, the effect
of the scale at which the radiative transfer is performed is in-
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vestigated by simply varying the resolution of the hydrome-
teor fields through spatial averaging. At each scale the radia-
tive transfer scheme is applied and the comparison is made at
12 km by averaging the brightness temperature fields (i.e., the
results of a 3 km radiative transfer are averaged by a factor of
4 and those of a 375 m radiative transfer are averaged by a
factor of 32). A scale of 12 km corresponds roughly to the
highest TMI resolution.

Following the terminology used by Roberti et al. [1994],
comparisons are made by computing the mean (absolute) de-
viation, 4, found by taking the mean of the absolute differ-
ences in brightness temperatures over the field,

1 N
N2 T, ieta 1 ~ Th feta 2l » @
i=

where i is an index representing the 12 km pixels and N is the
number of pixels. The number of pixels, N, was chosen either
to be all the (12 km) pixels in a field or, only the pixels for
which it was raining at the ground. The latter gives a more
meaningful measure of the mean deviation, since much of the
domain is not precipitating and void of ice and liquid water.
Mean deviations were computed comparing the downscaled
375 m fields with the 3 km fields, the original (undownscaled)
375 m fields with the 3 km fields, as well as the downscaled
375 m fields with the original 375 m fields. Biases, B, were
also computed for the entire regions and rainy regions of the
modeled fields, using the same relation as (4) but without the
absolute value,

N
=<2 (Tyfieia1 - Ty fiela2) ®

i=

=L
N;

—

The mean deviations and biases are summarized in Table 2
for the 10.7 GHz, 19 GHz, 37 GHz, and 85.6 GHz horizon-
tally polarized channels, with values in parentheses for the
entire domain, while the remaining values are for the raining
pixels only. Table 2 shows three comparisons. The first of
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Figure 9. Fourier power spectra for surface rain rate from the
375 m field before (solid line) and after (dotted line) down-
scaling. Comparison of the two spectra illustrates how down-
scaling increases variability for the scales ranging from the
horizontal resolution of the field (375 m) to 8 times the reso-
lution of the field (3 km). The regression fit (dashed line) to
the spectrum of the downscaled field has a slope of
—1.9 and indicates how the downscaling prescribes a scaling
structure often seen in cloud and precipitation fields (see text).
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Table 2. Mean Absolute Deviations and Biases®

10,359

Comparison 1
Tb375m —Th3km

Comparison 2
Tb;down —Tb 3 km

Comparison 3
Thdown ~Tb375m

Mean Deviation

Mean Deviation

Mean Deviation

Channel A, °K Bias B, °K A, °K Bias B, °K A, °K Bias B, °K
10.7 GHz 1.06 (0.460) -0.993 (-0.430) 2.38(1.04) -1.88(-0.811) 1.31(0.604) -0.836 (-0.381)
19.3 GHz 0.807 (0.359) -0.792 (-0.349)  2.46 (1.09) -2.38 (-1.04) 1.65(0.765) -1.51 (-0.694)
37.0 GHz 0.848 (0.411) -0.576(-0.292) 2.33(1.09) -1.73(-0.825) 1.87 (0.886) -1.11(-0.532)
85.6 GHz 1.67 (0.837) +1.37 (+0.641) 5.552.71) +4.99 (+2.39) 5.01(2.43) +3.58 (+1.75)

4 A is from Equation (4) and B is from equation (5) in Tysm at the 12 km scale between resulting radiative
transfers computed for comparison 1, original modeled 375m and 3 km; comparison 2, downscaled 375 m field
and 3 km; and comparison 3, downscaled 375 m and original modeled 375 m. Values in parentheses are for the
entire domain, while other values are for the pixels for which it is raining on the ground.

the three comparisons is between the 375 m original modeled
fields and the 3 km fields (spatially averaged hydrometeors)
and represents the mean deviations and biases that arise from
ignoring the originally modeled variability at scales below 3
km. The biases and mean deviations are small and suggest
that not much is gained by modeling down to 375 m. The
second comparison is between the 375 m downscaled mod-
eled fields and the 3 km fields and represents the difference in
Ty, sim fields when the subgrid variability at scales below 3 km
is realistic. The biases and mean deviations in this second
comparison are far greater and are similar in magnitude to the
biases and mean deviations found when comparing 3-D radia-
tive transfer results with Independent Column Approximation
results as documented by Roberti et al. [1994]. This suggests
that the underrepresentation of hydrometeor variability in the
cloud model at scales below 3 km may have a profound influ-
ence on simulated brightness temperatures. In fact, the third
comparison in Table 2, between the downscaled and original
375 m fields, is representative of the effect of the downscaling
alone and exceeds the effect of ignoring the originally mod-
eled subgrid variability between 3 km and 375 m.

An additional presentation of the findings is provided by
scatterplots of the bias at each 12 km pixel in the second com-
parison of Table 2 (between the 375 m downscaled modeled
fields and the 3 km fields) versus Tb,sim from the downscaled
fields and are shown in Figure 10 for the 10.7 GHz, 19 GHz,
37 GHz, and 85.6 GHz horizontally polarized channels. Each
point in the scatterplots represents the difference between the
brightness temperature of a 12 km pixel of the downscaled
field and the corresponding 12 km pixel in the 3 km field.
These scatterplots illustrate the distribution and maximum bi-
ases between the downscaled (375 m) and 3 km fields at the
12 km scale. The areas of greatest density in the scatterplots
are near the horizontal line of zero difference and are for pix-
els representative of the background atmosphere (largely void
of ice and water) as subgrid variability has little effect on
these regions of the cloud model domain. All plots show a
decrease in bias with increase in Ty gy, With maximum biases
of approximately -17°K for the 10.7, 19, and 37 GHz hori-
zontally polarized channels and approximately +17°K for the
85.6 GHz horizontally polarized channel. Again, the magni-
tudes of the differences are comparable with 3-D to plane-
parallel differences found for similar plots by Haferman et al.
[1994], particularly for the lower frequencies. Furthermore,
on the basis of the results of Haferman et al. [1994], which
show the same (downward sloping) trends in the biases be-
tween 3-D and plane-parallel schemes, it is argued that one
could also hypothesize that if a 3-D radiative transfer were
performed on the fields used in this study, the same trends in

the scatterplots would continue to exist. In particular, for the
85.6 GHz channel where scattering effects are dominant, the
magnitudes of the deviations would be increased.

7. Concluding Remarks

The study performed here concerns the simulation of up-
welling brightness temperatures in a numerical cloud model
for the purpose of rainfall estimation from microwave sensors.
The study is largely illustrative in nature and investigates the
simple questions as to (1) whether subgrid variability is even
worth modeling, (2) whether it is important to worry about
reduced variability of modeled hydrometeor concentrations,
and (3) whether it is feasible to apply a stochastic down-
scaling procedure to correct for the reduced variability at
modeled grid scales and also to enhance the subgrid variabil-
ity. The results suggest significant differences in simulated
brightness temperature when subgrid variability is included
and even more significant differences (more than double)
when the variability is enhanced using stochastic down-
scaling. However, before the results can have a practical ap-
plication in the inversion algorithms for rainfall estimation, a
number of extensions to this study need to be investigated.
First, this study used a simple Independent Column Approxi-
mation for the radiative transfer, whereas questions pertaining
to scale issues associated with the spatial structure of precipi-
tation fields can be more accurately addressed using a 3-D ra-
diative transfer scheme [Roberti et al., 1994; Haferman et al.,
1994, Roberti and Kummerow, 1999]. The use of an Inde-
pendent Column Approximation radiative transfer scheme
represents a first-order approximation to estimating biases oc-
curring only from the non-uniform beam-filling (or non-linear
averaging) problem. Use of a 3-D radiative transfer scheme
accounts for other effects in addition to the non-linear aver-
aging problem such as the interaction of radiation with neigh-
boring columns and energy leakage (horizontally) from dense
areas to surrounding areas [Liu et al., 1996; Roberti et al.,
1994]. Use of 3-D radiative transfer schemes may thus result
in even greater biases than those found in this study, but this
needs to be properly quantified. Also, as already discussed,
this needs to be accompanied by greater attention to stochastic
downscaling in three dimensions. In this study, only a 2-D
isotropic stochastic downscaling procedure was implemented,
although examination of the vertical profiles of hydrometeor
concentrations after implementing the downscaling showed a
reasonably realistic vertical structure of hydrometeor concen-
trations. Three-dimensional downscaling techniques are more
complex as they require proper treatment of anisotropy (i.e.,
the vertical structure is vastly different from the horizontal
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Figure 10. Scatterplots of the pixel-by-pixel differences in simulated brightness temperature (compared at the
scale of 12 km) between radiative transfer results for the 375 m downscaled fields and the 3 km fields.

structure), whereas the 2-D horizontal structure of precipita-
tion at scales between 3 km and 375 m is nearly isotropic, and
thus isotropic downscaling is adequate.

Another logical extension requiring greater computer re-
sources involves stochastically downscaling the modeled
fields down to even smaller scales of, say, 50 m. Extra com-
puter resources would only be required to perform the radia-
tive transfer over such a fine scale and are thus still feasible.
Any radiative transfer scheme used for a field with such a
small horizontal gridsize would have to be a 3-D scheme, as
the absorption mean free paths of the photons would be many
times larger than the horizontal inhomogeneities of the cloud
model [Roberti et al., 1994]. Running a cloud model itself at
such a resolution over a comparable domain (large domains
are necessary since the TMI sensors are of the order of 10 km
in resolution; a 100 km long squall line, for example, is only
10 TMI pixels long) would be incredibly expensive if not in-
feasible. It is therefore apparent that the recent advent of sto-
chastic downscaling procedures and their application to prob-
lems involving subgrid variability becomes a powerful tool
for exploring questions related to the importance of subgrid
variability in satellite rainfall estimation even when the scales
of practical interest are much larger than these subgrid scales.

Clearly one of the questions regarding the pertinence of
these results is the validity of the scaling structure imposed by
the downscaling procedure. While plenty of evidence exists
to suggest that scaling is a statistical property of observed

precipitation and cloud fields, higher-resolution measurements
of precipitation would strengthen the assertion that scaling is
present to scales of a few hundred meters. A very high reso-
lution study of the 3-D structure of snow fields using stereo
photogrammetry [Lovejoy et al., 1999] suggests the presence
of scaling down to centimeter scales, although modeling vari-
ability to such extremely fine scales may not be necessary for
microwave applications. New observations recently obtained
at a number of TRMM validation field projects such as the
Large Scale Biosphere-Atmosphere Experiment (LBA), TE-
FLUN, and Kwajalein Experiment (KWAJEX) should pro-
vide valuable data sets to answer these questions. Further-
more, the parameters used in the downscaling (see Table 1)
are representative of a convective squall line. Extending this
study to include stratiform as well as other convective systems
would provide useful results as stratiform precipitating clouds
are radiometrically very different from convective systems
owing to differences in their vertical structure. On the basis
of studies such as that of Harris et al. [1996], the scaling
structure and therefore the downscaling parameters would
also differ greatly for stratiform precipitation.

A final note concerns the comparison of the 3 km aggre-
gated field (obtained by upscaling the 375 m modeled field) to
a field from a model run at 3 km resolution. An important
difference is that a field from a model run at 3 km will have
reduced variability at scales from 3 km to maybe as high as
18-24 km, whereas the spatially aggregated field used here
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does not suffer from this. This means that the biases reported
here may, in fact, be underestimating the biases that would re-
sult by including subgrid variability in the rainfall estimation
algorithms based on the typical cloud model runs at 1-3 km
resolution. How much of an underestimation, however, is dif-
ficult to determine. A model run at 3 km resolution and
simulated with identical initial conditions as the 375 m model
(except for the spatial resolution, corresponding temporal in-
tegration time and computational mixing [see Droegemeier et
al., 1994]) produces a storm very similar to the 375 m model.
However, while the surface rainfall was approximately the
same for both runs, the precipitating ice content aloft was not
the same. Because of this problem a straightforward compari-
son of a 3 km run with the 375 m run was not feasible. This
issue points to the importance of studying in greater detail the
effects of scale and computational mixing on probability dis-
tributions of the modeled hydrometeors, as these are central to
any study addressing issues of rainfall estimation from space.

Appendix A: Fourier Spectral Analysis

The Fourier transform of an image may be approximated
with a 2-D FFT [Press et al., 1992] and can be computed for
any 2-D horizontal slice of a hydrometeor field such as RLW
from the modeled atmosphere. By multiplying the 2-D FFT
by its complex conjugate one obtains the 2-D energy spec-
trum, E(k,, k) of the image, where &, and k, are the wave
number components To facilitate v1suahzat10n and compari-
son, the 2-D power spectra from the fields are averaged an-
gularly about k, = k, = 0 to yield what is referred to here as
the isotropic energy spectrum, E(k) with k = (k2+k,2)"2. We
found it useful to reorder the FFT vector of Press et al. [1992]
by centering k, =k, =0, in order to facilitate the angular aver-
aging. The term 1sotroplc energy spectrum is not to suggest
that the fields are isotropic but rather that the angular averag-
ing about k, = ky = 0 integrates the anisotropy facilitating vis-
ual comparison.
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