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Abstract. The precipitation output of a mesoscale atmospheric numerical model
is usually interpreted as the average rainfall intensity over the grid cell of the
model (typically 30x30 km to 60x60 km). However, rainfall exhibits considerable
heterogeneity over subgrid scales (i.e., scales smaller than the grid cell), so it is
necessary for hydrologic applications to recreate or simulate the small-scale rainfall
variability given its large-scale average. Rainfall disaggregation is usually done
statistically. In this paper, a new subgrid scale rainfall disaggregation model

is developed. It has the ability to statistically reproduce the rainfall variability
at scales unresolved by mesoscale models while being conditioned on large-scale
rainfall averages and physical properties of the prestorm environment. The model
is based on two extensively tested hypotheses for midlatitude mesoscale convective
systems [ Perica and Foufoula-Georgiou, 1996]: (1) standardized rainfall fluctuations

(defined via a wavelet transform) exhibit simple scaling over the mesoscale, and
(2) statistical scaling parameters of rainfall fluctuations relate to the convective
available potential energy (CAPE), a measure of the convective instability of
the prestorm environment. Preliminary evaluation of the model showed that the
model is capable of reconstructing the small-scale statistical variability of rainfall
as well as the fraction of area covered with rain at all analyzed subgrid scales.
The performance evaluation was based on comparison of summary statistics and
spatial pattern measures of simulated fields with those of known fields observed
during the Oklahoma-Kansas Preliminary Regional Experiment for Storm-Central

(PRE-STORM).

1. Introduction

The last decade has witnessed substantial improve-
ments in our ability to physically model rainfall at the
mesoscale (horizontal scale of the order of a few kilo-
meters to several hundred kilometers) and global scale
(horizontal scale larger than a couple of hundred kilome-
ters). Despite considerable progress, however, rainfall
still remains one of the most difficult variables to predict
in meteorological models. This limits the accuracy with
which other hydrologic variables, such as runoff, can be
modeled or predicted. Moreover, the results of phys-
ically based meteorological models (mesoscale weather
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prediction models or global circulation models (GCMs))
are available only at large grid scales, much coarser than
those needed for hydrologic applications at the basin
and subbasin scale (typically less than a few kilometers
in horizontal scale). In addition, the spatial heterogene-
ity of rainfall within a GCM or mesoscale model grid
cell considerably affects the state of the atmosphere and
mass balances over that cell, making it thus desirable
to incorporate the subgrid-scale variability of rainfall
in the dynamics of climate models themselves. Rainfall
disaggregation at the unresolved (subgrid) scales is com-
monly treated statistically. Some rainfall subgrid-scale
parameterization schemes for GCM models are avail-
able (see, for example, Thomas and Henderson-Sellers
[1991] for a review), but fewer exist for mesoscale mod-
els.

The proposed approach for rainfall subgrid-scale pa-
rameterization is conceptually different from current ap-
proaches used in GCM models. It is based upon two
main hypotheses: (1) that standardized rainfall fluctu-
ations, defined via an orthogonal Haar wavelet trans-
form of the original rainfall field, exhibit simple scaling
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over the mesoscale, and (2) that the scaling parameters
of standardized rainfall fluctuations relate to thermody-
namic descriptors of the prestorm environment. These
two hypotheses were extensively tested in a previous
paper by the authors [Perica and Foufoula-Georgiou,
1996] using data from the Oklahoma-Kansas Prelim-
inary Regional Experiment for Storm-Central (PRE-
STORM) field program that took place in May and
June 1985 (see Cunning [1986] for more details on that
program). ,

The structure of the present paper is as follows: In
section 2 we briefly summarize the basic hypotheses
on which we built our model and present the rela-
tions between statistical parameterizations and ther-
modynamic parameters of the prestorm environment
obtained for mesoscale convective systems (the reader
is referred to the original publication of Perica and
Foufoula-Georgiou [1996], for more details). In section
3 we give the model description and a step-by-step pro-
cedure for model implementation. In section 4, criteria
for judging model performance are established. Based
on the selected criteria, the model is tested on the 0300
UTC, June 27, 1985 PRE-STORM data set. In section
5 we perform a sensitivity analysis on the same data set.
Finally, in section 6 a brief summary of the developed
model and its performance is given.

2. Summary of Scaling and Predictive
Relationships

Let X(t1,t2) represent the two-dimensional spatially
continuous rainfall field and Ym(i, Jj) its discrete local
. average value at relative scale m and location (7, j). The
correspondence of relative scale m to physical scale in
kilometers is given in Table 1. The smallest scale of 4x4
km (m=0) corresponds to the resolution of the radar
rainfall observations and the largest scale of 64x64 km
(m=4) reflects our desire to have enough averaging cells
within the radar picture for a meaningful statistical
analysis at that scale. It also corresponds to the resolu-
tion at which a current numerical mesoscale model can
comfortably provide rainfall averages (which we seek to
disaggregate). Note from Table 1 that the increase in
physical scale is dyadic for convenience in implementing
discrete multiscale algorithms.

The discrete field X, (4, j) is “filtered” through four
two-dimensional orthogonal filters (®, ¥, ¥5, and ¥3),
called the scaling and directional wavelet filters, respec-
tively (see Kumar and Foufoula-Georgiou [1993a, b] and
Perica and Foufoula-Georgiou [1996]). This operation
produces an average field X p,41(n, k) at the next higher
scale (m+1) and three directional “fluctuation” fields at
that same higher scale {X,, ., ;(n, k)}i=1,23. The in-
dices (z,j) define spatial position at scale m, while the
indices (n, k) define spatial position at the next higher
scale (m+1), as illustrated in Figure 1. The three “fluc-
tuation” fields capture high frequencies in the vertical,
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Figure 1. Schematic showing discretization on a two-
dimensional grid at relative scales m and (m+1). Open
circles define spatial positions at scale m and solid cir-
cles define spatial positions at next higher scale (m+1).

horizontal, and diagonal directions in the frequency do-
main and thus can be seen as capturing “edges” in the
vertical, horizontal, and diagonal directions (i=1,2,3,
respectively) in the physical domain.

Let us fix ideas by considering the first scale of de-
composition from relative scale m=0 (here 4x4 km, the
radar data resolution) to the next higher (dyadic) scale
(here 8x8 km). Introducing indices (¢, j) to define spa-
tial position at scale m=0 and (n,k) to define spatial
position at scale m=1 (see Figure 1), the average pro-
cess Xo(i,7) = Xo(4,7) at the initial scale of 4x4 km
is decomposed to X1(n, k) the average field at the next
higher scale of 8x8 km, and {X{ ;(n, k)}i=1,2,3 the three
directional fluctuation components at the same higher
scale. If a Haar wavelet is chosen for the decomposition
[see Kumar and Foufoula-Georgiou [1993a] and Perica
and Foufoula-Georgiou, 1996}, the average process at
scale m=1 is computed as '

X(n, k) = }-1[70(1',1') +Xo(i, 1)
4+ Xo(#+1, ) + Xo(+1, j+1)], (1)

and the three fluctuation components as

X} 1(n, ) = 3 {[Xo(i, ) + Xoli, #41)]

~o(6#1,3) + ToiHL, 74} ()
X, k) = ${[Ko(i, 1) + Ko(t1, )]
| = [Xo(i, 741) + Xo(+1, j+1)]} (3)

o, k) = Ao 3) = Ra(i1, )
—[Xo(5,41) — Xo(i+1, 54D} (4)

As can be seen from the above equations, rainfall fluc-
tuations admit an easy interpretation: they can be
seen as discrete representations of 9Xo/0t;, 60X, /0ty
and aZ'Xo/atlatz (where position indices have been
dropped for convenience). Therefore they correspond
to a scheme widely used for defining gradients of two-
dimensional processes. At the same time, X is exactly
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equal to the two-dimensional average of the rainfall pro-
cess from the previous scale. This procedure is repeated
on the process X, to obtain the average process X,
and three directional rainfall luctuations {X gy,-},-=1’2,3
at the relative scale m=2, and so on.

On the basis of the analysis of several storms from
the PRE-STORM data set it was found [Perica and
Foufoula-Georgiou, 1996] that rainfall fluctuations, when
standardized by the corresponding-scale rainfall aver-
ages, that is,

X! [ Xm
gm,i = { 0 m"/

consistently exhibit Gaussianity and statistical simple-
scaling behavior within the range of scales considered (4
to 64 km). This results in a statistical representation of
the standardized rainfall fluctuations which, in general,
consists of six parameters: standard deviations o, ; at
scale 1 (here at scale 8x8 km) and scale invariant expo-
nents H;, for each of the three directional components
(+=1,2,3). Parameters o, relate to the variability of
the standardized rainfall fluctuations at relative scale
m=1 and parameters H; dictate how the variability of
standardized rainfall fluctuations changes over scales,
through equation

if Xm>0

if X, =0, ()

Om,i = 2(m—1DH; o1, m>1 (6)
resulting from the simple scaling condition (see Perica
and Foufoula-Georgiou [1996] for more details and for
interpretation of these parameters).

To explore whether the proposed scaling parameteri-
zation for standardized rainfall fluctuations depends on
the storm type, Perica and Foufoula-Georgiou [1996]
classified the PRE-STORM data sets as either strati-
form or convective, based on the dominant precipita-
tion mechanisms. Among convective events, a further
distinction was made between linear systems (squall
lines) and all other systems that do not exhibit a linear
structure, termed chaotic [Blanchard, 1990]. First, we
found that scaling of standardized rainfall fluctuations
was present over the same range of scales (8 to 64 km),
independent of storm type. Second, we found that for
~ stratiform systems the estimated H; values were in the
range of 0.14-0.18, and the estimated oy ; values were
in the range of 0.44-0.53. For convective systems, the
H; values were higher (approximately 0.20-0.45) and
the 01 ,; values were lower (in the range of 0.15 to 0.50).
Among convective systems, we could not clearly distin-
guish differences in the parameters of chaotic and linear
systems. The scaling parameters were found to be more
dependent on the severity of the storm rather than on
the specific storm type; severe storms had higher H; and
smaller oy ; estimates. In most cases, directional differ-
ences among parameters were insignificant and parame-
terization was approximated by only two parameters: H
and o,. However, for some linear convective systems the
directional differences were too significant to be ignored.
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For more details the reader is referred to the original
publication of Perica and Foufoula-Georgiou [1996].

The hypothesis set forward by Perica and Foufoula-
Georgiou [1996] was that the parameterization of stan-
dardized rainfall fluctuations, being dependent on the
storm intensity, might be related to parameters describ-
ing physical characteristics of the storm environment.
The validity of this hypothesis was tested using 17 PRE-
STORM data sets for which simultaneous radar scans
and radiosonde soundings were available. Linear regres-
sion analysis was used to quantify relations between the
scaling parameters H and o3 and a number of ther-
modynamic and kinematic parameters describing the
prestorm environment. The best correlations were ob-
tained with a single thermodynamic parameter, the con-
vective available potential energy (CAPE):

H = 0.0516 + 0.9646(CAPE x 10~%) (7

o1 = 0.5390 — 0.8526(CAPE x 107%) (8)

having correlation coefficients R=0.82 and R=-0.73, re-
spectively. In the above equations, CAPE is in square
meters per square second, and H and oy are dimen-
sionless. The average potential temperature and the
mixing ratio in the lowest 50 mbar were used to define
the characteristics of the surface parcel used in comput-
ing the CAPE values. The scattergram of CAPE and H
with the indicated regression line is shown in Figure 2a,
and of CAPE and o, in Figure 2b. These relationships
are seen as applicable to midlatitude mesoscale convec-
tive systems and for values of CAPE between 1000 and
3000 m?/s2. They are explored in this research for the
purpose of developing subgrid-scale rainfall parameteri-
zation models, that is, models that can resolve the rain-
fall variability at scales smaller than those resolved by
a mesoscale numerical weather prediction model (typi-
cally 30 to 60 km).

3. Model Development

3.1. Theoretical Basis

The theoretical basis of the proposed subgrid-scale
disaggregation model lies on the findings summarized in
section 2 (see also Perica and Foufoula-Georgiou [1996],
for more details), namely, the Gaussianity and simple
scaling of standardized rainfall fluctuations (equation
(6)) and the predictive relationships between scaling pa-
rameters H and o; and CAPE (equations (7) and (8)).
The Haar wavelet transform is a perfect reconstruction
filter; that is, given the rainfall average process X,
at scale m and the corresponding fluctuation processes
{X7,iYi=1,2,3 at the same scale, the rainfall process at
the next lower scale (m-1) can be reconstructed exactly
via the inverse Haar wavelet transform. So, given the
rainfall average process at a large (coarse) scale (say at
32x32 km) and the rainfall fluctuations at that and all
finer scales (32x32, 16x16, and 8x8 km), one would
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Figure 2. Scattergrams with indicated regression lines and correlation coefficients (a) for the
convective available potential energy (CAPE) and H and (b) for CAPE and o;.

be able to reconstruct via the inverse wavelet trans-
form the rainfall process at the finest scale (here 4x4
km) or any intermediate scale. Of course, if the rain-
fall fluctuation fields are not given exactly but rather
statistically (here parameterized via statistical simple
scaling of their standardized values) then a statistical
reconstruction of rainfall at any desired fine scale can be
obtained. This is exactly the idea behind our proposed
model. :

The model requires as input a large-scale rainfall av-
erage process, say rainfall averages on 32x32 or 64x64
km grids, and also CAPE values from the prestorm envi-
ronment. Both of these inputs are envisioned to be pro-
vided by the output of a mesoscale numerical weather
prediction model. Then, based on an inverse wavelet
procedure and on the statistical scaling and predictive
relationships established for mesoscale convective sys-
tems (equations (6), (7), and (8)), rainfall intensities at
any desired scale (say 16x16 km, 8x8 km, or 4x4 km)
can be computed recursively (through inverse wavelet
transform), from large to small scales. Section 3.2 gives
a step-by-step procedure of the model implementation.

3.2. Implementétion Procedure

The following procedure explains how one can imple-
ment the proposed model for rainfall disaggregation at
subgrid scales. The flow chart of the procedure is given
in Figure 3. '

Step 1: Imitialization. The model is initialized
with large-scale average rainfall intensities (e.g., av-
erages over 32x32 or 64x64 km; relative scale index
m=M) and soundings from which representative CAPE
values (i.e., values which would reasonably represent the
average level of convective instability in the prestorm
environment) can be estimated. For computational effi-
ciency, initial-scale rainfall averages should be given for

( START )

Initialization at scale m
Xm, CAPE

Model parameter estimation
H = fi(CAPE)
g1 = fz(CAPE)

Generation of standardized fluctuations
&mi (1=1,2,3) at scale m

€m,i ~ N(O, Om = 2(m_l)HUl)

Estimation of rainfall fluctuations
X,i (i=1,2,3) at scale m

X:n,i = Em,iym

Reconstruction of rainfall
Xm-1 at scale (m-1)

Is reconstruction
needed at finer scale?

Figure 3. Flow chart for the disaggregation procedure.
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NxN boxes where N= 2 (7 > 0). If necessary, empty
boxes can be ﬁlled with zeros to satisfy this condition.
Step 2: Parameter estimation. The model pa-
rameters H and o; are estimated from the previously
established predictive equations with CAPE (here equa-
tions (7) and (8) for midlatitude convective systems).
Step 3: Generation of standardized fluctua-
tions. Three NxN spatially independent truncated
(between -1 and 1) Gaussian fields with zero mean and
standard deviation o, = 2(m=DH 5 are used for the

generation of the standardized fluctuations {& i }i=1,2,3.

Truncation is used to accommodate the fact that fluctu-
ations obtained from a nonnegative field, such as rain-
fall, via the Haar wavelet transform are always smaller
or, at most, equal to the corresponding average field.
Since by definition standardized fluctuations are ratios
between fluctuations and average rainfall, they have to
be distributed between [-1,1]. This restriction might
present a problem only in cases of ¢, > 0.5 - 0.6,
because in these cases a mass greater than =~ 5 — 7%
of the Gaussian distribution N(0, 0,,) will fall out-
side [-1,1]. For our midlatitude mesoscale systems the
model-predicted o, values exceeded the value of 0.6
only slightly for scales of 64x64 km and small values
of CAPE (see Figure 11 — dashed lines). Based on this
alone, it is suggested that the proposed disaggregation
model is initiated at scales smaller than 64x64 km and,
preferably, at scales 32x32 km.

- Step 4: Estimation of rainfall fluctuations.
Rainfall fluctuations { Xy, ; }i=1,2,3 are obtained as prod-
ucts of the generated standardized fluctuations fm,
and correspondmg rainfall averages X, (i.e., Xl mi =
€m,i Xm). Notice that this operation results in zero
fluctuations for all boxes that have estimated zero av-
erage rainfall.

Step 5: Reconstruction of rainfall. To recon-
struct a rainfall field at the next finer scale (m-1), an
inverse wavelet transform is used to “add” generated
fluctuations X, ; to the corresponding averages Xm
The algorithm for reconstructing rainfall is based on the
two-dimensional inverse wavelet algorithm developed by
Mallat [1989). 1t is illustrated by a block diagram shown
in Figure 4 and described in the following six steps: (1)
A column of zeros is added between each two columns of
Xm and {X/, ;}i=1,2,3. (2) Each row is convolved with
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Figure 4. Two-dimensional inverse wavelet transform
: Y Y !
for reconstruction of X,,_; from X,, and {Xm’,-}izl,z,;;.

a one-dimensional filter ¢ or v, as indicated in Figure 4.
The filters used for the inverse Haar wavelet transform
are given in Figure 5. (3)The resulting filtered fields are
summed as indicated in Figure 4: the filtered ﬁeld Xom
with X[, , and the filtered field X;, ; with X7, 5. (4)
A row of zeros is added between each of the two result—
ing fields. (5) Each column of both resulting fields is
convolved with either filter ¢ or 1, as indicated in the
block diagram. (6) Both filtered fields are summed to
reconstruct the rainfall field at scale (m-1). The size of
the reconstructed field at scale (m-1) is 22 times larger
the size of the rainfall field at relative scale m. If the
reconstruction of rainfall is needed at a finer scale, the
current scale (m-1) becomes a scale with relative index
m, and steps 3 to b are repeated. This procedure may
be repeated as many times as necessary. A schemati-
cal presentation of the rainfall reconstruction procedure
over m scales is given in Figure 6.

Using this algorithm, it is possible to reconstruct a
rainfall field which includes negative rainfall intensities.
Theoretically, rainfall intensities generated with a two-
dimensional inverse Haar wavelet transform might have

w(t)

0.5

(b)

0 2 ¢

Figure 5. Filters (a) ¢ and (b) v used for the inverse Haar wavelet transform.
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Figure 6. Schematic showing rainfall reconstruction procedure.

negative magnitudes of up to twice the order of magni-
tude of the corresponding average rainfall intensity from
the previous scale. However, the probability of generat-
ing a significant number of significantly lower than zero
rainfall intensities is very small (it corresponds to the
probability of simultaneous generation of three Gaus-
sian numbers from the tails of their distribution). Thus,
in our simulations the very small number of generated
negative rainfall intensities was set to zero after careful
checking of their magnitudes and position.

3.3. Intermittency Preservation Via Threshold-
ing

The importance of fractional wetting in determining
the response of a hydrologic system was demonstrated
by Johnson et al. [1990]. Generally, the fraction of
area covered with rain is a function of the scale at
which rainfall is represented; as scale decreases that
fraction also decreases, and vice versa (see also Ku-
mar and Foufoula-Georgiou [1994]). Commonly, it is
assumed (e.g., in GCMs) that the fraction of area cov-
ered with rain changes exponentially over scales. It is
- represented through an empirically defined parameter
ranging between zero and one. As mentioned earlier,
the inverse wavelet transform permits exact reconstruc-
tion of the rainfall process and its intermittency at any
scale if all three fluctuation components were known
exactly at the scale at which we started reconstruction
and at all intermediate scales up to one scale larger than
the scale of interest. However, rainfall fluctuations are
not known exactly but rather are generated in the way
described in section 3.2. Thus there is no a priori con-
dition in the wavelet methodology that could guaran-
tee intermittency reconstruction. However, we found
that when simple thresholding on the reconstructed av-

erage field is performed, the model performs remarkably
well in reconstructing rainy and nonrainy areas. This
threshold value can be seen as an additional parameter
of the proposed disaggregation model which can be es-
timated empirically. For example, for our data sets we
estimated this parameter by investigating model perfor-
mance with several threshold values 7= 0.1, 0.25, 0.5,
0.75, and 1.0 mm/h applied at every scale. Figure 7
shows the fraction of area covered by rain as a func-
tion of scale for all these thresholds and for the 0300
UTC, June 27, 1985, PRE-STORM data set. Based
on similar analysis of several other PRE-STORM data
sets, an optimal threshold value of 7=0.25 mm/h was
empirically estimated and is recommended for subgrid
scale disaggregation of midlatitude convective systems.

0.8 —
0.7}
0.6
o5t threshold (mm/h)
-5 - . -
g zso\
& - \M
0.31 0.75 e N
0.2 1-"%
0.1 4
0 - - ~
64x64 32x32 16x16 8x8 4x4
scale (kmxkm)

Figure 7. The 0300 UTC, June 27, 1985, data set.
Reconstruction of fractional coverage of rain for differ-
ent threshold values used in the reconstruction process.
The dashed line is computed from the original data set.
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In our simulations, the mass of rainfall lost in threshold-
ing, although generally insignificant, was redistributed
to othér nonzero rainfall intensities generated from the
same average rainfall fiom the previous scale to preserve
the average rainfall inside each box. This redistribu-
tion was done proportionally to the generated rainfall
amounts in each box.

4. Model Performance Evaluation

4.1. Criteria for Evaluation

To quantify the agreement between the observed and
tlie modeled (disaggregated) fields, two general classes
of criteria were used: (1) statistical measures and (2)
pattern comparison. Since this is a statistical model and
statistical variation of the output results is expected, we
ran the disaggregation model 100 times (i.e., produced
100 disaggregated fields from the same initial conditions
and parameters) and compared the results of both a
single simulation and the ensemble of simulations to
the “true” fields at all dyadic scales from 32x32 km up
to 4x4 km (relative scales m=3,2,1,0) (see Table 1).

1. Statistical agreement was based on statistical
properties of (1) the rainfall field X, at relative scale
m with zero intensities included and (2) the strictly
nonzero rainfall field R,,,. It is reminded that X, refers
to the average rainfall intensities over the grid boxes
corresponding to scale m; saine applies for R,,. Statis-
tical properties of these average values over the domain
of the radar umbrella is what we use in the sequel for
model evaluation. Specifically, the following statistical

properties were considered: mean, Xm = E[X]; con-
ditional mean; Ry = E[Xm|Xm > 0] = E[Rn); vari-
ance, 02 = = o2[X,n] = E[X 2] E?[X ); conditional
variance, 0% = = o?[Ry) = E[Rm] — E2[R,); condi-
tional nonexceedance probability, F(r) = Pr(ﬁm‘< r);

and conditional spatial correlation. Conditional spa-
tial correlation represents standardized covariance cal-
culated with the assumption that the rainfall field is
second-order stationary (that is, covariance is indepen-
dent of the location, but it does depend on the distance

Table 1. Range of Scales Used in This Study, Their
Relative Indices, and the Slze of the Available Data Sets
at Each Scale

Physical Relative - Size of the
Scale Scale Data Set

(km xkm) m
4x4 0 128x128
8x8 1 64x64
16x186 2 32x32
32x32 3 16x16
64x64 4 8x8
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and orientation). Notice that statistical comparison,
based on conditional moments only, depends to a cer-
tain extent on the degree of the approximation of the
fraction of the area covered with rain. For example,
a valuable feature of the Haar wavelet transform is an
exact preservation of the unconditional average rainfall
intensities at all scales; not only is the average rain-
fall preserved over the whole domain of interest but
it is also preserved locally inside each box from one
scale to the next smaller scale. However, if the size
of the wetted area in the model is significantly under-
estimated or overestimated, the average value of the
modeled nonzero rainfall field could significantly differ
from the original (true) averagé value. In addition to
the aforementioned statistics, scattergrams of modeled
veérsus observed values (sorted in ascending order) were
displayed relative to the 1:1 line of perfect corréspon-
dence. Sorting was done to compare the magnitudes
of observed and modeled intensities regardless of their
positions.

2. The pattern comparison was based on: a visual
comparison of observed and modeled images, a spatial
“figure of merit” measure, and a comparison of the size
of the wetted area for observed and simulated fields.

“look and see” approach, i.e., a visual comparison
of observed and modeled images, is a good first step,
and a very efficient one in determining if the modeled
rainfall fields look realistic. The “figure of merit” in-
dex was suggested, for example, by Klug et al. [1992]
for the analysis of spatial patterns. This dimensionless
indéx is defined as the area of the intersection of the
observed and predicted areas, divided by the union of
these two areas. It has a theoretical range of 0.0 (for no
agreement) to 1.0 (for perfect agreement).

4.2. Results of Model Performance Evaluation:
A Case Study

The 0300 UTC, June 27 data set from a long-lived (>
16 hours) mesoscale convective system (MCS) that pro-
duced heavy rainfall was selected for model performance
evaluation. This MCS was one of the most extensively
studied events in our previous analysis that explored
relations between scaling parameterization and quan-
tities describing the prestorm environment (see Perica
and Foufoula-Georgiou [1996] for more details). There
were three reasons for selecting this storm: (1) because
of the slow movement of this MCS the precipitation was
within the range of Kansas and Oklahoma radars for al-
most its entire life cycle, (2) the areal coverage of the
event was large enough to be used in scaling analysis
for more than 10 hours, and (3) stability indices calcu-
lated from sounding stations located within the western
and central portions of the PRE-STORM network did
not exhibit significant differences, so we could estimate
representative (average) values of the indices with more
confidence. Finally, at 0300 UTC the storm, now in
its mature-to-dissipating stage, had a well- formed hier-
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Table 2: Statistical Moment Estimates for Observed (O) and Modeled (M; and Mjge For One Simulation and
100 Simulations, Respectively) Rainfall Fields at All Analyzed Scales

Statistical Moment

Scale (kmxkm)

64 x64

Estimates 32x32 16x16 8x8 4x4
X, mm/h (0) 1.84 1.84 1.84 1.84 1.84
(M) 1.84 1.84 1.84 1.84
(M100) 1.84 1.84 1.84 1.84
0%, mm/h (0) 3.11 3.83 4.93 5.70 6.59
(M,) 3.94 4.71 5.64 6.51
_ (M100) 3.81 (0.21) 4.62 (0.26) 5.48 (0.29) 6.39 (0.34)
R, mm/h (0) 3.02 3.96 4.93 5.93 6.97
(M,) 4.40 5.13 5.74 6.34
(M10o) 4.36 (0.13) 5.01 (0.17) 5.63 (0.18) 6.21 (0.20)
o mm/h (0) 3.51 4.83 7.07 8.96 11.30
(M) 5.42 6.67 8.92 11.20
(M100) 4.85 (0.39) 6.51 (0.52) 8.41 (0.63) 10.50 (0.78)

The 0300 UTC, June 27, 1985, data set. For the 100 simulations the average moment values and their standard
deviations (number in parentheses) are given. Note that the unconditional mean X is exactly preserved at all

scales by model construction.

archical pattern that we wanted to test how well the
model could mimic.

The model input parameters were rainfall average in-
tensities at the 64x64 km scale (obtained by aggregat-
ing the 4x4 km Oklahoma radar rainfall intensities)
and a CAPE value of 1584 m?/s?> measured at 0300

UTC at the Henryetta (HET) station located approx-
imately 10 km ahead of the storm convection region.
The developed model was used to produce (simulate)
disaggregated rainfall fields at all intermediate scales,
ie., 32x32, 16x16, 8x8, and 4x4 km. Model perfor-
mance evaluation, by comparing single-simulation runs

32x32km 16x16 km
F@) — F(r)
08 ’ 0.8
(/
osf | o8}
! ]
0.4t/ 0.4t/
/ 1
0.2} 02
% 10 20 30 @ ®
0 20 40 60
7 (mm/h) r (mm/h)
8x8 km 4x4 km
F(r) Fr)
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
o (©) o (d)
0 20 40 60 80 0 50 100 150
r (mm/h) r (mm/h)

Figure 8. The 0300 UTC, June 27, 1985, data set.

line), given at all scales of reconstruction.

Conditional nonexceedance probability
curves (see text for definition) of observed data set (solid line) and simulated data set (dashed
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Figure 9. The 0300 UTC, June 27, 1985, data set. Scattergrams of simulated versus origi-
nal rainfall intensities sorted in ascending order, relative to the “perfect correspondence” line.
Intensities (in millimeters per hour) are compared for scales 32x32 up to 4x4 km, respectively.

and an ensemble of simulations to the “true” fields, was
done at all analyzed scales. Table 2 lists the statistical
moment estimates for the observed and modeled fields
at all four scales. For the modeled field we list two types
of moment estimates: from one specific simulation and
the average values and standard deviations of moment
estimates from 100 simulations. As can be seen from the
table, the modeled statistical measures are comparable
with those observed throughout -all scales. Moreover,
there is virtually no difference in the moment estimates
obtained from one run and those obtained from the av-
erage of estimates of 100 runs (also evidenced from the
small standard deviation of these estimates).

The conditional nonexceedance probabilities of the
observed and predicted fields are shown in Figures 8a-
8d. In each figure, the true rain rate distribution func-
tion is given by the solid line and the simulated rain
rate distribution function by the dashed line. As shown
in the figure, the model does a very good job of repro-
ducing the observed conditional rainfall probabilities;
there is very little difference in the estimated and ob-
served curves.

A similar type of model-accuracy testing was per-
formed by comparing scattergrams of measured intensi-
ties with those of one particular simulation. Intensities
were sorted in ascending order, and as shown in Figure
9, the paired intensities produced an almost perfect line
with unit slope passing through the origin. There was
only a slight deviation from that line at high rain rates,

which is the result of the overestimation of the high-
est rainfall intensity at the 32x32 km scale that was
transmitted down to finer scales.

Figure 10 shows the spatial correlation structure of
simulated and observed rainfall fields. Despite the gen-
erally good agreement it seems that there exists a con-
stant tendency for the autocorrelation of the simulated
fields to decrease more rapidly than that of the observed
fields. The reason is that the simulated small-scale rain-
fall field does not usually achieve the “connectivity” (a
measure of the relative positions of zero and nonzero
rainfall intensities, i.e., holes) of the actual rainfall field.
Further improvements of the algorithm (implemented
after submission of this paper) suggest that the preser-
vation of the autocorrelation function in the simulated
fields can be significantly improved by repositioning the
simulated rainfall intensities obtained inside each box
from a previous scale using a simple connectivity rule
applied to their neighbors.

The spatial rainfall patterns also compare relatively
well, as shown in Plate 1. Plate 1a represents the aver-
age rainfall field at 64x64 km with which we initialized
our simulation. As can be seen from Plate 1, there
is good agreement in the rain patterns of the simu-
lated and original field at all scales. The “figure of
merit” measure over all four scales is given in Table
3 for one simulation and for 100 simulations (average
and standard deviation). As can be seen from the ta-
ble, the agreement between simulated and measured
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Figure 10. The 0300 UTC, June 27, 1985, data set. (a)-(d) Spatial correlation structure in
the original rainfall field and its aggregates; (e)—(h) spatial correlation structure in the simulated
fields, at scales 32x32 up to 4x4 km, respectively.

fields is better at larger scales. At the smallest analyzed
scale, an exact match of points with nonzero rainfall in-
tensities occurs in about 50% of the points, although
from the visual-image comparison the overlapping area
looks much larger. An example of the performance of
the model in reconstructing intermittency for different
thresholds is given in Figure 7. Here the fractional cov-
erage of rain is plotted versus scale for simulations with
different thresholds, together with the curve computed
directly from the data set. Similar results are given in
tabular form in Table 4. As mentioned in section 3.3,
the threshold value of 0.25 mm/h was found to be opti-
mal in the analysis of most data sets, so it was retained
for all simulations.

5. Sensitivity Analysis
5.1. Objectives

A sensitivity analysis of the model was performed to
test the effects of uncertainty in the estimated CAPE
values, directional differences in the scaling parameteri-
zation, and the effects of possible further model simplifi-
cations. Specifically, the following tests were performed:

Sensitivity to CAPE. We examined the response
of the aforementioned measures of the model perfor-
mance to uncertainties in the CAPE values. CAPE
values were varied in the range of approximately + 20%
of the measured (observed) values. For several selected
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Plate 1. The 0300 UTC, June 27, 1985, data set. The left column shows images of the original
rainfall field, and the right column shows images of the simulated rainfall fields over the range of

scales analyzed.
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Table 3. The “Figure of Merit” Measure Over Scales
Calculated From One Simulation and From the Average
of 100 Simulations

Scale “Figure of Merit” Measure
(kmxkm) One Simulation 100 Simulations
32x32 0.73 0.74 (0.02)
16x16 0.65 0.66 (0.02)
8x8 0.55 0.57 (0.02)
4x4 0.48 0.49 (0.02)

The 0300 UTC, June 27, 1985, data set. For the
100 simulations the average moment values and their
standard deviations (numbers in parentheses) are given.

CAPE values, the average value and standard devia-
tion of each performance measure obtained from the
100 simulations were calculated and compared to those
of the original rainfall field.

Sensitivity to directionality. Here we examined
the effects of ignoring directional differences in the
scaling parameterization. The model was initialized
with (1) estimates of the directional parameters H; and
o1, (1 = 1,2,3) obtained from the original data set
via a wavelet transform and (2) their average values
H = Z?=1 H;/3, o1 = E?:l 01,i/3. The simulated
fields in each case were compared to the original rain-
fall fields.

Further reduction in parameterization. The
possibility of further simplifying the model to just need-
ing one parameter H (instead of H and o), derived
from the obtained relation with CAPE, was investi-
gated. Parameter o,, (m > 1) is a scale-dependent pa-
rameter. In other words, the eventual relations found to
exist between o,, and CAPE are scale-dependent too.
Our analysis has shown that in general the variabil-
ity of standardized fluctuations described through the
parameter o, increases as we go from finer to coarser
scales. Parameter oy (here at scale 8x8 km) was found
to be linked to CAPE with a significant correlation co-
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efficient (R=-0.73). However, as we go to coarser scales,
o estimates are less and less dependent on CAPE. Fi-
nally, at the 64x64 km scale, the standard deviation
of standardized fluctuations o4 is almost independent
of CAPE (R=-0.25), and is approximately constant. In
other words, the variability of standardized fluctuations
grows as we go to larger scales, and at the same time, it
becomes less and less dependent on the storm intensity
and type. This is illustrated in Figure 11. If the results
of the model are not overly sensitive to the scale of vari-
ability of the standardized fluctuations that the model is
initiated with, then we could assume that the only sta-
tistical parameter that has to be estimated from CAPE
using equation (7) is the scale-invariant parameter H.
Instead of estimating oy from the obtained regression
equation with CAPE, we can initialize our model with
a constant o4 value, here 04=0.58 at scale of 64x64 km
(see Figure 11) independently of storm type or intensity
for the midwestern MCS considered in this study. This

- would be a desirable simplification in practical applica-

tions. The results of the sensitivity analysis for a case
study are presented below.

5.2. Results From a Case Study

The 0300 UTC, June 27, 1985, data set, which was
used to evaluate model performance in the previous sec-
tion, was also used to report the results of the sensitivity
analysis of the model. All results displayed in the ta-
bles that follow are results obtained from 100 runs of
the model with the same set of initial parameters. ‘

First, we tested model sensitivity to uncertainty in
estimating the CAPE value. A representative CAPE
value from the HET sounding site taken at 0300 UTC
time was estimated to be 1584 m?/s?. Several CAPE
values were then selected from the interval 1300-1900
m?/s?, as shown in Table 5. For each CAPE value, the
statistical parameters H and oy were estimated using
regression equations (7) and (8). The model was then
run 100 times for each selected CAPE value. Average
values and standard deviations of the obtained model
performance measures are given in Table 5. The ta-
ble shows that in general the statistical measures of the

Table 4. Fractions of Rainy Areas For the Original and Reconstructed Rainfall Fields as a Function of the

Threshold Value 7 Used in the Simulation

Scale Observed Modeled Fraction With 7 (mm/h)

(km xkm) Fraction 0.10 0.25 0.50 0.75 1.00
64x64 0.61
32x32 0.46 0.46 (0.01) 0.42 (0.01) 0.38 (0.01)  0.34 (0.01) 0.31 (0.01)
16x16 0.37 0.41 (0.01) 0.37 (0.01) 0.32 (0.01) 0.28 (0.01) 0.25 (0.01)
8x8 0.31 0.37 (0.01) 0.33 (0.01) 0.28 (0.01) 0.24 (0.01) 0.22 (0.01)
4x4 0.26 0.34 (0.01) 0.30 (0.01) 0.25 (0.01) 0.21 (0.01) 0.19 (0.01)

The 0300 UTC, June 27, 1985, data set. Values reported are average values from 100 simulation runs and
numbers in parentheses indicate the standard deviations of the estimates.
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Figure 11. Scattergrams of o versus CAPE at scales m = 1,2,3,4. Dashed lines represent
values calculated from g, = 2m=DHg, where H and my arﬁ_eqtlmatﬁ(Lfrnm eanations (T) and ___
(8) as functions of CAPE. Solid lines represent linear regression lines between o, and CAPE;
associated correlation coefficients are also indicated in the figures.
Table 5. Model Sensitivity to Potential Errors (Due to Uncertainty) in CAPE Estimates
Model Performance Measures ‘
CAPE H o Xo T%0 Ro ORo Fraction of  “Figure of
(m?/s?) (mm/h) (mm/h) (mm/h) (mm/h) Rainy Area Merit”
- For Measured Field ,
1.84 6.59 6.97 11.30 0.26
‘ _ For Simulated Field -
1300 0.18 0.43 1.84 6.47 (0.35)  6.47 (0.22)  10.91 (0.79) 0.28 (0.01)  0.48 (0.02)
1400 0.19 042  1.84  644(0.35) 6.41(0.22) 10.83(0.78)  0.28 (0.01)  0.48 (0.02)
1500 0.20 0.41 1.84 6. 44 (0.35) 6.40 (0.21) 10.67 (0.78) 0.29 (0.01)  0.48 (0.02)
1584 0.20 0.40 1.84 1 6.39 (0.34)  6.21(0.20) 10.54 (0.78) 0.30 (0.01)  0.49 (0.02)
1600 0.21 0.40 1.84 6.38 (0.34)  6.15(0.20)  10.53 (0.77) 0.30 (0.01)  0.49 (0.02)
1700 0.22 0.39 1.84 6.36 (0.34)  6.12(0.20)  10.48 (0.76) 0.30 (0.01)  0.49 (0.02)
1800 023 039  1.84  6.34(0.34) 5.98(0.20) 10.39(0.75)  0.31(0.01)  0.49 (0.02)
1900 024 0.38 1.84 6.28 (0.34)  5.94 (0.20)  10.29 (0.75) 0.31 (0.01)  0.50 (0.02)
_Maximum Relative Error (%) _ ;
20.00 7.50 0.00 1.72 4.40 3.56 3.40 2.03

The 0300 UTC June 27, 1985, data set. Results are given for the 4x4 km scale where, in general, relative
errors are the highest. CAPE=1584 m?/s? is the value estimated from the HET sounding site. Values reported
are averages over 100 simulations. The values in parentheses indicate the standard deviations of the estimates.
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Table 6. Model Performance Measures Obtained From 100 Simulation Runs With All Slx Parameéters (6P) and

With Two Parameters Only Representlng Their Average Values (2P)

PERICA AND FOUFOULA-GEORGIOU: DOWNSCALING OF RAINFALL

Model Performance Number of Scale (kmxkm)
Measure Parameters 32x32 16x16 8x8 4x4

X, mm/h (6P) 1.84 1.84 1.84 1.84
(2p) 1.84 1.84 1.84 1.84

0%, mm/h (6P) 3.78 (0.18) 4.52 (0.22) 5.24 (0.26) 5.96 (0.30)
(2P) 3.80 (0.19) 4.54 (0.22) 5.28 (0.26) 6.01 (0.29)

R, mm/h (6P) 4.30 (0.12) 4.85 (0.15) 5.33 (0.16) 5.71 (0.16)
(2P) 4.30 (0.11) 4.86 (0.14) 5.35 (0.15) 5.73 (0.16)

oz, mm/h (6P) 4.79 (0.33) 6.27 (0.43) 7.83 (0.53) 9.41 (0.64)
(2P 4.82 (0.35) 6.31 (0.43) 7.91 (0.53) 9.50 (0.63)

Fraction of rainy area (6P) 0.43 (0.01) 0.37 (0.01) 0.34 (0.01) 0.32 (0.01)
(2P) 0.43 (0.01) 0.38 (0.01) 0.34 (0.01) 0.32 (0.01)

“Figure of merit” (6P) 0.75 (0.02) 0.67 (0.02) 0.59 (0.02) 0.51 (0.02)
(2P) 0.74 (0.02) 0.66 (0.02) 0.58 (0.02) 0.51 (0.02)

The 0300 UTC, June 27, 1985, data set.
estimates.

model performance are not very sensitive to small per-
turbations in CAPE values; a 20% range in CAPE gives
rise to less than 10% error in the statistical measures of
the simulated rainfall fields. As can be seen from the
table, the results obtained for the fractional coverage
and “figure of merit” measure are also very robust to
variations in the CAPE values.

- To test if model performance can be improved when
directional differences in the scaling parameters are not
igriored, the model was initialized with a set of “true”
(instead of estimated from CAPE) scaling parameters.
These parameters were obtained from the scaling anal-

Numbers in parentheses indicate the standard deviations of the

ysis of the standardized rainfall fluctuations of the ob-
served rainfall field: H; = 0.247,H; = 0.258, and
Hz = 0.246;01,1 = 0.368,012 = 0.325, and 013 =
0.283. The results were compared to those obtained
when the model was initialized with just two parame-
ters representing their average values: H = 0.250 and
o1 = 0.325. The results are presented in Table 6. The
differences between these two simulations are insignif-
icant, suggesting that the scaling parameterization of
the model can be approximated with just two parame-
ters at least for systems that have no significant linear
structure. For systems with pronounced directionality

Table 7. Comparison of Results Obtained When the Model Was Initialized With Two Parameters (2P) or Just

One Scaling Parameter (1P)

Model Performance Number of Scale (kmxkm)
Measure Parameters 32x32 16x16 8x8 4x4
X, mm/h (2p) 1.84 1.84 1.84 1.84
(1P) 1.84 1.84 1.84 1.84
0%, mm/h (2P) 3.81 (0.21) 4.62 (0.26) 5.48 (0.29) 6.39 (0.34)
_ (1P) 3.79 (0.20) 4.56 (0.24) 5.37 (0.29) 6.22 (0.34)
R, mm/h (2P). 4.36 (0.13) 5.01 (0.17) 5.63 (0.18) 6.21 (0.20)
(1P) 4.32 (0.12) 4.94 (0.15) 5.52 (0.17) 6.04 (0.19)
0g, mm/h (2P) 4.85 (0.39) 6.51 (0.52) 8.41 (0.63) 10.50 (0.78)
(1p) 4.81 (0.37) 6.38 (0.48) 8.14 (0.60) 10.10 (0.75)
Fraction of rainy area (2P) 0.42 (0.01) 0.37 (0.01) 0.33 (0.01) 0.30 (0.01)
(1p) 0.43 (0.01) 0.37 (0.01) 0.33 (0.01) 0.30 (0.01)
“Figure of merit” (2P) 0.74 (0.02) 0.66 (0.02) 0.57 (0.02) 0.49 (0.02)
(1P) 0.74 (0.02) 0.66 (0.02) -0.58 (0.02) 0.50 (0.02)

The 0300 UTC, June 27, 1985, data set.

estimates.

Numbers in parentheses indicate the standard deviations of the
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this approximation might not be appropriate and needs
further assessment.

To investigate the effect of further possible model
simplification (based on the assumption that the sta-
tistical variability of standardized rainfall fluctuations
at the large scale is constant and independent of the
storm intensity or type), 100 additional simulations
were produced with parameters o4 = 0.58, and H de-
fined from the regression equation with CAPE (equa-
tion (7)). With this assumption the scaling variability
at any scale m = 3,2, 1 can be derived from the follow-
ing expression:

Om = g x 2M=DH = (58 x 9(m=DH (9)
The obtained results are compared in Table 7 with the
simulation results with both scaling parameters esti-
mated from CAPE. Our conclusion is that there is no
significant difference in model performance measures in
these two cases, suggesting possible model simplifica-
tion.

6. Conclusions

The simulation of spatial rainfall at scales in the
range of 2x2 to 30x30 km is a major challenge to at-
mospheric modelers. Rainfall at these scales exhibits
considerable spatial heterogeneity. This heterogeneity
is of great interest for many hydrologic applications and
is usually unresolved by physically based mesoscale me-
teorological models.

We have developed a model which has the ability
to statistically reproduce rainfall variability at small
scales. Our model is conditioned on large-scale rainfall
averages and the physical characteristics of the rainfall
event represented through the convective available po-
tential energy (CAPE). This model is intended to be
coupled with a mesoscale weather prediction model for
the purpose of subgrid-scale parameterization of rain-
fall.

The ability of the model to reproduce small-scale
rainfall variability was validated by comparing sum-
mary statistics and spatial pattern measures of simu-
lated fields with those of the known rainfall fields ob-
served during the PRE-STORM experiment. By the
properties of the Haar wavelet transform, the first mo-
ment of rainfall is explicitly preserved at all scales.
Other statistical measures and the spatial patterns them-
selves compared very well with the corresponding sta-
tistical properties and spatial patterns of the original
fields. One of the most notable features of this model is
its ability to reconstruct the fraction of the area covered
with rain at all subgrid scales by means of one pretty
robust threshold parameter.

All the results presented in this paper are based on
a single event analysis and as such constitute only a
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limited performance evaluation of the proposed model.
To fully assess the model performance, a study based
on several storms and different storm types is planned
in the future.

Acknowledgments. The authors gratefully acknowl-
edge the help of Professor James A. Smith and his group
at Princeton University in obtaining the PRE-STORM data
used in this study. They also gratefully acknowledge the sup-
port of NSF (grant EAR-9117866), NOAA (grant NA46GP
0486), and NASA (grant NAG 5-2108 and a graduate Global
Change Fellowship awarded to the first author). Super-
computer resources were kindly provided by the Minnesota
SuperComputer Institute. The helpful comments of three
anonymous reviewers were greatly appreciated.

References

Blanchard, D. O., Mesoscale convective patterns of the
southern High Plains, Bull. Am. Meteorol. Soc., 71(7),
994-1005, 1990.

Cunning, J. B., The Oklahoma-Kansas Preliminary Re-
gional Experiment for STORM-Central, Bull. Am. Me-
teorol. Soc., 67(12), 1478-1486, 1986.

Johnson, K. D., D. Entekhabi, and P. S. Eagleson, The im-
plementation and validation of improved landsurface hy-
drology in an atmospheric general circulation model, Rep.
344, Ralph M. Parsons Lab., Mass. Inst. of Technol.,
Cambridge, 1991.

Klug, W., G. Graziani, G. Grippa, D. Pierce, and C. Tas-
sone, Evaluation of long term atmospheric transport mod-
els using environmental radioactivity data from the Cher-
nobyl accident, The ATMES Report, Elsevier, New York,
1992.

Kumar P., and E. Foufoula-Georgiou, A multicomponent
decomposition of spatial rainfall fields, 1. Segregation of
large- and small-scale features using wavelet transforms,
Water Resour. Res., 29(8), 2515-2532, 1993a.

Kumar P.; and E. Foufoula-Georgiou, A multicomponent
decomposition of spatial rainfall fields, 2. Self-similarity
in fluctuations, Water Resour. Res., 29(8), 2533-2544,
1993b.

Kumar, P., and E. Foufoula-Georgiou, Characterizing mul-
tiscale variability of zero intermittency in spatial rainfall,
J. Appl. Meteorol., 83(12), 1516-1526, 1994.

Mallat, S. G., A theory for multiresolution signal decompo-
sition: The wavelet representation, IEEE Trans. Pattern
Anal. Mach. Intel., 11(7), 674-693, 1989.

Perica, S., and E. Foufoula-Georgiou, Linkage of scaling and
thermodynamic parameters of rainfall: Results from mid-
latitude mesoscale convective systems, J. Geophys. Res.,
101, 7431-7448, 1996.

Thomas, G., and A. Henderson-Sellers, An evaluation of
proposed representations of subgrid hydrologic processes
in climate models, J. Clim., 4, 898-910, 1991.

E. Foufoula-Georgiou, St. Anthony Falls Laboratory, De-
partment of Civil Engineering, University of Minnesota,

- Mississippi River at 3rd Ave. SE, Minneapolis, MN 55414

S. Perica, NOAA /NWS/Hydrologic Research Laboratory,
1325 East-West Highway, Silver Spring, MD 20910

(Received November 1, 1995; revised May S, 1996;
accepted May 30, 1996.)



