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Nontrivial scaling in the loss of prediction information
with aggregation in hourly precipitation occurrences
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Abstract. Predicting the occurrence of rainfall from past patterns of rain/no rain
sequences is an issue that has recently regained attention through the application of
information theory and dynamical systems, claiming the existence of an underlying
complexity of deterministic origin. The present work reports a rather unexpected
facet that appeared in the study of hourly precipitation occurrence pattern
prediction: the temporal scale invariance of the probability of prediction failure for

scales up to the order of magnitude of a storm duration.

1. Prediction From Patterns and the
“Cbaos Game”

In approaching rainfall time series as the output of
a discrete, nonlinear dynamical system, a possibility
of prediction becomes available, in that the knowledge
about the present state allows us to identify the forward
orbit of the system. The “present state” is identified by
as many state variables as phase space dimensions the
system has. Those in turn can be put in correspondence
with pseudo phase space dimensions, as stated by the
Takens [1981] embedding theorem, and consequently,
the present state of the system can be completely de-
scribed by a certain number of samples from the past of
the variable of interest, if, of course, the iterated func-
tion of the system is known. However, in the case of
rainfall time series, that iterated function is the result
of complicated physics and it practically cannot be de-
rived in a closed form. In such a case, increasing lengths
of patterns are used for prediction, by matching them
with an existing orbit of sufficient length. The opti-
mal length of utilized patterns can be determined from
the point where no essential predictability is gained any
more by increasing the pattern length or can be esti-
mated from the dimensionality of the manifold on which
the orbit lives in pseudo phase space. That the latter
dimensionality can be expected to be reasonably low
for atmospheric processes is the conclusion of several
authors, notably, Grassberger [1986] and Sharifi et al.
[1990], a fact that suggests that prediction from past
patterns is an endeavor worth considering.

Recent work by Elsner and Tsonis [1993, 1995] at-
tempts to quantify, for hourly rainfall series, the length
of patterns which would lead to a significant predictabil-
ity. They conclude that the observed precipitation se-
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ries are neither perigdic, nor quasi-periodic, and are
definitely more comnplex than series of independent ran-
dom variables. The procedure used is known in chaotic
dynamics as the “chaos game” [see Barnsley, 1988] and
consists of determining the allowed versus prohibited
transitions between the states of a dynamical system
and hereby empirically determining its iteration func-
tion. For this purpose, a “state” is described by a
discrete sequence (pattern) obtained from a contiguous
sample of the process made discrete by applying an in-
dicator function on contiguous disjoint subintervals. In
the present work, given the set S = {t : R(t) > 0} of
instants ¢ of nonzero rainfall R, the indicator function
defined on a subset [t1, t2]

. N t
Bt ={ 5 e %@
is applied. That is to say, two possibilities are taken
into account over each subinterval: either it rains at
some instant of time (associated value “1”) or it does
not rain at all (associated value “0”). Other functions
taking into account more levels of rainfall intensity may
be considered for a more detailed picture. The chaos
game procedure comprises finding the patterns of each
considered length that do appear in the time series, as
opposed to those that do not appear. Notice that the
existence/nonexistence of a pattern Z7...z; tells about
the possibility of transition from a state Z7...Z;_7 to
the state Z5...z; (if pattern length [ — 1 completely de-
scribes a state).

Since dimensions analysis of phase space orbits of
temporal rainfall intensity signals has hinted to the
fact that these orbits might live, as mentioned earlier,
on low-dimensional manifolds [Rodriguez-Iturbe et al.,
1989; Sharifi et al., 1990; Tsonis et al., 1993], we can
expect predictability from relatively short patterns. No-
tice, however, that in addition to the small number of
strong couplings revealed by the dynamical system anal-
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ysis, there exist several weak couplings that make up
for the rest of phase space dimensions of fully devel-
oped, two-fluid turbulence with heat exchange in the
atmosphere. For the purpose of prediction, we consider
these weak couplings in the form of noise and adopt
a probabilistic rather than deterministic approach to
the transitions between states in the chaos game proce-
dure. Specifically, we adopt the approach described in
the next section.

2. Probabilities of Prediction Success
and Prediction Failure

Let us denote by P[z1---Z7] the probability of occur-
rence of the (-1 pattern Z1...z;. Obviously,

P T1...2U| = 'P[Oi:l?-l .. .ml]P[xl e :L'l]

Plzy...xl] = PljzT~Z|P 1.5 = 1 — Plzy..zi0

We estimate these probabilities fiom our ¢ ta by

S _ N Ty1... :l_,\lT)]
where N[-] is the number of occurrences of the se-
quence in the argument within a series of total length
L. A similar estimator is used for P{z7...2;1]. We call

“probability of prediction success” the maximal value
of P[0|z1-zi] and P[l|Z171), ie.,

Plsuccess|T1. . 77| =
max{P[0|z17- 7,1 — Pl0|z1 %]},

3)

which is the probability of correctly predicting a rain/no
rain situation in the next sample, given the pattern
T1...Z;. This probability is computed for all sequences
of length [ that appear in the series, and an aver-
age value over all these sequences of length [ is inter-
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Figure 1. Estimated average probability of prediction

success plotted with 1 standard deviation above and

below it, as a function of the pattern length used in

prediction, for a 6-year daily precipitation occurrence

series from Minneapolis, Minnesota.
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preted as our “average probability of prediction suc-
cess” Plsuccess|Z7--Z]], given a past sample sequence of
length I. The probabilities of prediction success are val-
ued between 0.5 and 1 and are nondecreasing with pat-
tern length. Their complements, the “probabilities of
prediction failure,” are therefore valued between 0 and
0.5 and nonincreasing with pattern length. The ranges
are trivially valid for the average probabilities of predic-
tion success/failure too, whereas the monotonicity prop-
erty holds via conditional probabilities. The estimators
P will show the same statistical properties for a suffi-
ciently long series. One may want to linearly rescale the
above probabilities between 0 and 1 in order to obtain
normalized measures of failures and successes, respec-
tively. The standard deviation of P[success|Zi-.. %)
across sequences of length [ is a measure of the spread
of the goodness of our prediction. Most importantly, a
significant increase of the standard deviation with pat-
tern length is an alarm signal that a pattern length
has been reached, where too many of the patterns ap-
pear just a few times, rendering the calculated average
less reliable. Figure 1 depicts the increase in standard
deviation that accompanies the appzrent (and there-
fore misleading) increase in average prediction success
at large pattern lengths.

3. Behavior of Prediction Success in
Temporal Rainfall Occurrence Series
From Over the United States

The “average probability of prediction success (also
called here “prediction success” for simplicity) as a func-
tion of pattern length at 12 U.S. locations has been es-
timated for samples aggregated to intervals of 1 hour
(basic available sampling interval), and 2, 6, 12 and 24
hours. These prediction successes have been plotted in
Figure 2 as a function of past pattern length and for
two aggregation intervals, hourly (Figure 2, top) and
6 hours (Figure 2, bottom) for the 12 U.S. locations.
As can be seen from Figure 2, the behavior of predic-
tion success is quite similar for both the hourly and six-
hour aggregated series; they both show a well-defined
saturation level starting at the pattern length 1. Sim-
ilar results (not displayed here) are found for aggrega-
tion intervals of 2, 12, and 24 hours. Thus, overall, it
is seen that irrespectively of the aggregation level, no
substantial gain in prediction success of rainfall occur-
rence is obtained by increasing pattern length to more
than one aggregation interval. However, the saturation
level of prediction success depends on the aggregation
level, and, as expected, it decreases as the aggregation
level increases. (We note that for rainfall which is here
measured as an occurrence/nONOCCUITENCE Process Over
a specified interval, aggregation level is equivalent to
what is usually referred to as sampling interval.)

The most interesting property emerging from this
analysis is a power law scaling of the saturation values of
prediction failure with aggregation. In a log-log repre-
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Figure 2. Prediction success of (top) hourly and (bot-
tom) 6-hour precipitation occurrence series from 12 U.S.
locations, as a function of the pattern length used in the
prediction. Locations are listed in decreasing order of
intersection with the ordinate. All locations show a sat-
uration level after pattern length 1.

sentation of prediction failure against aggregation level,
good scaling can be observed for small enough values
of prediction failure, i.e., for small enough percentages
of rainy samples. For most stations, scaling would hold
throughout sampling lengths of 24 hours (Figure 3). In
the places with the most frequent precipitation, how-
ever (Annette, Alaska; Seattle, Washington) a scaling
break has to occur. The scaling exponents at the 10
locations which show good scaling (including Phoenix,
Arizona, which has a sensibly lower precipitation occur-
rence rate) are quite close to each other, having values
of 0.63-0.69; the (slight) exception is Eureka, California
with a value of 0.5.

Notice that for “blind” prediction (i.e., based only on
rain/no rain statistics, without any knowledge of the
immediate past), the prediction failure scales with ag-
gregation level by definition with an exponent equal to
1 — D,, where D, is the capacity dimension of the set
generated by the points of nonzero precipitation on the
time line. D, is defined as limsup,_,o(— log N¢[1]/loge),
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where N([1] is the number of disjoint subintervals of
length € whose indicator function is equal to 1. From
here we have that 1—D, = 1+lim sup,_,o(log Ne[1]/loge)
= limsup,_,o(log P[1]/log€), where the index € refers
to the sampling interval length. This can be verified also
from the analyzed data by plotting in log-log scale the
values of the prediction failure at past pattern length
zero (see Figure 3, top) versus aggregation level. The
remarkable fact in these rainfall time series is that pre-
diction failure also scales for subsequent, increasing pat-
tern lengths. This kind of scaling found in the values
of prediction failure leads us to a different choice of
model than would result from taking into account the
short-memory feature only. A 0-1 Markov process, by
having a memory of one time step, emulates the satu-
ration of prediction success after pattern length = 1 (as
seen in Figure 1), to some degree (see Figure 4, top).
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Figure 3. Loss of prediction success through aggre-
gation of hourly precipitation occurrence series from 12
U.S. locations. The past pattern length is equal to (top)
zero and (bottom) one sample. Locations are listed in
decreasing order of intersection with the ordinate. With
the exception of Annette, Alaska, all locations show
almost perfect linear fits, with correlation coefficients
above 0.99.
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Figure 4. Behavior of prediction failure in a Markov
series with parameters emulating the rainfall occurrence
series: average = 0.05, lag-1 autocorrelation = 0.7.
(top) Behavior of prediction success at pattern lengths
0,....,9 for aggregation intervals 1 (bottom line), 2, 4,
and 8 (top line). (bottom) Scaling of prediction fail-
ure against aggregation interval for unit pattern length.
Notice that in the uncorrelated case, the slope of the
line is approximately 1, whereas in the correlated case,
scaling does not occur. However, since with aggrega-
tion, the initial exponentially decaying correlation dis-
appears, for higher aggregation lengths, we see a ten-
dency to align to the same unit slope.

However, such a Markov series shows either no scal-
ing or a trivial nonfractal scaling (for correlated and
uncorrelated Markov series, respectively) in prediction
failure against aggregation, with an integer scaling ex-
ponent equal to unity (see Figure 4, bottom). There-
fore, as the values of prediction success or failure at
different pattern lengths are the result of an intricate
tree of conditional probabilities, the scaling of these re-
sulting values makes a statement about preserving an
internal structure of the series under aggregation. This
distinct internal structure of rainfall and its deviation
from Markovian (short memory) models prompted us to
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investigate the behavior of prediction failure under ag-
gregation in a simple, self-similar (long memory) model
and see if that compares better to the rainfall structure.
The models chosen for study are the random monofrac-
tal cascades (“random Cantor sets”). These models are
theoretically shown in the next section to exhibit the
type of scaling in prediction failure observed in the pre-
cipitation time series, i.e., for all pattern lengths. Also,
the scaling exponents in these models can be readily
chosen to match those observed in the rainfall process.

4. Behavior of Prediction Success in
Random Monofractal Cascades

To understand the behavior of temporal rainfall pat-
tern predictability obtained at different locations over
the United States, we take a look at how the pattern
predictability behaves in a random monofractal cascade.
From examining a few simulated cascades, the value of
1— D, for the scaling exponent of prediction failure, as
found empirically in the precipitation series for different
pattern lengths, is also matched with several random
Cantor sets (Figure 5). This empirical finding prompts
us to theoretically study random Cantor sets, such that
we can more rigorously conclude whether self-similar
models can emulate the pattern predictability behavior
of temporal rainfall. We prove here that the probability
of prediction failure, as defined in section 2, scales with
aggregation time with an exponent equal to 1 — D, for
that cascade. Let us first have a look at a two-thirds
random Cantor set C in order to keep a general proof
from being overly abstract. We consider the Cantor set
within the unit interval and its indicator function I¢
defined as in (1). By splitting the unit interval sub-
sequently in 3° =1, 3! =3, 32 =9, ..., 3" equal
subintervals, we essentially recover from our indicator
function the (monofractal) multiplicative ternary cas-
cade that generated the Cantor set.

Our pattern prediction procedure looks at patterns
created by the values of the indicator function on con-
secutive subintervals of length 3= (at the nth split-
ting “level” of the cascade). We denote P(™[10] the
probability of a sequence ab to be 10, at the nth level.
We analyze first (as we do for rainfall) the probabil-
ity of prediction failure from past patterns of length 1
by looking at realizations of patterns of length 2, as
described in the appendix. The probability of success
for length-1 pattern prediction for this type of Cantor
set becomes P [00] + P(™[10] = P [0], whereas the
probability of failure is P [01] + P(™[TT] = P™)[1].
We observe that these are exactly the probabilities for
O-length (“blind”) prediction, a fact that creates the
leveling of success (or failure) probability against pat-
tern length, as found in different places in the rainfall
time series analysis. The scaling is, in this particular
case, obvious, since the scaling exponent of P(™ (1] is
1 — D,, as shown in the previous section.

Let us now look at the general case of an (m, k) self-
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Figure 5. Loss of prediction success through aggre-
gation of “hourly” data drawn from random Cantor
sets. (top) Behavior of prediction success at pattern
lengths 0,...,9 for aggregation interval = 1 (bottom
line), 2 (middle line), and 4 (top line) in a random “two-
thirds” Cantor set. (bottom) Scaling of prediction fail-
ure against aggregation interval for pattern length equal
to one sample. The solid line is for a random two-thirds
Cantor set (slope equals 1 —In2/1In3 ~ 0.37), and the
dashed line is for a random two-quarters Cantor set
(slope equals 1 —In2/1n4 = 1/2).

similar set (generated by a random multinomial k-ary
multiplicative cascade, with m weights =1 and kK — m
weights = 0). From the appendix, we see how P(™ [1]]
and P(™ [10] can be written in terms of P(»~1) (see (A1)
and (A2)), and thus, in the general case, take the form:

PW(1z] = PO [z|1]PM™ 1]
(n—1)
_P . [ (...)+(...)k+ +(...), (4

m

where ( k ) is the number of permutations resulting
m

from all linear combinations of P(™[10] and P(™[11],
and the parentheses on the right-hand side contain con-
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stants and terms in P(»~1). Since there are only pairs
of two multiplicative terms in the recursive equations
of P(M[1z)], the equivalents of (A4) and (A5) in the ap-
pendix will necessarily be of the form

PM[z|1] = C + Ba™ + AB™. (5)
Since P(M[z|1] < 1, we have that o, 3 < 1. Denote
then limp 0o P™[0[1] = Cp and lim, .. P™[1]1] =
Cj. Since C; + Cp = 1, they cannot both be zero and
therefore max(Cy,Cp) > 0. This, in turn, implies two
possibilities.

1. C1 > Cp. Probability of success = PM™[00] +
PWTI] > PM™|0], so the probability of success in-
creases at this point with pattern length; probability of
failure = P [0T] + PM(I0] — 2CoP™[1] < PMI1].
Also, since P(™[0] > 0 and from above, 0 < P(™[TT] <
PM™I1], we have P([T0] > 0 => Cp > 0. Since
0 (that is, in the limit, there is a strictly positive ra-
tio between P(™[10] and P(™[1] ) we conclude that
P()[10] scales as P(M[1].

2. Cp > C;. Probability of success = P(")m +
PM[I0] = P(™|0], so the probability of success is lev-
eling off at this point as a function of pattern length;
probability of failure = P01 + PM(IT] = PM[1),
which scales, by definition, with the capacity dimension.

This concludes the proof that, indeed, for random
monofractal cascades, the probability of prediction fail-
ure at pattern length 1 scales as P(™)[1]. Moreover,
the same argument can be inductively repeated for
higher pattern lengths, by simply replacing P(™[1] with
PMI0] + P [01] + P [T1] and P™[0] with P[00,
and so forth.

5. Conclusions

We have shown that prediction failure from past pat-
terns of varying length in temporal rainfall occurrence
series from over the United States scales against aggre-
gation length with an exponent that was found by esti-
mation to be equal to 1—D,, with D, being the capacity
dimension of the rainfall occurrence series. At the same
time, we have given a theoretical proof that this is also
the case for random monofractal cascade models. We
therefore conclude that in view of these findings, multi-
plicative (random or structured) monofractal cascades
make a more appropriate model for temporal rainfall oc-
currence, in terms of capturing the predictability struc-
ture of rainfall, than a Markovian model, which would
otherwise be the first choice in view of the short-term
memory found in the temporal rainfall series, but which
is herein shown not to resemble the predictability struc-
ture of rain. Let us also point out that introducing a
dependence structure within the random Cantor sets
[see Carsteanu and Foufoula-Georgiou, 1996] captures
another degree of freedom of cascades, making it thus
possible for the cascade model to match the different
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prediction powers of patterns of the same length and
the pattern lengths at which the leveling of prediction
success occurs for the process. However, this is a sub-
ject in itself, beyond the scope of this article.

Appendix

It is shown here how we obtain the probabilities P(?)
of occurrence of each length-2 pattern at the nth stage
of construction of a ternary random multiplicative cas-
cade. We obtain the probabilities of transition from
length-1 past patterns by analyzing realizations of all
possible patterns of length 2 that occur at one stage
(passing from level n — 1 to level n):

1 1 0 or eeo
0 1 1 or oee
1 0 1 or eoce

We write from the above

PWIT) = PM1)11PM™ 1)
P(n—l)[l] « 2(1+%fp(n—1)[1‘1])+%»p<n—1)[1|1]
3

(n-1)
= 200 (5 4 4p(n-D[1)1))

= Z (P[] + 2P-D(IT)) (A1)

PMI0] = P01 P[]
=PW[01] = PM[1]0]P™ (0]
= P22 (94 2p(-D[1)1] + 2P D [01))
= 2 (P-D[1] + LPC-D(II] + P-V[I0]) (A2)

P™[00] = P™0j0]P™ 0]
=1 - PM[I] — PM[10] — P [01]
With P™[1] = (2/3)” and P[] = 1 — (2/3)", we

obtain

(A3)

(A9
a4 9 (2\"

PO =7 -5 (3)
= PO =(3)"(F-%({)"). (49
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Since for sufficiently large n, we have P(™[10] > P (1]
and, of course, P(™[00] > P([0I], the probability
of success for length-1 pattern prediction for this type
of Cantor set becomes P™[00] + P([10] = P™)[0],
wl(1e)reas the probability of failure is (™) [0T)+P™(11] =
PI1].
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