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ABSTRACT

It has been observed that the finite-dimensional distribution functions of rainfall cannot obey simple scaling
laws due to rainfall intermittency (mixed distribution with an atom at zero) and the probability of rainfall being
an increasing function of area. Although rainfall fluctuations do not suffer these limitations, it is interesting to
note that very few attempts have been made to study them in terms of their self-similarity characteristics. This
is due to the lack of unambiguous definition of fluctuations in multidimensions. This paper shows that wavelet
transforms offer a convenient and consistent method for the decomposition of inhomogeneous and anisotropic
rainfall fields in two dimensions and that the components of this decomposition can be looked at as fluctuations
of the rainfall field. It is also shown that under some mild assumptions, the component fields can be treated as
homogeneous and thus are amenable to second-order analysis, which can provide useful insight into the nature
of the process. The fact that wavelet transforms are a space-scale method also provides a convenient tool to
study scaling characteristics of the process. Orthogonal wavelets are used, and these properties are investigated
for a squall-line storm to study the presence of self-similarity.

1. Introduction

Rainfall is produced by atmospheric processes that
are highly nonlinear and operate and interact at a range
of scales. Despite such nonlinearity and interscale de-
pendence, the rainfall patterns are well organized, ex-
hibiting hierarchical structure and clustering, although
they are highly variable at different scales and from
storm to storm. One of the main challenges to hy-
drologists, meteorologists, and climatologists is to
measure, model, and predict the nature of this vari-
ability exhibited by rainfall at different scales. Recent
research (e.g., Lovejoy and Schertzer 1990; Gupta and
Waymire 1990) has indicated the exciting possibility
that rainfall may exhibit scaling-multiscaling charac-
teristics; that is, relatively simple transformations may
exist to characterize the behavior of rainfall at some
scale if the behavior at another scale is known. The
presence of such a hidden structure in an otherwise
highly irregular and variable, although organized, pat-
tern bears great significance for the measurement and
modeling of the rainfall process.

In characterizing rainfall as a self-similar process,
several nuances arise due to its peculiar characteristics
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such as intermittency, positivity, nonhomogeneity, and
anisotropy. Kedem and Chiu (1987) argue against
rainfall being self-similar (simple scaling) based on two
critical observations: 1) the probability of rain as a
function of area is in general an increasing function of
area; and 2) the distribution of rain rate is of mixed
type having an atom at zero. In order to overcome
these restrictions, Lovejoy and Schertzer (1989) sug-
gested the use of fluctuations of rainfall as the under-
lying process for identifying self-similarity since that
process does not have the restrictions identified by
Kedem and Chiu. Gupta and Waymire (1990) used
conditional probabilities, that is, rainfall process con-
ditioned on being nonzero, in order to eliminate the
problem of atom at zero. Lovejoy and Schertzer (1985)
also introduced the concept of generalized scale in-
variance to model certain types of anisotropy, but both
Lovejoy and Schertzer ( 1985) and Gupta and Waymire
(1990) assume homogeneity of the rainfall fields.

It is interesting that only a few attempts have been
made to study fluctuations of the rainfall process. The
reason seems simple: there has been no consistent
method up to now to define fluctuations in two or more
dimensions. One such attempt is described by Waymire
(1985), where fluctuations are obtained by certain
limiting operations on the rainfall field. This paper is
another attempt in this direction: we show that wavelet
multiresolution analysis recently introduced by Meyer
(1988) and Mallat ( 1989b) provides such a framework
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of analysis. In addition, it provides a method to account
for nonhomogeneity and anisotropy and also to study
the presence of self-similarity characteristics.

The study of self-similarity calls for studying char-
acteristics of the process at different scales. Usually,
however, sampling of the process is done at one par-
ticular scale, and in order to infer the behavior of the
process at a different scale, a transformation of the
available dataset to a dataset at other scales is needed.
The question then arises as to how to best transform
a process to a new scale and how to measure the good-
ness of the transformation. Wavelet multiresolution
analysis provides a solution to both these problems
where the transformation is done via a convolution
operation and the goodness is in the least-squares sense.
The usual method of averaging adjacent pixels to tra-
verse across scales is shown to be a special case of this
more generalized framework.

When we transform a process across scales by av-
eraging, that is, low-pass filtering, we lose the infor-
mation contained in higher-frequency components. As
one of the major results of this paper, we show that
this information that is lost in the averaging process is
significant for identifying self-similarity. In fact, we
show that it is this information that is important for
the identification of self-similarity for a particular class
of processes (processes with self-similar and stationary
increments). Multiresolution analysis again plays a
significant role in that it allows us to capture this in-
formation for analysis. We show that this information,
which is the wavelet transform of the process, can be
looked at as “fluctuations™ of the process. Although it
is difficult to define fluctuations in two dimensions,
wavelet coefficients, which essentially provide the same
information, are easily extendable to two dimensions
and are amenable to analysis for identifying self-sim-
ilarity. Moreover, as we discuss later, they also contain
directional information that allows us to understand
anisotropic behavior. _

In summary, in this paper we show how wavelet
multiresolution analysis is an elegant framework for
the identification of self-similarity by virtue of (a) being
a framework for interscale analysis, (b) providing a
method to study nonhomogeneous anisotropic pro-
cesses, and (¢) providing an unambiguous method for
defining fluctuations in two dimensions. We also em-
phasize the role of fluctuations in the study of self-
similar processes. The paper is structured as follows.
In section 2, we briefly introduce the concepts and rel-
evant terminology of self-similar processes. In section
3, we review multiresolution wavelet analysis focusing
only on the theoretical background essential for our
study. For complete treatment of wavelet transforms,
the reader is referred to the original works of Mallat
(1989b), Meyer (1988), Daubechies (1988), and ref-
erences therein. In section 4, we develop our own results
related to wavelet multiresolution analysis of random
fields. Section 5 contains the results of multiresolution
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wavelet analysis of a squall-line storm. We conclude
the paper with some remarks.

2. Review of self-similar stochastic processes

a. Simple scaling

A real-valued stochastic process X (¢), t € R is said
to be stochastically self-similar if there exists a constarit
C, such that the finite-dimensional distribution of X (i)
satisfies the equation

PICY'X(My) < x1, + + +, CRAX (M) < X,]
=PLX (1) <xi, -+, X(8n) <xx], (1)
which is equivalently expressed as {Cy'X (A1)}

Z {X(2)}. It can be shown that since C, satisfics
Gy = Gy, Gy, it follows, as the homogeneous solution
of this equation, that C, = \¥, A > 0, H € R [sce
Lamperti’s (1962 ) theorem 1 for a rigorous derivation |.
Therefore, for a self-similar process, (1) can be equiv/-
alently written as

(XA} 2 (MX()) A>0, HER. (%)

Lamperti (1962) introduced a class of self-similar
processes called semistable processes wherein the pri-
cess X () has to satisfy additional constraints of beir.g
defined only for a nonnegative parameter ¢ and satis-
fying the continuity condition lim,_.q Pr(| X (¢ + k)
— X ()| > ¢) =0 for every t = 0 and ¢ > 0. He called
such semistable processes proper if they have a non-
degenerate distribution for every ¢t > 0. Under thege
constraints of nonnegative ¢, continuity in probabilily
(or equivalently in the mean-square sense), and beir.g
proper, X (¢) is necessarily a nonstationary proce;s
[Lamperti 1962, his Eq. (7)]. Such processes will tie
abbreviated as H — ss. A typical example of such'a
process is the standard Brownian motion.

Mandelbrot and Van Ness (1968, definition 3. 2) in-
troduced a wider class of self-similar processes as a cla:ss
of processes { X (¢), —o0 < t < oo } whose incremenis
satisfy the equation

{X(to+ N1) = X(80) }

|

£ OHX (1o + 1) ~ X ()]}
()
for any 75 € R and A > 0, that is, a process whoie
increments are stationary and self-similar. Such a pro-
cess, which has self-similar and stationary increments,
will be abbreviated as H — sssi. The increment process
itself, being self-similar, has an important bearing in
our analysis as is discussed later. In this construct of
self-similar processes, no condition of continuity is in-
posed on the process, and this definition admits sta-
tionary processes. It can be further shown that (sce
Mandelbrot and Van Ness 1968, proposition 3.7) if
X (2) has self-similar stationary increments and is meail-

square continuous, then 0 < H < 1. Fractional Browii-
ian motion By(t) is a typical example of a process that
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gives rise to self-similar stationary increments called
(discrete) fractional Gaussian noise (fGn).

Self-similar processes that are scaling in the sense of
(1) or (3) are usually termed strict-sense simple scaling.
Simple scaling is indicator of the fact that there is only
one scaling exponent H for the process. Strict refers to
the context of scaling in the sense of distribution as
against wide-sense simple scaling, in which case scaling
of the covariance function is meant. More precisely, a
process is wide-sense simple scaling if it has zero mean
and its covariance function Ry(z, s) satisfies

Rx(Xt, As) = MRy (¢, 5). (4)

Evidently, if the process is Gaussian and wide-sense
simple scaling, then it is also strict-sense simple scaling.

The covariance function of a process X (z), ¢t = 0,
which has self-similar stationary increments, is given
by [see Yaglom 1987, his Eq. (4.264a)]

C
Rx(t, s) = E(Itl"’ + 8|~ [t —s5]™)

t,5=20, m>0,

()

where C is a constant. Gaussian processes with the
above covariance function are the fractional Brownian
motions (fBm) with m = 2H. The properties of such
covariance functions are discussed in further detail
in Ossiander and Waymire (1989). For fBm, C
= E[B%4(1)] = —[T(2 — 2H) coswH]/xH(2H — 1)
(see Barton and Poor 1988).

b. Multiscaling

Most of the processes in nature are more complex
than can be described by a stochastic process obeying
strict-sense simple scaling laws. It therefore becomes
necessary to describe such processes in terms of more
than one parameter while still keeping the objective of
parsimonious representation in mind. This gives rise
to the notion of multiscaling processes discussed below.

From (2), we expect that moments of a simple-scal-
ing process (if they exist) will satisfy

E[X"(\)] = M E[X"(1)], (6)
or equivalently
logm,(X) = s(h) logh + logm,(1), (7

where my,(\) = E[X*(\)] and s(h) = hH. It is often
evidenced from empirical observations, however, that
s(h) is a nonlinear function of 4. For example, Gupta
and Waymire (1990) observed that s(4) is a concave
function of 4 for a variety of processes. They plotted
moments of different orders of rainfall intensity aver-
aged at various scales versus scale length X and observed
that s(A) is a concave function. They found similar
observations for growth of slopes in rivers with respect
to basin area as a measure of scale parameter. Based
on these observations and certain mathematical deri-
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vations, they concluded that the concavity of s(4) is
an indicator of increasing variability with decreasing
scale, and based on this they derived a representation
for self-similar characteristics as multiplicative cas-
cades. The terminology multiplicative cascade is due
to the fact that, since the spatial variability increases
with a decrease in scale, the spatial variability of the
process can be seen as a consequence of the cascading
down of some large-scale flux to successively smaller
scales.

In order to accommodate such a representation,
Gupta and Waymire (1990) modified the scale func-
tion C, to satisfy the functional equation

d
CX])\Z = CX] Ckz (8)

in the sense of distribution by taking C, to be a random
function of A. Based on such a modification, they con-
cluded that C, is of the form

d
C)‘ = exp[u 10gx + Zlog(l/)\)] A< 1. (9)

Hence, a continuous cascade stochastic process X (£)
satisfies the relationship

d
X(A) = X(1)exp[plogh + Zig1n], (10)

with Z, being a stochastic process with stationary in-
crements, not necessarily independent, starting at zero;
that is, Zy = 0. They provide an example of such a
process derived from the Brownian motion process.

It is interesting that similar multiplicative processes
have independently been studied as multifractal pro-
cesses quite extensively over the last decade from a
different point of view (see Schertzer and Lovejoy
1987). There is an equivalence between these two rep-
resentations, namely, stochastic multiscaling processes
and multifractal processes, in that s(/) is the Legendre
transform of the codimension function c¢(vy) of the
multifractal process (see Schertzer and Lovejoy 1987,
p. 9700). This representation is, however, not relevant
to our analysis and therefore will not be discussed fur-
ther. The reader is referred to Lovejoy and Schertzer
(1990) and references therein for more details in this
rich area of research.

3. Introduction to wavelet transforms

Wavelet transforms are integral transforms using in-
tegration kernels called wavelets. These transforms en-
able the study of nonstationary processes (signals) in
that they enable both localization in time and fre-
quency. Hence, locations of rapid changes in a signal
can be detected easily. This is unlike Fourier trans-
forms, which are localized in frequency but not in time;
that is, they contain information about the frequencies
of the signal over all times instead of showing how the
frequencies vary in time. Wavelets have been intro-
duced by Grossman and Morlet (1984) as functions
whose translations and dilations could be used for ex-
pansion of functions in L?(R); that is, any function
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in L2(R) can be characterized from its decomposition
on the wavelet family { \/:wp(s(t — 1)) }(suyer? for some
function ¥. In contrast, it is interesting and we em-
phasize that Fourier transforms are functions whose
modulations provide a basis for expansion of functions
in L2(R). An important class of wavelet transforms
was found by Meyer (1988). He proved that there exists
some discrete wavelet y(z) such that { Ww(Z’"(t
— 27"n)) }(mmyez? is an orthonormal basis of L?(R).
These wavelets are discrete in the sense of using a dis-
crete lattice of translates and dilates rather than the
entire plane of possibilities. These discrete orthonormal
wavelet bases provide an important new tool in func-
tional analysis as they yield simple orthonormal bases
for L?(R) whose elements have good localization
properties in both the spatial and frequency domains.
Meyer (1988) and Mallat (1989b) developed the con-
cept of multiresolution analysis from these orthonor-
mal bases. :

Wavelet decompositions have found many appli-
cations in sound analysis (Risset 1989), image pro-
cessing (Mallat 1989c), robotics and vision (Mallat

. 1989a), and fluid dynamics and turbulence ( Everson
et al. 1990; Liandrat and Moret-Bailly 1990), and in
the study of fractals (Holschneider 1988), among oth-
ers (e.g., see Combes et al. 1987). The discrete ortho-
normal wavelets have found applications in theoretical
mathematics (Perrier 1989) and signal processing
(Mallat 1989a).

a. Continuous wavelet transforms

Let L?(R) denote the vector space of complex-val-
ued, square integrable functions f(¢). By (f, g) we de-
note the L? inner product of f, g € L?(R) given by
(f, &) = [ f(1)g(2)dt, where g(t) is the complex
conjugate of g(¢t). The L2 norm of f(¢) is then
171 = (£ )7 = [[2, |f(1)]2dt]"/2. The Fourier
transform of f(t) € L?*(R) is obtained as f(w)
= [, f(t)e™™dt, and the convolution of two func-
tions f, g € L*(R) is given by (f*£)(¢) = [%, f(u)
X g(t — u)du. By I*(Z), we denote the vector space
of square summable sequences, that is, /2(Z) = {¢; :
2R ol <0, ER,IEZ}.

In general, the wavelet transform of a function f(z)
is defined as the L? inner product

Wi(s, u) = (f, ¥s(+ — u)) (11)

=Wf_ﬂnwﬂrwmm,(n)

where ¥(t) = \/Exl/( st). In order for the wavelet trans-
form to be invertible, it should satisfy (see Grossman
and Morlet 1984) C, = [§° |¥(w)|?*/wdw < oo, which
translates to the requirement that y(¢) should have a
zero mean, that is,

f_w Y(t)dt = 0. (13)
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The inverse formula is then given by f(t) = C;!
X [ [& Wi (s, uygs(t — u)dsdu.

The function Y(¢) can be interpreted as the impulse
response to a bandpass filter. Indeed, (f, Y(+ — u)) caa
be equivalently written as (f*¥)(u), where ¥(1)
= Y(~1). The wavelet transform Wf (s, u) = (f, ¥(-
— u)) can therefore be viewed as filtering of f with
a bandpass filter y/(¢). The Fourier transform of (i)
= Vsy(st) is given by

o | (o

s\w) = —F 1. .
¥s(w) Vs ¢( s) (14)
Hence, by dilating the function, the center of passing
band sw of Ys(w), where wy is given by the solution
of [§ (w — wo)|¥(w)|?dw = 0, decreases. The root-
mean-square bandwidth so,, of ¥(¢) around swo, wheye
o, is given by 02 = [ (0 — wp)?|¥(w) | *dw, also di>
creases. Hence, by changing the value of s, we can
extract the behavior of the function in different fii:-
quency bands. Usually ¢ is chosen to be a function of
compact support, that is, it is zero everywhere outsice
a finite interval, and it thus gives localization in timg.
Also, it should be noted that if Y(z) is real, then
[Y(w)} = |¢¥(—w)|. It can be shown (see Mallat
1989c¢) that these frequency bands have a constant size
on the logarithmic scale. Thus, when scale s is small,
the resolution is coarse in the spatial domain and fire
in the frequency domain. If the scale s increases, tte
resolution increases in the spatial domain and decreases
in the frequency domain (see Fig. 1). '

b. Wavelet multiresolution analysis

Meyer (1988) and Mallat (1989b) developed a rijz-
orous mathematical framework for the concept of
multiresolution decomposition. As defined by Mallat
(1989b), a multiresolution approximation of L2(R)is
a sequence (¥,,)mez of closed subspaces of L2(R) such
that the following hold: :

ML: V,,CV,u YVMmEZ,

M2: Ug-_, Vipisdense in L2(R) and NB-_,, Vin
= {0}, i

M3: f(ye V, iff f2HE V. VmELZ, ;

M4: f(t) € V,, implies f(t — [k/2™]) € V,, ¥
EZ,

MS5: there exists an isomorphism I from ¥V, onto

[*(Z), which commutes with the action of Z: this
property is best explained by the cummutative diagrarn

fEV, > e@€X(Z)
I , V2
f([_-k)EVO_"fn—kEIZ(Z),

which essentially depicts the translation invariance
property (for an integer translate) of the transform.

The approximation of a function f(z) € L*(R) ata
resolution m (i.e., we have 2™ data points per unit
length) is given by the orthogonal projection of (i)
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F1G. 1. This figure illustrates the effect of dilation on a *“‘generic”
wavelet and the corresponding change on its Fourier transform
¥ (w)|. When the wavelet dilates, its Fourier transform contracts
and vice versa.

on V,,. Let P,, represent this projection operator, that
is,

f(HEL*R)= P,fE€V,,CL¥R). (15)

Since P, represents an orthogonal projection, it implies
that

I f(2) = Pof(0)]l = infl| f(2) — g(2)| Vg(z) € Vs,

(16)

and also that P, - P,, = P,,, where - denotes the com-
posite operator. As a consequence of property M1,
P,..., f contains all the necessary information required
to compute P, f. Also, P,,f is the best approximation
of f(¢) in the least-squares sense.

It can be shown that for a given multiresolution ap-
proximation (V,,),.cz, there exists a unique function
(1) € L*(R), called a scaling function, such that if
dm(t) = 27$(21), that is, [ ¢(1)dt = 1 for all m
€ Z, then [27™%¢,,(t — 27™n)],ez is an orthonormal
basis of V,,, that is, V,, = linear span {[27™/%¢,(t
~27"n)uez )
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Let O,, denote the orthogonal complement of V,,, in
Vmse1, that is,

Vi1 = Vi @ Oy, (17)

where @ denotes the direct sum. Then the difference
in information between P, fand P, f can be char-
acterized by finding the orthogonal projection of fonto
O,,. Let Q,, denote this projection operator, that is,
f € L*(R) = Qnf € O,, or equivalently O,,
= Q,,L*(R). Note that Q,, = I,,s;, — P, where I,,, is
the identity operator on V,,,.. The function Q,,f is called
the detail function at resolution m.

It can be shown that there exists a function y(7)
€ L?*(R), depending upon ¢(¢), such that if ,.(¢)
=2"Y(2™t), then [27™H,(t — 27™n)],ez is an
orthonormal basis of O,,, that is, O,, = linear span
{[27™Y,(t — 27™n)]nez } . By recursively using (17),
it can be shown that the translates and dilates of ¢,
that is, [27"/%,,(t — 27"1)](mm)cz?, are an orthonor-
mal basis of L?(R). The function y(¢) is called an or-
thogonal wavelet, and ([, ¥.mn) is called the orthogonal
wavelet transform. Also, Y(t) satisfies the admissibility
condition of (13). It follows immediately that O,, are
orthogonal spaces that sum to L2(R), that is, L?(R)
= ®mEZOm -

Using the basis functions ¢ and ¥, as described above
for the orthogonal transforms,

Puf(t) =277 2 (f, bmn) bmn(2)

n=—co

(18)
and

Onf(1) =27 5 (fs Yo )omn(0)

n=-—co

(19)

can be obtained by orthogonal projections, where ¢,
=2"$(2™t — n) and ¥, = 2™Y(2™t — n). Therefore,
the set of inner products P%f = {(f, Gmn)necz } gives
the discrete approximation of f(¢) [or sampled f(z)]
at resolution m and Q%f = {(f, Ywmn)nez } gives the
discrete detail approximation of f(¢t) (or difference in
information between resolutions m and m — 1). As
described previously, the function ¥(¢) can be inter-
preted as impulse response to bandpass filter. Similarly,
&(t) can be interpreted as impulse response to low-pass
filter.

A simple example of a multiresolution approxima-
tion, which has the Haar function as the basis for L*(R)
(see Mallat 1989b), is now presented. Let V,, be the
space of piecewise constant functions, that is,

V.= {g € L*(R) : g is constant on

[27"n,27™(n+ 1)), VnEZ}. (20)
It is known that the vector space of piecewise constant
functions is dense in L2(R). The projection of fonto

the interval [277n, 27™(n + 1)) is given by
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“M(n+l)
P f | (2-mn, 2-m(n1yy = 27 J;_m finde. (21)

As m increases, the successive P, f(t) correspond to
finer and finer scales. The scaling function can therefore
be chosen as the characteristic function of [0, 1), that

18,
I, 0<
(1) =

0, otherwise.

x<1
(22)

The corresponding wavelet y(z) is the Haar function
(see Fig. 2) given by

1, 0<x
-1, 1<

0, otherwise,

<1p

x<1

W) = - (23)

thereby giving Q,,f onto the interval [27"n, 27"(n
+1))as

mel [{2=™n, 2" (n+1))
M(i+1/2) “m(p+1)
= 2'"“ f(t)dr — f f(t)dz} . (24)
2" 27"M(n+1/2)

This is a crude example of multiresolution approxi-
mation since the functions in V,, are not smooth. Nev-
ertheless, it serves as a good example for our purpose
of characterizing self-similarity in multiresolution

y(t) A
I

~Y

—] = - - -

~Y

FIG. 2. Haar wavelet and the corresponding scale function. This
pair provides the simplest example of wavelet multiresolution frame-
work.
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framework as described in the next section. The reader
will recognize that ¢(¢) is the usual function used in
transforming data from one scale to another by aver-
aging adjacent pixels. This, however, is a special case
of a more generalized framework outlined here. Dau-
bechies (1988) has described a method for constructing
wavelets Y(¢), with corresponding scaling functions
¢(1), with compact support having an arbitrary high
order of smoothness.

If we have a function f(¢), sampled at any resolution,
say m, giving rise to a data sequence {c}; }mez, thon
we assume that P, f= 27" 2, ' ¢mn; thatis, ¢y = (f,
¢mn). Mallat (1989a) has described an elegant discrete
convolution algorithm to convert the data sequence
{cm) at resolution m to a data sequence {cy} at any
other resolution /, [ < m. The detail information, that
is, the information lost in going from the higher to
the lower resolution, is captured in the sequence
{d'}nez, where {d}} = {(f, ¥1,) } and ¢ is the wavelet
corresponding to the chosen ¢. The transformation
equations are ;

(25)

=3 h(n—2k)cy

and

di~' =3 g(n —2k)cy, (26)

where A(n) and g(n) are obtained as (oo, ¢;,) and
(¢00, ¥1,) [ for a more complete description on choosing
h(n) and g(n), see Daubechies (1988)]. This thus gives
us a method to traverse across scales and obtain 1he
data sequences { ¢, } at various scales / while capturing
the lost information due to averaging as the sequences
{d!} at these scales.

¢. Two-dimensional multiresolution representation

The multiresolution approximation can be easily
extended to two dimensions. The function under con-
sideration is now f| (z, , 1) € L*(R?). A multiresolution
approximation of L2(R?) is a sequence of subspaies
that satisfy the straightforward two-dimensional {x-
tension of properties M1-M$5 enumerated in the def-
inition of one-dimensional multiresolution approxi-
mation. Such a sequence of subspaces of L2(R?) is
denoted by (V,))mez. The approximation of the fuilc-
tion f(¢;, t) at the resolution m is the orthogonal pro-
jection on the vector space V,,.

A two- dlmensmnal multiresolution approx1mat10n
is called separable if the representation is computed by
filtering the signal with a low-pass filter of the form
®(ty, ) = ¢(1,)9(12). For separable multiresolution
approximation of L*(R?), each vector space V,, can
be decomposed as a tensor product of two identieal
subspaces V), of L*(R), thatis, V,, = V}, ® V',
therefore follows that

Vint1 = Vm+1 ® Vr1'n+1 (27)



FEBRUARY 1993

=(Vn®0,)®V,®0,),
which can be rewritten as
Vst = (Vi@ V3y) © (V1 ® On)
@(O0n®Vy)®(0,®0,). (29)

Therefore, the orthogonal complement O,, of V,, in
Vi1 18(V,;, ® 05,) ® (0, ® V) ®(0,,® 0,).

The sequence of vector spaces (V,,,)mez forms a mul-
tiresolution approximation of L2(R?) if and only if
(V1) mez is a multiresolution approximation of L2(R).
Analogous to the one-dimensional case, the detail
function at the resolution  is equal to the orthogonal
projection of the function onto the space O,,, which is
the orthogonal complement of V,, in V,,.,. It can be
shown that the orthonormal basis for V,, is then given
by

[277®,(ty — 27"n, t; — 27"k) ) (ni)ez?

= [27"¢m(ty — 277n) btz = 277K) Jniez2-

The orthonormal basis for each component of O,,, that
is, V5, ®0)),(0),®V)), and (0}, ® 0L,), is given
by {[27"¥,(ti — 27™n, 1, — 27"K) \(niyez2} s
{[2"”‘1’3,,([. - 2—mn’  — 2_mk)](n,k)EZ2}’ and
{{27"¥5(ty — 27™n, ty = 27"k))npyez? }, TeSpec-
tively, where ¥'(2), 1) = #(1)¥(n), ¥i(1, 1)
= Y1) 9(t2), and Y3(2y, 12) = Y(1,)¥(12).

The discrete approximation of the function f(¢,, t.)
at a resolution m is characterized by the inner product

PLf={(f, ®p(+ —27™n, « — 27"K))nkyez?

= {(fs &ml* = 27"N)ul* — 27"K))nprez?} -
(30)

The discrete detail approximation of the function is
obtained by the inner product of f(,, t,), with each
of the vectors of the orthonormal basis of O,,. This is
thus given by

Q4 f={(f, ¥h(- —27"n, + = 27"k))niyez?}
Q4= {(f, ¥2(- = 27"n, « = 27"k))niez?}

Qhf={(f; ¥h(- =27"n, + = 27"k))miyez2}-
(31)

The (separable) wavelet decomposition can thus be
interpreted as a function decomposition in a set of in-
dependent, spatially oriented frequency channels. Here
o4 S gives the vertical high frequencies (horizontal
edge or horizontal high correlation), Q% f gives the
horizontal high frequencies (vertical edge or vertical
high correlation), and Q% f gives high frequencies in
both the directions (the corners or high correlation in
both horizontal and vertical direction).

Only the special case of a separable multiresolution
approximation that results in the decomposition of a
two-dimensional function using three orientations has

(28)
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been indicated. One can, however, build a nonseparable
wavelet representation having as many orientation
tunings as desired by using nonseparable wavelet or-
thonormal bases (see Cohen and Daubechies 1991).

4. Identifying self-similarity from wavelet
coefficients

This section deals with multiresolution analysis of
stochastic processes, and therefore our notation will be
switched from function f(¢) to stochastic process X (¢).
It is argued that the wavelet coeflicients essentially give
the description of the fluctuations of the process, and
if the process X (¢) is self-similar or has self-similar sta-
tionary increments, then the wavelet coefficients are
self-similar. The latter property is important in that it
guarantees that property of self-similarity is preserved
during the wavelet transform. In the next section, radar
data are analyzed and the results are interpreted under
the hypothesis that wavelet coefficients give the de-
scription of the fluctuations.

The previous section has shown that for a given data
sequence { ¢y} obtained by sampling the process X (¢)
at some resolution m, we can consider that ¢}’ is ob-
tained as f X (£)pmn(t)dt. Then, through a convolution
operation, ¢} can be transformed to another scale /
> m and the detail information d’, can be obtained.
This transformation has been shown to be good in the
sense of least squares [see (16) and discussion there-
after]. ‘

We now need to address thg question: If X (¢) is
self-similar, that is, {X (M)} = {A\?X(¢)}, then is
P2X (1) or Q%X (1) also self-similar? The answer,
which is affirmative for both, can be argued heuristically
by noting that

X ) = [ XD

It [ Xomind (32

= >\_H(X)u Omn)

where X ,(2) = X (Az). A similar arguar’nent also shows
that for such a process, { Q4 X,\(2)} = {\N1Q%.Xx(1)},
and therefore both P2 X (¢) and Q% X (¢) are self-sim-
ilar. The process X (¢) is known to be a nonstationary
process, and therefore P4 X (z) and Q% X (¢) are in gen-
eral not necessarily stationary (unless further condi-
tions are imposed).

A slightly different situation arises if the process X (¢)
has self-similar gtationary increments, that is, { X (%
+ A1) =X ()} = {M[X(to+ 7) — X(%)]}. Asshown
later for such processes, { Q%X (A1)} = {NQ% X (1)}
[recall Q%X is the discrete detail approximation of
X (2)]. Such a result, however, cannot necessarily be
proven for P2 X (t) unless additional constraints like

(33)
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X (to) = 0 are imposed on the process. The proof of
the above result is as follows. We know that

(Xns Yrun) = f Ymn() X (M) dt. (34)
Since [ Yma(t)dt = 0 [from (13)], it implies
J ¥on(0) X (25)dt = 0 [ X (o) being a random constant].
Subtracting this from the rhs of the previous equation
gives

(Xnr Yomn) = f Uun(DIX (M) = X(0)1dt (35)
S f V(DX (1) = X (1)1t (36)

= X”f\bmn(t)X(t)dt (37)

= N(X, Yon)- (38)

By considering all n's, { Q% X\(1)} = {NQLX (1)}

Flandrin (1989) has shown that the wavelet trans-
form of a process X (¢), which has self-similar stationary
increments having covariance function of the form in
(5), is stationary at any fixed scale. It is also easy to
verify that Q% X (¢) is a zero-mean process. Combining
these results, that is, self-similarity of Q%X (¢) and its
stationarity, shows that the wavelet coefficients
04X (1) are amenable to analysis for the purpose of
identifying self-similarity.

Having shown that the wavelet coefficients are sig-
nificant in the analysis of self-similar processes, it is
now argued that the wavelet transforms can be looked
upon as fluctuations of the process X (¢). A stochastic
process X (¢) can be decomposed into two components
Xr(t)and [X(t) — Xr(2)], where

1+T/2

XT(t)——f X(u)du (39)
is the “local average” process and [X(z) — Xr(1)] is
the “fluctuation” process. The process can then be
written as X (1) =~ Xr(¢) + [X (t) — X7(t)]. These two
components are practically uncorrelated that is,
cov[Xr(t), X (t) — Xr(1)] =~ O (the covariance decays
as 1/ T for increasing T). The variances of these com-
ponents are given by var[Xr(#)] = ¢*y(T) and
var[X (t) — Xr(t)] =~ o?[1 — 4(T)], where o2 is the
variance of the process X (¢), and y(T) is the variance
function (see Vanmarcke 1984, p. 228).

We claim that a discrete approximation of Xr(¢)
and [X (1) — Xr(¢)] can be obtained by decomposing
the process X (t) onto V,, and O,,, respectively, where
T is chosen such that m = —log,T, m € Z. Moreover,
X7(t) can be obtained exactly by choosing the scaling
function ¢,, as 1/7 times the characteristic function
of [-T/2, T/2].

A heuristic argument toward the support of this can
be given by noting that the fluctuation process is given
by
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Yr(t) = X (1) — Xr(2) (40)
+T/2

= X(t) - —f X(u)du 41)

= X(t) — f_ o(t — wX(u)du (42)

= X(1)— f_w o(u— )X (u)du, (43)

where ¢(?) is I/Ttimes fhe characteristic function of
the interval [—7/2, T/2] and ¢(¢) = ¢(—t). Taking
the Fourier transforms gives

Yr(w) = X(w) — ¢(w)X(w)
= X(w)[1 — ¢(w)],

where [1 — ¢(w)] represents a high-pass filter. If, how-
ever, we regard the very high frequencies (which will
be absent for any function sampled at any finite
resolution) as (uncorrelated) noise, we can approxi-
mate [l — @(w)] by a bandpass filter. We cén
choose ¥ (w), corresponding to the Haar wavelet, hs
such a filter. The scaling function ¢, of the multiresi-
lution analysis, is then the same as ¢. Equation (44)
can be written as YT(w) = X(w){(w), which g1Vq=s_
Y (1) = (X %) (2). By using the dilates of y, say ¢(f),
we obtain Y7(t) for different 7’s. We therefore have
Xr(u) =~ (X(1), ¢s(t — u)) and Yr(u) ~ (X (2), Y5t
— u)). In this case where s and u are discrete; s = 2"
and u = n/2™, giving rise to orthogonal ¢ and ¢ in the
multiresolution framework, we obtain the sampling of
the functions X7(¢) and Yr(¢) at resolution m.

The above result implies that we can segregate (ajp-
proximately) the stochastic process X (¢) into two
components X7(¢) and [X(t) — X7(¢)], that is, X(r)
=~ Xp(t) + [X () — X7(¢)], whose realizations belortg
to orthogonal subspaces V,, and O,,, if the realization
of the original process is assumed to belong to L?(R),
where m is such that 277 = T. Since the averagirg
process is essentially a low-pass filtering, it can be im-
proved by selecting more regular scaling functions ¢
(see Daubechies 1988). It is easier, however, to un-
derstand the concept with the choice of the Haar wavi:-
let. It is easy to see, for example, that for a discreie
dataset, the wavelet coeflicients are essentially the i in-
crements of the process.

The extension of the decomposition process to two
dimensions is simple. Define the component processés
as

(44)

Xo()],  (45)

where Xp(t) is defined analogous to (39) but for an
integration region of size D = T'|T,. The variances of
the component processes are given .by var[Xp(t]]
= ¢?y(D) and var[X (t) — Xp(t)] ~ o*[1 —¥(D)],
and Xp(t) and [ X (t) — Xp(t)] are.practically uncor-
related, that is, cov[Xp(2), X (2) — Xp(£)] =~ O.

X(t) =~ Xp(t) + [X(t) —
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A very interesting situation arises when this two-
dimensional case is analyzed in the multiresolution
framework. From the theory of two-dimensional
wavelet transforms (see previous section), the function
f{1;, t2) can be decomposed into four orthogonal com-
ponents under the separable multiresolution analysis.
it 1s shown below that for a realization of a stochastic
process, these components have important interpre-
tations. In particular, the first component P%X of the
process X (¢;, £;) can be interpreted as the sampling of
the average process Xp(1,, £2) over an integration do-
main D = T,T,, that is, sampling of

1 1+7,/2
T\Ty Jy-1y2

The second component Qi’,,'X can be interpreted as
the sampling of the “fluctuations of the marginal local
average process” in the ¢, direction, that is, sampling
of the fluctuations of

{9+ T5/2

X (uy, wo)du,dus.
h—12/2

Xp(t:, ) =

11+7,/2

XT,(lz;ll)z_f X(uy, t)du,.
Ty Jy-12

in an analogous way, the third component Q%X can

be interpreted as the sampling of the “fluctuations of

the marginal local average process” in the 1, direction,

that is, sampling of the fluctuations of

1 12+T5/2

Xyt t2) =—f X (4, u2)dus.
T, Jo-1y2

The fourth component does not lend itself to such sim-

ple interpretations, but it essentially represents the

fluctuations along the diagonals.

5. Amalysis of spatial rainfall

This section presents results from a multiresolution
wavelet analysis of a radar-depicted squall-line storm.
This storm started with a well-organized elliptical
embedded structure that later dissipated and formed a
convective-type organization. The storm occurred on
27 May 1987 and was monitored by the National Se-
vere Storm Laboratory (NSSL) using a WSR-57 radar,
which is a 10-cm wavelength system with a peak power
of 305 kW and a beam width of 2.2°. The storm lasted
for about 8 h starting at around 1100 LST. The con-
version of the cloud reflectivity (in dBZ) to rainfall
rates (mm h™') was done at NSSL in Norman, Okla-
homa, using the relationship Z = 300R'*, where R is
rainfall rate (mm h~!) and the reflectivity factor in dBZ
is related to Z (mm® m®) by the relationship 1 dBZ
= 10 log Z. The rainfall-intensity values are available
at approximately 10-min intervals (and averaged over
this interval) for 360 azimuths, with every azimuth
containing 115 estimates for a range of 230 km (i.e.,
data at every 2 km X 1°). Data for each scan over the
360 azimuths will henceforth be referred to as a frame.
The precipitation processing system, used to correlate
reflectivity and rainfall intensity, taking into account
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the raingage observations and adjustment for ground
clutter, etc., is described by O’Bannon and Ahnert
(1986). For the purpose of our analysis, the data were
converted to a rectangular grid of 512 X 512 by bilinear
interpolation.

The rainfall field was decomposed into four
components: the average process A (P, X) and the
three detail processes D, (Q%X), D, (Q%X), and
D5 (Q%X), as was discussed in the previous sections.
The decomposition was repeated at different resolu-
tions, which here correspond to grids of 512 X 512
(original field), 256 X 256, 128 X 128, 64 X 64, 32
X 32, and 16 X 16. Figure 3 graphically depicts this
decomposition and establishes the terminology used
in the discussion that follows. The original rainfall at
a specific instant of time (frame 1) is shown in Fig. 4,
and the averaged field at grid 32 X 32 and its ACF are
shown in Fig. 5. The original field is assumed to be
nonhomogeneous in the mean and anisotropic as can
be clearly seen from Fig. 4. The same holds true for
the average fields at all resolutions. The detail fields
(D,, D,, and Ds) obtained using wavelet transforms
are, however, assumed homogeneous. (See Fig. 6 for
all four components of the original field and their ACFs
at one resolution corresponding to grid 256 X 256.)
An argument in favor of this assumption is that if the
rainfall field had self-similar stationary increments,
then the wavelet transform (detail processes) consti-
tutes a stationary process [see Flandrin (1989) for a
proof]. An implication, as a consequence of this as-
sumption, is that the underlying assumption is made
that the nonstationary field is composed of a nonsta-

Xo = X(t1,t2) (Original process)

Xi=PaXo  QiXo Q4X, QL X,
X, =P, X, Q4 X, Q%X Q% X, Decreasing
resolution
X3 =PnX, Q4 X, QEX, QEX,
Averaged Detail Detail Detail
process process process process
(4) (Dy) (D2) (D)

FiG. 3. Schematic of the decomposition of the original rainfall
process X into four components (averaged process 4 and detail pro-
cesses Dy, D,, Dj) at decreasing resolutions.
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Frame 1, Contour Plot (0.1 mm/hr to SO mm/hr)

100 200 300 400 500

FIG. 4. Original rainfall field at grid 512 X 512 for frame | of the
squall-line storm. The total areal coverage is 460 km X 460 km. The
contours are at intensities between 0.1 and 50 mm h™".

tionary mean and stationary fluctuations. The station-
arity of the detail processes, which may be (as discussed
earlier) looked upon as fluctuations of the process,
makes them amenable to second-order analysis, which
can now be used to check the presence of self-similarity
in the rainfall fluctuations. For this, several statistical
properties such as the spectral density function (sdf)
and spectral bandwidth were estimated for each field
at each resolution. Table 1 lists some of these estimates
for all four components at three resolutions. These

properties, although not properly defined for a non- -

homogeneous field, provide some indication of its cor-
relation and persistence characteristics and thus are
given in Table 1 for the averaged process 4 also. The
reader is referred to Vanmarcke (1984) for definitions
and estimation of these properties and to the Appendix
for a brief exposition. It is only noted here that for a
process with self-similar stationary increments that are
positively correlated (12 < H < 1), the behavior of
these properties is as follows:

1) the sdf behaves as |w|'™7, 1h < H < 1, |w|
> (0 and

2) the spectral bandwidth is (see Appendix for def-
inition)

b~ — 46
T 3-2H' (46)
It is noted here that for H = 0.5, which corresponds
to white noise process, the spectral density function is
a constant over all frequencies and 6§ = 0.5.

In computing the above statistical properties, the
nonzero mean-removed processes were used. That is,
let X (¢, t;) be the rainfall field, let R(l,, t) denote
the field under analysis (i.e., P"X 04X, 0ZX or
Qd X) as a function of spatial locatlon and let S'denote
the domain in this field where X (¢,, £,) is nonzero. All
the estimations, that is, bandwidths, autocorrelation
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function, and spectral density function, were made on
domain S of nonzero values, and the mean (R) esti-
mated over this domain was subtracted from the actual
intensities before the analysis, that is, the field analyzzd
was Y (¢, 1) = R(t,, ;) — R. In order to estimate the
bandwidth, the spectrum was obtained by squaring the
values obtained from the fast Fourier transform of
Y (¢, t,) (without any ﬁltering) Since Y (-, +)is a
zero mean process, the covariance function was esti-
mated as

B(TI: 72)

1 N=|71| N=]rz|

=TSl 2 2 Y, )Yt 1,0+ )

| | =1 =1
71,72 =0, £1, (N - 1) (47)
Frame 1, Contour Plot (0.1 mmyhr to 50 mm/hr) -

<> :
5 0 15 2 2 0
()
Frame 1: ACF

" 7T \Varam T 7

7 o J A ‘ O 1
VU/ ( ?

(®)

FIG. 5. (a) Averaged field (frame 1) at low resolution (grid 32
X 32; areal coverage 460 km X 460 km) and (b) its autocorrelation
function. The contour plots in the rainfall field are at intensities De-
tween 0.1 and 50 mm h™'. A unit lag shown in the figure for au’o-
correlation function corresponds to 14.375 km.
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FIG. 6. The four components of the original field at grid 256 X 256 [(a) is P%X,, (b) is Q% X,, (¢) is Q% Xp, and (d) is Q% Xo]
and their respective autocorrelation functions. The contours for the averaged process are between 0.1 and 50 mm h~! and for
fluctuations between —1.0 qnd 1.0 mm h~!, A unit lag shown in the figure for the autocorrelation functions corresponds to 1.8 km.
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TABLE 1. Second-order statistics of the four components
for the squall-line storm.

Standard
Mean deviation
Component Grid ot 62  (mmh) (mmh)
A 256 X256 0.84 0.74 4.23 8.05
128 X 128 0.81 0.69 4.05 7.60
64 X 64 0.76 0.65 3.81 6.69
32X 32 0.74 0.62 3.42 5.43
16 X 16 0.71  0.58 3.00 4.46
D, 256 X 256  0.50 0.62 0.0 0.88
128 X 128 045 0.56 0.0 1.25
64 X 64 045 054 0.0 1.58
32 X 32 047 0.53 0.0 1.46
16 X 16 0.53 0.52 0.0 1.44
D, 256 X256 0.72  0.49 0.0 1.24
128 X 128 0.69 0.41 0.0 1.79
64 X 64 0.69 0.40 0.0 2.66
32x32 0.62 046 0.0 2.91
16 X 16 0.54 047 0.0 1.84
D, 256 X 256 041 0.39 0.0 0.34
128 X 128 041 041 0.0 0.59
64 X 64 0.48 0.44 0.0 0.91
32X 32 0.50 047 0.0 1.24
16 X 16 0.53 0.56 0.0 , 141

for the N X N grid. Although this gives a biased esti-
mate, it has minimum mean-square error (see Priestley
1981, section 5.3.3) and is positive semidefinite. A
tricky situation arises in the estimation of the moments
of the fields generated by the wavelet coeflicients due
to the intermittency of the original rainfall field. In our
-analysis, moments were computed using only the non-
zero values of the field under consideration. Therefore,
these statistics should be looked at as approximate sta-
tistics. The estimation of the covariance function and
the spectral density function does not pose any serious
problem since the contribution of zero values is zero.
Some noteworthy observations of this analysis are
as follows.

1) The standard deviation of the storm is much
larger than the mean, indicating large variability in the
field.

2) The autocorrelation functions of the storm at all
resolutions have elliptic patterns (except at very small
lags where they are circular) and are well behaved, in-
dicating the direction, organization, and structure of
the rainfall field.

3) For the storm, the autocorrelation function de-
cays very sharply initially, that is, for small lags (dis-
tances), but decays very slowly for large lags, suggesting
two possible regimes of correlation characteristics—
the second indicating long-range dependence.

4) The bandwidth values of the marginal sdf’s G(w;)
indicate that the rainfall is a wide bandwidth process,
again indicating long-range spatial dependence.
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5) Another observation of great significance is that
D,, D,, and D; are zero-mean processes with standard
deviations much smaller than-the mean of the original
process, suggesting the presence of small (homog:-
neous) fluctuations “superimposed” on an underlying
process. This superposition is not additive because of
the interscale dependence. When this observation is
combined with observation 1, it indicates that the
{nonstationary ) mean process itself exhibits large vari-
ability. Further research is needed to establish the exact
mathematical relationships for this type of interscale
dependence. .

6) The detail process D, (0% X ) exhibits long-range
correlation characteristics (and could be modeled as
fractional Gaussian noise) and the other two compo-
nents D, and D; seem uncorrelated (white noise).
These results have significant implications. They lead
to the interpretation that if the rainfall has high cor-
relation in a particular direction, the fluctuation field
is also highly correlated in that direction and exhibits
long-range dependence. For example, the storm ana-
lyzed shows high correlation in the vertical direction,
and this is reflected in the correlation characteristizs
of component Q;’,,ZX since this component capturis
horizontal high frequencies, that is, high vertical cor-
relation.

7) It is seen that the components of the wavelzt
transform of the rainfall field exhibit white-noise char-
acteristics across scales. It is possible to show that such
a behavior is indicative of the presence of 1/|w|%, 0
< a < 2, spectrum in the original process for certain
frequency range w; < w < w; (see Wornell 1990). The
implication of such a behavior is being explored furthir
(see Kuman and Foufoula-Georgiou 1992a,b).

The above results are from one frame of one storm
only, but the results are similar for other frames ard
are indicative of the power of the proposed method-
ology to unravel structure in ways never tried befoie
for rainfali fields. Many more data analyses (i.e., for
different storms and different frames at various times
of evolution of each storm) are needed before conclu-
sions regarding the scaling structure of rainfall can be
made. It is clearly evident, however, that the decon-
position of the given rainfall field into component pro-
cesses obtained as the wavelet coefficients offers siz-
nificant advancement in data-analysis techniques for
studying scale dependence. It is also remarked that
many more elaborate analyses, such as interscale de-
pendence of the component processes and the depen-
dence of the component processes on thé original pro-
cess (through cross-covariance analysis), can be per-
formed to study scaling characteristics.

6. Concluding remarks

We have shown that the orthogonal wavelet trans-
forms of the rainfall fields provide insight that is oth-
erwise not possible by other methods. They segregaie
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large-scale features from small-scale features by pro-
viding convenient orthogonal decompositions with an
inbuilt directionality. The averaged process at very
coarse resolutions is an indicator of the large-scale fea-
tures of the storm and can be studied independently
of the small-scale features. We find that rainfall fluc-
tuations, reflected as small-scale features, may exhibit
simple scaling characteristics, that is, power-law be-
havior of the spectral density function, within a certain
range of frequencies and that these characteristics are
direction dependent, which is a manifestation of the
underlying organization and structure of the storm.
This observation also corroborates well with the em-
pirical covariance function of the rainfall field itself
(treated as homogeneous ), where two possible regimes
are indicated. The large-scale features that are mani-
festations of the underlying mechanism particular to
the storm will be reflected in the spectral density func-
tion for frequencies close to the origin and may not
obey power law. The small-scale fluctuations may show
long-range dependence and will be reflected in the
spectral density function away from the origin that may
obey power law. Such a behavior is indicated by the
particular storm analyzed: More data analysis is re-
quired before these ideas can be firmly established.
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APPENDIX
Second-Order Analysis of Random Fields

In this appendix, only definitions are given for the
second-order properties of homogeneous random fields
used in our analysis. The reader is referred to Van-
marcke (1984) for more details.

If S(w), w € R denotes the spectral density function
(sdf) of the homogeneous random function X (7), then
the one-sided sdf G(w) for w = 0 is

Gw)=2S(w), (Al)

and the kth spectral moment of the stationary random
process X (t) 1s defined s

0<w<ow,

e = fw |w|*S(w)dw = fow *G(w)do,

k=0,1,2, ---. (A2)

Note that

Ao = ‘fo.S(w)dw = o2 (A3)
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The characteristic frequency can be defined as

A Yk
ka(_k) o k=1,2,3, .. .

N (A4)

These frequencies are such that @, < Q4y, (k= 1, 2,
-« +). Notice that ©; gives the mean frequency of the
normalized sdf G(w), and Q, is its root-mean-square
frequency. Therefore,

Q, = (93 - Q)" (A5)

gives the frequency standard deviation of the normal-
ized sdf g(w). The bandwidth of G(w) [or g(w)] is
deﬁned as

2 1/2 QZ 1/2 QS
s=[(1-2 ) = (1= =\ ==
)\0)\2 Q2 QZ

0<é<l1. (A6)

In the two-dimensional case, the sbectral moments
can similarly be defined as

)\k1=f f wkwbS(wy, w)dwidw, (A7)

fork+leven; k,1=0,1,2, -+ -. If k+ [is odd, the
fact that S(w,, w;) is symmetrical about w;, = w; = 0
ensures that the double integral vanishes. The kth

marginal spectral moment with respect to w; is given
by

M = Mo = f f |w) %S (wi, wa)dw dex,

= J"" [ {kS(wl)dwl

= f XG(w))dw, k=0,1,2,+--.
0
(A8)
In the above equation, S(w,; ) and G(w,) represents the

respective marginal sdf, that is, S(w;) = [%, S(wi,
wy)dw, and G(w;) = [§ G(wy, w;)dw,. Similarly,

A=Ay = J‘_ £ lw2|'S(w1, w2)dw, dw,

=f w2 ' S(w2)dw:

= f wlzG(wz)dwz [ = O, 1, 2, LR
0
(A9)

with analogous definitions for S(w,) and G(w;). We
therefore have

Moo = MV =A% = 62, (A10)
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The bandwidths ¢, i = 1, 2 of the marginal sdf G(w;)
are given by

s (1 A V2 (A1)
=[1-— A
>\007\20)
and
)\ 1/2
5‘2)=(1——“—) : A12
*oohor (Al2)
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