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Abstract. In this paper we explore the possibility of establishing predictive
relationships between statistical characteristics of rainfall at the mesoscale (approx-
imately 102 to 10* km?) and representative meteorological parameters of the storm
environment. To increase the usefulness of these relationships and, in particular, to
explore their use in subgrid-scale rainfall parameterization, special attention is given
to statistical characteristics of rainfall that are scale invariant, i.e., are constant at
least within a significant range of scales. The main contributions of this paper are
the following: (1) we establish the presence of statistical (simple) scaling in “stan-
dardized rainfall fluctuations” (derived from rainfall intensities via an orthogonal
wavelet transform and normalization by local means) and (2) we establish empirical
connections between statistical and physical storm characteristics by quantifying
relations between the scaling parameters and kinematic and thermodynamic indices
of the prestorm environment. The data used for this analysis are rainfall events
and corresponding soundings observed during the PRE-STORM experiment (May
and June 1985) over Oklahoma and Kansas. The developed relationships are ap-
plicable to midlatitude mesoscale convective systems, which are the major rainfall
producers over most of the Global Energy and Water Cycle Experiment (GEWEX)
Continental International Project (GCIP) region, and are envisioned to play a key
role in disaggregating rainfall (predicted by mesoscale numerical models) to subgrid

scales for runoff prediction and other hydrologic applications.

1. Introduction

A problem of continuous interest in rainfall research
is that of relating statistical parameterizations to phys-
ical properties of rainfall for the purpose of gaining bet-
ter understanding of the physics responsible for the ob-
served rainfall structure and providing the ability to at-
tach physical meaning and interpretation to statistical
parameters of rain.

Initial attempts to address this problem were based
on introducing continuous time-space conceptual mod-
els of rain, e.g., the temporal Neyman-Scott models
le.g., Rodriguez-Iturbe et al., 1984] and the WGR spa-
tiotemporal model [Waymire et al., 1984]. The basic
idea behind these conceptual models was the desire to
mimic the observed clustering in time and hierarchi-
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cal organization in space of rainfall fields [e.g., Austin
and Houze, 1972]. These models were heavily overpa-
rameterized (e.g., the WGR model has 14 parameters)
and were obviously plagued with problems of parame-
ter estimation from limited discrete rainfall data. The
parameters of these models, although estimated from
statistical properties of rainfall, were intended to have
physical meaning simply by model construction, e.g.,
rate of arrival of storms, velocity of rain cells, etc. How-
ever, the inability to directly validate this hypothesis as
well as questions of lack of robustness of parameter esti-
mates from rainfall observations at different scales (e.g.,
see Foufoula-Georgiou and Guttorp [1987] for an exam-
ple in temporal rainfall models) contributed to aban-
doning this route of trying to relate physical and statis-
tical characteristics of rain.

Over the past decade, evidence for the presence of
scaling in spatial rainfall has been presented by several
researchers. It is beyond the scope of this article to
review the literature on rainfall scaling models, so the
reader is referred to Foufoula-Georgiou and Krajewsk:
[1995] for a review of pertinent articles during the period
of 1991 to 1994. Brief summaries of developments prior
to 1991 can be found in the articles by Tessier et al.
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[1993] and Gupta and Waymire [1993]. The presence
of scaling (simple or multiscaling) implies that small-
and large-scale statistical properties of the field are re-
lated to each other by a scale-changing operator involv-
ing only the scale ratio (absence of characteristic scale).
Scaling models of rain provide attractive parsimonious
representations over a wide range of scales and because
of their concise parameterization offer a unique oppor-
tunity for a fresh look into the problem of relating phys-
ical and statistical characteristics of rain. The research
described in this paper focuses on this issue and seeks
to study empirical relationships between scale invariant
statistical parameters of rainfall and physical parame-
ters describing the storm environment.

The approach we follow to study scale invariant re-
lationships of spatial rainfall builds on the work of Ku-
mar and Foufoula-Georgiou [1993a]. In that work,
spatial rainfall was decomposed in large-scale averages
and “multiscale rainfall fluctuations” using orthogonal
wavelet transforms. These multiscale rainfall fluctua-
tions (wavelet coefficients) were found to exhibit scaling
over a significant range of scales for two storm events
(a heavy intensity squall line storm and a moderate in-
tensity winter storm) over Norman, Oklahoma [Kumar
and Foufoula-Georgiou, 1993b]. The scaling parameters
were found to depend on the type of the storm system
suggesting that they might be usefully related to phys-
ical quantities describing the storm environment. This
observation provided the impetus for the present work,
where we further explore this hypothesis and seek to
establish quantitative relationships. The data used for
our analysis are radar rainfall and rawinsonde observa-
tions from several storms over Oklahoma and Kansas
during the PRE-STORM experiment in May and June
1985.

Establishing predictive relationships between statisti-
cal and physical characteristics of rainfall is not only of
scientific interest but also has important practical appli-
cations. One such application is to subgrid-scale param-
eterization of spatial rainfall (see for example, discus-
sion in the concluding remarks of Kumar and Foufoula-
Georgiou [1993b]). This application is implicit in the
present research and is used in the next section to moti-
vate the significance of multiscale rainfall fluctuations,
since it is these “derived” rainfall quantities and not
rainfall intensities themselves that are used in our devel-
opments. Namely, this work sets forth and extensively
tests two main hypotheses: (1) that “standardized rain-
fall fluctuations” (to be defined in section 2) exhibit
simple scaling over the mesoscale and (2) that the scal-
ing parameters of “standardized rainfall fluctuations”
relate to kinematic and thermodynamic descriptors of
the storm environment.

This paper is structured as follows: In section 2 we
define “rainfall fluctuations,” first at an intuitive level
and then at a more rigorous level. Section 3 presents
the data used to test the two hypotheses and establishes
the scaling of “standardized rainfall fluctuations” for
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midlatitude mesoscale systems. In section 4, predictive
relationships between the scaling parameters and the
convective available potential energy (CAPE), which
is a descriptor of convective instability, are established
for midlatitude mesoscale convective systems. Finally,
some concluding remarks are made in section 5.

2. Definition of Multiscale Rainfall
Fluctuations

2.1. Intuitive Explanation and Significance

The precipitation output of numerical models (meso-
scale weather prediction models or global circulation
models) is usually interpreted as an average rainfall over
the grid cell of the model. Since rainfall exhibits con-
siderable heterogeneity, this average value is necessarily
much lower compared to precipitation values over much
smaller scales, e.g., over grid cells of 4x4 km (the resolu-
tion of the radar measurements). For runoff production
over the numerical model grid cells or for subgrid-scale
interpretation of climate model results it is necessary to
redistribute the single large-scale average rainfall value
over smaller subgrid cells, i.e., recreate or simulate the
small-scale rainfall variability given its large-scale av-
erage. Before one is ready to provide solutions to this
problem (that is, go from large to small scales), it is im-
perative to extensively study and understand the rain-
fall variability as a function of scale, i.e., study how the
statistical properties of rainfall change as one averages
over larger and larger scales (i.e., going from small to
larger scales).

Consider for simplicity a one-dimensional process or
function {z1,zy,...,zn}, which can be thought of as
representing the sampling of a continuous process X (t)
at the original scale or at relative scale A = 1 (scale
index m = 0; A = 2™). What happens when we start
aggregating this process to larger and larger scales? Ob-
viously, by taking averages to go to the next larger scale,
some information is thrown away. Only if this informa-
tion is kept would one be able to reconstruct the small-
scale original process from the process at the next larger
scale. To fix ideas, let us consider only eight values of
the aforementioned process, i.e., {21, z3, ..., xs} at scale
A = 1. At the next level of aggregation we average two
consecutive nonoverlapping values of the process and we
end up with four average values instead of eight original
values (relative scale A = 2,m = 1) (see Figure 1). In
doing this averaging, we threw away some information
and we can never get back the original values {z1, ..., zs}
from the average values {(x1 + 22)/2,..., (z7 + z5)/2}
unless some additional information, for example, the
differences of consecutive nonoverlapping values at the -
original scale {(z1—22)/2, ..., (z7—xg)/2}, is also kept.
Going to larger and larger scales (until in this example
we exhaust our data), we can see from Figure 1 that
if one was given the large-scale average value at rela-
tive scale A = 8 (X3) and the differences at that scale



PERICA AND FOUFOULA-GEORGIOU: LINKING RAIN SCALING AND CAPE

7433

Z1 T3 T3 T4 Ts Te T7 Tg, A=1 m=20
Y
Xo = 70
zjtxy r3tr4 2T3+Te ZTrtrg Z1—%y 2T3—T4 T5—Te ZT7—ITg
2 2 2 2 2 2 2 2 A=2 m=1
N ) N ) :
Y Y
X, X1
x1+x21—z3+x4 x5+x51—x7+xg z1+zy—(z3+24) Ts+ze—(T7+2s) A=4 m=2
\ ) N 4 4 J
Y
X, X}
) +To+z3+ratrstret+r7+Ts8 T1+zo+z3+rs—(Ts+Te+T7+Ts)
N 8 ) o 8 5 A=38 m=3
Y Y
X X3

Figure 1. Schematic showing the concept of fluctuations using the Haar wavelet for a discrete
one-dimensional process. Relative scales A and scale indices m (A = 2™) are also indicated in the

figure.

and two previous scales (i.e., X5, X5, and X1{), then one
could reconstruct the original process Xy and the pro-
cess at any intermediate scale. Note that in a stochastic
framework, one would only need a statistical description
of these differences at all relevant scales (i.e., stochastic
models for X, X5, and X§) and not their exact val-
ues. For any such application a parsimonious statisti-
cal description of these differences at all scales (which
can be achieved only if scale invariant relationships are
present) would be highly desirable (but not necessary).

The physical interpretation of these differences at a
particular scale is that they represent “local fluctua-
tions” around means at the next larger scale. From
the above discussion it is seen that these “local fluc-
tuations” at several scales of interest (called hereafter
“multiscale local fluctuations”) are important quanti-
ties to characterize in a natural process, especially if
reconstruction of the small-scale variability from large-
scale averages is needed. There are several added ad-
vantages in working with these multiscale local fluctua-
tions. First, they are stationary even if the original pro-
cess has a steplike trend (first-order differences remove
a constant level effect; higher-order differences can be
constructed to remove higher-order trends in the orig-
inal signal). Second, they are local, with a locality re-
gion that depends on the scale at which the process is
viewed. Third, they represent the minimal incremental
information one would need to move from one scale to
the next smaller scale and thus are very relevant quan-

tities for subgrid-scale parameterization. It is for these
reasons that in this paper we concentrate on statistical
characterization of multiscale rainfall fluctuations and
their linkage with environmental parameters of rain.
In the one-dimensional example presented earlier, the
rainfall process at scale A was obtained by applying a
box filter ¢, of width A and height 1/X (Figure 2a) to
the original signal. The filter was moved along the sig-
nal to cover all observations in a nonoverlapping fash-
ion. Corresponding differences at scale A were obtained
by applying another filter 1) to the original process
(Figure 2b) that has the same width as the averaging
filter, but its integral is zero. This filter was also moved
over nonoverlapping positions at each scale. The pro-
cedure was repeated at all scales A of interest. Note
that (1) these filters have a finite support which varies
with scale, and filters at all scales are obtained by dila-
tion of the unique filters ¢ and 1 at the original scale;
(2) the averaging filters ¢, and the differencing filters
1 are complementary to each other, because whatever
information is lost by applying ¢ on the process is
captured by applying ¥ on it; and (3) there is a con-
sistency across scales since one will arrive at the same
decomposition regardless of the scale at which filtering
was initiated. In this example (Figure 2) the choice
of the averaging and differencing filters result in the
Haar wavelet transform of a process. Generalization of
these filters to smoother filters, e.g., Gaussian, or fil-
ters in two or higher dimensions is possible and can be
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Figure 2. (a) Scaling function ¢, (t) and (b) wavelet 1 (t) for a Haar wavelet transform.

efficiently and rigorously achieved within a multiresolu-
tion orthogonal wavelet decomposition framework. In
fact, the simple filter of Figure 2b is the so-called Haar
wavelet in one dimension.

Such a general multiscale analysis framework for spa-
tial rainfall was presented by Kumar and Foufoula-
Georgiou [1993a]. Below, we briefly define the two-
dimensional multiscale rainfall fluctuations within the
wavelet analysis framework as these fluctuations play an
important role in our further developments. The reader
is referred to Kumar and Foufoula-Georgiou [1993a] for
more details.

2.2. Definition Via Wavelets

Having in mind the example decomposition of Figure
1 let us extend the discussion to a continuous stochastic
process X(t). We obtain versions of the process X(t)
at larger scales A by applying two filters to the original
process: the filter ¢, ,(t) for “averaging” and the filter
¥ ,u(t) for “differencing.” These filters can be obtained

by dilation and translation of a single function ¢(¢) and

¥(t), respectively, as

¢>\,u(t) = (1)

Prat) = (50 @)
where A is a scale and u is a location parameter. The
function ¢(t) is called the scaling function and satisfies
[22_ #(t)dt = 1; 4(t) is called the wavelet function and
satisfies ffooo ¥(t)dt = 0. The weights 1/ are chosen
such that f éx,u(t) dt is preserved at all scales. “Aver-
ages” or “generalized averages” of X(t) at a particular
scale A are obtained by an integral transform of X(t)
with ¢ 4 (t); that is,

Xa(u) = /_Oo X(t)px,u(t) dt (3)

and “differences” or “generalized differences” are ob-
tained by another integral transform of X(¢) with the
wavelet function ) ,(t); that is,.

[ele]
X4 (u) = / X (t).u(t) dt. (4)
— 00
X! (u) is called the wavelet transform of X(t) at scale
X and location u. It is also called here the “local fluc-
tuation” or “detail” process, compared to the process
X x(uw), which is called the “local average” process at
scale A and location u. Locality comes from the finite
support of the filters @y 4(t) and ¥y u(t).
Note that in the previous example (Figure 2) the scal-
ing and wavelet functions (at scale A = 1) were

o) = {

1 0<t<1
0 otherwise,

(5)

1 0<t<?
Y(t)=4 -1 3<t<1 (6)
0 otherwise

which result in the Haar wavelet transform of a pro-
cess. Construction of scale functions and wavelets other
than the above is possible, e.g., the Daubechies wavelets
which can be found in the work of Daubechies [1992].

For implementation of the wavelet transform on a
sampled process X(t), that is, a sequence of numbers
{zn},c 7, the scale and location parameters can be dis-
cretized, giving rise to discrete wavelet transforms. For
orthogonal wavelets, selection of dyadic scales A = 2™
(i.e., 27™ samples per unit length) and location param-
eters as multiples of the sampling intervals u = n 2™ is
convenient. Thus the discrete wavelet (discrete in scale
and location but not in time) can be written as

Ymn(t) =27"9P(27™t — n) (7

and the corresponding scaling function as
Smn(t) =2""¢(27™t — n) (8)

where the parameter m corresponds to scale (A = 2™)
and the parameter n corresponds to location. The dis-
crete local average value at scale m and location n is
then given as

Xm(n) = {(X, bmn)}nez )
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and the discrete wavelet coefficient at the same scale
and location as

X} (n) = {(X, ¥mn) ez

where (f, g) denotes the inner product [ f(t)g(t)dt,
and g(t) denotes the complex conjugate of g(t).

The above results can easily be extended to a two-
dimensional process X(t1,t3) by applying the separa-
ble two-dimensional multiresolution framework [Mal-
lat, 1989]. In this framework the scaling function is
®(t1,t2) = H(t1)9(t2) and the three wavelet functions
are \I’I(tl,tz) = ¢(t1)¢(t2), ‘I’z(tl,tz) = w(t1)¢(t2), and
U3(ty,t2) = ¥(t1)¥(t2). In the discrete domain the dis-
crete scaling function is defined as

(10)

B k(1) = 272 B(2" ™t —n, 2 ™ to—k)  (n,k) € Z°

and similar expressions hold for the discrete wavelet
functions ¥} . (t), \Ilfn’n’k(t), and W3 . (t). Thus the
two-dimensional discrete local average value at scale m

and location (n, k) is given as

Xm(n, k) = {(X,@m,n,k)(n’k)ezz} (11)

and the three wavelet coefficients at the same scale and
location as
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X a(n k) = {(X, 9]

m,n,k

)(n,k)eZ’} (14)

These three wavelet coefficients are directional; that is,
they capture high frequencies of the process in the hori-
zontal (index 1), vertical (index 2), and diagonal (index
3) directions of the frequency domain. Note, for ex-
ample, that high frequencies in the horizontal direction
of the frequency domain correspond to vertical edges
in the original domain (i.e., high correlations in the
vertical spatial direction; see for example Kumar and
Foufoula-Georgiou [1993a] for more details). It is ex-
actly these three components of equations (12), (13),
and (14) that we extract from the spatial rainfall fields
and we call “multiscale rainfall fluctuations” in the hor-
izontal, vertical, and diagonal directions. In section 2.3
we give further interpretation to these components, and
later we explore their scale-invariance properties.

2.3. Further Interpretation

Let us simplify the notation of the above processes
by dropping the spatial location indices and referring
to them as the multiscale average process X,, and
the three multiscale fluctuation processes {X;nli}izl’zﬁ)
where m refers to scale (recall A = 2™). The origi-
nal process (m = 0) Xo = Xg is decomposed to the
processes X; and {X1;}i=1,2,3 (m = 1); then the pro-

cess X, to the processes X and {Xé,i}i:l’gg (m = 2)

Xrl‘n,l(T"’k) = {<X)\I’71n,n,k>(n,k)ezz} (12) (see Figure 3). If the two-dimensional Haar wavelets
) ) are used for the decomposition, the rainfall fluctuation
Xm,2(nl k) = {<X’\I’m,n,k>(n,k)ezz} (13) components admit an easy interpretation as gradients

Xo = Xo m=0

X1 {,1 1,2 {,3 m=1

(é11) (&1.,2) (61,3)
X, X2 2.2 X33 m =2
(€2,1) (§2.2) (€2,3)
X3 X31 X3, X33 m=3

(€31) (&3,2)

(é33)

Figure 3. Schematic showing rainfall decomposition. X,, represents the average process at

/

scale m, X/ .,
;

represents the ith fluctuation component (i = 1,2,3), and &y ; represents the

corresponding standardized fluctuation component (£, ; = X, ; /X m) at the same scale.
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of the rainfall field in the vertical, horizontal, and di-
agonal directions. Indeed, the Haar wavelet coefficients
are computed as

Ky, (k) = {Fom (i) + Kon i)

— [Xm(H17) + X (HL54+1D)]}  (15)

Xy p(mk) = H{Fon (i) + Ton(i41.9)]

— [Xm(ig+1) + Xm(H#1,541)]}  (16)
Kby a(nk) = X (i5) =~ X 641,
— [Xm(35+1) — X (L5411} (17)

Thus they can be interpreted as discrete represen-
tations of 0X,,/dt1, 0X ;m/0ts, and %X, /0t,0ts, re-
spectively, and as such they correspond to a scheme
widely used for defining gradients of two-dimensional
processes. The indices (7, j) define positions in ¢; and ¢,
directions at scale m; (n, k) are indices at scale (m+1).
Notice that the number of grid points at a particular
scale is reduced by a factor of 2 in each direction at the
next larger scale. The average process at scale (m+ 1),
X m1(n, k), is computed as the averages of the appro-
priate mean rainfall values at the previous scale

Tt (k) = (Xom (i) + X (i41.)

+ X (6741) + X (HLAD]. (18)

It is important to emphasize that the processes
{X,’n_i_l,i},-:l’g,g represent gradients of the previous-scale
average process and not averages of the previous-scale
gradient process; that is, as we increase scale, we smooth
the process and look at the gradients of the progres-
sively smoother process as opposed to forming the gra-
dient process at the initial scale and then smoothing (by
averaging) this gradient process over scales. In symbols,
if ®[X] denotes the application of the smoothing opera-
tor on the process X, and U[X] denotes the application
of the differencing operator on the same process, then
X!+, results from ¥[X,,] and not from ®[X/]. The
reason for emphasizing this distinction is to note that
simple scaling (to be discussed in section 3) of fluctua-
tions X/ ,; = ¥[X,,] does not in any way imply simple
scaling for either the original process Xy or the fluctu-
ation process X|.

3. Midlatitude Mesoscale Convective
Systems

3.1. Data Sources

The principal source of data used in this study is the
Oklahoma-Kansas Preliminary Regional Experiment for
Storm-Central (PRE-STORM) field program. The main
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purpose of this experiment was to investigate the struc-
ture and dynamics of mesoscale convective systems rang-
ing from multicell systems to mesoscale convective com-
plexes. A number of sensing systems were used to
collect the data. As part of the program, high den-
sity upper air soundings were taken at regular NWS
sites as well as at eleven supplemental PRE-STORM
sites. Soundings were released approximately every 3
hours and occasionally every 1.5 hours on selected op-
erational days. Locations of the radar and sounding
stations with their three-letter NSSL site identifiers are
shown in Figure 4. Digitized volume-scan reflectivity
data were available from Oklahoma and Kansas NWS
WSR-57 radar sites. Each site recorded volume-scan
radar data at each 2° radially with a gate spacing of
1 nm; volume scans were made at 2° increments up to
a maximum height of 22°. Six volume scans per hour
were possible (one scan every 10 min). See, for example,
Cunning [1986] for more details.

For the purpose of our analysis we needed rainfall in-
tensity data on the ground on rectangular grids. The
conversion of the two-dimensional surface reflectivity
fields to rainfall rates via appropriate Z-R relations and
further conversion of the rainfall intensities from polar
to rectangular grids, with horizontal grid increments of
approximately 4 km (4.03 km for Oklahoma and 4.11 for
Wichita), was done by the J.A. Smith group at Prince-
ton University. A few hundred radar rainfall scans were
collected during the 2-month PRE-STORM program,
covering a broad spectrum of structural characteristics
of rainfall events. To be able to perform a reasonably
reliable scaling analysis, we were forced to restrict our-
selves to radar scans for which rainfall events covered
relatively large areas so that we had enough data for at
least three to four spatial scales. Therefore our working
sample consisted of 47 selected radar scans. It must be
recognized that due to the above mentioned selection
process, our analysis and results are mostly applicable
to the mature and dissipating stages of storm devel-
opment, where the areal extent of the event is usually
much larger than during its formation stage.

3.2. Self-Similarity in Rainfall Fluctuations

On the basis of the analysis of a winter storm that
occurred on February 22, 1985, and a heavy squall line
storm which occurred on May 17, 1987, over Oklahoma,
Kumar and Foufoula-Georgiou [1993b] suggested that
rainfall fluctuations (as defined in section 2.2) may ex-
hibit simple-scaling behavior up to a scale of approxi-
mately 50 to 60 km.

Simple scaling (self-similarity) is established if the
finite-dimensional distribution functions of the process
(in this case of the three rainfall fluctuation components
{X;n,i}i=1,2,3) satisfy the following scaling condition:

(19)

. d
where H; are the scaling exponents and = stands for
equality in distribution.

(X5 2 {@™ )X ) i=1,2,3
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Figure 4. »
STORM) sounding network.

We tested simple-scaling properties of rainfall fluctu-
ations on 47 data sets from the PRE-STORM experi-
ment, selected as described in section 3.1. To establish
self-similarity in the sense of the above equation, the
marginal distribution functions of X7, ; at all scales m
for which self-similarity holds must be of the same type
for each of the three components (i = 1,2, 3). Based on
our working sample, it was found that the appropriate
probability density functions (pdfs) for all three compo-
nents at all studied scales, i.e., all { X}, Ym>1,i=1,2,3),
were symmetric, zero-median distributions with long
tails. Among several commonly used symmetric, finite-
moment distributions (Gaussian, t-distribution, etc.),

Oklahoma-Kansas Preliminary Regional Experiment for Storm-Central (PRE-

none were capable of capturing as much variability of
the empirical pdfs as stable distributions. Stable dis-
tributions, in general, are four-parameter distributions
S(z; @, B,8,¢c), where 0 < a < 2 is a characteristic ex-
ponent, —1 < B < 1 is a skewness or symmetry param-
eter, —oo < § < oo is a location parameter, and ¢ > 0

‘is a scale parameter. In the symmetric case (8 = 0)

this class includes the Cauchy (o = 1) and Gaussian
N(a = 2,p = 6,0% = 2¢?) distributions. The charac-
teristic function of the symmetric stable class is

p(€)|p=0 = exp(i6€ — |c€]¥).

Symmetric stable distributions provided an excellent

(20)
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Figure 5. The 1248 UTC May 13, 1985, data set. Comparison between the performance of
a Gaussian distribution A(z = 0.2,02 = 33.5) and an estimated symmetric stable distribution
S(a = 0.6,6 = 0,c = 0.32) for the fluctuation component Xj ;. (a) Cumulative distribution
functions and (b) in detail the right tails of the distributions. The solid line corresponds to the
empirical cdf, the dashed line to the Gaussian cdf, and the dotted line to the stable distribution.

fit for at least 90-95% of the body of the empirical dis-
tributions of X7, ;. As an illustrative example, Figure 5
shows the performance of the estimated symmetric sta-
ble distribution with zero mode (parameters @ = 0.6,
0 = 0, and ¢ = 0.32 were estimated by a method de-
veloped by Arad [1980]) and the estimated Gaussian
distribution N (g = 0.2, 02 = 33.5), for comparison, for
the fluctuation component X1 of the 1248 UTC May
13, 1985, data set. As is evident in this figure, the
symmetric stable distribution provides a very good vi-
sual fit. It captures very well the empirical distribution
from approximately the 5th to the 95th percentile but
not so well the tails of the distribution (it has thicker
tails compared to the empirical pdf, based here on 416
values). Note that the Gaussian distribution (or any
other finite-moment distribution) is not able to capture
well even the body of the empirical distribution. To fur-
ther test the appropriateness of the stable distribution,
some quantitative tests were applied. Since classical
goodness of fit tests are not reliable for infinite-moment
distributions (see Granger and Orr [1972] for discus-
sion), other “descriptive tests” were applied, such as the
“converging variance test” [Granger and Orr, 1972], the
“converging mean test” [Granger and Orr, 1972], and
the “tail test” [Mandelbrot, 1963]. Regularly, some of
these tests failed and some passed, making it difficult
to conclusively establish the stability of the X/, distri-
butions. o

Even in the cases where the estimated stable distri-
butions “passed” the above mentioned tests, the even-

tual simple-scaling nature of each fluctuation compo-
nent would be established only if the value of the pa-
rameter o was found to be the same for all scales m over
which self-similarity holds. However, it was found that
variations observed in the estimated characteristic ex-
ponents oy, ; over the available range of scales were too
significant to be ignored (Figures 6a, 6¢c, 6e). Moreover,
for symmetric stable distributions with zero mode, the
scaling condition (19) results in

Cm,i = 2(m_1)H.' c1i i = 1)2) 3 (21)

where ¢y, ; are the scale parameters for each fluctuation
component (i = 1,2, 3) at the range of scales m at which
self-similarity holds. Therefore power-law behavior of
the scale parameters with scale is needed to establish
the scaling nature of fluctuations, if it exists. However,
the scaling coefficients ¢y, ; did not follow power-law be-
havior over scales but rather changed almost randomly
(Figures 6b, 6d, 6f). Figure 6 illustrates a typical ex-
ample of the obtained results; similar results were ob-
tained for other radar scans of the same storm and other
storms.

3.3. Gaussianity and Self-Similarity of Stan-
dardized Fluctuations

Because of the properties of orthogonal wavelet trans-
forms, the scale coefficients representing the local mean
rainfall rates X,, and the corresponding wavelet coeffi-
cients representing rainfall fluctuations {X,, ;}i=1,23 at
the same scale m are uncorrelated. However, for rainfall
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Figure 6. The 1248 UTC May 13, 1985, data set.
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(a, ¢, and e) Estimated characteristic

exponents oy, ; with respect to scale m for the three fluctuation components X, ;, X}, ,, and
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3, respectively. The mean values @; are also indicated in the figures. (b, d, and f) Log-log

plots of the scale parameters c,, ; versus scale m for the same components. The values of the
scaling exponents H;, scale parameters c¢; ;, and coefficients of correlation R for each regression

line are also indicated in the figures.

fields a strong linear dependence between the absolute
values of fluctuations and the corresponding local means
was found to exist. Figures 7a and 7b show scatter-
grams of X{ ; versus X; and | X1 1] versus X, with the
regression lines and correlation coefficients (R = 0.05
and R = 0.81, respectively) for the 1248 UTC May 13,
1985, radar scan. The strong linear dependence of X,
and |X}, ;| indicates that when the local average rain-
fall rate is large, so is the gradient (in absolute value)
of the rainfall rate (see interpretation of rainfall fluc-
tuations in section 2). This observation prompted us
to look at the “standardized rainfall fluctuations” ob-
tained from rainfall fluctuations by dividing them by
their corresponding local means; that is,

/ .
Amyi
Xm
This standardization contributed to reducing the thick
tails of X/, ,, and it was found that the Gaussian dis-
tribution, or a stable distribution very close to it (i.e.,
characteristic exponents of estimated stable distribu-

tions oy, ; were regularly equal to 2 and never lower

gm,i = (22)

than 1.9), provided an excellent fit to the &, ; for the
majority of the data sets. Figure 8 provides a typi-
cal example of the performance of the Gaussian dis-
tribution for the standardized fluctuation components
{51,1'}2‘:1,2,3 at scale m = 1 for the 1248 UTC May 13,
1985, data set, used here as an illustrative example.
Similar results hold for the other scales and other radar
scans of the same storm and other storms. It seems
that owing to the fact that the mean rainfall intensities
themselves possess long tails and positive behavior, the
long tails observed in the fluctuations were reduced to
Gaussian tails after standardization.

The standardized fluctuations exhibited very good
simple scaling behavior for all analyzed data sets: the
coefficients «y, ; were practically constant over all tested
scales and regularly equal to 2, and log-log linearity of
cm,; versus m held quite well (correlation coefficients
were almost always greater than 0.9). Figure 9 shows
as an example the results of the scaling analysis for the
1248 UTC radar scan of the May 13 storm event. Scal-
ing was found present over the whole range of tested
scales, corresponding to grid increments of 8 to 64 km
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Figure 7. The 1248 UTC May 13, 1985, data set. (a) Plot of t_he rainfall fluctuation component
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Figure 9. Same as Figure 6 but for standardized fluctuations.

(limitations on the range of scales considered were due
to data availability). Similar results were found for all
other radar scans of this and other storms.

The fact that standardized fluctuations are described
by simple-scaling Gaussian distributions resulted in their
parameterization with six parameters, two for each fluc-
tuation component: {H;, c1i}i=1,2,3. (Note that the
parameters H; are scale invariant, while the parameters
c1 ; refer to the first scale m = 1 (here 8x8 km); param-
eters ¢, at other scales are obtained from c;; and H;
based on equation (21).) Another advantage of deal-
ing with standardized fluctuations, instead of dealing
with fluctuations themselves (which if found stable and
simple scaling would need nine parameters to be char-
acterized: {a;, H;,c1,i}i=1,2,3), is related to reduction
of bias in radar-rainfall estimates. It is well known that
the Z-R relations used for converting radar reflectivities
into rainfall intensity rates are subject to large uncer-
tainties. For testing purposes we used several relations
(or combinations of two different relations for stratiform
and convective portions of the event separately) to pro-
duce a wide range of rain rate estimates for the same
reflectivity fields. We found that the scaling parameter-
ization of fluctuations (overlooking for a moment that
simple scaling was not found present in most fluctua-
tions) was sensitive to the particular Z-R relationship
used. However, due to the strong relation between mean

rainfall intensities and corresponding fluctuations, their
ratios, representing standardized fluctuations &, ;, had
significantly reduced bias. Therefore inferences about
scaling and estimates of the scaling parameters were
rather insensitive to the Z-R relationship used.
Another important issue to be discussed here is the
choice of analyzing wavelet and the sensitivity of the
results to that choice. The Haar wavelet was chosen
in our analysis due to its simplicity and the appeal-
ing physical interpretation of the obtained wavelet co-
efficients as directional gradients of the rainfall fields.
Besides, as argued by Kumar and Foufoula-Georgiou
[1993a], it is probably adequate for rainfall description
since other authors [e.g., Barancourt et al., 1992], have
reported independently that intrinsic random functions
of zero order provide an adequate description of the
spatial mean behavior of rainfall. Despite these argu-
ments, we still proceeded with the application of other
smoother wavelets (i.e., the Daubechies [1992] wavelets
D4 and D6, which have two and three vanishing mo-
ments, respectively). These wavelets result in average
and fluctuation components which can be interpreted
as generalized rainfall averages and generalized rainfall
fluctuations, i.e., they use different weights for adja-
cent observations and typically involve more surround-
ing values since they have larger supports. We found
that the results, i.e., inferences about scaling in stan-
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dardized fluctuations and estimates of scaling parame-
ters, were not sensitive to the choice of wavelets. This
gives us more confidence to proceed with seeking in-
terpretations and connections of the scaling parameters
with physical parameters of the storm environment.

'3.4. Scaling Parameterization As Function of
the Type of the Storm System

One of the objectives of this study was to explore
whether the proposed scaling parameterization for stan-
dardized fluctuations depends on the storm type. For
this purpose we classified storm systems as either strat-
iform or convective, based on the dominant precipita-
tion mechanisms. Among convective systems, a distinc-
tion was made between linear (squall line) and all other
systems that do not exhibit linear structure, termed
chaotic [Blanchard, 1990]. First, we found that scaling
of standardized rainfall fluctuations was present over
the same range of scales (8 to 64 km), independent of
storm type. Second, we found that for stratiform sys-
tems the estimated H; values were in the range of 0.14-
0.18 and the estimated c;; values were in the range
of 0.3-0.4. For convective systems the H; values were
higher (approximately 0.2-0.45) and the c; ; values were
lower (in the range of 0.1 to 0.35). Among convective
systems, we could not clearly distinguish differences in
the parameters of chaotic and linear systems. The scal-
ing parameters were found to be more dependent on the
intensity of convective instability of the prestorm envi-
ronment than on the specific storm type (chaotic versus
linear convective); storms in areas of greater convec-
tive instability had higher H and smaller ¢ estimates.
The other important finding was that for linear systems,
which are highly anisotropic, the estimated parameters
were found to depend only slightly on direction. For
stratiform and chaotic convective systems these differ-
ences were almost insignificant, apart from a few cases
where estimates of Hz and ¢;,3 for the {3 component
deviated significantly from the parameter estimates for
&1 and €. These findings have significant implications
for a subgrid-scale parameterization model. They in-
dicate that (1) no distinction is needed between lin-
ear and chaotic storm types and (2) that the estimated
scaling parameters may be assumed to be the same in
all directions. These assumptions significantly improve
the parsimony of the model, as demonstrated by Perica
[1995].

The above statistical findings are physically inter-
pretable. For example, the slight directionality of the
scaling parameterization found in highly anisotropic lin-
ear convective systems is a direct result of the pro-
nounced anisotropy in rainfall intensities which (by tak-
ing differences of adjacent values and dividing by the
corresponding means) propagates only to a small de-
gree in the corresponding standardized rainfall gradi-
ents. Also, the lower values of ¢;; in convective sys-
tems, compared to those in stratiform systems, are di-
rectly related to the much lower rainfall gradients rela-
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tive to their corresponding averages, which in turn re-
sults in a small variability in standardized fluctuations.
More detailed interpretations are provided in section 4,
where quantitative measures of storm system environ-
ments are introduced and are connected to the scaling
parameterization.

4. Relation Between Scaling Parameters
and Parameters Describing the Storm
Environment

The hypothesis was set forward that the developed
parameterization, since it is scale invariant, might be
connected to physical characteristics of the storm. The
validity of this hypothesis is tested in this section using
a dense network of PRE-STORM rawinsonde stations,
coupled with regular NWS sites, which gave us an op-
portunity to estimate relevant environmental parame-
ters for storms for which radar data were also available.

The selection of soundings used to find representative
environmental characteristics was based on the location
of the sounding site with respect to the storm system.
Our intent was to establish a working sample that in-
cluded data sets for which a relatively synchronous col-
lection of radar rainfall intensities and soundings taken
at locations ahead of the storm system were available.
Soundings that appeared to be contaminated by convec-
tion or that were far ahead of the storm were excluded.
To address the environmental conditions supporting the
mesoscale convective events and to check them for pos-
sible relations with scaling parameterization, a num-
ber of parameters measuring atmospheric stability and
forcing were used. When more than one sounding was
available, parameters computed from selected individ-
ual soundings were averaged to produce representative
environmental characteristics. Computation of quan-
tities derived from the soundings was done by using
the General Meteorological Package (GEMPAK) [1992].
Since it is outside the scope of this paper to define all
those parameters, the reader is referred to the GEM-
PAK manual or other journal papers [e.g., Bluestein
and Jain, 1985; Houze et al., 1990] for their definition.
Measured surface pressure along with the average po-
tential temperature and mixing ratio in the lowest 50
mbar were used to define characteristics of the surface
parcel used in computing stability indices. In Table 1
we list all parameters employed in the analysis, along
with their units and symbols used further in the text.

On the basis of the above selection criteria our work-
ing sample for relating scaling parameters to storm en-
vironmental characteristics consisted of 17 data sets, or
approximately 30% of the total number of cases studied
for self-similarity. Table 2 lists the time of occurrence
of these events as well as identifiers for the locations
of the soundings used to produce the averaged param-
eters. Table 3 summarizes the calculated thermody-
namic and kinematic parameters used for establishing
relations with the statistical parameterization.
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Table 1. List of All Environmental Parameters Used in the Analysis Together

With Units and Symbols

Symbol Parameter Units
CAPE convective available potential energy m? s72
CIN convective inhibition m? s~2
CT " cross totals index °C

EL equilibrium level mbar

K index K index °C

LFC level of free convection mbar

LI lifted index °C

PW precipitable water mm

R bulk Richardson number (dimensionless)
So_25 wind shear magnitude in layer surface-2.5 km 10-3 ¢!
So5_6 wind shear magnitude in layer 2.5-6 km 10-3 57!
S? wind shear energy m? s™?2
Show Showalter index °C
SWEAT SWEAT index (dimensionless)
TT total totals index °C

VT vertical totals index °C

ug u component of the wind at surface ms~!

Vo v component of the wind at surface m s~ !
Ug—2.5 mean u component of the wind in layer surface-2.5 km m s™!
Vo—2.5 mean v component of the wind in layer surface-2.5 km ms™!

Regression analysis was used to quantify relations
between the environmental parameters in Table 3 and
the scaling parameters of spatial standardized rainfall
fluctuations. For most of the storm systems direction-

Table 2. Date and Time of Occurrence of Selected
Radar Scans

Event Date UTC Site Identification

1 May 13 1200 OKC

2 May 20 1930 SUL

3 May 20 2100 OKC

4 June 4 0900 END

5 June 4 2100 HET SUL

6 June 10 1800 OKC

7 June 11 0000 DDC PTT

8 June 11 0300 END

9. June 11 0430 HET OKC

10 June 11 0600 HET SUL

11 June 15 0600 END

12 June 22 0600 END FSB

13 June 26 2100 CSM END

14 June 26 2230 CSM CNU

15 June 27 0000 CNU FSB OKC
16 June 27 0130 FSB HET

17 June 27 0300 HET

The site identifications correspond to locations at
which soundings were used for calculating average en-
vironmental parameters.

ality was not pronounced; thus the relations between
environmental parameters and mean scaling parame-
ters H = Yoo, Hi/3 and @ = Y o_, c14/3 were ex-
amined. The best relations were obtained with the con-
vective available potential energy (CAPE) values:

H =0.0516+ 0.9646(CAPE x 107%)  (23)

€ = 0.3811 - 0.6029(CAPE x 107%)  (24)

with correlation coefficients of R = 0.82 and R = -0.73,
respectively. These relations imply that a single ther-
modynamic parameter is capable of explaining approx-
imately 60% of the variance of both scaling parameters
H and ¢,. The scattergram of CAPE and H with the
best fit least squares regression line is shown in Figure
10a, and that of CAPE and ¢ is shown in Figure 10b.

Another supportive relation was found between the
equilibrium level (EL) and H and ¢ (with R = -0.59
and R = 0.66, respectively). Correlation existed be-
tween the lifted index (LI) and H (R = -0.48). How-
ever, the correlation between LI and €, was low (R =
0.16). When two events from the May 20, 1985, storm
(1936 and 2100 UTC) were removed, good correlation
was obtained between the Showalter index (Show) and
H (R = -0.59). Without the 1200 UTC May 13 event,
the correlation coefficient between the precipitable wa-
ter (PW) and H was R = 0.67, and with ¢, it was R
= -0.53. The exclusion of these events was based solely
on improving the empirical linear relationships.

The nondimensional bulk Richardson number (Rj) is
a very popular parameter since it combines information
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Table 3. Averaged Values for Environmental Parameters Calculated From Soundings at Locations As Listed in

Table 2
Event
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Thermodynamic
CAPE(x10?) 24.8 10.3 10.2 18.6 21.4 14.3 14.4 20.8 23.4 21.2 19.0 19.1 16.0 12.6 14.7 19.7 15.8
CIN(x10) 10.2 1.0 2.1 11.7 0.211.2114 54 87 7.8 221 106 1.8 1.1 1.2 28 4.0
CT 28.9 29.0 27.4 26.1 23.8 18.9 26.0 23.8 23.6 24.2 24.6 259 19.5 21.1 22.1 22.6 23.2
EL(x10) 19.6 21.6 23.1 16.3 15.3 16.2 16.6 12.7 13.9 14.0 17.0 17.3 17.2 17.7 16.0 154 17.1
K index 25.2 43.3 33.7 41.8 34.4 285 41.0 43.9 36.3 28.5 35.7 453 37.5 359 37.1 352 30.6
LFC(x10) 69.3 83.7 69.0 75.9 78.1 69.2 68.7 80.6 75.3 78.6 72.9 70.5 787 845 84.2 78.6 78.0
LI -6.1 -5.3 44 -6.8 -5.3 -3.3 -6.1 -58 -b.3 -5.7 -7.1 -6.1 -2 -26 -3.7 -3.7 -34
PW 27.7 38.6 33.7 47.7 47.7 40.5 445 54.0 45.0 42.6 36.8 46.8 404 454 46.7 45.0 44.0
Show -7.8 -6.8 -5.1 -6.3 -35 -0.1 -64 43 -40 -40 -59 -63 0.1 -08 -19 -26 -2.7
TT 58.4 58.2 55.5 56.8 49.8 47.1 55.2 52.7 52.1 52.2 57.1 55.0 45.0 44.1 46.8 47.9 479
VT 29.5 29.2 28.1 30.7 26.0 28.2 29.2 28.9 28.6 28.0 325 29.1 25.3 23.0 24.8 25.3 24.6
Kinematic
So-25 34 65 56 73 56 52 95 56 53 6.2 38 52 39 46 49 39 29
Sos5-6 33 5.1 45 09 33 3.7 45 34 45 36 69 35 21 16 25 14 19
S? 21.1 66.3 62.4 22.2 24.2 53.5 95.0 42.9 44.1 33.1 653 494 14 144 58 4.6 14.6
ug -1.0 -0.9 -1.7 -3.0 0.0 -70 -6.1 -1.5 -0.9 03 -59 -1.0 1.0 08 21 -0.1 0.0
Vo 59 -0.3 4.7 -05 6.0 0.0 57 26 29 14 -10 28 6.8 84 0.8 05 0.0
Ug—2.5 58 0.1 57 35 5.7 -04 -32 47 83 103 14.1 6.1 50 6.8 55 52 4.2
Vo—2.5 13.8 83 35179122 79146103 75 94 45 71 28 82 7.1 6.1 4.7
Combined

Ri(x10) 11.7 16 16 84 88 2.7 15 4.8 53 6.4 29 3.9 99.8 8.7 253 425 109
SWEAT(x10) 48.7 41.6 35.2 46.7 33.6 19.7 42.2 32.2 30.7 31.4 44.8 38.8 234 25.8 25.5 24.3 238

from both thermodynamic and kinematic soundings.
However, variations in Ri¢ were too large for obtaining
good correlations. The value of R7 deviates significantly
for nonsevere systems: it can be extremely large when
vertical wind shear is small and CAPE large, or ex-
tremely small for the opposite case. Even when only
severe storms were used in the analysis, R: was found
to be only weakly correlated with H and ¢, (R ~ 0.3).
Among kinematic parameters, the only promising rela-
tion was found with ug-25 (R = 0.41 and R = -0.53,
respectively). Table 4 summarizes all obtained correla-
tion coefficients.

Multilinear regression analysis was also performed to
improve the correlation between scaling and environ-
mental parameters and to allow the incorporation of
directional relations for convective systems with signif-
icant anisotropy. However, none of the introduced pa-
rameters significantly improved the previously obtained
correlations with CAPE. Regarding directionality, since
the u and v components of the wind velocity are the
only “parameters” specifically linked to directions (¢,
and % in our case), they were an obvious choice for
deriving appropriate “directional” regression equations
for anisotropic convective systems. Again, no significant

improvement was achieved; correlation coefficients ob-
tained between each H; and ¢;; (¢ = 1,2,3) and CAPE
improved at most by a few percent when uy and vy or
ug_2.5 and vg_o 5 were included in the regressions. We
concluded therefore that CAPE alone is a good pre-
dictor of the scaling structure of standardized rainfall
fluctuations.

The positive correlations between CAPE and H and
negative correlations between CAPE and ¢; are explain-
able based on physical and statistical arguments. It is
known, for instance, that there exist positive correla-
tions among the maximum and mean rainfall rates and
the corresponding measures of convective energy [e.g.,
Zawadzki and Ro, 1978; Zawadzki et al., 1981]. In gen-
eral, high CAPE values coincide with high observed
rainfall intensities. It is also well known that there
exists a strong spatial dependence in observed rainfall
rates, i.e., high rainfall intensities are more likely to oc-
cur in the neighborhood of pixels with high intensity,
which implies relatively small gradients (fluctuations)
of the field. In general, this results in small variability
of the rainfall fluctuations and, since the fluctuations
are symmetric around zero mean, in small absolute val-
ues of the fluctuation processes X, ; relative to the vari-
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Figure 10. Scattergrams with indicated regression lines and correlation coefficients of (a) con-
vective available potential energy (CAPE) and H and (b) CAPE and ¢;.

ability of the corresponding averaged process X, at the
same scale. This difference is much more pronounced for
storms with high intensities than for the low-intensity
storms. For example, as is noticeable from Figure 7, the
rainfall intensities X; are about 10 times higher than
the rainfall gradients in the ¢; direction (i.e., Xi ;) for
the 1248 UTC May 13, 1985, radar scan. Having in
mind that the standardized fluctuations are defined as
the ratios between the fluctuations and the correspond-
ing average field ({, ; = X,’nz/ym) and that these fields
are highly dependent, the variability of the standardized
fluctuations at scale m = 1 described through param-
eters c1,; (and equivalently their average value ¢;) is
in general lower for higher-intensity storms. Therefore
since storms with high rainfall ratés have smaller ¢; es-
timates and higher CAPE estimates, it follows directly
that the correlation between CAPE and ¢; values is
negative. As we proceed with averaging of the rainfall
process at larger scales m > 1, the differences between
the average X,, and the gradients X}, ; at the same
scale decrease. Accordingly, that implies higher disper-
sion in the probability density functions of the standard-
ized fluctuations and higher ¢,, estimates. Differences
in ¢,, estimates between storms with different intensi-
ties become less and less noticeable as we go to larger
scales (notice that this also implies weaker correlation

between ¢, and CAPE for m > 1). The change of vari-
ability of the &,, ; distributions as scale increases is more
pronounced for highly convective storms. Equivalently,
the scaling exponents H; which explain the change in
variability of ¢m,i over scales (i.e., are the slopes of the
regression lines in the log-log diagrams of ¢, ; versus
m) as well as their average value H have higher values
for highly convective storms. Therefore the correlation
between CAPE and H is positive.

It is noteworthy to mention that apart from being
interesting in their own right, equations (23) and (24)
are envisioned to be useful in a predictive mode, i.e.,
predict H and ¢ based on values of CAPE. Since H
and ¢; together with a known large-scale average rain-
fall intensity permit (via inverse wavelet transform) to
reconstruct the variability of the rainfall process at any
desired small scale, these predictive equations can form
the basis of a physical-statistical subgrid-scale parame-
terization scheme [see Perica, 1995]. In that case, care
must be exercised as some additional conditions, not
explicit in those equations, must be satisfied. For ex-
ample, the above relations were based on 17 convective
events which did occur and for which the negative area
below the level of free convection was sufficiently small
so it could be overgrown. Therefore the convective in-
hibition (CIN) as a measure of that negative area had
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Table 4. Correlation Coefficients Between Environ-
mental and Scaling Parameters

Correlation Coefficient

Parameter H )
CAPE 0.82 -0.73
CIN 0.32 -0.10
CT 0.11 0.11
EL -0.59 0.66
K index 0.05 0.29
LFC 0.00 -0.12
LI -0.48 0.16
PW 0.29 ( 0.67) -0.30 (-0.54)
Show -0.28 (-0.59) -0.02 (1 0.24)
TT 0.20 0.14
VT 0.25 0.14
So-2.5 -0.21 0.30
Sa5-6 -0.04 0.09
S? -0.20 0.31
ug 0.14 -0.34
Vo -0.02 -0.03
Uo-25 0.41 -0.54
Vo-2.5 0.24 0.10
R -0.08 0.19
SWEAT 0.25 0.13

Numbers in parentheses represent improved coeffi-
clents when one or at most two of the 17 events were
considered “outliers” and removed.

a small value relative to CAPE in all analyzed cases.
This has to be the case for any storm for which equa-
tions (23) and (24) are to be applied in a predictive
mode.

4.1. Parameterization Over Time

The ability of the obtained predictive relationships,
between CAPE and H and between CAPE and ¢; to
predict the evolutionary statistical/scaling structure of
rainfall fields at a range of scales of interest (i.e., up
to 64x64 km) was investigated. The June 11, 1985,
storm was chosen to demonstrate the time evolution of
the scaling parameters H and &, and their relations to
CAPE, since it was the only storm event for which sev-
eral soundings, coinciding with radar scans appropriate
for our analysis, were available (see Table 2 and discus-
sion on data selection in section 3.1). During the period
of 0000 to 0600 UTC, 31 radar scans at approximately
10-min time intervals as well as four thermodynamic
soundings (at 0000, 0300, 0430, and 0600) from which
CAPE was estimated were available. We assumed that
between two consecutive soundings, CAPE changed lin-
early. For each radar scan, H and ¢, were estimated in
two ways: (1) directly from the rainfall data and (2)
using the measured CAPE values and the developed
predictive relationships. This provided a way of evalu-
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ating how well physical parameters of the storm envi-
ronment can predict the rainfall variability at a range of
scales of interest. As observed in Figure 11, showing a
typical example, the scaling parameters estimated from
the radar scans were very close to the predicted val-
ues and, often, within their 95% confidence intervals.
Also, as expected, positive trends in CAPE estimates
usually coincided with positive trends in H and with
negative trends in ¢;. The same holds true for the oppo-
site case of negative trends in CAPE. The greatest dis-
crepancy between estimated and predicted scaling pa-
rameters was observed between 0300 and 0430 UTC. In
that period, no information on CAPE was available, and
the CAPE values were linearly interpolated between the
two measurements at 0300 and 0430 UTC. However, as
can be seen from Figure 11, at approximately 0330 UTC
the H value achieved its maximum and the ¢; value its
minimum. If, according to the correlations obtained, we
assumed that the peak CAPE value happened approx-
imately at the same time, the prediction of the scaling
parameters would improve noticeably. This assumption
is supported by the observational data: the storm was
moving into the region in which CAPE=3374 m? s~2
was estimated from the HET sounding at 0300 UTC.
Based on these results, it seems that the relations be-
tween CAPE and H and between CAPE and %; hold
reasonably well during the life cycle of the mesoscale
convective system (in this example the tested period
corresponds to the mature stage of storm development).

5. Concluding Remarks

The main objective of this paper was to report our
findings on the long-standing problem of relating sta-
tistical with physical properties of rain. Along these
lines we first motivated the need to look for scale invari-
ant statistical descriptions of rainfall since these hold
greater promise to relate to the physics of the process
than scale dependent descriptions. Based on results of
our previous research [Kumar and Foufoula-Georgiou,
1993a, b], we decomposed rainfall into “multiscale av-
erages” and “multiscale fluctuations” and posed two
main hypotheses: (1) that standardized rainfall fluctua-
tions show scale invariance over the mesoscale (approx-
imately 10 to 10? km?) and (2) that the statistical pa-
rameterizations of these fluctuations relate to environ-
mental conditions of the prestorm environment. These
hypotheses were extensively tested using data from mid-
latitude mesoscale convective systems observed during
the PRE-STORM experiment (May and June 1985)
over Oklahoma and Kansas. It was found that ignoring
the directionality present in some systems, the stan-
dardized rainfall fluctuations can be parameterized by
a Gaussian distribution, a scale invariant parameter H,
and a scale dependent parameter ¢;. The parameter
¢1 relates to the variability of the standardized rainfall
fluctuations at the specified scale of 8x8 km and the
parameter H dictates how the variability changes over
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Figure 11. June 11, 1985, storm from 0000 to 0

600 UTC. (a) Time evolution of CAPE calculated

from representative soundings taken at 0000, 0300, 0430, and 0600 UTC; (b) asterisks represent

values of H estimated directly from 31 consecut

ive radar scans and circles connected with dotted

lines represent H predicted from the regression equation (23) and the corresponding values of
CAPE; and (c) same as for Figure 11b but for scaling parameter ¢,. Vertical lines around the

circles indicate the 95% confidence intervals.

scales, i.e., &, = 2m=UH G iy S 1 If strong direc-
tionality is present, then one has at most six parameters
{Hi, ¢1,i}i=1,2,3, two for each direction (horizontal, ver-
tical, and diagonal).

The parameters H and ¢, were found to depend
strongly on the convective instability of the prestorm
environment as measured by the convective available
potential energy (CAPE). The linear correlations of H
and ¢, with CAPE (based on 17 events for which ade-
quate radar rainfall and rawinsonde observations were
available) showed that CAPE explains almost 60% of
the variability in H and ¢, (R = 0.82 and -0.73, respec-
tively). These correlations were interpreted based on
physical reasoning.

To our knowledge such quantitative relationships be-
tween physical and statistical parameters of rainfall
have not been reported previously in the literature.
Some previous studies have found strong relationships
of maximum parcel energy with maximum rainfall in-
tensities [e.g., Zawadzki and Ro, 1978] and a recent
study by Over and Gupta [1994] has reported strong
dependence of a scale invariant parameter (the param-
eter of the generator of a binomial random cascade
model) with large-scale (30x30 km) rainfall averages
(interpreted by the authors as indicators of large-scale
forcings). Note that in both of the above studies the

quantitative relationships between physical and statis-
tical parameters are scale dependent. For example, in
the study of Zawadzki and Ro [1978], maximal rain-
fall intensities strongly depend on the resolution of the
available rainfall data (sparse data might severely un-
derestimate the true maximum of the storm). Also, in
the study of Over and Gupta [1994] the “large-scale forc-
ing” has the scale of 30x30 km attached to it, so that
using another scale, e.g., 60x60 km averages, will call
for different coefficients in the predictive relationship.
In our work the predictive relationship between H and
CAPE (equation (23)) is completely scale independent.
The other predictive relationship between ¢; and CAPE
(24) depends on scale (here 8x8 km for the computa-
tion of ¢;). If scales other than 8x8 km (m = 1) are
available, e.g., 16x16 km (m = 2), then the predictive
relationship becomes

& = 2Hz, = 2H[0.3811 - 0.6020(CAPE x 10-4)].

The established predictive relationships between H
and ¢; and CAPE are seen as applicable to midlati-
tude mesoscale convective systems and are envisioned to
play an important role in developing subgrid-scale rain-
fall parameterization models, i.e., models that can re-
solve the rainfall variability at scales smaller than those
resolved by a mesoscale numerical weather prediction
model (typically 30 to 60 km). One such model has
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recently been develdped by the authors and the results
will be reported shortly.
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