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Abstract. Interpretation of the impact of climate change or climate variability
on water resources management requires information at scales much smaller
than the current resolution of regional climate models. Subgrid-scale variability
of precipitation is typically resolved by running nested or variable resolution
models or by statistical downscaling, the latter being especially attractive in
ensemble predictions due to its computational efficiency. Most existing precipitation
downscaling schemes are based on spatial disaggregation of rainfall patterns,
independently at different times, and do not properly account for the temporal
persistence of rainfall at the subgrid spatial scales. Such a temporal persistence in
rainfall directly relates to the spatial variability of accumulated local soil moisture
and might be important if the downscaled values were to be used in a coupled
atmospheric-hydrologic model. In this paper we propose a rainfall downscaling
model which utilizes the presence of dynamic scaling in rainfall [ Venugopal et al.,
1999] and which in conjunction with a spatial disaggregation scheme preserves both
the temporal and spatial correlation structure of rainfall at the subgrid scales.

1. Introduction

Interpretation of the impact of climate variability on
water resources management requires information at
scales much smaller than the current resolution of re-
gional or global climate models. Subgrid-scale variabil-
ity of precipitation is typically resolved (1) by running
nested or variable resolution models or (2) by statisti-
cal downscaling. The schemes that fall in the former
category are often unattractive for mainly two reasons:
(1) Running physical models at very fine resolutions
is computationally prohibitive, and (2) the physics at
small scales is often not understood or parameterized
well, and merely increasing the model resolution with-
out explicitly resolving the small-scale physics in the
model does not necessarily produce more accurate pre-
dictions. On the other hand, the schemes from the lat-
ter framework, namely, statistical schemes, are compu-
tationally efficient and especially attractive in ensemble
predictions due to their simplicity.

The existing statistical precipitation downscaling sch-
emes have, in turn, their own deficiencies (e.g., see
Wilby et al. [1997] for a review of some schemes and
their limitations). Most are based on spatial disaggre-

1Now at Center for Ocean-Land-Atmosphere Studies,
Maryland.

Copyright 1999 by the American Geophysical Union.

Paper number 1999JD900338.
0148-0227/99/1999JD900338$09.00

gation of rainfall patterns, independently at different
instants of time, and thus they do not properly account
for the temporal persistence of rainfall at the subgrid
spatial scales. Such a temporal persistence in rainfall
directly relates to the spatial variability of accumulated
local soil moisture and might be important if the down-
scaled values were to be used in a coupled atmospheric-
hydrologic model. Another limitation of most schemes
is that they are scale-dependent, and thus new param-
eterizations are needed every time the desired scale of
downscaling changes. In this work, we present a down-
scaling model which does not suffer from any of the
above limitations; that is, it is scale-invariant and pre-
serves both the spatial and temporal correlation struc-
ture of rainfall at the subgrid scales.

Many studies have indicated the presence of scale-
invariance in spatial and/or temporal rainfall [Gupta
and Waymire, 1990; Schertzer and Lovejoy, 1987; Ku-
mar and Foufoula-Georgiou, 1993; Olsson et al., 1993;
Veneziano et al., 1996]. In a recent study, Venugopal
et al. [1999] analyzed spatial and temporal rainfall pat-
terns simultaneously and found the presence of a type
of space-time scale invariance, namely, dynamic scal-
ing. Specifically, they found that the rate of evolution
of rainfall remains invariant under space-time transfor-
mations of the form ¢ ~ L?; that is, the dependence
of rainfall on time (t) and space (L) can be reduced to
a single parameter t/L?. The space-time downscaling
model that we propose utilizes the unraveled spatio-
temporal organization in introducing temporal persis-
tence into downscaling.
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The structure of the present paper is as follows: In
section 2, we briefly summarize the basic hypotheses
on which we built our model, namely, the simple scal-
ing relationships in spatial rainfall fluctuations and the
spatiotemporal organization that was found in rainfall.
In section 3, we propose a downscaling model which in
conjunction with the spatial disaggregation scheme of
Perica and Foufoula-Georgiou [1996b] helps introduce
temporal persistence into subgrid-scale spatial rainfall.
Section 4 presents the implementation of the space-time
downscaling model on actual rainfall fields. Section 5
evaluates the model performance, and finally, conclud-
ing remarks along with ideas for future research are pre-
sented in section 6.

2. Review of Scaling Relationships in
Rainfall

2.1. Summary of Simple Scaling Relationships
in Standardized Rainfall Fluctuations and
Their Use in Spatial Disaggregation Schemes

Let I denote the value of the average rainfall inten-
sity at a particular pixel of size L, and let I },,i denote the
value of the rainfall fluctuation (difference between the
value at the adjacent pixel and the value at the partic-
ular pixel of interest) at the same scale L and direction
i (e.g., =1, 2, 3 for latitudinal, longitudinal, and di-
agonal directions, respectively). Standardized rainfall
fluctuations at scale L and direction 7 are defined as
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&L = I'L,,;/_I—L- Perica and Foufoula-Georgiou [1996a]
computed multiscale standardized rainfall fluctuations
using an orthogonal Haar wavelet decomposition and
found that at least between the scales of 4 and 64 km
for which data were available, ; 1 exhibited normality
and simple scaling, implying that

Zels _ (i) 1)
O¢,L, Lz
where o¢ 1, is the standard deviation of £ at scale L km
and H is a scale-independent parameter. The values of
H varied between 0.2 and 0.5 for several midlatitude
mesoscale convective systems from the PRE-STORM
(Preliminary REgional Experiment for STORM-Central)
data set [e.g., Cunning, 1986]. The dependence of H on
direction was not very pronounced, but H was found to
be strongly dependent on the convective instability of
the prestorm environment, as measured by the convec-
tive available potential energy (CAPE) (in m? s~2):

H = 0.0516 + 0.9646(CAPE x 10™%) (2)

This is a very useful relationship since CAPE can be
computed from observed sounding data or by a nu-
merical weather prediction model (see also Zhang and
Foufoula-Georgiou [1997] for the selection of a repre-
sentative value of CAPE) and then H can be estimated
from (2) and used via (1) to infer the variability of rain-
fall fluctuations at any scale given the variability at a
reference scale. Then, based on an inverse filtering pro-
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Figure 1. Implementation of a spatial disaggregation scheme independently at various instants

in time.
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Figure 2. Schematic illustrating the change in mtensﬂ:y of a field (rainfall in this case) over a
box of size L x L (scale L) centered around the location (z,7) during a time interval .

cedure, these fluctuations at different scales, together
with the initial large-scale average field, can be used to
statistically reconstruct the subgrid-scale spatial vari-
ability of rainfall (for details, see Perica and Foufoula-
Georgiou [1996b]).

To downscale evolving rainfall fields, one could imple-
ment the above spatial disaggregation scheme indepen-
dently at each instant of time (see schematic in Figure
1) using appropriate values of the evolving parameter,
CAPE. The drawback with such an approach is that the
temporal persistence (correlation) that exists in reality
at the subgrid spatial scales is not reproduced by the
model. This is a problem since temporal persistence in
rainfall directly relates to the spatial variability of ac-
cumulated local soil moisture and might be important
if the downscaled values were to be used in a coupled
atmospheric-hydrologic model. To incorporate tempo-
ral persistence at these small scales, we studied how the
evolution of rainfall at large space-time scales relates to
the evolution at smaller scales. The results were ex-
tensively presented by Venugopal et al. [1999] and are
briefly summarized in the next section.

2.2. Summary of Space-Time Scale Invariance
in Rainfall Evolution

Let I1, -(3,7) and I r44(4, ) represent rainfall inten-
sity values averaged over a box of size L (typically in
kilometers) centered around spatial locatlon (3,7), at
two instants of time, 7 and 7 + ¢ (I and I in Figure
2). The evolution of the entire field over a time pe-
riod t and over spatial scale L could be measured by
a statistical description of the intensity differences, i.e.,
(Ip,r+¢(3,3) — IL,+(3,7)], taken at all spatial locations
(z,7)- Such a statistical description would be appropri-
ate only for a process which is additive, i.e., for a process
for which increments are independent of the background

intensity ((I' — I) = €, where € is an independent iden-
tically distributed random variable). However, for a
multiplicative process for which increments are depen-
dent on the background intensity, and specifically for a
process for which I'/I =eorl I/l = €, it would be
more appropriate to study the standardized increments
((I' = I)/I = AI/I ) of the process or the differences
in the log of the process, since log(process) is additive
(InI'=InI = AlnI = €"). Thus, on the basis of evidence
that relative changes in spatlal fluctuations are inde-
pendent of intensities [Perica and Foufoula-Georgiou,
1996a) and that relative changes in temporal fluctua-
tions are also independent of the intensities [e.g., see
Venugopal et al., 1999, Figure 2], we choose to measure
rainfall evolution at spatial scale L and time lag ¢ by a
statistical characterization of the field:

AlnI(L,t) = Inlp(r +t) — Inlg(7) (3)
where I1(7) denotes the rainfall intensity at spatial
scale L and time instant 7 and ¢ represents the time
lag over which the rainfall evolution is measured.

As was extensively discussed by Venugopal et al.
[1999], the dependence of AlnI(L,t) on location (z,j)
is eliminated assuming that the field AlnI(L,t) is sta-
tistically homogeneous in space, and thus a single prob-
ability density function (PDF) over all locations can be
formed. Also, the dependence of AlnI(L,t) on the ex-
act time 7 is eliminated by working within regions in
time where its statistical properties do not vary signifi-
cantly around their mean values over the region.

On the basis of analysis of various storms from Dar-
win, Australia, it was found that the AlnI(L,t) fields
were spatially uncorrelated [e.g., see Venugopal et al.,
1999, Figure 3] and that the PDF of AlnI(L,t) exhib-
ited Gaussian behavior, at least for time intervals of
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SCHEMATIC OF SPACE-TIME DOWNSCALING
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Figure 3. Schematic of space-time downscaling illustrating how the framework of dynamic
scaling is coupled with a spatial disaggregation scheme to predict rainfall evolution at smaller
space-time scales. In brief, the PDF (probability density function) f; (AlnI) is first evaluated
from the known large-scale fields, i.e., the fields at spatial scale L; and temporal scale ¢;. Then,
given the spatial scale L, down to which we want to disaggregate, the corresponding time lag
t2 is computed from the power-law relationship (equation (4)). Dynamic scaling implies that
the PDF, f, (Alnl), at scales (Lj,t;) is identical to that at scales (L;,t;), i.e., fi (Alnl) =
f2 (AlnI). Then, f; (Alnl) is used to statistically predict the evolution of the rainfall field at

small space-time scales.

10-80 min and spatial scales of 2-32 km, for which data
were available. In addition, it was also found that under
transformations of the type ¢ ~ L* (where z is called
the dynamic scaling exponent), the rainfall field evolu-
tion characterized by the PDF of AlnI(L,t) remained
statistically invariant (for details, see Venugopal et al.
[1999)).

To understand the significance of such a statistical
scale-invariance, let us, for example, consider 2 = 0.8,
an average value of z found from rainy season rainfall
fields in Darwin, Australia. The presence of dynamic
scaling tells us that the PDFs of Alnl remain the same

as long as

& z

L,
For example, consider two features of sizes 16 km (L)
and 2 km (L,). From (4) it is clear that the time it takes

for the smaller feature to undergo the same evolution
that the larger feature would undergo in time ¢; is

t
ty

(4)

2 0.8

tz=t1<

that is, the rate of change of the 8-times-smaller feature
is 5 times faster. Note that the rate of evolution does
not depend on the actual sizes of the two features, but
only on their ratio.

3. Space-Time Downscaling Model
3.1. Basic Scheme

Given the output of a mesoscale numerical weather
prediction model, i.e., average precipitation intensities
on, for instance, grid boxes of size 32 km, one could use
the above developments for space-time rainfall down-
scaling. (Note that we work with dyadic scales for con-
venience of algorithm implementation.) The proposed
downscaling model is depicted in Figure 3. The idea
behind the model comes from evidence that the rate of
evolution at larger space-time scales is related to the
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rate of evolution at smaller scales (dynamic scaling).
If this is incorporated into the space-time downscaling
model, temporal persistence in the small-scale spatial
fields is statistically ensured.

First, the space-time downscaling model utilizes a
spatial disaggregation scheme to downscale from the
typical spatial scale of a global or regional climate model
output (say, L;) at one instant of time to a finer spa-
tial scale of hydrologic interest (say, L;); for instance,
from 32 km down to 2 km. Here the spatial downscal-
ing scheme of Perica and Foufoula- Georgiou [1996b] was
used, but any other spatial disaggregation scheme could
have been employed as well. Second, using the global
or regional climate model output at the spatial scale
Ly, and at two instants of time ¢; min apart, the PDF
of AlnI(Ly,t;) is evaluated. The evidence of dynamic
scaling suggests that the PDF of AlnI(L;,t;) (denoted
by f1 in Figure 3) is identical to the PDF of AlnI(L,,t,)
(f2 in Figure 3), i.e., the PDF at the desired small-scale
L,, if and only if the associated time lag ¢, is given by

L z
o (8

By knowing f, and the fine-scale output from the spatial
disaggregation model at the “initial” time instant 7, one
could then predict the rainfall field at the time instant
T 4 t2 min later and at the same fine spatial scale, L,.
Assuming that the field AlnI at the small-scale (L, t5)
remains statistically stationary in time within at least a
time period equal to the larger-scale time lag ¢;, f, can
be used to predict the small-scale field at time instants
T + t2, T + 2t, etc., up to 7 + ¢;. (The period ¢; of
stationarity in Alnl was taken to be 10 min in our
downscaling application.)

The prediction of the rainfall field at the small-scale
L, and at time T + t2, given the field at time 7 and
the PDF of AlnI(L,,t;) = f1, is based on the dynamic
scaling assumption, which implies that if (4) holds,

{Inlp, (T +t3) —IniL,(7)} 2 {InIp, (7 +t1) —Inly, (1)}
(5)

where £ stands for equality in distribution. Denoting
by r the random variable in the right-hand side of (5),
te, r=linly (1 +1t) —Inlg, (7) (which we know from
the known PDF, f;, at the large scale), and solving for
Inlp, (T +t3), we get

Inlp, (T4 t) =inlg,(r)+7 (6)

= I, (T+1t) =1Ip,(7)*€" (7)

Note that the assumption of a multiplicative nature
of rainfall as discussed earlier implies that r is indepen-
dent of I. Thus one could generate r from the PDF of
AlnI(Ly,t;) and proceed with the statistical prediction
of rainfall following (7). Notice from (6), however, that
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var(Iinly, (1 + t2)) = var(Inly, (7)) + var(r)

from which it is clear that the variance of the log of
the predicted field Ir,(7 + t2) increases linearly with
time. Consequently, the predicted field becomes pro-
gressively rougher and the spatial correlation of the field
decreases correspondingly. (As expected, this was no-
ticed as speckling in the predicted rainfall fields.) Thus
a “smoothing” procedure needs to be introduced, the
objective of which would be to prevent o(Inl) of the
predicted fields from increasing indefinitely in time.

Heuristically, a smoothing can be achieved by ensur-
ing that points of the InI field (in space) with nega-
tive curvature (local maxima) are more likely to de-
crease and those with positive curvature (local min-
ima) are more likely to increase, i.e., introduce changes
(AlnI = ) which depend on the curvature of InlI,
but are still independent of the intensity of I. By
balancing roughening and smoothing, one can either
preserve o(Inl) in time (i.e., temporal stationarity of
log(rainfall)) or change o(Inl) in a controlled fashion
depending on the constraints of the problem. We dis-
cuss how this can be implemented in the case of space-
time downscaling of rainfall in the next section.

3.2. Preservation of ¢(InI) During Evolution

The issue of finding a balance between roughening
and smoothing, so that o(InI) does not increase indef-
initely with time, is addressed by introducing a tuning
factor in the form of probability, i.e., assign changes
based on (some) probability p. In other words, if Cj,.;
denotes the curvature (in space) of Inl, we implement
the following scheme: If Cin; > 0, then r = |r| with
probability p and r r with probability 1 — p. If
Cin1 < 0, then » = —|r| with probability p and r =
r with probability 1 —p. Thus positive curvature points
are incremented (positive change) with probability p,
and negative curvature points are decremented (nega-
tive change) with the same probability. While p = 0 (no
smoothing at all) corresponds to rougher and rougher
predicted fields (increasing standard deviation going up
to oo and decreasing spatial correlation), 0 < p < 1 cor-
responds to smoother (relative to p = 0) predicted fields
(finite standard deviation). When p = 1, the smoothest
predicted fields (minimum standard deviation) possible
in the framework of this procedure are attained.

Assigning the same probability p to positive and
negative changes would not change the distribution of
Alnl, if the number of positive curvatures (denoted
by ncso) is approximately the same as the number of
negative curvatures (denoted by nc<g). If this is not
the case (as was found for rainfall), the distribution
of changes (r = AlnI(t;,L;)) which was found to be
Gaussian with zero mean and some standard deviation
[see Venugopal et al., 1999], will change. In other words,
the distribution of » would, in time, have a positive or
negative mean (instead of zero) depending on higher
number of positive or negative curvatures, respectively.
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Figure 4. Flowchart of the proposed space-time downscaling model (see text for terminology).

This would, in turn, introduce a bias in the predicted
fields. For instance, if nc<o > neoso, “mass” is consis-
tently removed at a higher rate than it is added, with
the result that the mean and standard deviation of the
log(rainfall) decrease with time.

To preserve the distribution of Alnl in accordance
with the assumption of temporal stationarity of Alnl
within at least a time period equal to ¢;, we define two
“correction” factors a and 3:

a = —2nc<o
(nc<otnc>o)

- a;

i.e., a and B represent the proportion of the number
of negative and positive curvatures, respectively. The
purpose of introducing these factors is to even out the
number of negative and positive changes and not allow
any systematic bias in the predicted fields. Notice that
the role of p as a tuning factor still remains; that is,
it is introduced to ensure that o(InI) does not increase

indefinitely (the case corresponding to p = 0) with time
and the processes of roughening and smoothing appro-
priately balance each other. Thus, in the new scheme,
changes (r = AlnlI) are now assigned with probabilities
which are a function of the proportion of the number of
positive or negative curvatures; that is, if Cj,,; > 0, then
r = |r| with probability pa and » = r with probability
p(1 = a). If Ciny < 0, then 7 = —|r| with probability
pB and r = r with probability p(1 — §).

As a simple example, consider nc<o > neso. From
the definition of a and S, it is clear that a > 3. How-
ever, the correction factors in the scheme ensure that
the number of positive and negative changes are the
same, since points of positive curvature have a higher
probability of being assigned a positive change as com-
pared with points of negative curvature being assigned
a negative change. This, in turn, ensures that the ini-
tial distribution of r is not distorted. The flowchart in
Figure 4 shows the proposed downscaling model in its
entirety.
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SPATIAL
DISAGGREGATION

EVOLUTION BASED ON DYNAMIC SCALING

T: 2 km (Initial)

T+5min:2km

X o

T+ 10 min : 2 km

T+ 15 min: 2 km

T+20 min: 2 km

7 {18:31) : 2km (Obs.)

7+ 10 min : 2km (Obs.)

1+ 20 min : 2 km (Obs.)

Figure 8. Implementation of the model shown in Figure 4 on the storm of January 4, 1994, in
Darwin, Australia. The top row shows the given large-scale fields (here at the scale of 32 km and
every 10 min). The leftmost panel in the middle row shows the spatially disaggregated field at
the scale of 2 km and the remaining panels in the same row show the predicted fields at times
T =5, 10, 15 and 20 min, using the developed space-time downscaling model. The bottom row
shows the observed fields at the scale of 2 km and every 10 min for comparison.

Recall that the initial subgrid-scale field (with its
given connectivity structure) comes from a statistically
based spatial disaggregation scheme. To check the sen-
sitivity of the o-versus-p curve to the statistical vari-
ability of the initial connectivity structure, multiple re-
alizations of spatially downscaled fields were obtained
from the scheme of Perica and Foufoula- Georgiou [1996b]
and the o.-versus-p dependence was evaluated for each
of these realizations. Figure 7 shows that the o-
versus-p curve does not significantly change from one
realization to another. This gives us the confidence to
adopt this curve in our downscaling model as the basis
for finding the value of p that would evolve an initial

field with a particular initial connectivity to a field hav-
ing a desired o(Inl) (= o), provided that the allowed
evolution time is enough to reach this asymptotic value
of o.

4. Implementation

The proposed space-time downscaling model was im-
plemented on several rainy season convective storms in
Darwin, Australia, for which dynamic scaling was doc-
umented by Venugopal et al. [1999]. Here the results of
the implementation are presented only for one event,
the storm of January 4, 1994. Similar results were
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Figure 9. Storm of January 4, 1994 over Darwin, Australia. For the frame at time 2331 UTC,
the plots in the left column show that the standardized spatial fluctuations are well approximated
by a Gaussian distribution (i.e., stable distribution with parameter = 2). The plots in the right
column show that the standardized spatial rainfall fluctuations exhibit simple scaling (log-log
linearity of standard deviation with scale), with H equal to 0.36, 0.4, and 0.53 for the latitudinal,
longitudinal, and diagonal components, respectively. A value of H = 0.4 was adopted for this
frame to use in its spatial downscaling. Similar results were obtained for the other frames of this

storm.

found for other storms and are documented by Venu-
gopal [1999].

The storm of January 4, 1994 was analyzed by Venu-
gopal et al. [1999], and it was found that it obeys
dynamic scaling within several periods over which the
Alnl field remains stationary. Rainfall fields at a scale
of 2 km were available to us every 10 min. Upscaling
(by simple spatial averaging) was performed on these
fields to construct large-scale fields at Ly = 32 km ev-
ery t; = 10 min. These fields (top row in Figure 8) were
the starting point of our implementation; that is, they
were interpreted as the outputs of a mesoscale or global
circulation model which needed to be downscaled for
hydrologic applications. The desired scale of downscal-
ing was taken to be Ly = 2 km.

The part of the storm for which we present our re-
sults starts at 7 = 2331 UTC. For this part of the
storm, Venugopal et al. [1999] found that the dy-
namic scaling exponent z had a value of ~0.8, and
this is the value of z that we adopted here for the
space-time downscaling model. Given this informa-
tion and based on the dynamic scaling relation, we get
to =t X (Lg/L])z =10 X (2/32)08 = 1 min. Thus the
proposed downscaling model, in conjunction with the

spatial disaggregation scheme of Perica and Foufoula-
Georgiou [1996b] can predict the rainfall field evolution
every 1 min at the subgrid scale of 2 km.

First, to verify that the spatial downscaling scheme
of Perica and Foufoula-Georgiou [1996b] is appropriate
for this storm, the standardized spatial fluctuations (see
section 2) at several time instants were analyzed for the
presence of normality and simple scaling. For example,
for the initial time instant at which we start the down-
scaling model (7 = 2331 UTC), Figure 9 demonstrates
the presence of normality in the standardized rainfall
fluctuations (the stable distribution parameter ~2) and
simple scaling in the standard deviation of all three di-
rectional components of the standardized fluctuations
(log-log linearity of the standard deviation with scale).
The scaling parameter H varies slightly for each direc-
tional component between 0.38 and 0.5. Similar results
were obtained for the spatial rainfall fields at other time
instants. Here we have adopted a value of H = (.4 for
the spatial downscaling. Using this value of H and the
spatial disaggregation scheme of Perica and Foufoula-
Georgiou [1996b], we obtained a rainfall field at the scale
of 2 km and time instant 7 = 2331 UTC. This is the
leftmost panel in the middle row of Figure 8.
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Figure 10. Storm of January 4, 1994, in Darwin, Aus-
tralia: the PDF of AlnI at a spatial scale of 32 km and
time lag of 10 min.

For this initial 2 km rainfall field, the o.,-versus-p
curve was computed as discussed in the previous sec-
tion, and it was stored to be used in the evolution of
the fine-scale field. Next, the PDF of AlnI(L; = 32
km, t; = 10 min) was computed from the large-scale
fields at times 7 and 7 + 10 min. According to the dy-
namic scaling hypothesis with z =~ 0.8, this PDF (shown
in Figure 10) is considered to be identical to the PDF
of AlnI(Ly = 2 km, t; = 1 min) and can be used to
generate r needed in (7). It should be noted that the
dynamic scaling hypothesis was verified by Venugopal
et al. [1999] via extensive analysis for temporal scales
of ¢ = 10, 20, -+, 80 min and spatial scales of L = 2,
-++, 16 km for which data were available.

In this paper, an extrapolation is made that this hy-
pothesis holds down to temporal scales of 1 min and
extends up to spatial scales of 32 km. For the latter,
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we have enough evidence to believe that this is a valid
extrapolation since for all cases for which enough data
at the 32-km scale were available, dynamic scaling was
extending to this spatial scale, too. For the extrapola-
tion down to 1 min, no direct verification can be done
since no spatial data are available every 1 min. The va-
lidity of this hypothesis can only be tested indirectly by
comparing the predicted fields with the observed ones
every 10 min, as is done in section 5 of this paper. If the
prediction performs well and given that there is no the-
oretical reason to believe that there would be a break-
down of dynamic scaling below 10 min, the hypothesis
of extrapolating the presence of dynamic scaling to a
temporal scale of less than 10 min is not rejected.

It is noted that although the predictive model could
be applied indefinitely in time to predict small-scale
rainfall fields given an initial small-scale field, we pre-
ferred to update the prediction by recomputing the PDF
of AlnI(Ly,t;) every time a new large-scale field be-
came available, i.e., every 10 min in our case. Also, the
spatial disaggregation scheme of Perica and Foufoula-
Georgiou [1996b] was applied at all times that a new
large-scale precipitation field became available (i.e., ev-
ery t; = 10 min), and although the exact rainfall inten-
sities of the spatially downscaled fields were not directly
used in the evolution, o(Inl) at the small scale Ly (2
km) was computed for each of these subgrid-scale fields.
This was done in order to get an approximation (by lin-
ear interpolation) of the temporal variation of o(Inl) at
Ly = 2 km every 1 min, given its values every 10 min.
These interpolated values were then used to obtain the
value of p from the o.-versus-p curve.

In other words, we always evolved the initial field at
some time instant 7 to a new field ¢, min later such
that o(Inf) (= 0s) of the evolved field is equal to the
interpolated value o(InI)(7 + t2). In using this pro-
cedure, we made an assumption that the time period
to min is enough to go from a field with standard de-

Table 1. For the January 4, 1994, Australia, Storm, a Comparison of the
Unconditional and Conditional (I > 0) Mean and Standard Deviation of the
Predicted and Observed Instantaneous Rainfall Intensity Fields.at 7 = 0, 10,
20, 30, 40 and 50 min and at a Spatial Scale of 2 km

Statistics * Initial Field 10 Min 20 Min 30 Min 40 Min 50 Min
u(I)

Predicted 0.82 0.78 0.77 0.72 0.67 0.66

Observed 0.82 0.80 0.78 0.74 0.68 0.63
a(I)

Predicted 3.75 3.57 3.58 3.20 2.75 2.63

Observed 3.57 3.43 3.12 2.98 2.75 2.52
u(I/I > 0)

Predicted 5.80 5.48 5.43 5.11 4.77 4.69

Observed 6.08 5.83 5.74 5.61 5.22 4.85
a(I/I>0)

Predicted 8.41 8.02 8.08 7.08 5.81 5.47

Observed 7.93 7.51 6.55 6.31 5.86 5.36

*Values are given in mm h™*.
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Figure 11. Storm of January 4, 1994, over Darwin, Australia: comparison of the unconditional
(top row) and conditional (bottom row) mean and standard deviation, of the predicted fields
(circles) and the observed fields (asterisks) at a spatial scale of 2 km.

viation o(Inl)(7) at time instant 7 to a field with an
asymptotic standard deviation of oo, = o(InI)(T + t2)
at time instant 7 + ¢5. This is a valid assumption since
o(InI) does not change significantly in that short period
of time, i.e., t2 = 1 min. Progressing in this fashion, i.e.,
choosing a new value of p every ¢t min (depending on
the interpolated value of o(InI)(7+t%2)), at the end of #;
min we reach the desired value of o(InI)(T + ¢;) which
was already computed from the spatially disaggregated
field.

Figure 8 shows the given fields at the scale of 32 km
and every 10 min (top row), the disaggregated field at
the scale of 2 km and 7 = 0 obtained by the spatial
disaggiegation scheme of Perica and Foufoula-Georgiou
[1996b] (leftmost panel in the middle row), and the pre-
dicted fields at time instants 5, 10, 15, and 20 min later,
using the proposed downscaling model. The bottom
row of Figure 8 shows the observed fields at the scale
of 2 km every 10 min. It is noted that visually, the

predicted fields resemble the observed fine-scale fields.
A detailed quantification of the model performance is
given in the next section.

5. Model Performance

Several measures have been used to quantitatively
evaluate the performance of the proposed space-time
downscaling model. Generally, we want to check how
the mean, standard deviation, percentage of rain-covered
area, and spatial and temporal correlations of rainfall
intensities at the subgrid scales have been preserved.

For the storm of January 4, 1994, in Darwin, Aus-
tralia, Table 1 shows the mean and standard deviation
of the instantaneous rainfall intensities over the domain
of the radar (an area of 300 x 300 km), i.e., u(I) and
a(I), and over the rain-covered area only, i.e., the con-
ditional mean and standard deviation, u(I/I > 0) and
a(I/I > 0), of the predicted and observed fields at a
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Figure 12. Storm of January 4, 1994: comparison of the spatial correlation in the X direction
of the observed fields (asterisks) and the predicted fields (circles) at a spatial scale of 2 km and
at time instants 7 = 0, 10 - -+, 50 min. Similar plots were found for the Y direction, as the field

is almost isotropic.

spatial scale of 2 km and at times 7 = 0, 10, 20, ---, 50
min. A good agreement is observed in the unconditional
statistics, and no trend of consistent overestimation or
underestimation is observed. Given that the spatial
disaggregation scheme underestimated the conditional

mean of the initial field at 7 = 0 and overestimated
the conditional standard deviation (note that the spa-
tial disaggregation scheme exactly preserves only the
unconditional mean), the conditional mean is slightly
underestimated and the conditional standard deviation
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Figure 13. Storm of January 4, 1994: comparison
of the percentage of rain-covered area of the predicted
fields (circles) and the observed fields (asterisks), at a
spatial scale of 2 km. The temporal variation of the per-
centage of rain-covered area at the large-scale of 32 km
is also shown (dashed line). Note that the percent-area
covered by rain in Figure 8 seems visually less than the
actual computed values displayed above in this figure.
This is because there are not enough gray-scale colors,
which results in the very low rainfall intensities (of the
order of 0.01 mm, the resolution of the Darwin data)
being masked by zero-rainfall intensities.

is overestimated throughout the prediction time of 50
min. These same statistics are also shown in Figure 11
for a visual comparison. It is noted that the slight un-
derestimation of o(I/I > 0) was not a general trend of
the model and that other storms did even better than
the one presented in this paper [see Venugopal, 1999).
Figure 12 shows the spatial correlation functions in
the X direction computed from the observed and pre-
dicted fields at a spatial scale of 2 km and at times 7

=0, 10, - -+, 50 min. The fields were almost isotropic,
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and similar results apply in the Y direction. Overall,
the subgrid-scale spatial correlations are preserved well.
Note that at 7 = 0, the 2-km predicted field was ob-
tained from the spatial disaggregation scheme of Perica
and Foufoula-Georgiou [1996b] and the spatial corre-
lation structure is reproduced very well. As the ini-
tial field is evolved with the proposed dynamic-scaling-
based model, some slight deviations between the spa-
tial structure of the predicted and observed fields are
noted. It is important to mention that, although, at,
say, 7 = 30 min, applying only spatial disaggregation
on the large-scale field may result in a 2-km field whose
spatial correlation structure has a better resemblance to
the observed field than that of Figure 12, the temporal
correlation of the spatially disaggregated fields would
not be as good as that of the space-time evolved fields.
(This is discussed and demonstrated in greater detail
later in this section; e.g., see Figure 18).

Figure 13 shows the percentage of area covered by
rain as a function of time. Note that for the analyzed
portion of the storm, this percentage remained almost
constant over time, but this is not necessarily the case
in other storms or other parts of this same storm. Com-
parison is made between the values obtained from the
predicted and observed fields at the 2-km scale and also
from the large-scale (32 km) fields. Clearly, there is
definitely merit in doing downscaling, as the percent-
age of area above a threshold would be considerably
overestimated if only the 32-km large-scale fields were
used. The predicted fields compare very well with the
observed fields as far as the percentage of area covered
by rain is concerned. Figure 14 shows the percentage
of rain-covered area above a specific threshold intensity
versus the corresponding threshold intensity at two time
instants, 7 = 0 and 50 min (similar results were found
at all other instants of time). Again, the predicted fields
compare very well with the observed fields throughout
the storm evolution.

50 minutes later
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Figure 14. Storm of January 4, 1994: comparison of the variation of the percentage of rain-
covered area of the predicted fields (circles) and the observed (asterisks), as a function of the
corresponding threshold, at a spatial scale of 2 km and at time instants 7 = 0 and 50 min.
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Figure 15. Storm of January 4, 1994: scattergrams of the predicted versus observed rainfall
intensities (at the scale of 2 km) for the times that the observed rainfall fields were available.
The values that are plotted are intensities which have been sorted in ascending order, and the
“perfect correspondence line” is shown for comparison.

Another model-validation testing that was performed
was by comparing scattergrams of predicted versus ob-
served intensities. For this, intensities sorted in ascend-
ing order were plotted against each other and compared
with the perfect-correspondence line. Figure 15 shows

this comparison for the time instants that the observed
fields were available (7 = 0, 10, 20, 30, 40, and 50 min).
It is evident from this figure that the body of the dis-
tribution of intensities is very well reproduced by the
model (the scattergram is fitted fairly well by the 45°
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Given field at 32 km

Figure 16. Storm of January 4, 1994, in Darwin, Aus-
tralia. The top left panel shows the observed field at the
scale of 32 km, which is the input to the downscaling
model. The middle left panel shows the disaggregated
" field at the scale of 2 km obtained from the observed
large-scale field using the spatial disaggregation scheme
of Perica and Foufoula-Georgiou [1996b]. Validation of
the proposed model is done by comparing the cumula-
tive after 50 min, of the predicted field at the scale of
2 km obtained by the proposed space-time downscal-
ing model (middle right panel) and the original field at
the scale of 2 km (top right panel). The bottom panel
shows the cumulative field after 50 min if the spatial
disaggregation scheme of Perica and Foufoula-Georgiou
[1996b] is applied to the large-scale fields every 10 min
without any consideration of temporal persistence.

perfect correspondence line), but the extreme intensities
are not always reproduced well and are often underesti-
mated or overestimated. However, it is encouraging to
note that the downscaling model does not seem to have
a consistent trend, namely, always underestimating or
overestimating the intensities, and it does not seem to
deteriorate as the prediction time evolves. An upper
threshold value could be applied based on the maxi-
mum observed intensities to alleviate this problem, but
this was not done in this implementation.
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Cumul. after 50 min (2 km)

Cumul. after 50 min (2 km)

It is noted that the development of the proposed
space-time rainfall downscaling model stemmed in part
from the need to correct the deficiencies that exist in
using spatial disaggregation schemes to downscale from
large to small scales, independently in time, without

_taking into account temporal persistence at subgrid

scales. For that, measures evaluated from (1) the fields
predicted using the proposed space-time downscaling
model and (2) the fields obtained using the spatial dis-
aggregation scheme of Perica and Foufoula-Georgiou
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[1996Db)] independently in time were compared with each
other and with the measures evaluated from the ob-
served fields.

Figure 16 shows the cumulatives of the observed (top
row) and predicted fields (middle row) at the scale of
2 km obtained from the proposed space-time downscal-
ing model, after 50 min. The bottom row in Figure
16 shows the cumulative field obtained if the spatial
disaggregation scheme of Perica and Foufoula-Georgiou
[1996b] were to be applied independently in time on
the large-scale fields available every 10 min. We see
that this cumulative field is “smoother” than both the
observed and the temporally evolved cumulative fields.
This is due to the fact that temporal persistence is not
incorporated here and a high value at one pixel at one
time instant can be followed by a low or high value
at the next time instant with an equal chance. Fig-
ure 17 shows the scattergram of the accumulated 50-
min rainfall fields. Cumulative intensities, from the
proposed space-time downscaling model and from the
spatial disaggregation scheme, both at 2-km scale, are
sorted in ascending order, and each sorted set is plot-
ted against its counterpart from the observed fields. It
is observed that the time-independent spatial disaggre-
gation scheme does a little better than the space-time
downscaling model in terms of capturing the extreme
values. However, the spatially disaggregated fields lack
temporal persistence and do not preserve well the tem-
poral correlation of the observed fields at the subgrid
scales.

In contrast, the newly developed space-time down-
scaling model results in rainfall fields which reproduce
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Figure 17. Storm of January 4, 1994: scattergrams
of the 50-min cumulative rainfall amounts at the scale
of 2 km obtained from the proposed space-time down-
scaling model (circles) and from the spatial disaggre-
gation scheme of Perica and Foufoula-Georgiou [1996b)
(asterisks), versus their counterpart from the observed
fields. The values plotted are cumulatives which have
been sorted in ascending order, and the perfect corre-
spondence line is shown for comparison.
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Figure 18. Storm of January 4, 1994: temporal cor-
relations for the observed fields (asterisks), predicted
fields from the proposed space-time downscaling model
(circles), and fields obtained from applying the spa-
tial disaggregation scheme (dashed line) of Perica and
Foufoula-Georgiou [1996b] independently in time. The
spatial scale of all fields is 2 km. It is evident that the
proposed space-time downscaling model significantly
improves the preservation of temporal persistence at the
subgrid scale.

the temporal persistence of the observed fields very well.
This is depicted in Figure 18 which shows the.temporal
correlation of the observed fields (asterisks), the pre-
dicted fields from the proposed space-time downscaling
model (circles), and the fields obtained from applying
the spatial disaggregation scheme independently in time
(dashed line). It is evident that the independent-in-
time spatially disaggregated fields decorrelate very fast
while the space-time downscaled fields match well the
temporal correlation of the observed fields. Preserving
temporal persistence in rainfall is important in many
hydrologic studies since the time history of rainfall in-
tensities is known to affect soil-moisture storage and
runoff production from a basin.

6. Conclusions

In this work, a new space-time rainfall downscaling
model was proposed. The model can be used in con-
junction with any spatial disaggregation scheme (here
we chose to use the spatial disaggregation scheme of
Perica and Foufoula-Georgiou [1996b]) to predict spa-
tially evolving rainfall fields which preserve a prescribed
space-time organization structure at the subgrid scales.
The space-time organization has been parameterized
here by dynamic scaling based on extensive evidence
documented by Venugopal et al. [1999]. Dynamic scal-
ing in a process implies that the evolution of the pro-
cess at large space-time scales (Lj,t;) relates to that
at small space-time scales (L, ts) through appropriate
renormalization of space and time. The renormalization
is a power law of the form (¢;/t2) = (L1/L2)?, where z
is the dynamic scaling exponent.
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The proposed model is attractive in that (1) it is
parsimonious and (2) its parameterization is scale in-
dependent. In addition to capturing the spatial corre-
lation structure of rainfall at the subgrid scale, it also
has the advantage of preserving the temporal correla-
tion structure. To apply the space-time downscaling
model, one needs two parameters: H (for the spatial
downscaling) and z (for the temporal evolution of the
subgrid-scale fields). Estimation of the parameter H
can be based on its relation to the prestorm convective
available potential energy (CAPE) as proposed by Per-
ica and Foufoula-Georgiou [1996a]. Estimation of the
parameter z from a similar physical observable quan-
tity has not been studied yet.

It is anticipated that z might be related to the tem-
poral evolution of a vertical instability measure, for ex-
ample, the change of CAPE over time (dCAPE/dt), or
to parameters describing parcel buoyancy and vertical
wind shear [e.g., see Weisman and Klemp, 1982]. How-
ever, such a study would require extensive data not typ-
ically available (for instance, radiosonde observations
are sparsely available in space and time). It could well
be that z can be related to the standard deviation of
AlnI of the evolving fields. Although some prelimi-
nary evidence suggested such a possible relationship, a
few cases deviated from this pattern. Analysis of more
storms from different regions of the world and different
climates must be done to provide insight into the vari-
ability of the parameter z and its dependence on statis-
tical or physical parameters of the atmosphere. Also,
controlled experiments, via a state-of-the-art numeri-
cal weather prediction model which can simulate high-
resolution precipitation fields, together with other phys-
ically consistent parameters of the atmosphere, might
provide a way of overcoming the lack-of-observations
gap and at least point to possible predictive relation-
ships which can be further verified from observations.
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