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Abstract. Precipitation forecasts from numerical weather prediction models are often com-
pared to rain gauge observations to make inferences as to model performance and the “best”
resolution needed to accurately capture the structure of observed precipitation. A common
approach to quantitative precipitation forecast (QPF) verification is to interpolate the model-
predicted areal averages (typically assigned to the center point of the model grid boxes) to
the observation sites and compare observed and predicted point values using statistical scores
such as bias and RMSE. In such an approach, the fact that the interpolated values and their
uncertainty depend on the scale (model resolution) of the values from which the interpolation
was done is typically ignored. This interpolation error, which comes from scale effects, is re-

ferred to here as the “representativeness error.” It is a nonzero scale-dependent error even
for the case of a perfect model and thus can be seen as independent of model performance.
The scale dependency of the representativeness error can have a significant effect on model
verification, especially when model performance is judged as a function of grid resolution.
An alternative method is to upscale the gauge observations to areal averages and compare at
the scale of the model output. Issues of scale arise here too, with a different scale depend-
ency in the representativeness error. This paper examines the merits and limitations of both
verification methods (area-to-point and point-to-area) in view of the pronounced spatial vari-
ability of precipitation fields and the inherent scale dependency of the representativeness er-
ror in each of the verification procedures. A composite method combining the two proce-
dures is introduced and shown to diminish the scale dependency of the representativeness er-

ror.

1. Introduction and Problem Statement

Modeling or forecasting of precipitation and other atmos-
pheric and hydrologic variables is necessary for many appli-
cations over a wide range of space and time scales. These in-
clude flash flood forecasting over small basins, assessment of
interseasonal to decadal climate variability at the continental,
regional, and basin scale, and assessment of global impacts of
climatic anomalies. Precipitation forecasts are also produced
operationally as, for example, in the United States by the Na-
tional Centers for Environmental Prediction (NCEP) at scales
(pixel size) of the order of 20-30 km or by the Center for the
Advanced Prediction of Storms (CAPS) at scales of the order
of 3-32 km. An obvious concern of all these modeling efforts
is the assessment of how well precipitation fields predicted by
the model compare to the observed precipitation fields. Ef-
forts in model verification methodologies are generally lag-
ging behind those invested in model development (e.g., see
discussion in a recent paper by Zepeda-Arce et al. [2000]
where an effort was presented to complement typical verifi-
cation measures, such as threat score and bias score, with
multiscale statistical measures of performance).

The present paper focuses on a very fundamental issue of
model verification, namely the comparison of model outputs
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(which consist of areal averages over the model grid boxes) to
point observations available through rain gauges. Such com-
parisons are commonplace in the literature (e.g., see Xie and
Arkin [1996] and Colle et al. [1999] for some recent studies)
and serve several purposes. Among these are (1) comparison
of the performance of different forecast models, (2) assess-
ment of model improvements when new parameterizations are
introduced, (3} assessment of model performance when the
resolution of the model is changed, and (4) estimation of er-
rors of reanalysis products when model outputs are merged
with observations to produce gridded fields for model initiali-
zation and other uses.

The major problem arising when spatial averages are com-
pared to point values, is that of discrepancy of scales. A spa-
tially averaged field always has lower variability than point
values, and the degree to which the variability is reduced de-
pends on the scale of the spatial averaging and the inherent
inhomogeneity of the original field. The change in variability
with scale is illustrated in Figure 1, which displays the reduc-
tion of the standard deviation of a radar observed precipitation
field when the field is viewed at different scales, i.e., when
averages at increasing scales are considered from the smallest
scale of 2 km up to a scale of 64 km.

In order to compare the model output and the rain gauge
observations, one set of data (either the observations or the
model output) must be transformed to the scale of the other
with some form of spatial interpolation or spatial averaging.
One way in which this is done is by an area-to-point (A-P)
conversion. That is, each forecast output (an areal average) is
assigned to a point in the center of each grid block, and these
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Figure 1. (left) Radar observed precipitation from the NEXRAD KICT radar on August 17, 1994, and (right)
the standard deviation of nonzero precipitation as a function of grid scale. A trend of decreasing variability of
the field is observed with increasing scale. Note that it is exactly this difference in the respective variabilities
of the point observations and the grid-average values that is the driving force for the scale dependent repre-
sentativeness error term in comparing model output with rain gauges.

point values are interpolated to get point values at the location
of the observations. In turn, these interpolated values are
compared to the observations to compute statistical scores
quantifying the error in the quantitative precipitation forecast
(QPF). Another type of verification method involves a point-
to-area (P-A) conversion. This is done by taking the rain
gauge observations, interpolating them to a regular grid, and
computing average block values (the grid points may be seen
as the corner points of blocks and the average is taken of the
four corners) which are then compared to the grid block val-
ues from the forecast to compute the error in the QPF.

A potential problem with these verification methods is that
changing the scale of the point observations to match the scale
of the model output (P-A conversion) or vice-versa (A-P con-
version) imposes a “representativeness error” which is inde-
pendent of the error in the model forecast. The representa-
tiveness error is the error in representing data (i.e., either
model output or observations) at a scale other than their own
inherent scale. For example, taking an output grid block from
a QPF run at 32 km and assigning its value to the center of the
block as a point value imposes a representativeness error be-
cause the inherent scale of the output block is 32 km rather
than the point scale. In general, there may be a significant
representativeness error in going from one areal grid size to a
different areal grid size as one may have, for example, in
comparing large-scale model output to smaller-scale radar ob-
servations. In this study, one of the scales is fixed (the point
scale) so that the representativeness error represents the error
in either a P-A or A-P conversion.

The representativeness error would not be so problematic if
it were the same across all scales. However, it is not the
same, and thus it becomes a problem when trying to assess
changes in model performance when the grid resolution of the
model is changed. This can be illustrated with the following
example. Consider two model runs, one at 8 km and one at 64
km resolution. If an area-to-point verification scheme is used,
we take the forecast output grid block values and assign them
to the center points of their respective blocks. Then we inter-
polate these values to the locations of the point observations,

and the error in the QPF is computed by comparison of the
interpolated and observed values. However, as previously
mentioned (see also Figure 1), the output block values will
have less variability than the point observations. Thus when
the grid block values are assigned as point values and inter-
polated, they will never be able to reproduce the variability of
the point observations. Also, the output blocks from the
model run at 64 km have less variability than those from the
model run at 8 km, so the 8 km model is better able to repro-
duce the variability of the point observations. In other words,
the verification of the 8 km model always gives less repre-
sentativeness error, following an A-P conversion, than the
verification of the 64 km model. This improvement in error
however, is solely due to statistical considerations and must
be separated from the improvement in error that comes from
truly better physical performance of the 8 km model relative
to the 64 km model.

Many verification schemes currently in use ignore this rep-
resentativeness error and its separation from the total error.

RMSE 4

8 km 64 km Scale

Figure 2. Schematic illustration of typical RMSE (total error)
versus model resolution plots constructed in QPF validation.
An important question arises: Is all of the RMSE reduction
from 64 to 8 km due to model improvements? This question
may not be answered without some indication of the repre-
sentativeness error at these scales imposed by the verification
methodology.
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Figure 3. Schematic illustration of the breakdown of the total
error, €, as the sum of the observational (g,), representative-
ness (¢,), and model error (g,). (a) The area-to-point verifi-
cation procedure and the danger in using the total error as a
measure of model performance due to the fact that the mini-
mum total error and minimum model error might not occur at
the same scale is illustrated. (b) An alternative verification
procedure which results in a scale independent representative-
ness error (g,") would make decisions on model performance
more straightforward as here the change in total error with
scale could solely be attributed to the change in model error
with scale.

For example, plots such as the schematic shown in Figure 2
are common in the literature and the reduction of the RMSE
with scale is attributed to better model performance as the
resolution of the model is increased. However, in any verifi-
cation study which uses spatial interpolation to transform data
to different scales, the total error &, is what is computed. This
is the sum of observational error, €, model error, €,,, and rep-
resentativeness error, €, For models run at different scales,
the observational error for the A-P verification procedure is
the same for all scales because it refers to the error in the
point precipitation observations (assuming the same point data
are used for the verification of both models). The total error
in the example of Figure 2 increases with scale; however, the
representativeness error also increases with scale, as argued
above, for an A-P verification. Thus the difficulty lies in

trying to separate the model error, whose quantification is the

target in QPF verification, from the representativeness error
(see the schematic in Figure 3a). This may only be done if the
representativeness error and its scale dependence are known a
priori or are altogether negligible. As an alternative, one
could introduce new verification procedures which result in
scale-independent representativeness error such that the
change in total error with scale could all be attributed to
model error, thus allowing direct model performance infer-
ences with scale (see Figure 3b). The aim of this paper is
twofold; (1) to characterize the representativeness error in the
area-to-point and point-to-area methodologies as a function of
scale and spatial structure of the underlying precipitation field
and (2) to propose a simple modification to existing proce-
dures, which results in a scale independent representativeness
error.

2. Theoretical Considerations on
Representativeness Error

In general, the representativeness error depends on (1) the
statistical structure of the underlying field, (2) the geometrical
configuration or location of the sampled point observations,
(3) the interpolation scheme used to estimate unknown point
values from surrounding known point values, and (4) the scale
of averaging (which in verification applications would be the
model resolution). The following are some features of repre-
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sentativeness errors, which are argued here based on theoreti-
cal considerations but are quantified later in the paper via nu-
merical experiments:

1. The higher the density of point observations and there-
fore the smaller the mean gauge spacing, Lg, the smaller the
representativeness error in the point-to-area method (£rP -4),
since the accuracy of areal averages will strongly depend on
how many point values were available to compute these aver-
ages. By contrast, L, is not expected to significantly affect
the representativeness error in the area-to-point method
(¢,4-P), since the starting information is always in the form of
the same areal averages, and it does not matter how many
point estimates are computed from the same starting informa-
tion.

2. The representativeness error in the point-to-area method
&,P4 will decrease with increasing scale due to the decreasing
variability in the difference between areal averages of the un-
derlying field and the areal estimates obtained from averaging
of the interpolated point observations. At small scales, the
areal estimates, coming from the interpolation and averaging
(both variability reducing operations) of the point observa-
tions, will not be variable enough to accurately estimate the
true areal averages. As the scale of averaging becomes larger,
the true areal averages themselves will become less variable
and will be more accurately estimated by the averages coming
from the point observations. By contrast, E,A'P increases with
scale because the increase in scale creates a larger difference
between the point estimates from areal averages and the sam-
pled point observations. This difference arises because as the
scale of the areal averages increases, they become less vari-
able and therefore less able to capture the extremes of the
point observations, which have much larger variability.

3. The more accurate the interpolation scheme, the smaller
the representativeness error (regardless of the method). In
other words, in the limit of an interpolation scheme which is
based on complete knowledge of the multiscale statistical
structure of the underlying field, the interpolation would re-
sult in a minimized and almost scale-independent representa-
tiveness error.

4. The smoother the field (which, as discussed later, mani-
fests itself as a faster decay in the Fourier power spectrum of
the field), the smaller the representativeness error for both
methods. On the contrary, the less smooth or noisier the field
(slower decaying spectrum), the harder it is to accurately es-
timate unknown values via interpolation and the larger the
representativeness error.

The Fourier power spectrum is a readily computable meas-
ure for characterizing the multiscale structure of a field. For
fields such as rainfall for which evidence exists for power-law
spectra, i.e., log-log linearity in the spectrum [e.g., Lovejoy
and Schertzer, 1995; Georgakakos et al., 1994; Harris et al.,
1996, 1997, 2001], the spectral slope, B, of the power spec-
trum on a log-log plot can be used as an indicator of smooth-
ness, with high spectral slopes characteristic of a smoother
field [e.g., Davis et al., 1996; Harris et al., 1996]. As already
mentioned, it is expected that for fields with small spectral
slope the representativeness error will be large. To illustrate
this consider the extreme case of = 0 indicating that the field
behaves as (fully uncorrelated) white noise. In this case it is
extremely hard to estimate point values from areal averages
and vice versa resulting in high representativeness errors. It is
also worth considering that typical interpolation methods ap-
plied to highly variable fields (such as rainfall) always result
in smoothed representations of the underlying field. Thus the
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Figure 4. Schematic showing the methodology for the numerical experiment. It illustrates how perfect (no er-
ror) model outputs and perfect observations are created to be used in the numerical experiment, as these are
averages and samples, respectively, of the same underlying field. Long dashed lines represent the point-to-
area verification procedure, and short dashed lines represent the area-to-point verification procedure.

smoother the true underlying field (higher ), the less “harm”
is done by the smoothing nature of the typical interpolation
methods, therefore resulting in smaller representativeness er-
rors. ,

Having these in mind it is desirable to construct a con-
trolled experiment by which the representativeness error, and
its features intuitively discussed above, can be quantified.
This experiment is described in section 3.

3. Numerical Experiment to Quantify
Representativeness Error

In order to quantify the representativeness error, it first has
to be isolated from the total error. For this purpose, a numeri-
cal experiment was constructed in which both the observa-
tional and model errors were zero by design. This was ac-
complished by starting with a perfectly known field, sampling
the field to represent point observations (zero observational
error) and taking spatial averages of the field to represent
model output at different scales (zero model error). In es-
sence, a perfect model and perfect observations were created,
leaving only the representativeness error term in the total
comparison error. Figure 4 shows a schematic of the method-
ology followed in the numerical experiment. For the area-to-
point (A-P) verification, the original field was averaged at dif-
ferent scales to represent perfect model outputs at varying grid
resolutions. These averages were assigned to the centers of
the respective boxes and were used to interpolate to the loca-
tions of the point observations (sampled points). The RMSE
between the interpolated point values and the sampled point
observations was computed and was taken to be the represen-
tativeness error in the A-P method. In the point-to-area (P-A)
verification, the sampled point observations were used to es-
timate, via interpolation, the field at each of the four corner
pixels of each block. These four corner estimates were then
arithmetically averaged to obtain the estimated block average
values. The RMSE between these estimated block values and
the true block values (found again by averaging the underly-

ing field to varying grid resolutions) was computed and taken
to be the representativeness error in the P-A method.

Since the RMSE in the estimation of precipitation increases
with increasing rain rate [Huffinan, 1997], the representative-
ness error is dependent on the particular storms or more spe-
cifically their particular rain rates. In order to alleviate this
problem and have our results applicable to hourly precipita-
tion fields beyond those used in this study, the representative-
ness error was made dimensionless by dividing it by the spa-
tial conditional mean (i.e., mean of the nonzero values) com-
puted from fields at 2 km resolution. In the rest of the paper,
only dimensionless representativeness errors will be consid-
ered, and they will be referred to simply as representativeness
errors (i.e., dimensionless will be implied). We will use g4
to designate the dimensionless representativeness error arising
from the A-P method and ¢4 that arising from the P-A
method.

In this study, interpolations were performed using the in-
verse-distance Barnes weighting scheme [Barnes, 1964],
commonly used in meteorology [e.g., Krishnamurti and Bou-
noua, 1996). The Barnes method is similar to the Cressman
method, which is often implemented for model verification
studies [e.g., Colle et al., 1999]. Typically in the A-P verifi-
cation method, an estimate is obtained at each of the gauge lo-
cations from a weighted linear combination of the four nearest
gridded values (i.e., represented as points at the centers of the
model output boxes). In an effort to incorporate all the infor-
mation that would enhance the accuracy of the interpolation,
rather than just the four nearest values, any value falling
within a specified radius of influence, L, was used in the in-
terpolation for both methods. If no observation was found
within the radius of influence, the nearest known value was
found and given a weight of one for the interpolation (i.e.,
nearest neighbor approach). With the Barnes method, the
weight w; each observation receives is defined as

w; =exp(— 4d,-2/L%), 1

where d; is the distance from the observation to the estimated
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Figure 5. Plot of the four radar derived rainfall accumulation fields used in this study. Each image is a 1-hour
accumulation of precipitation (in millimeters) converted from radar-observed reflectivities. Images are (a)
KEAX (July 4, 1995), (b) KTLX (August 17, 1994), (c) KAMA (June 3, 1999), and (d) KICT (August 17,

1994).

point. The Barnes scheme estimates a value P, at location, x,
based on the N values falling within that point’s radius of in-
fluence as

N N
Pe=YRw [ Zw;. 2
i=1 i=1
The value of the radius of influence, L, is typically set to the
distance at which values in a field begin to lose significant
correlation with one another. In this study, it was chosen to be
the distance (lag) at which the isotropic spatial autocorrelation
function dropped to 0.35 (which is approximately equal to the
value of 1/e theoretically applicable for exponentially decay-
ing autocorrelation functions [e.g., Bras and Rodriguez-
Itrube, 1993)).

To avoid having the results dependent on a specific gauge
network, an ensemble of 100 gauge networks was created for
each gauge density, quantified by the mean gauge spacing, Lg,
within each of the fields. By using a variety of gauge densi-
ties, this study addresses the issue of sampling variability,
which is usually ignored in forecast verification [Murphy and
Wilks, 1998]. The mean and variance of the representative-
ness error over the ensemble was then computed. The net-
work of gauges was assumed randomly uniform. Clustered
networks (e.g., having most stations at the corner of a block)
were not considered as these would require case-dependent
solutions and would divert attention from the main focus on
scale.

4. Analysis and Results

Radar derived precipitation patterns were used as the un-
derlying fields on which the numerical experiment depicted in
Figure 4 was applied. These fields were at 2 km resolution
and represented hourly accumulations of precipitation con-
verted from radar-observed base-scan reflectivities for four
different radars in the United States. Reflectivity maps were
converted to rain rate images using a Z-R relationship of the
form R = aZP, with a = 0.017, b = 0.714 [Smith et al., 1996],

and where Z is in mm%m3 and R is in mm/hr. Hourly accu-
mulations were estimated as simply the sum of the instantane-
ous rain rate images multiplied by the time between scans (5
min). The accumulations from four individual radar sites are
shown in Figure 5. Note that the fields of Figures 5b and 5d
relate to each other as they are from the same storm at differ-
ent times.

As already mentioned in section 3, the spectral slope was
used to quantify the underlying spatial variability structure of
each rainfall hourly accumulation field. It can be seen in Fig-
ure 6 that the power spectra of these fields are well approxi-
mated as log-log linear over a finite range of scales, with S,
the slope of the power spectrum, being a quantifier of their
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Figure 6. Log-log plot of the power spectrum as a function of
frequency for the four rainfall images with individual spectra
shifted for clarity. Notice that each of the images exhibits ap-
proximate log-log linear behavior over a finite range, with the
spectral slope, f3, characterizing the field smoothness. The
length of the regression lines indicates the range of scaling for
each field.
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Table 1. L_ Values for the Four Radar Fields.

Radar Field L, km
KAMA 15.5
KICT 21.7
KTLX 18.6
KEAX 30.7

L. is the distance at which the spatial autocor-
relation coefficient drops to 0.35

smoothness [Davis et al., 1996; Harris et al., 1996]. Esti-
mates of 8 values ranged from 2.77 for the KEAX image (the
least smooth of the fields) to 2.98 for the KTLX image (the
most smooth).

Both the P-A and A-P representativeness errors were com-
puted for all four fields for scales of 4, 8, 16, and 32 km,
which correspond to the typical range of resolutions at which
current mesoscale models are run. Owing to the limited size
of the radar images, it was not possible to perform the analy-
sis at scales larger than 32 km, as there was not a large
enough sample size of blocks to yield statistically meaningful
errors for the P-A method. The radii of influence, L., used in
the interpolation scheme (equation (1)) are listed in Table 1
and range from 15.5 km for the KAMA image to 30.7 for the
KEAX image. In addition, representativeness errors were
computed for varying gauge densities corresponding to aver-
age distance between gauges, L, equal to 25, 50, and 75 km.
In order to place these average gauge spacings in the proper
context, one can consider that the Oklahoma Mesonet has an
Lg value of 40.6 km [Brock et al., 1995]. So the Lg values
chosen for this study range from extremely dense networks
(25 km) to networks closer to those typically found for the
United States (75 km). The results of these analyses are
shown in Figures 7-9 and exhibit all of the expected features
mentioned in section 3, as is now discussed.

For the A-P verification procedure, the representativeness
error increases with scale as seen in Figure 7a, which can be
attributed to the fact that the error in assigning an areal aver-
age (i.e., block) value to a point becomes larger as the block
area is increased. In other words, there is a larger error in rep-
resenting a 32-km average as a point observation than there is
in representing an 8-km average as a point observation, owing
to the larger difference in variability between a 32-km aver-
aged field and point observations than an 8-km averaged field
and point observations (see Figure 1). Recall that the reported
representativeness error is normalized by the conditional
mean (i.e., mean of the nonzero values) computed at 2 km
resolution. Thus values of £A-F equal to 0.5 correspond to a
representativeness error equal to 50% of the mean, which is a
considerable error coming only from scale effects.

The opposite trend was found for the &F4 versus scale
curves in Figure 7b where the representativeness error is
shown to decrease with model scale. This is due to the fact
that there is a reduction in the variability of precipitation with
increasing scale. The rainfall values become smoother at
larger scales owing to the averaging process and therefore
comparatively easier to estimate. It is important to recall that
the simulated model blocks are being compared with the mean
of the four interpolated values, which themselves have re-
duced variability inherited through the interpolation procedure
(deterministic distance-weighted interpolation methods cannot
return a value which is outside the range of the values used in
the interpolation).
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The uncertainty in the representativeness errors for the A-P
and P-A verification methods, taken to be the standard devia-
tion of the 100 ensemble members, was also computed for
each of the model scales analyzed. The uncertainty for the A-
P method can be seen in the error bars of Figure 8a which
shows the dimensionless representativeness error plot for the
KEAX radar image extracted from Figure 7a. This uncer-
tainty ranges from 0.116 at the 4 km model scale to 0.220 at
the 32 km model scale. From this plot, it is easy to see that
not only the mean representativeness error but also its uncer-
tainty increases with model scale. Furthermore, the increase
in uncertainty is roughly proportional to the increase in the
magnitude of the representativeness error. Similarly, the un-
certainty in the P-A method can be seen in the error bars of
Figure 8b which shows the P-A dimensionless representative-
ness error plot for the KEAX radar image extracted from Fig-
ure 7b. This plot shows that the uncertainty in the P-A
method decreases with increasing scale. Additionally, like for
the A-P method, the uncertainty in the representativeness er-
ror appears to be proportional to the magnitude of the repre-
sentativeness error itself (a minimum value of 0.118 at 32 km
model scale and a maximum of 0.149 at 4 km model scale).
The same observations as above were extracted from the plots
of the other stations but are not presented here for lack of
space.

By varying the average spacing between point observa-
tions, the effect of gauge density on the representativeness er-
ror was investigated. The results for only the KEAX radar
image are plotted in Figure 9. The other radar images show
similar trends. As seen in Figure 9a, the gauge density had
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Figure 7. Normalized representativeness error versus model
scale curves for the four storms. Each curve represents an en-
semble average of 100 different gauge networks. The average
gauge spacing was 50 km for each network. (a) Area-to-point
error srA'P ; notice the trend of increasing representativeness
error with increasing scale for all four images. (b) Point-to-
area error £4; notice the trend of decreasing representative-
ness error with increasing scale for all four images.
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Flgure 8. Normalized representativeness error versus model
scale curve for the KEAX storm. These are the same KEAX
curves as seen in Figures 7a and 7b but with uncertainty bars
(% one standard deviation) added to represent the uncertainty
in the mean of the 100 member ensemble. Recall that the av-
erage gauge spacing was 50 km for each network. (a) Area-to-
pomt error 8A‘P ; notice the increasing uncertainty with in-
creasing scale (b) Point-to-area error &, P-A; notice the
(slightly) decreasing trend with increasing scale.

minimal effect on €4 because additional gauges did not
provide more information but simply gave additional sites on
which to verify the model. In other words, for the A-P
method, the values used for the interpolation come from the
blocks, and changing the gauge density does not affect this in-
formation. However, from Figure 9b it can be seen that in-
creasing the point observation density lowers 4. This is
due to the fact that the block corners were able to obtain better
estimates with higher gauge density because each block cor-
ner had more information at closer spatial locations to utilize
for estimation.

5. Removal of Scale Dependency in the
Representativeness Error

Earlier in this paper, we discussed how in the presence of a
nonnegligible representativeness error, an ideal verification
procedure would be one that would rely on a representative-
ness error which is constant with scale. Only then would it be
possible to attribute a reduction in the total error with scale
solely to a reduction in the model error, since the observa-
tional and representativeness errors would not change with
scale. In this section we attempt to introduce a verification
procedure which results in a scale independent representative-
ness erTor.

As intuitively argued in section 2 and quantified in section
4, the curves of €A and &4 versus scale have opposite
trends. That is, the P-A curve had its largest value at the
smallest model scale and decreased with increasing model
scale, while the A-P curve had its smallest value at the small-
est model scale and increased with increasing model scale.
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With this in mind, the average of the two curves at different
model scales was examined as a candidate for a verification
measure which gives a scale independent representativeness
error. In other words, verification could be performed by
evaluating the composite root mean square error,

RMSE

comp™5 (RMSEp 4+ RMSE, ). ©)

In this study where the model error and observation errors are
zero, RMSE_ is equal to the composite representativeness
error, £°°mP— (8 AP+ g P-4y,

Implcmentatlon of the A-P/P-A composite verification
method, resulted in representativeness error versus model
scale curves which were relatively flat. This can be seen in
Figure 10a, which plots £,°°™P for the case of L, =50 km. The
uncertainty in the representatlveness errors for the composite
verification method, taken to be the standard deviation of the
€,°°™P values from the 100 ensemble members, was also com-
puted for each of the model scales analyzed. This uncertainty
can be seen in the error bars of Figure 10b, which shows the
composite representativeness error plot for the KEAX radar
image. This uncertainty ranges from 0.107 at the 4 km model
scale to 0.137 at the 32 km model scale. It is observed that
not only the mean composite representativeness error but also
its uncertainty appear to change very little with model scale.
Apart from the visual inspection discussed above, a more rig-
orous statistical test was also used to determine if £°°™P was,
in fact, scale invariant as opposed to the other measures, &, A-P
and &g, P-A_ The hypothesis testing was based on perfonmng
welghted least squares linear regressions to the gAF, ¢ P4
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Figure 9. Normalized representativeness error versus model
scale curves for the different gauge densities for the KEAX
storm. Each curve represents an ensemble average of 100 dif-
ferent gauge networks. (a) Area-to-point error 8;‘"” ; notice
that changing the gauge density has relatively little effect on
the representativeness error. (b) Point-to-area error £.4; no-
tice that increasing the gauge density lowers the representa-
tiveness error because more information becomes available to
estimate the areal averages.
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Figure 10. (a) Composite normalized representativeness error,
£,°°™P versus model scale curves for the four storms. Each
curve represents an ensemble average of 100 different gauge
networks. The average gauge spacing was 50 km for each
network. Notice the relative flatness of the curves compared
with those computed for A-P and P-A validation methods. (b)
£,°°mP versus model scale curve for the KEAX storm only
with error bars added to represent the uncertamty in the en-
semble mean. Notice that the uncertainty increases only
slightly with increasing model scale and not as drastically as
for the A-P method.

and also £°°™ curves with scale and testing whether the
slope of the regression was statistically significant from zero
at a desired confidence level. Weighted least squares (LS), as
opposed to simple LS regression, was used to acknowledge
the fact that the variance of €, was also changing with scale.

The hypothesis tests (using a ¢ test statistic) [e.g., Draper and
Smith, 1981] were performed at the 95% confidence level. It
was determined that the zero slope hypothesis was rejected for
the £4-F and ¢4 curves and accepted (failed to be rejected)
for the €°°TP curve. The results of this test further confirm
the scale invariance of £,°°™P while discounting the possibility
that £A-P and ¢4 are also of this nature.

Thc composne representativeness error, £°°™P, as a func-
tion of model scale was examined for 25, 50, and 75 km aver-
age gauge spacings for the KEAX storm as shown in Figure
11. Since the composite measure is formed from an average
of the A-P and P-A errors and the representativeness: error
changed very little for different gauge spacings in the A-P
method, one observes as expected, that €™ shows similar
trends to &4 of Figure 9b for the dlfferent gauge spacings,
i.e., increasing the gauge density lowers £°°™P. In all obser-
vation densities, however, it is seen from Figure 11 (and was
also confirmed with statistical testing) that £°°™P remains
scale invariant.

6. Relation of the Representativeness Error to
the Underlying Structure of Precipitation

As was intuitively discussed in section 2 and quantitatively
verified in section 3, the smoother the precipitation field, the
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smaller the representativeness error for both A-P and P-A
methods and therefore the smaller the composite representa-
tiveness error £,°°™P. In this section an attempt is made to
quantify this relationship by relating a measure of smoothness
(spectral slope f) to the scale-independent value of &°°™P,
Notice that prior to the introduction of the almost scale-
independent £°°™P, such a quantification had to necessarily
have a particular scale attached to it (owing to the scale de-
pendency of €A and ¢-4) limiting thus the generality and
insight obtained from this relationship. Figure 12 shows
£,°MP versus B for nine precipitation fields. For this plot, five
additional radar images were used to enlarge the range over
which this relationship was characterized. The extra rainfall
images were constructed in the same manner as previously
mentioned and come from the same KEAX storm of July 4,
1995, at different, nonoverlapping times. The vertical error
bars represent the uncertainties in the scale averaged €,°°™P,
and the horizontal error bars represent the uncertainty in the
estimates of 8. Recall that high values of B correspond to
smoother precipitation fields. The plot of Figure 12 quantifies
how the underlying statistical structure of a field relates to the
representativeness error and is of significant practical value.
For example, if for a given storm B was estimated to be
around 2.8, then Figure 12 suggests that the composite repre-
sentativeness error is considerable and is almost 60% of the
storm spatial average precipitation. However, for a much
smoother field for which f is ~ 3.0, the representativeness er-
ror is only ~ 25% of the spatial average precipitation.

7. Summary and Conclusions

Most current methods of QPF verification do not explicitly
account for the fact that the variability and estimation uncer-
tainty of precipitation fields depend on scale. Changing the
scale of the observations to match the scale of the model out-
put (point-to-area convers1on) or vice-versa (area—to—pomt
conversion) imposes a “representativeness error” which is
nonzero even in the case of a perfect model and moreover is
dependent on scale. (The representativeness error is the error
in representing data, i.e., either model output or observations,
at a scale other than their own inherent scale.) Especially in
verification studies in which model performance is assessed as
a function of model resolution, ignoring or mischaracterizing
the scale dependent representativeness error can significantly
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Figure 11. The £°°™P versus model scale curves for the dif-
ferent gauge spacings of the KEAX storm. Each curve repre-
sents an ensemble average of 100 different gauge networks.
Notice that increasing the gauge spacing (lowering density)
lowers the representativeness error but not to the degree seen
for the P-A method.
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Figure 12. Scatter plot of £°°™P, averaged across all model scales, versus spectral slope f for nine storms.
Each point represents an ensemble average of 100 different gauge networks. The vertical error bars represent
the uncertainties in the scale averaged £,°°™P, and the horizontal error bars represent the uncertainties in the
estimate of ﬁ The average gauge spacmg was 75 km for each network. Notice the tendency of £,°°MP to de-

crease with increasing f3.

affect inferences about the model performance as a function
of scale (e.g., which resolution gives the smallest model er-
ror). This is because the total error is composed of the obser-
vational error, the representativeness error, and the model er-
ror, and thus mispecifying the representativeness error di-
rectly mispecifies the model error and any inferences about
model performance as a function of resolution.

Via a numerical experiment specifically constructed to
isolate the representativeness error from the total error, this
study quantified typical representativeness error versus scale
curves for hourly precipitation accumulations using two basic
types of verification procedures: the area-to-point (A-P) and
point-to-area (P-A). It was shown that the magnitude of the
representativeness error in each method is significant (it can
be up to 50% of the spatial average of the precipitation field),
and it has considerable scale dependency within the typical
mesoscale ranges of 5 - 50 km. Additionally, key factors that
affect the representativeness error have been identified, such
as the smoothness of the underlying field (quantified with the
spectral slope, ) and the average gauge spacing, and their in-
fluence for a range of model resolutions has been quantified.

The scale dependence of the representativeness error must
be accounted for appropriately, either by characterization, in a
fashion similar to this study, and subsequent subtraction from
the total verification error or by choosing a verification pro-
cedure that minimizes the scale dependence of the representa-
tiveness error. The latter alternative was the motivation for
introducing the A-P/P-A composite method as this method
typically gives representativeness errors which vary very little
across scales of interest and thus can be considered scale in-
dependent. The scale-independent nature of the representa-
tiveness error in this composite verification method is a desir-
able characteristic if one does not wish to precisely quantify
the representativeness error and only wants to compare sev-
eral models at varying grid resolutions. This is because any
difference in the RMSE verification error between the models
would be due to model error since observational and repre-
sentativeness errors would be the same across all model
scales.

Although in this paper we presented a simple method
aimed at reducing the scale dependency in model verification
using a composite of deterministic distance-based estimators,
we believe that there is need to develop a rigorous verification
methodology which can properly and explicitly account for
scale effects. Toward this objective we propose a new direc-
tion which involves the use of a stochastic multiscale filtering
methodology [Chou et al., 1994; Kumar, 1999] which can
optimally merge observations at different scales while explic-
itly accounting for their uncertainties and the variability of the
process at all scales. Such a technique would result in a
minimal representativeness error and the best (unbiased and
minimum variance) conditional precipitation estimates at any
desired model scale. Since these conditional estimates can be
obtained at the same scale as the model forecasts, traditional
verification measures, such as RMSE, can then be used to
judge the model’s performance. Furthermore, by repeating
the filtering procedure using model output from runs at differ-
ent resolutions, inferences can be made about which model
resolutions produce statistically superior predictions, condi-
tional on the available observations and a priori knowledge of
how the variability of the natural process changes with scale.
Such a framework is under investigation, and the results will
be reported in the near future.

As a final remark, it is worth noting that although this
study has QPF verification in mind, another important prob-
lem, which can be cast in the exact same framework, is that of
validating satellite estimates rather than model estimates of
precipitation. Missions such as the Tropical Rainfall Meas-
uring Mission (TRMM) [e.g., see Simpson et al., 1996] in-
volve numerous ground based field campaigns and the wide-
spread use of rain gauge networks to validate rainfall esti-
mates from the spaceborne TRMM Microwave Imager (TMI)
and Precipitation Radar (PR). For validation of remote-
sensing estimates of precipitation, the use of the stochastic
multiscale filtering methodology mentioned above offers ad-
ditional advantages, as this method provides estimates of the
mean as well as the error variance as a function of scale. Es-
timates of the mean and error variance of rainfall products are
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both of paramount importance for assimilating remotely
sensed precipitation estimates into numerical climate models
and for assessing systematic biases of rainfall retrieval algo-
rithms. ‘
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